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Abstract

The Plackett–Luce model is a popular parametric probabilistic model to define
distributions between rankings of objects, modelling for instance observed pref-
erences of users or ranked performances of algorithms. Since such observations
may be scarce (users may provide partial preferences, or not all algorithms are
run for a given experiment), it may be useful to consider the case where the
parameters of the Plackett–Luce model are imprecisely known. In this paper,
we first introduce the imprecise Plackett–Luce model, induced by a set of pa-
rameters (for instance, parameters with a high relative likelihood). Given a set
of possible parameters for the model, we then provide an efficient algorithm
to make cautious inferences, returning sets of possible optimal rankings (for
instance in the form of partial orders). We illustrate the use of our imprecise
model on label ranking, a specific kind of supervised learning.

Keywords: Preference learning, Cautious inference, Poor data, Imprecise
Probability

1. Introduction

Learning and estimating probabilistic models over rankings of objects is an
old problem, dating back to the 1920s [27]. In the last decades, this problem
has known a revival, in particular due to a surge of interest from the machine
learning community [14]. As the corresponding probabilities are defined over the
space of permutations which grows exponentially with the number of objects, two
classical approaches are either to split the initial problem in subcases (typically
pairwise preferences [17]) or to use parametric models. In this latter case, two
popular approaches consist either in associating a parametric random utility to
each object and then considering the resulting distribution on rankings [4], or in
directly defining a parametric distribution over the set of rankings [23].

There are multiple reasons to include cautiousness in both the estimation
and inference steps of such models. The estimation may have to deal with scarce
ranking information, such as in cold-start problems of recommender systems
when predicting new user preferences [30], or with partial information, such as
when one only observes top elements of a ranking or pairwise comparisons [21].
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During the inference step, it may be useful to reinforce the reliability of the
inferences made by outputting partial rankings as predictions, abstaining to
predict when information is deemed unreliable. This could avoid recommending
undesirable objects, or rejecting desirable ones, when only weak information is
available, as well as allowing one to identify situations where obtaining more
data or questioning the user may be instrumental.

When using precise probabilistic models, such abstentions are usually obtained
by thresholding the estimated probabilities [9]. However, it can be argued that
precise probabilities alone make it difficult to differentiate between ambiguous
situations (e.g., lots of observed preferences between two objects, half in favour
of the first, half in favour of the second) and situations of lack of knowledge
(e.g, no or very few observed preferences) [32]. This means in particular that
approaches relying on precise probabilities may not be appropriate to deal with
scarce data, due either to a lack of sensitivity or to being then strongly biased
towards extreme values, thus lowering the interest of thresholding approaches.
In contrast, relying on imprecise models to perform inferences makes it easier
to reflect the lack of data by making the estimates more imprecise (and hence
the predictions more partial) as data become scarcer. We will confirm this
intuition in our experiments. Fundamental philosophical differences between
precise and imprecise approaches to cautious inference lie behind this practical
consideration: in the case of precise models, cautiousness is obtained through
the decision/inference process, and is not reflected in the predictive model;
whereas imprecise models encode a lack of knowledge in their structure during
the estimation and learning steps, cautiousness merely being a consequence of
the model encoding its limited state of knowledge. This argument, in addition
to the aforementioned practical sensitivity to scarce data, supports the use of
cautious approaches when handling scarce data.

It therefore makes sense to consider a theoretical framework that extends and
enriches probabilities to better account for this distinction between ambiguity
and ignorance. Imprecise probability theory [2], which models scarce knowledge
by manipulating sets of probabilities, is an elegant mathematical framework that
achieves this goal. However, to our knowledge, it has not yet been applied to
the aforementioned approaches that are random utilities and parametric ranking
models.

In this paper, we consider the latter, focusing more specifically on the well-
known Plackett–Luce ranking model, which we present in Section 2. We focus
on model inference in Section 3, showing that efficient methods can be developed
to make cautious, guaranteed inferences based on sets of parameters. Section 4
then presents an application of the cautious Plackett–Luce model methods to
label ranking, using relative likelihoods [5] to define the imprecise model via
sets of parameters, similar to previous work [13]. Additionally, we provide in
Appendix A some detailed proofs of two propositions introduced in Section 3,
and in Appendix B we provide some complementary experimental results from
Section 4. This work is an extension of a previously published work [1], and
notably includes proofs as well as additional examples, a study of the case where
parameters are interval-valued, and complementary experiments demonstrating
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the usefulness of the proposed approach when compared to state-of-the-art
thresholding approaches [9].

2. The imprecise Plackett–Luce model

We consider the problem of obtaining a probabilistic model over rankings
of a finite set of objects or labels Λ = {λ1, . . . , λn}. That is, we are interested in
defining probabilities over (strict) total orders on the labels—i.e., connective,
transitive and irreflexive relations � on Λ. We can (and will) identify any complete
order � over the labels—called label ranking—with its induced permutation
τ : [1,n] → [1,n] on indices [1,n] := {1, . . . ,n}, that is, the unique permutation of
Λ such that

λτ(1) � λτ(2) � · · · � λτ(n).

Because of this identification, in this paper, we will use the terms ‘order on
the labels’, ‘ranking’ and ‘permutation’ interchangeably. We will denote the set
which contains the n! permutations on Λ by L, a generic element of which will
be denoted by τ.

We focus on one particular theoretical probability measure P : 2L → [0,1],
namely the Plackett–Luce (PL) model [22, 26, 7, 15]. The PL model is param-
eterised by n parameters—called strengths—v1, . . . , vn in the set of (strictly)
positive numbers R>0 B {x ∈ R : x > 0}.1 We usually denote the strength vector
(v1, . . . , vn) by v, which completely specifies the PL model. For any strength
vector v, an arbitrary ranking τ in L is assigned probability:

Pv(τ) B
n∏

k=1

vτ(k)∑n
`=k vτ(`)

=
vτ(1)

vτ(1) + · · · + vτ(n)
·

vτ(2)

vτ(2) + · · · + vτ(n)
· · ·

vτ(n−1)

vτ(n−1) + vτ(n)
.

(1)

The parameters v1, . . . , vn are defined up to a common positive multiplica-
tive constant, so it is customary to assume that

∑n
k=1 vk = 1. Therefore,

the parameter v = (v1, . . . , vn) can be regarded as an element of the interior
int(Σ) = {(x1, . . . , xn) ∈ Rn

>0 :
∑n

k=1 xk = 1} of the n-simplex Σ B {(x1, . . . , xn) ∈
Rn
≥0 :

∑n
k=1 xk = 1}.

The PL model has the following nice interpretation: the larger a weight vi,
the more a label λi tends to be preferred. This is reflected in the observation
that the probability that label λi is the first ranked label is equal, for all τ ∈ L,
to: ∑

τ(1)=i

Pv(τ) = vi .

Given that λi is the first label, the probability that λj is the second label is equal
to vj/

∑n
k=1,k,i vk . This can be interpreted as the probability that λj is the first

1Next to R>0, we will also define the set of non-negative real numbers R≥0 B {x ∈ R : x ≥ 0}.
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amongst the remaining labels Λ \ {λi}. By recurrence, given that λτ(1) is the
first label, λτ(2) the second, . . . , λτ(i−1) the i − 1-th one, the probability that λτ(i)
is the i-th label is equal to vτ(i)/

∑n
k=i vτ(k), that is, the probability that λτ(i) is

the first amongst the ‘remaining’ labels {λτ(i), . . . , λτ(n)}.
For any PL model described by the strength vector v, finding the ‘best’

ranking—that is, the most probable (modal) ranking—is easy: it is sufficient
to find the permutation τ that ranks the strengths in decreasing order. More
specifically:

τ ∈ arg max
τ′∈L

Pv(τ
′) ⇔ vτ(1) ≥ vτ(2) ≥ · · · ≥ vτ(n−1) ≥ vτ(n). (2)

Example 1. Consider the set Λ = {a, b, c} of objects, together with the strengths
νa = 0.3, νb = 0.5, νc = 0.2. The most probable ranking is b � a � c which has
probability:

Pν(b � a � c) =
0.5

0.5 + 0.3 + 0.2
·

0.3

0.3 + 0.2
·

0.2

0.2
= 0.3.

2.1. The imprecise Plackett–Luce model

We define an imprecise Plackett–Luce (IPL) model as the set of precise
PL models obtained by letting the strengths vary over a subset Θ ⊆ int(Σ),
rather than being precisely defined. It can be seen and interpreted as a robust,
set-valued estimation of an unknown PL model, as Θ induces a corresponding set
of precise PL models. We will assume that Θ is a subset of int(Σ), rather than
Σ, to ensure that all the strength values considered are positive, so that the PL
model in Equation (1) is well-defined. A given ranking τ is now assigned several
probabilities, each corresponding to one of the eligible precise PL models (or
strength vectors). The lower and upper probabilities of a ranking τ are defined
as:

P
Θ
(τ) B inf

v∈Θ
Pv(τ) and PΘ(τ) B sup

v∈Θ
Pv(τ) for all τ in L,

and can be interpreted as bounds of a partially known PL model. A direct
consequence is that the notion of ‘best’ or modal ranking is now ambiguous.
Indeed, some ranking τ might maximise Pv for some strength vector v in Θ,
while another ranking τ′ maximises Pu(τ

′) > Pu(τ) for another strength vector
u in Θ, u , v. It results that classical decision rules and optimality conditions
need to be redefined.

