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Junjie Wang, Wei Li, Senior Member, IEEE, Mengmeng Zhang, Ran Tao, Senior Member, IEEE,
Jocelyn Chanussot, Fellow, IEEE

Abstract—In recent years, remote sensing scene classification is
one of research hotspots and has played an important role in the
field of intelligent interpretation of remote sensing data. However,
various complex objects and backgrounds form a variety of re-
mote sensing scenes through spatial combination and correlation,
which brings great challenges to accurately classify different
scenes. Among them, the insufficient feature difference brought
about the unbalanced change of background and target between
inter-class sample and the feature representation inconsistency
caused by the difference of representation among the intra-class
samples have become obstacles to effectively distinguish different
scene images. To address these issues, a Multi-stage Self-Guided
Separation Network (MGSNet) is proposed for remote sensing
scene classification. First of all, different from the previous
work, it attempts to utilize the background information outside
the effective target in the image as a decision aid through a
target-background separation strategy to improve the distinguish
ability between target similarity-background difference samples.
In addition, the diversity of feature concerns among different
network branches is expanded through contrastive regularization
to improve the separation of target-background information.
Additionally, a self-guided network is proposed to find common
features between intra-class samples and improve the consistency
of feature representation. It combines the texture and morpho-
logical features of images to guide feature learning, effectively
reducing the impact of intra-class differences. Extensive exper-
imental results on three benchmark demonstrate that MGSNet
can achieve better classification performance compared to the
state-of-the-art approaches.

Index Terms—Remote sensing, scene classification, target-
background separation strategy, self-guided network.

I. INTRODUCTION

EMOTE sensing scene classification is a research hotspot

in the intelligent interpretation task of remote sensing
data, which aims to focus on high-level semantic information
in scene images and classify them into corresponding scene
categories, while providing scene-level data understanding and
decision aids for many practical applications, such as land
use and cover monitoring, urban development and planning,
and natural disaster response [1]-[5]. In recent years, with the
continuous progress of remote sensing observation technology,
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Fig. 1. The similarity of inter-class images and the diversity of intra-class
images.

the application scope of remote sensing images has become
more and more extensive, how to make full use of the
increasing number of remote sensing images for intelligent
earth observation becomes extra important [6]—[9]. Therefore,
a great deal of research has been performed in the last decades
to achieve scene classification [10] [11]. Feature extraction
plays an important role in the scene classification task, and
the expressiveness of the extracted features also determines
the performance of the classification. According to the types of
extracted features, existing remote sensing scene classification
work can be roughly divided into two directions: handcrafted
feature-based methods, and feature learning-based methods
[12] [13].

Early methods for scene classification are mainly based
on handcrafted feature extraction. These methods take the
professional knowledge of practitioners as a priori to extract
features such as color, texture, shape, and spatial and spectral
information from scene images for decision support of scene
classification. Literature [14] proposed an object-oriented clas-
sification method, which combined improved color structure
code (CSC) to classify high-resolution data. In [15], a global
morphological texture descriptor was designed to explore the



potential of multi-scale texture descriptors in scene classi-
fication tasks. In [16], a unique invariant feature extraction
method was proposed, these features exhibited invariance to
image scale and rotation, and can robustly identify objects in
clutter and occlusion. Reference [17] studied the importance
of directional gradient histograms in effective target detec-
tion. However, it is worth noting that methods relying on
handcrafted-feature have good results on images with the same
texture structure or spatial distribution, but they are still limited
when faced with images with complex scenes, due to the fact
that artificially designed features can significantly affect the
representational ability of image features. In order to make up
for the limitations of handcrafted feature-based methods, au-
tomatic feature extraction from images has gradually become
a new feature extraction method.

This has been followed by the rise of feature learning-
based methods. Feature learning-based methods [18] [19] are
able to learn the corresponding adaptive functions from the
original pixel values or handcrafted features through sparse
coding, autoencoder and other means, so as to obtain a more
appropriate image representation for scene classification [12].
Compared to methods based on handcrafted-feature, the differ-
ence lies in the automatic learning of relevant features, rather
than relying on manually designed features for discrimination.
However, since the above mentioned methods do not utilize
the corresponding label information, their feature extraction
and learning capability are limited, and it is not conducive to
further improvement of scene classification performance.

In recent years, with the development of artificial intelli-
gence, deep learning methods provide excellent performance,
and have made important progress in image classification,
object recognition, and semantic segmentation [20]-[23]. The
method based on deep feature learning enables the model
self-learning more powerful, abstract, and meaningful features
through the deep network architecture, avoiding the defects
of manually designed features. At the same time, the in-
troduction of label information enables the model to learn
more accurate distinctions between classes and improving
classification performance [24] [25] [26]. In literature [27],
a multi-instance densely connected ConvNet was proposed,
which treated scene classification as a multi-instance learning
problem to further investigate local semantics. In [28], a new
discriminant function was introduced to improve the training
effect of the model. For this reason, in addition to the common
classification loss, the metric learning regularization term was
also introduced and applied to CNN features, making the
model more distinctive. Liu et al. [29] constructed a two-
branch multiscale convolutional neural network using a fixed-
scale network and a variable-scale network to cope with the
scale variation of the target in the image, in addition to
adding a similarity measurement layer to ensure the similarity
between the original image and the scaled image features. In
[30], an enhanced attention module was designed to enhance
the feature extraction and generalization capabilities of the
deep neural networks to better recognize small objects in
scenes with complex backgrounds. Reference [31] attempted
to use a pre-trained convolutional neural network model to
reduce training time, and proposed a fusion strategy to in-

tegrate the multi-layer features of the model. In [32], the
convolutional local attention module was embedded in all
down-sampling and residual blocks of the ResNet backbone
to construct a multi-branch local attention network, which
placed the convolutional channel attention module and the
local spatial attention module in parallel to obtained channel
and spatial attention, respectively, which helped to emphasize
the main targets in complex backgrounds and mentions the
representational power of features.

Although the above works have tried to solve the problems
in scene classification tasks from various perspectives, there
are still some problems when faced with the classification
problems in actual complex scenes. 1) Feature confusion due
to the difference of target-background imbalance changes.
The similarity between backgrounds and targets in inter-class
images leads to easily confused and poorly discriminative
extracted features, where the well-known issue of target
similarity between inter-class images hinders the effective
discrimination of different scenes. For example, the similarity
of the targets of the samples shown in Fig.1 (a) leads to a high
degree of confusion between different scenes. Furthermore,
scene labels are usually determined by internal key targets
in previous methods, ignoring the decision supplement that
background information can provide. For example, the dif-
ference in background information in Fig.1 (a) can provide
more information supplements for distinguishing classes with
similar targets. 2) Inconsistent feature representation due to the
diversity for intra-class sample. As shown in Fig.1 (c), in the
case of non-uniform sample collection and a large number of
disturbances, such as seasonal changes, lighting intensity, and
regional variations, the representation of intra-class samples
show diversity, which poses challenges to the robustness of
the model.

To solve the above problems, a novel multi-stage self-
guided separation network (MGSNet) is proposed for remote
sensing scene classification. First, in order to solve the problem
of insufficient feature representation caused by the similarity
due to the unbalanced change of target-background, attempts
have been done to separate the background and target to
extract corresponding features for the first time in the field
of remote sensing scene classification. Specifically, the target
and background are distinguished by binary segmentation,
followed by feature extraction of the target and background
separately using a two-branch network. In addition, the dif-
ferences between target features and background features are
enlarged by introducing contrastive regularization [33], so that
the key target features are fully mined while retaining the
background information, providing assistance for better distin-
guishing scenes with similar targets. Secondly, to improve the
feature consistency among intra-class samples with different
representation, a self-guided network is developed, which
utilizes the texture features and image morphological features
of the samples to guide the learning of the main branch
to reduce the impact of intra-class differences. Compared
with previous methods, MGSNet has the advantage of not
blindly processing the entire image in a uniform manner, but
using different feature extraction branches to simultaneously
extract the target, background, and overall features, which is
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Fig. 2. Schematic illustration of the proposed MGSNet. First, for input image

/
c
— ()|
(©)
- Q
re_d_" Guide <
uide Con uide
| Sios 1™ oo > Bl ®
(" ConvBlock )
BatchNorm
Conv
@ "@ ReLU x3
q BatchNorm
Bl Target-background Contrastive Self-guided
_ 1 separation strategy Regularization Network

s, a target-background separation strategy is applied to extract the target and

background information in the scene and send them into the corresponding feature extraction branch. Next, the contrast regularization method is utilized to

add additional constraints to each branch, thus increasing the separation of targ

et-background information. Furthermore, the self-guided network is proposed

to guide the learning of main branch feature by exploiting texture and topological information in images.

not considered by previous methods. In addition, a guidance
mechanism based on density and structural information is
designed for the feature extraction of the main branch, so that
the network model can better focus on key areas, improving
the discriminability and understanding of the model.

In summary, the main contributions are summarized as
follows.