There are a number of imprecise-probabilistic optimality criteria. Since we
are interested in returning cautious, set-valued predictions, we will consider
here two of the most well-founded ones: (Walley–Sen) maximality [32, 28] and
E-admissibility [20].

We call a ranking τ maximal if it is not dominated in the following order:

τ1 �M τ2 ⇔ (∀v ∈ Θ)Pv(τ1) > Pv(τ2). (3)

This is indeed a ‘robustification’ of the precise rule, as τ1 �M τ2 only if Pv(τ1) >
Pv(τ2) is true for all possible models in Θ. If Θ contains more than one element,
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then the ordering defined above can be a (strict) partial order—meaning that
�M is irreflexive, asymmetric and transitive—that might not be complete, and
which might therefore admit more than one non-dominated element. The set of
all maximal rankings—the rankings that are not dominated under �M , which
we will denote further on by MΘ—is therefore given by the set of rankings τ for
which τ′ �M τ for all rankings τ′:

τ ∈ MΘ ⇔ (∀τ
′ ∈ L)τ′ �M τ (4)

⇔ (∀τ′ ∈ L)(∃v ∈ Θ)Pv(τ) ≥ Pv(τ
′). (5)

A ranking τ is called E-admissible when there is a strength vector v for which
it maximises Pv. In other words, the set of all E-admissible rankings, denoted
further on by EΘ, is given by the set of rankings τ for which:

(∃v ∈ Θ)(∀τ′ ∈ L)Pv(τ) ≥ Pv(τ
′). (6)

Equivalently, the set of E-admissible rankings is given by:⋃
v∈Θ

arg max
τ∈L

Pv(τ),

which corresponds to the union of all possible modal rankings. One can check the
known fact [29] that any ranking that is E-admissible is also maximal, but not
necessarily vice versa, by comparing Equations (4) and (6). The next example
shows that, in our particular IPL setting, the two sets will not coincide in general.

Example 2. Figure 1 displays the simplex representing the space of all possible
parameters of a PL model for three objects, in barycentric coordinates. Each
region is tagged by the corresponding optimal ranking, i.e., the most probable
ranking whenever the strength vector lies in this region. This means that for a
given set Θ of parameters, the set EΘ corresponds to the rankings whose region
intersects with Θ. Any subset in this simplex can therefore be seen as a subset Θ
introduced in this section.

Now, consider the convex set Θ of parameters that is the interior of the
convex hull of v1 = (1 − ε,0, ε) and v2 = (0,0.5 + γ,0.5 − γ) with 0.5 > γ > ε > 0,
also represented in Figure 1 for the specific case ε = 0.25 and γ = 0.3. That is,
we look at all points αv1 + (1 − α)v2, with α ∈ (0,1).

From the picture, one can see that the set of E-admissible rankings is:

EΘ = {λ1 > λ2 > λ3, λ1 > λ3 > λ2, λ2 > λ1 > λ3, λ2 > λ3 > λ1}

as the full line crosses only the regions corresponding to those four rankings.
Besides, it turns out that λ3 > λ1 > λ2 ∈ MΘ: it can be checked that for each τ,

we may find a suitable set of parameters v ∈ Θ such that Pv(λ3 > λ1 > λ2) ≥ Pv(τ),
meaning that τ �M (λ3 > λ1 > λ2). For instance, for τ = λ1 > λ2 > λ3, we must
find a strength vector v ∈ Θ such that:

v3 ·
v1

v1 + v2
> v1 ·

v2

v3 + v2
;
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v1 = 1

v2 = 1v3 = 1

v1
> v2

v
2
>
v
3

v1 > v3
λ1 >λ2 >λ3λ1 >λ3 >λ2

λ3 >λ1 >λ2

λ3 >λ2 >λ1 λ2 >λ3 >λ1

λ2 >λ1 >λ3

v1

v2
Θ

Figure 1: Simplex Σ with regions where rankings are optimal and E-admissible, and with
parameter set Θ of Example 2

any vector with v2 sufficiently close to 0 within Θ satisfies this inequality: one
can therefore consider the point v1. Other cases can be treated similarly, by
picking adequate strength vectors within Θ.

3. Inference with IPL

We have seen in Section 2 that for a precise PL model, the ‘best’ (most
probable) ranking can easily be found using Equation (2). Things become more
complicated when the Plackett–Luce model becomes imprecise, since in this case,
computing the set of all rankings satisfying Equation (4) to make robust and
imprecise predictions generally requires comparing all pairs of possible answers.

This will be most of the time infeasible in practice, because the number of
items to compare (n!) will quickly become huge as n grows: as a consequence,
only problems with very few labels to rank will be tractable by sheer enumeration.
Therefore, we need to find efficient ways to make predictions that remain coherent
with imprecise probabilistic principles. Two different ways to do so is to consider
approximate but guaranteed inferences in the general case, or to consider subcases
(i.e., domain restrictions) where making exact inferences become tractable.

In the following sections, we introduce two inference methods for the IPL
model, one for each of these ideas. The first one, presented in Section 3.1, is
an outer approximation to the set MΘ of (Walley–Sen) maximal rankings, and
therefore also to the set EΘ of E-admissible ones. No further assumptions about

6



Θ need to be made. In Section 3.2, we introduce a second exact inference method
where the set of strengths Θ has a specific form, namely that of probability
intervals [12]. Such intervals can be obtained, e.g., as lower/upper bounds
resulting from projecting a generic set Θ on each strength value. We will
introduce an efficient algorithm to compute the exact set EΘ of E-admissible
rankings.

3.1. Outer approximation in the general case

We investigate here a criterion to decide whether a ranking is maximal.
Rather than focusing on the whole ranking of objects, the idea in this section is
to focus on individual pairs of objects: in this case, making inferences is easier
and lead to outer approximations of MΘ.

Inferring from Equation (3) and given two permutations τ and τ′, we have:

τ �M τ′⇔ (∀v ∈ Θ)
Pv(τ)

Pv(τ′)
> 1. (7)

Infer that in the expression for Pv in Equation (1), the numerator does not
depend on τ, and hence we only have to deal with denominators in Equation (7).

Now, let us assume for a moment that the strengths are still precise, and
consider τ and τ′ such that τ(k) = τ′(k) for all k ∈ {1, . . . ,m} \ {i, j} with i , j,
and τ( j) = τ′(i) and τ(i) = τ′( j): the two rankings τ and τ′ are equal, except for
the positions i and j of two labels that are “swapped”. We assume without loss
of generality that i < j. This implies that

∑n
`=k vτ(`) =

∑n
`=k vτ′(`) whenever k

belongs to {1, . . . ,n} \ {i + 1, . . . , j}. Infer from Equation (7) that:

Pv(τ)

Pv(τ′)
=

n∏
k=1

∑n
`=k vτ′(`)∑n
`=k vτ(`)

=

i∏
k=1

∑n
`=k vτ′(`)∑n
`=k vτ(`)︸            ︷︷            ︸
=1

·

j∏
k=i+1

∑n
`=k vτ′(`)∑n
`=k vτ(`)

·

n∏
k=j+1

∑n
`=k vτ′(`)∑n
`=k vτ(`)︸               ︷︷               ︸
=1

=

j∏
k=i+1

vτ′(j) +
∑n
`=k ,`,j vτ′(`)

vτ(j) +
∑n
`=k ,`,j vτ(`)

=

j∏
k=i+1

vτ(i) +
∑n
`=k ,`,j vτ′(`)

vτ(j) +
∑n
`=k ,`,j vτ(`)

.

Consider for any k in {i + 1, . . . , j} the positive number Ck B
∑n
`=k ,`,j vτ(`) > 0,

then also Ck =
∑n
`=k ,`,j vτ′(`) because τ′(`) = τ(`) for any ` , i, j, whence:

Pv(τ)

Pv(τ′)
=

j∏
k=i+1

vτ(i) + Ck

vτ(j) + Ck
.