1) Aiming at mitigating the impact of background-target
imbalance changes and improving the discrimination be-
tween similar samples, innovatively separating the target
from the background and extracting relevant features
in the remote sensing scene classification task, which
is a way that has not been involved in previous work.
To this end, a target-background separation strategy is
designed to reduce the confusion between similar targets
by extracting the key targets and important background
information in the scene images separately. Meanwhile,
the separation between background and target features
is improved by contrastive regularization, which enables
different branches to extract specific information.

To control the variability between intra-class samples
and capture class-intrinsic features, a self-guided net-
work is developed. Different from ordinary convolu-
tional networks, it guides the collection and learning of
features through the inherent texture and morphological
features within the samples, which reduces the inter-
ference introduced in the process of sample collection
and makes the feature representation between intra-class
samples more unified.

Different from the previous methods, the proposed
MGSNet not only solves the well-known problems of
inter-class target similarity and intra-class image differ-

2)

3)

ences in scene classification tasks, but also attempts to
introduce background information as a key supplement
to the final classification features.

The rest of the paper is organized as follows. Section II
describes the proposed MGSNet in detail, including how to
separate background and target features in the scene and
the architecture of the self-guided network. In section III,
extensive experiments and discussions are deployed to verify
the effectiveness of the proposed method and the role played
by each module. Finally, section IV draws the conclusion.
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Fig. 3. The illustration of target-background separation strategy.



II. PROPOSED MGSNET FRAMEWORK

The framework of the proposed MGSNet is illustrated in
Fig. 2. First, the input image is separated into background and
target, after which it is sent to the corresponding branches to
extract meaningful features. In the gap of feature extraction
in multiple stages, the target and background features are
separated by performing contrastive regularization, so that the
main branch fully extracts the overall feature of images while
converging to the key target features. In addition, the texture
and dense maps obtained by processing the input images are
used to learn the texture and morphological features contained
in the scenes, thus guiding the main branching features to
better focus on the unique properties within classes and reduce
the impact of sample differences.

A. Target-Background Separation Strategy

Remote sensing scene labels are usually determined by the
internal key targets, so most previous methods try to extract
the key target information from the input image. However,
actual scenes also contain some regions and targets unrelated
to the scene label, which are called background here. As shown
in Fig. 1 (a), due to the target similarity between scenes,
the key target features between different classes are prone
to confusion, while the difference of background information
provides decision assistance for sample distinction, thus en-
hancing the discriminative of inter-class samples with similar
targets. From the samples as shown in Fig. 1 (b), it can be
seen that the background information alone also has inter-
class similarity problems, and at this time the difference of
key targets provides sufficient information for class judgment.
Previous related works try to separate the target from the
background and use contextual information, however, their
directions are mostly focused on segmentation and detection
[34] [35] [36], and there is no complete related work in the
field of remote sensing scene classification before. To this end,
a target-background separation strategy is proposed to extract
the background and key target information contained in the
input image respectively. The whole process is illustrated in
Fig. 3.

Airplane Baseballdiamond Buildings Freeway Harbor

Fig. 4. Segmentation results of images from different classes.

In order to obtain the effective target and background
information in the scene respectively, a corresponding mask
map is designed first, which can be calculated as:

M = Adapthres(Xgray) (1)

where Adapthres is the adaptive threshold segmentation
function and X, is the grayscale map converted from the
original image. To better demonstrate the segmentation results,
several images from different classes are selected and their
segmented results are shown in Fig. 4.

After that, the original image X and the blurred image
Xbpiurreq obtained by Gaussian blurring are filled in the
corresponding area according to the segmentation result, so
as to avoid the influence of other information on the feature
extraction of specific branches and make the background and
target branches focus on the corresponding features in the
image respectively,

v o x M #0
farget = Xblurred M ==
(2)
Xb " y= Xblur'r'sd M 7é 0
ackgroun X M=—0

where Xiqrget and Xpocrground are the inputs of the target
and background branches.
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Fig. 5. The contrastive regularization is adopted to pull the main branch
features to the target features and push the background features away the
target features.

B. Contrastive Regularization

Inspired by contrastive learning, it aims to learn a feature
representation in a certain feature space that draws the “’pos-
itive” pairs closer and pulls the “negative” pairs apart. To
this end, an contrastive regularization (CR) is introduced to
normalize and generate better feature representations, which
is shown in Fig. 5. There are three feature extraction branches
in MGSNet, the background and target branches are used to
extract the separated background and target features, and the
main branch is used to mine the overall features of the scene
image. To this end, the positive and negative pairs in CR
are features extracted from the target F; and main branches
F,, and features from the background Fj and target branches,
respectively. Therefore, the loss function of the network can
be reformulated as:

N C
1 C C
L= N;;—yl log(p;) + Bp(Fb, Fy, Fim) (3)
where the first term is the cross-entropy loss between the true
label and the output of MGSNet to regularize the learning
of the classifier. IV is the number of input samples, C' is
the number of scene classes, and y is the corresponding



label; if the class of input is ¢, then y“=1, otherwise 0; p°©
is the prediction probability after softmax. The second term
p(Fy, Fy, F,,) represents the contrastive regularization of Fy,
F; and F),, under the same latent feature space, which plays
an important role in bringing the main branch features closer
to the target features and the background features far away
the target features. 8 is a hyperparameter used to balance
the cross-entropy loss and CR. To enhance the contrastive
power between features, hidden features from multistage are
extracted and subjected to contrastive regularization. Thus, the
overall loss function can be further calculated as:

N C -
1 D(Fi  F7)
L=— 1 mi.’? 4
Ngl E_ —y; log(p) +6§1 D}, F)) “)
1=1 c=1 7
where h is the number of hidden layers, and j = 1,2,---h is

the jth hidden layer from the model. D(x,y) is the L1 loss
between x and y, w; is the weight coefficient.
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Fig. 6. Illustration of computing the dense map.

C. Self-Guided Network

As mentioned before, due to the varied lighting conditions,
view angle, and the complexity of ground surfaces, there
are still differences in presentation forms between scenes
of the same class. To this end, the designed self-guided
network reduces the impact of performance differences by
exploiting the inherent structural features of samples to guide
feature extraction and learning. It consists of two parts, dense
map guidance and texture structure guidance, starting from
morphological features and texture features respectively, to
improve the intra-class consistency of sample features.

1) Dense Map Guidance: In general, scene images contain
complex regions with dense semantic information and smooth
regions with low information frequency, and the mixing of
these regions poses a challenge for the model to focus on the
key semantic regions in the image. Therefore, it is suboptimal
to blindly process the entire input sample in the same way.
Inspired by the success of noise map in denoising task, a
dense map Xp is introduced here to guide the network to
perform targeted processing on different regions of the scene.
In the dense map, regions with dense semantic information

Guide Block

Dilation w=l w=2 w=3

Fig. 7. Guide block with different dilation rates for texture structure guidance.

correspond to high-frequency patterns, while regions with
less texture correspond to low-frequency patterns. It can be
calculated as:

Xp = g3(92(Igray — 91(Ugray; K1) : K2)) (%)

where both g; and g, are Gaussian blur operations with the
kernel size of K7 and K5, g3 is a normalization function, and
Igrqy is the mean of three channels of the input image. g3 is
defined as:

I —min(I)
—min(I) +e¢

gs(I) = (6)

max(I)

After applying Gaussian blur operation g; to the input
image, the regions with dense semantic information become
blurred, which makes the gap between the output and the
original input more obvious. After that, another Gaussian
blurring operation g, is applied to obtain a smooth density
map. Finally, the image is regularized to the interval from 0
to 1. The whole process is shown in Fig. 6.
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Fig. 8. Sample images of the UCM dataset: two images of each class are
exhibited. (Semantic category ~ Number of samples.)

Once the dense map is computed, similar to [37], it is
combined by concatenating it with other channels, and then
fed into the network as the input to the main branch.
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2) Texture Structure Guidance: Due to the different ac-
quisition times and methods of intra-class samples, their
representation forms are diverse, while the inherent texture
structure features in the data provide a good guide for feature
extraction. For this reason, a texture structure guidance module
is proposed, and its structure is shown in Fig. 7.

The gray image obtained from the original input discards
the influence caused by color and light intensity and focuses
on the texture structure information. The abstract features
extracted by different stages are sent to the texture structure
guidance module together with the main branch features.
Within the module, the features with different receptive fields
are obtained through convolution operations with different
dilation rates, while effectively modeling the scale variation
associated with the object texture. Specifically, let F;, and
F; denote the features extracted by the main branch and the
texture features at the same level, respectively. By defining
different dilation rates d = 1, 2, 3, Fy can obtain features with
different receptive fields. Combining these features with main
branch features can better model scene features of different

TABLE I
COMPARISON OF OVERALL ACCURACY AND STANDARD DEVIATIONS (%)
OF STATE-OF-THE-ART METHODS ON UCM DATASET WITH THE TRAINING
RATIO OF 80%