Since all the Ck are positive real numbers, this tells us that:

Pv(τ) > Pv(τ
′) ⇔

Pv(τ)

Pv(τ′)
> 1⇔ vτ(i) > vτ(j),
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and therefore, for our specific rankings τ and τ′:

τ �M τ′⇔ (∀v ∈ Θ)vτ(i) > vτ(j). (8)

Determining whether the requirement in Equation (8) is fulfilled comes down
to solving the optimisation problem

inf
v∈Θ
(vτ(i) − vτ(j)) > 0. (9)

This is simple in quite a number of cases: when Θ is a polytope defined by linear
constraints, this can be done through standard linear programming; when Θ is a
strict convex set and has an infinity of extreme points, one can resort to convex
optimisation (e.g., interior point methods) if needed. When Θ is characterised
by a finite number of points (the extreme points of a polytope or points resulting
from samplings), one can just apply the linear form (9) to every such point. Also,
since (9) is linear, considering Θ or its convex hull would yield the same solution,
thus making all previous approaches applicable to a set Θ of a general form.

Given an IPL model with strengths Θ ⊆ int(Σ), we can easily build a partial
ordering outer-approximating MΘ, in the sense that all rankings within MΘ
are linear extensions of this partial order. Of course, this partial ordering
may contain solutions that are not optimal under maximality, but we are sure
that it will contain all optimal solutions, and it can be obtained easily. More
formally, if we denote by λk �P λ` the fact that Equation (9) is satisfied, i.e.,
infv∈Θ(vτ(k) − vτ(`)) > 0, then the set

PΘ = {τ : λk �P λ` =⇒ τ(k) < τ(`)}

of permutations representable by the partial order �P can be used as an outer
approximation to the set of maximal linear orders, in the sense that MΘ ⊆ PΘ.
The next example shows that this inclusion can be strict in some cases.

Example 3. Let us consider the convex combination Θ between the two points
v1 = (0.4,0.2 − ε,0.4 + ε) and v2 = (0.4,0.4 + ε,0.2 − ε), where 0 < ε < 0.2 (see
Figure 2). One can check that MΘ = {λ1 > λ2 > λ3, λ1 > λ3 > λ2, λ2 > λ1 >
λ3, λ3 > λ1 > λ2} by observing that EΘ is equal to this latter set and that we
have, for instance, {λ1 > λ3 > λ2} �M {λ3 > λ2 > λ1}, as

inf
v∈Θ

(
pv({λ1 > λ3 > λ2}) − pv({λ3 > λ2 > λ1})

)
= inf

v∈Θ

(
v1

v3

v3 + v2
− v3

v2

v1 + v2

)
= inf

v∈Θ

(
v3

0.16 − 0.2v2
0.6(0.4 + v2)

)
is positive, since both v3 and 0.16 − 0.2v2 are always positive whatever the point
chosen within Θ. However, one can easily check that infv∈Θ(vi − vj) < 0 for all
pairs of i, j, therefore PΘ = L.

A simpler sufficient condition—which is not necessary—is that:

vτ(i) B inf
v∈Θ

vτ(i) > vτ(j) B sup
v∈Θ

vτ(j).

8



v1 = 1

v2 = 1v3 = 1

Θ

Figure 2: Parameter set Θ of Example 3

Indeed, this condition directly implies that if v` < vk for two indices k and `,
then any ranking that prefers λ` over λk—in other words, any ranking τ for
which τ(`) < τ(k)—will be dominated, according to Equation (3), by another
ranking which only differs by the positions of λ` and λk . Among other things,
this allows to conclude that if vk > v` , all maximally admissible rankings will
be such that λk � λ` . We can predict a partial ordering based on pairwise
comparisons such that λk � λ` whenever vk > v` . This condition is weaker than
infv∈Θ(vτ(k) − vτ(`)) > 0, because infv∈Θ vτ(k) − supv∈Θ vτ(`) ≥ infv∈Θ(vτ(k) − vτ(`)).
However, they are both equal when the set Θ is defined by intervals, a case that
we explore in the next section and for which we give an efficient enumeration
algorithm to get EΘ.

3.2. Interval-valued case

In this section, we will make the simplifying assumption that the set of
possible strengths is of the form:

Θ =
( n?
k=1

[vk, vk]
)
∩ int(Σ),

or in other words, that Θ is defined by the interval [vk, vk] ⊆ (0,1) only, for each
index k in {1, . . . ,n}. We believe such a restriction to be of particular practical
interest, as it would be easy for a user to understand and interpret intervals of
strength. Furthermore, we will see in this section that this restriction allows us
to propose efficient inference algorithms.

We can interpret the possible strengths Θ as a subset of the simplex Σ, and
therefore also as being equivalent to a set of probabilistic mass functions on
{v1, . . . , vn}. Since the possible strengths Θ are determined by the intervals
[vk, vk] ⊆ (0,1) for every index k in {1, . . . ,n}, it is formally equivalent to a
so-called set of probability intervals on singletons [2, Section 4.4]. De Campos et
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al. [12] showed that it is coherent—meaning the set Θ is non-empty, convex and
tight (by which we mean that each pair of specified bounds vk, vk is reachable
by a point in Θ)—if and only if:

(∀k ∈ {1, . . . ,n})

(
vk +

n∑
i=1
i,k

vi ≥ 1 and vk +

n∑
i=1
i,k

vi ≤ 1

)
. (10)

We will assume in the following that Θ is a coherent set of possible strengths. It
should however be noted that each point in the set Θ induces a corresponding
probability over the space L, in contrast with probability intervals that directly
define a set of probabilities over the space Λ.

Remember that a given ranking τ is E-admissible if there is a parametrisation
v in Θ such that τ maximises Pv. In this section, we are interested in the set of
all E-admissible rankings

⋃
v∈Θ arg maxτ∈L Pv(τ).

3.2.1. Checking E-admissibility

We will provide here an efficient way to check whether a given ranking τ is
E-admissible. Our argument hinges on the observation, in Equation (2), that
for any v in int(Σ) the ranking τ maximises Pv if and only if the values in v are
ranked (in decreasing order) according to the indices in τ. In other words, a
ranking τ maximises Pv if and only if vτ(1) is the highest strength, vτ(2) is the
second highest of the strengths, vτ(3) is the third-highest rank, and so on.

Proposition 1. Consider any parametrisation Θ =
(>n

k=1[vk, vk]
)
∩ int(Σ) of an

imprecise Plackett–Luce model, and any ranking τ in L. Then τ is E-admissible—
in other words, τ ∈

⋃
v∈Θ arg maxτ′∈L Pv(τ

′)—if and only if there is a k in
{1, . . . ,n} such that:

1 −
k−1∑̀
=1

min{vτ(1), . . . , vτ(`)} −
n∑

`=k+1

max{vτ(`), . . . , vτ(n)}

∈ [max{vτ(k), . . . , vτ(n)},min{vτ(1), . . . , vτ(k)}] (11)

and

vτ(`) ≤ min{vτ(1), . . . , vτ(`)} for all ` in {1, . . . , k − 1}, and

vτ(`) ≥ max{vτ(`), . . . , vτ(n)} for all ` in {k + 1, . . . ,n}. (12)

The proof of Proposition 1 can be found in Appendix A. This proof shows
that a possible solution of strength vectors being ordered as for τ is to let
vτ(`) B min{vτ(1), . . . , vτ(`)} for any ` in {1, . . . , k−1}, vτ(`) B max{vτ(`), . . . , vτ(n)}

for any ` in {k + 1, . . . ,n}, and also vτ(k) B 1 −
∑n
`=1,`,k vτ(`). Equation (12)

actually ensures that for ` in {1, . . . , k − 1} and ` in {k + 1, . . . ,n}, such an
assignment is within the intervals [vτ(`), vτ(`)], and Equation (11) ensures that

10



vτ(k) ∈ [vτ(k), vτ(k)], making sure that this assignment satisfies our interval con-
straints.

The condition in Proposition 1 has a polynomial complexity in the number n
of labels. Indeed, we need to check n different values of k, and for each value
k, we need by Equation (11) to calculate a sum of n − 1 terms, and to check by
Equation (12) n− 1 inequalities, which yields a complexity of n(2n− 2). This can
even be slightly reduced when some intervals in Equation (11) are empty, as for
those values k where it happens, Equation (11) is trivially not satisfied, and we
can avoid performing the summations and inequality checks.

3.2.2. Computing and enumerating all E-admissible rankings

Equation (11) offers a very quick way to check whether a given ranking is
E-admissible, therefore allowing one to easily build an approximation of EΘ for
instance through sampling. However, applying Equation (11) directly to obtain
the exact EΘ is clearly not efficient enough. The main bottleneck is that it
requires us to check E-admissibility for each individual ranking separately. Since
there are n! many such rankings, this quickly becomes intractable. In order to
avoid this exponential blow-up, we will now develop an algorithm that is able
to rule out the E-admissibility of many rankings at once, without having to
explicitly check the E-admissibility of each of them individually.

Ruling out multiple rankings at once. The central idea of our algorithm is to use a
search tree in order to navigate the set of all rankings L, which makes it possible
to determine whether a set of rankings is worth being further investigated. Each
node in the tree corresponds to a sequence of labels at the beginning of a set of
rankings; exploring further the branch consists in adding additional labels to the
sequence (and thus restricting the corresponding set of rankings). If we are able
to infer that there is no E-admissible ranking τ which contains a given sequence
of labels, then we can completely ignore all rankings starting with this sequence.
In Example 4 and Figure 4, we provide an example with n = 4 labels.

Consider any coherent parametrisation Θ determined by the probability
intervals [vk, vk] for all k in {1, . . . ,n}. Let (τ(1), . . . , τ( j)) = (k1, . . . , k j) be an
initial sequence of labels, with k1, k2, . . . k j being distinct elements of {1, . . . ,n}.
We want to infer whether there exists a ranking τ with the initial sequence
(k1, . . . , k j) which is E-admissible with respect to Θ. To this end, let us introduce
the following three equations:

j∑̀
=1

min{vk1, . . . , vk` } +
n∑

i=1
i<{k1 ,...,k j }

min{vk1, . . . , vk j , vi} ≥ 1; (Aj)

vk j ≥ max{vi : i ∈ {1, . . . ,n} \ {k1, . . . , k j}}; (Bj)

11



max{vi : i ∈ {1, . . . ,n}} +max{vi : i ∈ {1, . . . ,n} \ {k1}} + . . .

+max{vi : i ∈ {1, . . . ,n} \ {k1, . . . , k j−1}} +

n∑
i=1

i<{k1 ,...,k j }

vi ≤ 1. (Cj)

In the special case where j = 1—that is, we want to know whether a ranking
starting with a single given element k1 is E-admissible—the three Equations (Aj),
(Bj) and (Cj) reduce to:

n∑
i=1

min{vk1, vi} ≥ 1; (A1)

vk1 ≥ max{vi : i ∈ {1, . . . ,n}}; (B1)

max{vi : i ∈ {1, . . . ,n}} +
n∑

i=1
i,k1

vi ≤ 1. (C1)

Note that under the coherence requirement (10), Equation (C1) is a direct
consequence of Equation (B1), but for j ≥ 2 Equation (Cj) can no longer be
deduced from the other equations.

Proposition 2. Consider any coherent parametrisation Θ determined by a set
of probability intervals [vk, vk] for all k in {1, . . . ,n}, and any initial segment
(τ(1), . . . , τ(m)) = (k1, . . . , km) of length m ∈ {1, . . . ,n − 1}. Then, there exists an
E-admissible ranking with initial segment (k1, . . . , km) if and only if the Equa-
tions (Aj), (Bj) and (Cj) are fulfilled for every j in {1, . . . ,m}.

The proof of Proposition 2 can be found in Appendix A. Let us now
introduce an example illustrating Proposition 2, as well as the tree resulting
from applying Algorithms 1 and 2 (introduced after this example), which simply
check recursively whether Equations (Aj), (Bj) and (Cj) are fulfilled in a given
branch in order to prolong it.

Example 4. Let us consider a case where we have n = 4 labels, and where our
set of possible parameters is given by the intervals [v1, v1] = [

3/8, 5/8], [v2, v2] =
[1/12, 1/12], [v3, v3] = [

1/30, 1/5] and [v4, v4] = [
1/8, 3/8] (which is easily verified to be

coherent using Equation (10)). See Figure 3 for a visualisation of the intervals.
A possible strength vector v ∈ Θ, for which τ = (1,3,4,2) is the most probable

ranking, is given by (v1, v2, v3, v4) = (5/8, 1/12, 1/6, 1/8): we check easily that v

belongs to Θ and that vτ(1) = 5/8 ≥ vτ(2) = 1/6 ≥ vτ(3) = 1/8 ≥ vτ(4) = 1/12, so that
Equation (2) guarantees that τ is indeed E-admissible. Another way to check it,
as will be developed below in Algorithms 1-2, is to check that Equations (Aj), (Bj)
and (Cj) are satisfied for the growing sequences (1), (1,3), (1,3,4) and (1,3,4,2).
This is why the branch d1, d3, d4, d2 is fully developed to a depth of n = 4 in the
tree represented by Figure 4. To give an overview, Table 1 displays strength
vectors in Θ which yield as model rankings the different rankings τ corresponding
to the leaves in Figure 4. This implies that all the rankings indicated in Figure 4
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3/8

5/8

1/12
1/30

1/5

1/8

3/8

[v1, v1] [v2, v2] [v3, v3] [v4, v4]

Figure 3: Probability intervals for Example 4

d1X d27 d37 d4X

d27 d3X d4X d1X d27 d37

d27 d4X d2X d3X d27 d3X

d2X d3X d2X d2X

τ(1)

τ(2)

τ(3)

τ(4)

Figure 4: Search tree for n = 4, issued from Example 4
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Table 1: Possible parameter values giving modal rankings of Example 4

v = (v1, v2, v3, v4) τ = (τ(1), τ(2), τ(3), τ(4)) ∈ arg maxτ′∈L Pv(τ
′)

(5/8, 1/12, 1/6, 1/8) (1,3,4,2)
(5/8, 1/12, 1/12, 5/24) (1,4,2,3)
(5/8, 1/12, 1/12, 5/24) (1,4,3,2)
(3/8, 1/12, 1/6, 3/8) (4,1,3,2)

are indeed E-admissible with respect to Θ.
We can also show and check that every branch of the tree in Figure 4 that

stops before reaching a depth of n = 4 corresponds to a starting sequence whose
completion cannot be an E-admissible ranking τ. Take for instance the sequence
starting with (1,2), and assume ex absurdo that there would be such an E-
admissible ranking τ. This would imply that there is a strength vector v in
Θ such that v1 ≥ v2 ≥ max{v3, v4}, which by Equation (2) would imply that
1/12 = v2 ≥ v4 ≥ v4 =

1/8, an impossibility.
In practice, this impossibility can be checked by verifying that Equation (Bj)

is not satisfied for k1 = 1, k2 = 2 as indeed 1/12 = v2 < max{v3, v4} =
1/8. In

essence, Equations (Aj), (Bj) and (Cj) allow one to check whether a given
sequence {k1, . . . , km} can or cannot be continued into an E-admissible ranking,
and provides a set of mechanisms at the basis of the recursive algorithms 1 and 2
given below. ♦

Algorithm. We propose an efficient algorithm based on Equations (Aj), (Bj)
and (Cj) used in Proposition 2 to check whether there is an E-admissible ranking
with a given initial segment. More precisely, the algorithm consists in using these
equations recursively: to check whether there is an E-admissible ranking starting
with (k1, . . . , km) it suffices to check whether there is an E-admissible ranking
starting with (k1, . . . , km−1) and whether the Equations (Aj), (Bj) and (Cj) hold
for j = m.

Algorithms 1 and 2 provide pseudocodes describing a recursive method to
find all E-admissible rankings given an interval-valued set Θ. Note that due to
the pruning strategy, the algorithm is polynomial in the number of E-admissible
options (hence finding one E-admissible option is fast), however this number may
still be |Λ|! in the worst case, and we may need to count that many rankings.

Algorithm 1 Find the E-admissible rankings optn
Require: probability intervals [vk, vk] for k in {1, . . . ,n}
Ensure: {[vk, vk] : k ∈ {1, . . . ,n}} coherent

optn ← ∅
for all k1 ∈ {1, . . . ,n} do
Recur(1, (k1))

end for
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Algorithm 2 Recur( j, (k1, . . . , k j))

if j = n − 1 then
append the unique kn ∈ {1, . . . ,n} \ {k1, . . . , kn−1} to the end of (k1, . . . , kn−1)

add (k1, . . . , kn) to optn .we found a solution.
else
for all k j+1 ∈ {1, . . . ,n} \ {k1, . . . , k j} do
if Equations (Aj+1), (Bj+1) and (Cj+1) hold then

append k j+1 to the end of (k1, . . . , k j)

Recur( j + 1, (k1, . . . , k j+1))

end if
end for

end if

4. Application to label ranking

The previous sections have explored how cautious robust inference can be
made when we only have imprecise knowledge about the parameters of a Plackett–
Luce model. This section presents a possible use of our approach in a supervised
machine learning problem, and discusses some possible ways to estimate the set
of parameters from data.

Whereas supervised classification consists in mapping instances x issued from
an instance space X to single (preferred) labels of the space Λ = {λ1, . . . , λn}
of possible classes, we address here a more complex issue called label ranking,
where we want to map any instance x ∈ X to a total order on the labels �x on Λ.

The task in label ranking is the same as in usual classification, i.e. using a set
of training instances (xi, τi), i ∈ {1, . . . ,m} to estimate the theoretical conditional
probability measure Px : 2L → [0,1] associated to an instance x ∈ X. Ideally,
observed outputs τi should be complete orders over Λ; this is however seldom
the case. In order to prepare for this, we sometimes allow training instances τi

to be incomplete (i.e., partial orders over Λ).
In this case, we may apply the approach presented in Section 3.1 in order to

infer an IPL model from such partial data. We will use the contour likelihood
to get the parameter set corresponding to a specific instance x, since efficient
maximum likelihood estimation (MLE) methods can be used to infer a PL model.
For justifications on the use of the contour likelihood to obtain sets of parameters
as estimates, we refer for example to [31, 25, 6, 5].