Training ratio 80%

Type Method Publication Year (20% testing)
BoVW(LBP) [38] TGRS2017 77.124+1.93
BoVW(SIFT) [38] TGRS2017 74.1243.30

f salM3LBP-CLM [39] JSTARS2017 95.7540.80
sal CLM(eSIFT) [39] JSTARS2017 94.5240.79
Two-Fusion [40] CIN2018 98.02+1.03
CCPNet [41] RS2018 97.524+0.97
GCFs+LOFs [42] RS2018 99.0010.35
CNN-CapsNet [43] RS2019 99.0540.24
SCCov [44] TNNLS2019 99.0540.25
ARCNet-VGG [45] TGRS2019 99.1240.40
i GBNet [46] TGRS2020 98.5740.48
MG-CAP [47] TIP2020 99.00+0.10
BiMobileNet [48] Sensors2020 99.0340.28
SEMSDNet [49] JSTARS2021 99.414+0.41
CSDS [50] JSTARS2021 99.524-0.13
T-CNN [51] TGRS2022 99.3340.11
DFAGCN [13] TNNLS2022 98.48+0.42

OA: 99.76+0.14

Ours MGSNet AA: 99.7640.14

KC: 99.754+0.16
T:Handcrafted Feature-Based Methods {:Deep Feature-Based Methods

scales. This process can be expressed as:

E,=F,® Z Conv(Fy,d) @)
d

With the guidance of multiscale texture features, the feature
extraction and learning of the main branch better deal with the
inter-class samples with different representations and improve
the unity of feature representation.

D. Analysis on the Proposed Method

This paper proposes a target-background separation strat-
egy and contrastive regularization for the insufficient feature
representation caused by the difference of target-background
imbalance changes in scene classification tasks. In addition, in
the face of the problem of intra-class sample variability, the
self-guided network is used to guide the feature learning of
the network branch.

The motivation of this method is to use the background
information ignored by existing methods as an aid to scene
classification, so as to improve the discrimination of the
model for input samples. To achieve this goal and reduce
the interference of irrelevant information, a unique separation
strategy is proposed and verified. Only a suboptimal separation
can be achieved only by processing the input samples alone.
Therefore, a contrastive regularization method is introduced
to reduce the interference of irrelevant information under the
specific branch, and its enhancement for model understanding
is discussed in Section III-D.

Furthermore, to improve the grasp of the overall information
of the scene and eliminate the interference generated during
the sample collection process, a self-guided network came
into being. Its goal is to utilize the uniform texture and



COMPARISON OF OVERALL ACCURACY AND STANDARD DEVIATIONS (%) OF STATE-OF-THE-ART METHODS ON AID DATASET WITH THE TRAINING
RATIO OF 20% AND 50%

TABLE I

Training ratios

Type Method Publication Year - -
20%(80% testing) 50%(50% testing)
BoVW(LBP)) [38] TGRS2017 56.7340.54 64.2540.55
BoVW(SIFT) [38] TGRS2017 61.4040.41 67.654+0.49
f salM3LBP-CLM [39] JSTARS2017 86.92+0.35 89.76+£0.45
sal CLM(eSIFT) [39] JSTARS2017 85.58+0.83 88.41+0.63
Two-Fusion [40] CIN2018 92.3240.41 94.5840.25
GCFs+LOFs [42] RS2018 92.4840.38 96.8540.23
CNN-CapsNet [43] RS2019 93.7940.13 96.3240.12
SCCov [44] TNNLS2019 93.1240.25 96.1040.16
ARCNet-VGG [45] TGRS2019 88.75+£0.40 93.1040.55
it GBNet [46] TGRS2020 92.2040.23 95.4840.12
MG-CAP [47] TIP2020 93.344-0.18 96.1240.12
BiMobileNet [48] Sensors2020 94.8340.24 96.8740.23
CSDS [50] JSTARS2021 94.2940.35 96.7040.14
PSGAN [52] TGRS2022 89.47+0.34 92.6740.55
T-CNN [51] TGRS2022 94.5540.27 96.2740.23
OA: 95.46+0.21 OA: 97.18+0.16
Ours MGSNet AA: 95.254+0.27 AA: 97.1240.19

KC: 95.60+0.31

KC: 97.08+0.22

T:Handcrafted Feature-Based Methods {:Deep Feature-Based Methods
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Fig. 11. Confusion matrix (CM) on UCM dataset with 80% of the dataset for training and the rest for testing.

topological features of the intra-class samples to compensate
for the differences in representation forms, and guide the
learning of main branch features. Specifically, the combination
of the dense map gives extra attention to the key area of the
image, and the texture structure information at different scales
is captured through the convolution operation with different
dilation rates. The combination of them effectively promotes
the mining of the essential features of the image.