4.1. Estimation method

We will now describe our estimation method in different steps, in order to
obtain a parameter set Θ from observed data. Assume that we have observed a
sample of K rankings T = {τ1, . . . , τK }, with Mi the number of ranked labels in
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τi. Given a strength vector v, the probability to observe T is:

P(T |v) =
K∏
i=1

Mi∏
m=1

vτi (m)∑Mi

j=m vτi (j)
. (13)

4.1.1. Maximum likelihood estimation

Finding the Maximum Likelihood Estimation (MLE) of v comes down to
maximizing Equation (13), or equivalently to doing the same with the log-
likelihood:

Logl(v) =
K∑
i=1

Mi∑
m=1

[
log(vτi (m)) − log

Mi∑
j=m

vτi (j)

]
. (14)

Unfortunately, no analytical solution to finding the MLE parameters of the
PL model exists. Nevertheless, multiple efficient optimisation methods have
been proposed in the literature. One of them, which we will use here, is the
Minorisation-Maximisation (MM) algorithm by [18]. It is a generalisation of the
Expectation–Maximisation (EM) algorithm. The MM algorithm is an iterative
procedure which aims to maximise in each iteration a lower bound for the
log-likelihood:

Qk(v) =

K∑
i=1

Mi∑
m=1

log(vτi (m)) −
log

∑Mi

j=m vτi (j)

log
∑Mi

j=m v
(k)

τi (j)

 , (15)

where v(k) is the estimation of v during the k-th iteration. When the parameters
are fixed, the maximisation of Qk can be solved analytically and the algorithm
provably converges to the MLE estimate v∗ of v.

4.1.2. Set estimation via the contour likelihood

Given parameter values2 v ∈ int(Σ) and the likelihood function l(v), the
contour likelihood is:

l∗(v) =
l(v)

maxu∈Σ l(u)
=

l(v)
l(v∗)

. (16)

By construction, l∗(v) take values in ]0,1]. The closer l∗ is to 1, the closer v is
to a maximum of the likelihood function.

We can therefore naturally obtain imprecise estimates by considering the
regions of the parameter space obtained by “cutting” the contour likelihood.
Given β in [0,1], the β-cut of the contour likelihood, written B∗β, is defined by

B∗β = {v ∈ Σ : l∗(v) ≥ β} .

We stress here that the choice of β directly influences the precision (and thus
the robustness) of the model: starting with B∗1 = v∗, which generally leads to

2As before, we use the interior int(Σ) of Σ to ensure that log
∑Mi

j=m vτ i ( j) is well-defined.
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a precise PL model, the IPL model then becomes less and less precise with
decreasing β, possibly leading to partial (and even empty) predictions. The
choice of β is thus directly linked to how imprecise we want our predictions to
be. The interest of using β is that it allows us to control the precision/accuracy
trade-off with a single parameter. Choosing the right value for this parameter
therefore depends on how much precision an end-user or decision maker is willing
to trade to obtain more robust/accurate predictions. As in other imprecise
probabilistic classifiers [11], β can also be used as a way to “measure” how robust
a given precise prediction is: if we need to decrease β a lot to make the maximum
likelihood prediction imprecise, then this means the initial prediction was rather
robust, else this may mean that the precise prediction relies on rather weak
information.

4.1.3. Imprecise predictions

Once B∗β is determined, for any test instance x to be processed, we can easily
obtain an imprecise prediction τ̂ in the form of a partial ranking using the results
of Section 3.1: we will retrieve τ̂ such that λi � λj for all vk ∈ B∗β.

Example 5. Let us assume that we want to determine the ranking τ of an
instance x through a learning process, i.e. we predict the ranking of the instance
x with the rankings of some other instances. To do so, we pick the five closest
neighbours of x according to a distance (for example the Euclidean distance), as
a classical scheme to get a local model estimation. Three of these neighbours
have the associated ranking (λ2, λ1, λ3) and two have the associated ranking
(λ1, λ3, λ2). Based on these neighbours, the ranking τ predicted by maximum
likelihood is (λ1, λ2, λ3). Figure 5 displays the corresponding contour likelihood
function, modelled using 20,000 randomly generated strengths vk according to a
Dirichlet distribution with α = 5vopt, with vopt being the strength of the optimal
Plackett–Luce model. Note that only v1 and v2 are represented in the Figure,
since v3 = 1 − v1 − v2, meaning we have only two degrees of freedom and that all
strength vectors can be represented on a plane.

The contour likelihood function takes values between 0 and 1, and its value
decreases when the generated strengths vk are far from the optimal strength vopt.
Moreover, it is possible to directly interpret the preferences between objects in
Figure 5. Each median line corresponds to a situation where an object is equally
preferred to another one. For example, v1 = v2 indicates that λ1 and λ2 are
equally preferred. The intersection of the medians corresponds to the situation
v = [1/3,1/3,1/3], where all objects are equally preferred. In such a situation, all
rankings are equally probable.

We can make an imprecise prediction on the ranking τ by “cutting” the
contour likelihood function, ending up with a beta-cut B∗β. In this example,
we first take β = 0.9, giving a rather precise prediction, to the detriment of
robustness. As in the precise case, we obtain τ = (λ1, λ2, λ3), as observed from
Figure 6: all the generated strengths vk such that L∗

k
≥ 0.9 stay in the same area

delimited by the three median lines. The binary relations λ1 � λ2, λ2 � λ3 and
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Figure 5: Full contour likelihood function

λ1 � λ3 (that follows from the two previous ones) give the same final ranking as
the precise approach.

Figure 6: Beta-cut B∗0.9 Figure 7: Beta-cut B∗0.5

Using a new beta-cut B∗β with a coefficient β = 0.5, we obtain a different
prediction. We observe from Figure 7 that a majority of generated strengths
stay in the same delimited area, yet some generated strengths are outside this
area, changing the predicted ranking or order: over the median v1 = v2, some
generated strengths indicate that we could have λ2 � λ1; and under the median
v2 = v3, some generated strengths indicate that we could have λ3 � λ2. In our
approach, a binary relation λi �x λj between two objects is kept if it is common
to all generated strengths. In our case, this means that the prediction is reduced
to λ1 � λ3, as v1 = v3 is the only median which does not intersect with B∗0.5.

18



4.2. Experimental setting

4.2.1. Likelihood approximation

In order to obtain the observations from which the contour likelihood is
computed via (16), we consider here the method proposed by [8]. The approach
is instance-based: for any x ∈ X, the predictions are made locally using its
nearest neighbours. Let NK (x) stand for the set of nearest neighbours of x in
the training set, each neighbour xi ∈ NK (x) being associated with a (possibly
incomplete) ranking τi.

We model the contour likelihood by generating multiple strengths v according
to a Dirichlet distribution with parameter β = γv∗, where v∗ is the MLE obtained
with the best PL model (or equivalently, the best strength v) and γ > 0 is a
coefficient which makes it possible to control the concentration of parameters
generated around v∗.

4.2.2. Evaluation

When the observed and predicted rankings τ and τ̂ are complete, various
accuracy measures [17] have been proposed to measure how close they are to
each other (0/1 accuracy, Spearman’s rank, etc.). Here, we retain Kendall’s Tau:

A(τ, τ̂) =
C − D
n(n−1)/2

, (17)

where C and D are respectively the numbers of concordant and discordant pairs
in τ and τ̂. In the case of imprecise predictions τ̂, the usual quality measures
can be decomposed into two components [10]: correctness (CR), measuring the
accuracy of the predicted comparisons, and completeness (CP):

CR(τ, τ̂) =
C − D
C + D

and CP(τ, τ̂) =
C + D
n(n−1)/2

, (18)

where C and D are the same as in Equation (17). Should τ̂ be complete,
C + D = n(n−1)/2, CR(τ, τ̂) = A(τ, τ̂) and CP(τ, τ̂) = 1; while CR(τ, τ̂) = 1 and
CP(τ, τ̂) = 0 if τ̂ is empty (since no comparison is done). Let us note a partial
ranking has usually a higher correctness than its complete equivalent, suggesting
that a partial ranking may be desirable if we want to avoid incorrectly ranked
labels.

Example 6. Let us suppose we want to estimate the ranking τ = (λ2, λ3, λ1). We
predict two rankings: a complete ranking τ̂1 = (λ3, λ2, λ1) and a partial ranking
τ̂2 = (λ3, λ1). We have n(n−1)/2 = 3 and the number of concordant and discordant
pairs are C1 = 2 and D1 = 1 for τ̂1, as we correctly predicted that λ3 � λ1 and
λ2 � λ1, but also incorrectly predicted that λ3 � λ2 ; and C2 = 1 and D2 = 0 for
τ̂2, since λ3 � λ1 is correctly predicted, and we did not rank λ2.