III. EXPERIMENTAL RESULTS AND DISCUSSIONS
A. Datasets Descriptions and Evaluation Metrics

1) Datasets Descriptions: (1) A series of experiments are
performed on the UCM dataset [54], which is one of the most
classic datasets in remote sensing image scene classification
tasks. It consists of 21 scene classes, including agricultural,
airplane, baseballdiamond, beach, etc. It is derived from the
United States Geological Survey National Map, Urban Area
Imagery collection, where each class consists of 100 images
with a size of 256 256 pixels, which together form a scene



TABLE III
COMPARISON OF OVERALL ACCURACY AND STANDARD DEVIATIONS (%) OF STATE-OF-THE-ART METHODS ON NWPU-RESISC45 DATASET WITH THE
TRAINING RATIO OF 10% AND 20%

Training ratios

Type Method Publication Year - -
10%(90% testing) 20%(80% testing)
BoVW [12] RPOC2017 41.7240.21 44.7940.28
t BoVW+SPM [12] RPOC2017 27.8340.61 32.964+0.47
LLC [12] RPOC2017 38.8140.23 40.031+0.34
Fine-tuned VGG-16 [12] RPOC2017 87.1540.45 90.361+0.18
Two-Fusion [40] CIN2018 80.2240.22 83.1640.18
CNN-CapsNet [43] RS2019 89.0340.21 92.6010.11
SCCov [44] TNNLS2019 89.3040.35 92.101+0.25
MF2Net [53] GRSL2020 90.1740.25 92.734+0.21
i MG-CAP [47] TIP2020 90.8340.12 92.9540.11
BiMobileNet [48] Sensors2020 92.06+0.14 94.0840.11
SEMSDNet [49] JSTARS2021 91.6840.39 93.8940.63
CSDS [50] JSTARS2021 91.6440.16 93.5940.21
PSGAN [52] TGRS2022 84.7240.72 88.4740.56
T-CNN [51] TGRS2022 90.2540.14 93.054+0.12
OA: 92.40+0.16 OA: 94.57+0.12
Ours MGSNet AA: 92.40+0.16 AA: 94.5740.12

KC: 92.23+0.18

KC: 94.44£0.15

T:Handcrafted Feature-Based Methods T:Deep Feature-Based Methods
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Fig. 12. Confusion matrix (CM) on AID dataset with 20% of the dataset for training and the rest for testing.
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classification dataset containing 2100 images. Fig. 8 shows
some samples of this benchmark dataset. To achieve a fair
comparison, 80% of the images are randomly selected as the
training set, and the remaining images are used for testing. (2)
The AID dataset is used in the experiment [38], which is a
large-scale dataset consisting of 10,000 aerial scenes images
with a size of 600 x 600 pixels, containing 30 scene categories
such as airport, bare land, baseball field, beach, bridge, etc.
All images were collected via Google Earth and annotated
by experts, with spatial resolution changes from half a meter
to 8m. Fig. 9 illustrates some images of each class in this

dataset. Similar to UCM, 20% and 50% of the samples are
randomly selected as the training set to optimize the model
parameters. (3) The NWPU-RESISC45 dataset is a large-scale
dataset created by Northwestern Polytechnic University using
Google Earth Imagery [12], which contains 45 scene cate-
gories including airplane, airport, baseball diamond, basketball
court, beach, etc. Each class consists of 700 images with a size
of 256 x 256, and its spatial resolution ranging from 0.2 m to
30 m. Fig. 10 exhibits some images of this challenging dataset.
10% and 20% of the images are selected as the training set,
and the remaining images are used to test the performance of
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Fig. 13. Confusion matrix (CM) on AID dataset with 50% of the dataset for training and the rest for testing.

the model.

2) Evaluation Metrics: For better quantitative analysis of
the experimental results, two widely used evaluation metrics
were introduced. (1) Overall accuracy (OA). The overall
accuracy is the ratio between the number of correctly classified
samples and the overall samples. (2) Average accuracy (AA).
The average accuracy refers to the average of each class ac-
curacy, which reflects the balance of the classification results.
(3) Kappa coefficient (KC). kappa coefficient an indicator for
consistency detection, which is used to measure the effective-
ness of the classification. In addition, the confusion matrix is
introduced to visualize the inter-class classification error and
the degree of confusion, thus enabling qualitative analysis of
the classification results. Specifically, each column represents
the prediction result of the model, the sum of each column
represents the number of samples predicted to be that class,
each row represents the true distribution, and the sum of the
data in each row represents the true number of samples in that
class. In this way, it shows the correct classification and the
misclassification of the model, which can help readers better
understand the performance of the model.

B. Comparison with State-of-the-art Approaches

In this subsection, the experimental results of the three
datasets are described and discussed in detail. To verify the
effectiveness of the proposed method, some state-of-the-art
methods from recent years are used for comparison. The
comparison results on UCM, AID, and NWPU-RESISC45
data sets are reported in Table I, Table II and Table III,
respectively.

Table I lists the classification results of the proposed method
and other state-of-the-art methods on the UCM dataset. In
order to prevent the undue influence of the experimental

samples on the experimental results and to maintain the
fairness of the results of different methods, all methods take
80% of the samples as the training set for model optimization.
Judging from the classification accuracy of each method in the
table, the understanding ability of handcrafted feature-based
methods limits the classification accuracy of the model due
to the limitation of feature extraction, thus affecting the final
classification results. While the classification accuracy of most
deep feature-based methods can reach 90% and then tend to
be stable and difficult to improve. MGSNet achieves a higher
classification accuracy of 99%, which is a significant improve-
ment compared to other methods. This further demonstrates
that the proposed MGSNet not only effectively alleviates
the difference caused by the target-background imbalance
change, but also improves the feature consistency of the intra-
class samples, which is conducive to the improvement of
classification accuracy.

The classification performance of the comparison methods
and MGSNet on the AID dataset are listed in Table II,
where two columns of results represent using 20% and 50%
samples for training, and the remaining samples as the test
set. Compared with handcrafted feature-based methods, deep
feature-based methods have an improvement of at least 1.83%
and 3.34% when the proportion of training samples is 20% and
50%, with a great improvement. The improvement also fully
demonstrates the benefit of deep feature extraction. In addition,
with the increase of the number of training samples, the
classification accuracy has a greater gap, which indicates the
demand for training samples of deep feature-based methods.
The proposed MGSNet achieves the best classification per-
formance of 95.46% and 97.18% respectively under different
training ratios and has improved the accuracy of 8.54%, 7.42%
and 0.63%, 0.31% compared to the two types of methods,
which confirms the effectiveness of the proposed method on
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TABLE IV
ABLATION STUDIES FOR THE PROPOSED MGSNET ON THREE DATASETS

Variant Target-background separation strategy CR Self-guided network OA (%) on different dataset
Target branch| Background branch Dense map Texture structure | ;o g00,) | ATD(209%) | AID(50%) | NWPU(10%) | NWPU(20%)
guidance guidance

1 v v v v v 99.76 95.46 97.18 92.40 94.57
2 v v v v 99.52 95.20 96.92 92.11 94.28
3 v v v 99.36 94.98 96.60 91.87 93.99
4 v v v 99.28 94.73 96.41 91.66 93.72
5 v v 99.04 94.31 94.18 91.32 93.40
6 v v v v 99.33 94.72 96.45 91.82 93.91
7 v v v v 99.56 95.02 96.84 92.04 94.15
8 v v v 99.20 94.47 96.21 91.66 93.64
9 v v 99.01 94.23 95.98 91.41 93.39

the AID dataset.

Compared with the first two datasets, the NWPU-RESISC45
dataset has the largest number of scene classes as well as
the amount of data, so its rich image variations, differences
of intra-class samples, and similarities between inter-class
samples make the dataset more challenging. The comparison
results between the proposed method and existing methods
using the NWPU-RESISC45 dataset are listed in Table III.
With 10% and 20% of the samples are respectively chosen
as the training set, and the remaining samples are used for
testing, the proposed method outperforms other comparative
methods. When the training rate is 10%, the overall accuracy
of MGSNet is 2.15% higher than the latest research T-CNN
based on depth feature, and 50.68% higher than the methods
based on handcrafted feature. With a 20% training share, there
is an improvement of 1.52% and 49.78%. It can be seen
that the learning ability and discrimination of the model are
effectively improved by introducing background information

and improving the consistency of intra-class samples.

C. Reports of Confusion Matrix

To better demonstrate the specific classification performance
of the proposed method, confusion matrices are drawn to
illustrate the classification results. A total of five confusion
matrices can be obtained through experimental results with
different training ratios on the UCM, AID, and NWPU-
RESISC45 datasets, which are presented in Fig.11-Fig.15.
Each column of the confusion matrix represents the predicted
label, and the sum of each column represents the number of
samples predicted to be the corresponding scene. Each row
represents the actual label of the sample, and the sum of each
row represents the number of samples of the corresponding
scene in the test set. Thus, the cells on the diagonal represent
the proportion of samples that are correctly classified, while
the other cells are misclassified cases.
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Fig. 15. Confusion matrix (CM) on NWPU-RESISC45 dataset with 20% of the dataset for training and the rest for testing.

Fig.11 shows the confusion matrix when the training set
accounted for 80% on the UCM dataset. Among the 21 scene
classes, only one scene has an accuracy below 100%, reaching
95%, which is the misclassification of medium residential into
dense residential. This is because the target and background
information in these two types of scenes are too similar, so it is
easy to cause model misclassification when processing relevant
samples. However, MGSNet still has unique advantages, for
example, when dealing with freeway, runway, and overpass,
although the valid targets are all roads, the differences of their
background information can be effectively captured by the
network to correctly distinguish different classes.