We can now determine the correctness and completeness of each predicted
ranking. We have CR(τ, τ̂1) = 2−1/2+1 = 2/3 and CP(τ, τ̂1) = 2+1/3 = 1, while
CR(τ, τ̂2) = 1−0/1+0 = 1 and CP(τ, τ̂2) = 1+0/3 = 1/3: the ranking τ̂1 is complete
but partially incorrect, while the ranking τ̂2 is fully correct (no label is incorrectly
ranked) but does not rank all labels.
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4.2.3. Thresholding

In the experiments, we compare our imprecise approach based on parameter
sets to the abstention scheme proposed by [9]. Given a precise PL model with
strength vector v, this latter approach uses the probability P(λi � λj) of choosing
the label λi over the label λj , given by:

P(λi � λj) =
vi

vi + vj
, (19)

indicating that λi � λj only if P(λi � λj) ≥ α, with α ∈ [0.5,1]. For α = 0.5, the
prediction is simply the ordering induced by v, and for α = 1, we retrieve the
empty order. It has been proven in [9] that considering all values in-between
provides a set of partial orders, i.e., a set of partial predictions whose imprecision
grows with α.

4.3. Experimental results

In the experiments3, we use various datasets in order to compare our approach
with that of [9]. They were adapted from classical datasets in [8], except for
the SUSHI dataset, a standard in preference learning, in which the complete
rankings over 10 types of sushi expressed by 5000 customers are recorded4. The
datasets and their properties are quickly presented in Table 2, while more details
on how these datasets were generated can be found in [8]. The number of
attributes is only relevant to determine the closest neighbours of each instance,
while the number of labels to rank is the heart of our problem: the more labels
we have to rank, the more difficult the problem is, as we have to estimate the
likelihood function in a higher-dimensional space. According to [8], the type
of the dataset influences the difficulty of the prediction problem: in general,
the correctness should be overall higher for datasets coming from classification
problems. Nevertheless, we did not notice any additional difference on the
ranking problem with our contour likelihood approach.

In order to limit the size of this section to a reasonable level, we only focus
on a few datasets that are representative of all our experimental results, in the
sense that results for other datasets follow the same trends. Experimental results
on the other datasets can be found in Appendix B.

4.3.1. Comparison

Here, we compare our approach based on the contour likelihood function
with the abstention approach existing in the literature, using the instance-
based algorithm. Nearest neighbours are identified based on the Euclidean
distance. The optimal number of neighbours K ∈ {5,10,15,20} is determined via
cross-validation. For each likelihood contour function, 200 points are generated
according to a Dirichlet distribution with coefficient γ ∈ {1,10}. A 10-Fold cross

3https://github.com/LoicAdam/Imprecise_Plackett_Luce/
4Available on http://www.kamishima.net/sushi/
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Table 2: Datasets and their properties (the type refers to the original problem type: A for
classification and B for regression

Dataset Type # instances # attributes # labels

Authorship A 841 70 4
Bodyfat B 252 7 7

Glass A 214 9 6
Housing B 506 6 6

Iris A 150 4 3
Stock B 950 5 5
Sushi A 5000 11 10

Vehicle A 846 18 4
Vowel A 528 10 11
Wine A 178 13 3

Wisconsin B 194 16 16

validation is repeated 5 times for each setting. Moreover, a 95% confidence
interval is provided, based on a Gaussian assumption. To compare both methods
for different values of completeness, we used different thresholds and different
values of β.

We further evaluate the robustness of the procedures. First, we delete some
labels in each ranking, by choosing at random for each label whether it should
be kept or not. We fix the probability of deleting a label to p ∈ [0,1]. In a
second step, we swap neighbouring pairs of labels (we only consider neighbouring
labels in a ranking to avoid unrealistic perturbations of the data). For example,
λτ(2) can be swapped only with λτ(1) and λτ(3). Each neighbouring label pair is
swapped with probability p ∈ [0,1]. Note that the order of the swaps is a random
permutation, to allow for any label λτ(i) to be swapped with λτ(j), ∀i, j ∈ Λ.

Figure 8: Comparison of methods on Wiscon-
sin with no perturbations

Figure 9: Comparison of methods on Sushi
with no perturbations

As seen in Figures 8 and 9, the contour likelihood-based approach is on par
with the method based on abstention, with no method giving a significantly
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higher correctness for a given completeness value. This was the case with all
datasets used in our experiments. As expected, when we have complete rankings,
with β = 1 or t = 0.5 depending on the method, the correctness is rather low.
Nevertheless, when abstention is allowed, correctness increases until it reaches
one for a completeness of zero.

Figure 10: Comparison on Wisconsin with a
missingness of 60 %

Figure 11: Comparison on Sushi with 60 % of
swapped label pairs

Figures 10 and 11 show that the method is also on par even when the datasets
are perturbed, meaning the correctness for a given completeness value is not
higher for a given method, whether it be due to missing labels or swapped labels.
It is also possible to notice that for a given completeness level, the correctness is
lower than without noise. On average, the greater the perturbation is, the lower
the average correctness is.

The results were similar on all datasets, with both methods being generally
on par (see Appendix B.1). This indicates that a method based on the contour
likelihood function can be used to make robust inferences for label ranking.

4.3.2. Influence of the amount of data

In this experiment, instead of adding perturbations to the training set, we
reduce the training set size, in order to assess the influence of the amount of
used data on the final result. Starting with a full training set, some points are
randomly and progressively removed, until we obtain a training set containing
only 10% of the original points. Moreover, in order to reflect the possible scarcity
of data, we no longer systematically take K nearest neighbours to estimate the
likelihood (as otherwise they would always rely on the same amount of data), but
rather consider all neighbours within a given radius of the instance to classify.
For this purpose, we compute the median M of all distances d(xi,xj) between
all pairs of training instances (xi,xj). We then use M as a threshold in order
to identify the training instances used to estimate the likelihood. If x is the
instance for which we want to predict a ranking, we restrict the training set to
Xt = {x

i : d(x,xi) ≤ M, i = 1, . . . ,m}.
The parameters for the likelihood contour function are the same as previously,

and we still perform a 10-Fold cross validation repeated 5 times, with a confidence
interval of 95%. A beta-cut of 10% is used in the likelihood approach. For the
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Figure 12: Completeness for Vehicle Figure 13: Correctness for Vehicle

abstention approach, a threshold t ∈ [0.5,0.6] is taken such that both methods
have a similar starting point for completeness and correctness.

We observe in Figure 12 that completeness decreases when using the likelihood
contour approach, while remaining at the same level with the abstention approach.
This suggests that our approach tends to be more cautious when the available
training data are scarcer. This property, i.e. the level of precision of the output
reflects the amount of epistemic uncertainty, seems desirable. However, it should
be noted that both methods have comparable accuracies in Figure 13, unless the
training set becomes very small, indicating that in this case cautiousness may
only be needed in situations of ambiguity.

One can check Appendix B.2 to see that the same behaviour is observed
for all of our datasets: our approach is sensitive to the change in data quantity,
while the thresholding approach is not. Even worse, as data become scarcer, the
thresholding approach tends to provide more complete but also less accurate
predictions. For instance, Figures 14 and 15 show that as completeness decreases,
correctness notably increases. In other terms, for these data, abstaining is a
better alternative than predicting when data are scarce. This behaviour obviously
depends on the structure of the data: when many instances with clear natural
groups are available, cautiousness is likely to have a marginal interest. However,
with few training instances (e.g in the Iris data) or when groups are not well
separated, our approach, being more cautious, clearly avoids making erroneous
predictions for some instances.

Table 3, which summarises the results, confirms this observation. Usually,
the two approaches start with the same completeness and correctness values.5

Therefore, CpStart (CrStart respectively) is the average of the two starting com-
pleteness (correctness respectively) values. We can see that for the likelihood
approach, completeness systematically decreases with data becoming scarcer,
while correctness systematically increases. This is far from being true for the ab-
stention approach, whose completeness can evolve in both ways (e.g, increases for

5We observe a maximal difference of 0.02 can exist, as it seems there are no explicit relation
between β (beta-cut for likelihood approach) and t (threshold for abstention approach)
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Figure 14: Completeness for Iris Figure 15: Correctness for Iris

Table 3: Influence of the amount of training data on completeness and correctness (β = 0.1).
Here, CStart stands for average values with no missing data, CLik and CAbs for average values
with the likelihood and abstention methods with 80% missing data. Bold letters indicate the
best scores between the likelihood (Lik) and the abstention approach (Abs).