Fig.12 and Fig.13 show the confusion matrices obtained on
the AID dataset when the training set accounts 20% and 50%.
Only four and one scene classes’ accuracy is less than 90%,
and the rest classes have achieved excellent performance. For
example, the center has more misclassifications because its
object shape and context information are similar to the church.
However, the problem of intra-class variation can be better
resolved in the division of classes such as forest due to the
introduction of texture and morphological information for the
guidance of network learning.

The confusion matrices of NWPU-RESISC45 dataset are
shown in Fig.14 and Fig.15. When the proportion of training
samples is 10% and 20%, there are 34 and 41 scenes with
classification accuracy exceeding 90%. Among the two groups
of experiments, the worst classification performance is palace,
which is wrongly classified as church in most cases. This is be-
cause there are certain similarities in valid targets, background,
and context information, which makes the model prone to
misclassification. On the contrary, although desert has a certain
similarity with lake in the target performance, MGSNet can
recognize it well with the assistance of background informa-
tion. Similarly, the similarity between chaparral and desert

backgrounds can be effectively distinguished by supplement-
ing the information of valid targets, thereby improving the
robustness of the model.

D. Ablation Studies

To verify the role of separation strategy, contrastive regular-
ization, and self-guided network in this task, this subsection
conducts a series of ablation experiments to explore the
importance of target-background information for network per-
formance improvement and the effectiveness of various parts
of self-guided network. The specific experimental results are
listed in Table IV. Specifically, the whole ablation experiments
can be divided into two parts: 1) Verify the effect of target-
background information and contrastive regularization on im-
proving feature discrimination. Through the comparison of #1
and #2, the introduction of contrastive regularization increases
the separation between different features and improves the
extraction ability of specific features by each network branch.
And the comparisons between#2, #3, #4 and #5 fully demon-
strate that the additional introduction of target-background
information is helpful in improving the discrimination between
similar scenes for better inter-class sample differentiation.
While #9 fully demonstrates the experimental performance
only using the variant with target branch and background
branch only. It can be seen that even without adding other
modules, good results can still be achieved through the sepa-
ration and support of the target and background information.
2) Verity the assistance of self-guided network for main branch
feature extraction. Through the comparison of the results of
#1, #6, #7, and #8, it can clearly see the benefits of dense
graph guidance and texture structure guidance for improving
the consistency of the main branch feature representation.
They utilize the morphology and texture features of images to



guide the feature attention, reducing the impact of differences
in intra-class sample representations (e.g., seasonal turnover,
regional variation), and allowing the model to focus more on
common features within the samples. By combining the target-
background separation strategy, contrastive regularization and
self-guided network, the proposed MGSNet effectively alle-
viates the misclassification phenomenon caused by the inter-
class similarity and the intra-class differences, making it
achieve state-of-the-art performance in multiple datasets.

E. Running time and Memory Requirement

To demonstrate the running efficiency and memory require-
ment of the model, relevant statistics are performed on the
UCM dataset. The training time of the model is calculated
with 32 images within a round of training, while the test time
is obtained using the entire test set (420 images). The training
time is 0.307s and the testing time is 0.614s, which is the
average of the five runs of the model. In addition, the memory
requirement of the model is 7.58 MB. From the obtained
results, the model runs efficiently and requires a moderate
amount of memory, which is sufficient for subsequent appli-
cations.

IV. CONCLUSIONS

In this paper, a novel MGSNet has been proposed for
remote sensing scene classification. First of all, to solve
the problem of inter-class sample similarity caused by the
unbalanced change of target-background, a target-background
separation strategy, and a contrastive regularization method
are established in MGSNet. Specifically, the input samples
are divided into target and background regions by separating
them. Afterwards, they are fed into the corresponding feature
extraction branches to achieve separate extraction of target
and background information, thus providing more and more
reliable information assistance for sample differentiation. And
contrastive regularization serves this strategy, improving the
feature separation by expanding the difference between them,
so that each branch pays more attention to the extraction and
utilization of its corresponding information. In addition, a self-
guided network based on image texture and morphological
features is proposed to cope with differentiated intra-class
samples. With the guidance of dense map and texture structure
information, the main branch pays more attention to the
common characteristics of samples in the class. Extensive ex-
perimental results on three datasets demonstrate the superiority
of MGSNet from the perspective of quantitative indicators and
confusion matrix, proving its effectiveness on remote sensing
scene classification tasks.
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