CpStart CpLik CpAbs CrStart CrLik CrAbs

Authorship .955 .912 .953 .730 .754 .723
Bodyfat .365 .299 .581 .284 .206 .135

Glass .989 .978 .990 .706 .718 .713
Housing .826 .646 .830 .537 .621 .532

Iris .835 .558 .830 .770 .871 .692
Stock .925 .877 .885 .569 .580 .542

Vehicle .886 .767 .891 .771 .805 .742
Vowel .883 .741 .877 .412 .434 .394
Wine .696 .553 .770 .946 .893 .779

Wisconsin .685 .488 .766 .552 .476 .380
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Bodyfat, decreases for Stock), and whose correctness always decreases. Overall,
this confirms that one of the interest of our approach, or of imprecise probabilistic
estimation tools, lies in its sensitivity to the amount of available information,
and the fact that this is reflected through the size of the set Θ of retained models.

5. Conclusions and perspectives

In this paper, we have addressed the problem of performing inference and
making predictions with the well known Plackett–Luce model, a parametric
ranking model. We have considered the case where the parameter vector is
imprecise, in which case a set of Plackett–Luce models is valid. In this case,
we have shown that imprecise predictions can be made in the form of sets of
rankings. We have proposed two efficient inference methods: one allows for
computing an outer approximation of the set of Walley-Sen maximal rankings
and thus also of E-admissible rankings; another makes it possible to exactly
compute the set of E-admissible rankings, if the parameters of the IPL model
are each defined by lower and upper bounds. We have demonstrated the interest
of our strategy for label ranking problems, showing that in presence of epistemic
uncertainty, cautious inference—i.e. abstaining to make precise predictions when
training data are scarce—is rewarding.

Possible future investigations may focus on improving the estimation strategy,
for example by extending Bayesian approaches through the consideration of sets
of priors [16]; or by developing a natively imprecise likelihood estimate, e.g by
coupling recent estimation algorithms using stationary distribution of Markov
chains [24] with recent works on imprecise Markov chains [19].

Additionally, since the Plackett–Luce is known to be strongly linked to
particular random utility models [33, 3] (RUM), that models preferences between
objects as real-valued random variables, it would be interesting to investigate
what becomes of this relationship when making the RUM imprecise (in our case,
considering Gumbel distributions with imprecise parameters).
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Appendix A. Proofs

Proposition 1. Consider any parametrisation Θ =
(>n

k=1[vk, vk]
)
∩ int(Σ) of an

imprecise Plackett–Luce model, and any ranking τ in L. Then τ is E-admissible—
in other words, τ ∈

⋃
v∈Θ arg maxτ′∈L Pv(τ

′)—if and only if there is a k in
{1, . . . ,n} such that:

1 −
k−1∑̀
=1

min{vτ(1), . . . , vτ(`)} −
n∑

`=k+1

max{vτ(`), . . . , vτ(n)}

∈ [max{vτ(k), . . . , vτ(n)},min{vτ(1), . . . , vτ(k)}] (11)

and

vτ(`) ≤ min{vτ(1), . . . , vτ(`)} for all ` in {1, . . . , k − 1}, and

vτ(`) ≥ max{vτ(`), . . . , vτ(n)} for all ` in {k + 1, . . . ,n}. (12)

Proof 1 (of Proposition 1, recalled above). For sufficiency, assume that
there is a k in {1, . . . ,n} such that Equations (11) and (12) hold. Then

1. By letting vτ(`) B min{vτ(1), . . . , vτ(`)} for any ` in {1, . . . , k − 1}, vτ(`) B
max{vτ(`), . . . , vτ(n)} for any ` in {k + 1, . . . ,n}, and also vτ(k) B 1 −∑n
`=1,`,k vτ(`), then by definition

∑n
`=1 vτ(`) = 1, so the elements in v sum

up to 1.

2. Furthermore, for all ` in {1, . . . , k−1}, we see that vτ(`) ≤ vτ(`) by definition,
and for all ` in {k + 1, . . . ,n}, we similarly find vτ(`) ≥ vτ(`). Equation (12)
tells us in addition that vτ(`) ≥ vτ(`) for all ` in {1, . . . , k−1}, and vτ(`) ≤ vτ(`)
for ` in {k + 1, . . . ,n}, whence vτ(`) ∈ [vτ(`), vτ(`)] ⊆ (0,1) for all ` in
{1, . . . ,n} \ {k}.
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3. Since vτ(k) = 1 −
∑k−1
`=1 min{vτ(1), . . . , vτ(`)} −

∑n
`=k+1 max{vτ(`), . . . , vτ(n)}, it

follows from Equation (11) that the strength vτ(k) belongs to

[max{vτ(k), . . . , vτ(n)},min{vτ(1), . . . , vτ(k)}],

which is equal to

[max{vτ(k+1), vτ(k)},min{vτ(k−1), vτ(k)}] ⊆ [vτ(k), vτ(k)] ⊆ (0,1).

Therefore v belongs to int(Σ).
We will show that the values in v are ranked according to τ, because then

Equation (2) guarantees that τ is E-admissible. To this end, let us first remark
that vτ(1) ≥ vτ(2) ≥ · · · ≥ vτ(k−1) because their defining minima are taken over
increasingly bigger supersets, and similarly that vτ(n) ≤ vτ(n−1) ≤ · · · ≤ vτ(k+1)
because their defining maxima are taken over increasingly bigger supersets. Since
we have already inferred that vτ(k) belongs to

[max{vτ(k), . . . , vτ(n)},min{vτ(1), . . . , vτ(k)}]

= [max{vτ(k+1), vτ(k)},min{vτ(k−1), vτ(k)}] ⊆ [vτ(k+1), vτ(k−1)],

we infer that vτ(k+1) ≤ vτ(k) ≤ vτ(k−1), whence indeed vτ(1) ≥ vτ(2) ≥ · · · ≥ vτ(n−1) ≥

vτ(n).
For necessity, assume that τ is E-admissible, so that there is a parametrisation

v in Θ such that vτ(1) ≥ vτ(2) ≥ · · · ≥ vτ(n−1) ≥ vτ(n). We let α B min{vτ(1) −
vτ(1), vτ(n) − vτ(n)} ∈ R≥0, and replace vτ(1) with vα

τ(1)
B vτ(1) + α, and similarly,

vτ(n) with vα
τ(n)
B vτ(n) − α. Note that this replacement does not alter the order:

vα
τ(1)
≥ vτ(2) ≥ · · · ≥ vτ(n−1) ≥ vα

τ(n)
, and furthermore, it still sums to 1: vα

τ(1)
+

vτ(2) + · · · + vτ(n−1) + vα
τ(n)
= vτ(1) + α + vτ(2) + · · · + vτ(n−1) + vτ(n) − α = 1. We

also infer that vα
τ(1)
≤ vτ(1) and vα

τ(n)
≥ vτ(n), with one the inequalities being an

equality, guaranteeing that the new parametrisation also belongs to Θ. All this
means that τ maximises the probability under the new parametrisation as well,
so we may assume without loss of generality that vτ(1) = vτ(1) or vτ(n) = vτ(n). In
other words, we may assume that vτ(1) or vτ(n) is extreme, which means in this
case being equal to vτ(1) or vτ(n) respectively.

Now there are two cases: either (i) vτ(1) is extreme, i.e. vτ(1) = vτ(1), or
(ii) vτ(n) is extreme, i.e. vτ(n) = vτ(n). If (i), we let β B min{min{vτ(1), vτ(2)} −

vτ(2), vτ(n) − vτ(n)} ∈ R≥0 and replace vτ(2) with v
β

τ(2)
B vτ(2) + β, and similarly,

vτ(n) with v
β

τ(n)
B vτ(n)− β. Then, again, this replacement does not alter the order,

and sums to 1. We also infer that v
β

τ(2)
≤ min{vτ(1), vτ(2)} and v

β

τ(n)
≥ vτ(n), with

one the inequalities being an equality, guaranteeing that the new parametrisation
also belongs to Θ. So we have found yet another parametrisation for which τ
maximises the associated probability. We therefore may assume without loss of
generality that vτ(2) is extreme—equal to min{vτ(1), vτ(2)}—or vτ(n) is extreme—
equal to vτ(n). If (ii), a similar reasoning as above leads us to conclude that vτ(1)
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is extreme—equal to vτ(1)—or vτ(n−1) is extreme—equal to max{vτ(n−1), vτ(n)}. In

any case, we infer that the first i and the last j B 2 − i (with i in {0,1,2}) of
vτ(1), vτ(2), . . . , vτ(n) are extreme.

We repeat this process iteratively, each time considering the smallest index
i + 1 such that vτ(i+1) is non-extreme, and the biggest index j − 1 such that vτ(j−1)
is non-extreme:

vτ(1) = vτ(1), vτ(2) = min{vτ(1), vτ(2)}, . . . , vτ(i) = min{vτ(1), . . . , vτ(i)},

vτ(n) = vτ(n), vτ(n−1) = max{vτ(n), vτ(n−1)}, . . . ,

vτ(j) = max{vτ(n), vτ(n−1), . . . , vτ(j)}.

If i + 1 < j − 1, then, using a similar reasoning as above, without loss of
generality we may replace vτ(i+1) or vτ(j−1) with its extreme variant—meaning
that vτ(i+1) = min{vτ(1), . . . , vτ(i+1)} or vτ(j−1) = max{vτ(n), vτ(n−1), . . . , vτ(j−1)}. We

therefore may assume that i+1 = j −1 C k. Clearly, vτ(k) ∈ [vτ(k), vτ(k)], but since
v is ordered according to τ, we furthermore infer that vτ(k+1) ≤ vτ(k) ≤ vτ(k−1),
whence vτ(k) belongs to

[max{vτ(k), vτ(k+1)},min{vτ(k), vτ(k−1)}]

= [max{vτ(k), . . . , vτ(n)},min{vτ(1), . . . , vτ(k)}].

On the other hand, since vτ(1), vτ(2), . . . , vτ(n) sum up to 1, we have that

vτ(k) = 1 −
n∑

`=1,`,k

vτ(`) = 1 −
k−1∑̀
=1

min{vτ(1), . . . , vτ(`)} −
n∑

`=k+1

max{vτ(`), . . . , vτ(n)},

whence Equation (11) indeed is satisfied. Moreover, Equation (12) is satisfied
since, for every ` in {1, . . . , k − 1}, the parameter vτ(`) belongs to [vτ(`), vτ(`)]
whence in particular min{vτ(1), . . . , vτ(`)} = vτ(`) ≥ vτ(`), and for every ` in
{k + 1, . . . ,n}, the parameter vτ(`) belongs to [vτ(`), vτ(`)] whence in particular
max{vτ(1), . . . , vτ(`)} = vτ(`) ≤ vτ(`). �

Proposition 2. Consider any coherent parametrisation Θ determined by a set
of probability intervals [vk, vk] for all k in {1, . . . ,n}, and any initial segment
(τ(1), . . . , τ(m)) = (k1, . . . , km) of length m ∈ {1, . . . ,n − 1}. Then, there exists an
E-admissible ranking with initial segment (k1, . . . , km) if and only if the Equa-
tions (Aj), (Bj) and (Cj) are fulfilled for every j in {1, . . . ,m}.

Proof 2 (of Proposition 2, recalled above). Note first that due to Equa-
tion (2), a ranking τ which admits (k1, . . . , km) as initial sequence (i.e., such that
(τ(1), . . . , τ(m)) = (k1, . . . , km)) is E-admissible if and only if for some strength
vector v in Θ,

vk1 ≥ vk2 ≥ · · · ≥ vkm ≥ max{vi : i ∈ {1, . . . ,n} \ {k1, . . . , km}}. (A.1)
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1. For necessity, assume that there is an E-admissible ranking τ whose initial
sequence is (k1, . . . , km). This implies, for any ` in {1, . . . ,m}, that

vk1 ≥ vk2 ≥ · · · ≥ vk` ≥ max{vi : i ∈ {1, . . . ,n} \ {k1, . . . , km}}

≥ max{vi : i ∈ {1, . . . ,n} \ {k1, . . . , k`}}. (A.2)

We will prove that then the Equations (Aj), (Bj) and (Cj) are fulfilled for
every j in {1, . . . ,m}. To this end, consider any such j. Use Equation (A.2)
with ` = j to infer that indeed Equation (Bj) is fulfilled. Equation (A.2)
implies also that vk` = min{vk1, . . . , vk` } for every ` in {1, . . . , j}, and
vi = min{vk1, . . . , vk j , vi} for all i in {1, . . . ,n} \ {k1, . . . , k j}. Use the fact
that v sums to 1 to infer that

j∑̀
=1

min{vk1, . . . , vk` } +
n∑

i=1
i<{k1 ,...,k j }

min{vk1, . . . , vk j , vi} = 1,

and hence we infer immediately that indeed Equation (Aj) is fulfilled. Fi-
nally, to show that also Equation (Cj) is fulfilled, infer from Equation (A.2)
that

vk` ≥ max{vi : i ∈ {1, . . . ,n} \ {k1, . . . , k`}}

for every ` in {1, . . . , j}. Use again the fact that v sums to 1 to infer that
indeed Equation (Cj) is fulfilled.

2. For sufficiency, let us define two vectors u and w that satisfy the condition
in Equation (A.1), as we will see below. Let

uk j B min{vk1, . . . , vk j } and wk j B max{vi : i ∈ {1, . . . ,n} \ {k1, . . . , k j−1}}

for all j in {1, . . . ,m}, and

ui B min{vk1, . . . , vkm , vi} and wi B vi

for all i in {1, . . . ,n} \ {k1, . . . , km}. Then by definition

uk1 ≥ uk2 ≥ · · · ≥ ukm ≥ max{ui : i ∈ {1, . . . ,n} \ {k1, . . . , km}} (A.3)

and

wk1 ≥ wk2 ≥ · · · ≥ wkm ≥ max{wi : i ∈ {1, . . . ,n} \ {k1, . . . , km}}, (A.4)

so we see that both vectors u and w respect the order described in Equa-
tion (A.1). These vectors are however not guaranteed to be strength vectors:
they do not necessarily sum to 1, and hence, do not necessarily belong to Θ.
They nevertheless exhibit useful properties: we will show (i) that u is an
upper probability, and w a lower probability—which means that the former
sums to a value that is at least 1, and the latter to a value that is at most 1;
and (ii) that ui and wi belong to [vi, vi] for all i in {1, . . . ,n}. By taking a
suitable convex combination of them, we eventually show that we will end
up with a coherent strength vector v that belongs to Θ, and that satisfies
the inequalities in Equation (A.1).
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i To show that u and w are an upper and a lower probability, respectively,
use Equation (Aj) with j = m to infer that

∑n
i=1 ui ≥ 1, and use

Equation (Cj) with j = m to infer that
∑n

i=1 wi ≤ 1.

ii We show that ui and wi belong to [vi, vi] for every i in {1, . . . ,n} by
proving that vi ≤ wi ≤ ui ≤ vi for every i in {1, . . . ,n}, which implies
the former. By their definitions, we immediately have that vi ≤ wi and
ui ≤ vi for every i in {1, . . . ,n}, so it remains to show that wi ≤ ui for
every i in {1, . . . ,n}. To this end, consider first any j in {1, . . . ,m}.
Infer from Equations (B1) and (A.4) that

vk1 ≥ max{vi : i ∈ {1, . . . ,n}} ≥ wk1 ≥ wk2 ≥ · · · ≥ wkm .

Similarly, infer from Equations (Bj) with j = 2 and (A.4) that

vk2 ≥ max{vi : i ∈ {1, . . . ,n} \ {k1, k2}} ≥ wk2 ≥ wk3 ≥ · · · ≥ wkm ,

which, together with similar applications of Equations (Bj) for j in
{3, . . . , j} and (A.4), leads to the desired inequality

uk j = min{vk1, vk2, . . . , vk j } ≥ wk j .

Since the choice of j in {1, . . . ,m} was arbitrary, we have shown that
wk j ≤ uk j for every j in {1, . . . ,m}. Consider now any i in {1, . . . ,n} \
{k1, . . . , km}. Use Equation (Bj) to infer that, for every j in {1, . . . ,m},

vk j ≥ max{v` : ` ∈ {1, . . . ,n} \ {k1, . . . , k j}} ≥ vi,

whence
min{vk1, . . . , vkm } ≥ vi .

Since also vi ≥ vi, we infer that indeed

ui = min{vk1, . . . , vkm , vi} ≥ vi = wi .

This shows that vi ≤ wi ≤ ui ≤ vi for every i in {1, . . . ,n}.

In order to use our vectors u and w for our goal, let α B
∑n

i=1 ui and
β B

∑n
i=1 wi. We have already inferred above that α ≥ 1 and β ≤ 1. If

α = 1 or β = 1 we are done, because then u or w belong to Θ, so one
of them is a strength vector for which we already know that it satisfies
the order of Equation (A.1) which implies that there is an E-admissible
ranking that starts with (k1, . . . , km). Assume therefore that β < 1 < α, so
that α − β > 0, α−1

α−β ∈ (0,1),
1−β
α−β ∈ (0,1) and α−1

α−β +
1−β
α−β = 1. Let the vector

v be defined as

vi B
1 − β

α − β
ui +

α − 1

α − β
wi for all i in {1, . . . ,n},
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so v is a convex combination of u and w, and it therefore too satisfies (the
order described in) Equation (A.1), and vi ≤ wi ≤ vi ≤ ui ≤ vi for every i
in {1, . . . ,n}. Also,

n∑
i=1

vi =
1 − β

α − β

n∑
i=1

ui +
α − 1

α − β

n∑
i=1

wi =
1 − β

α − β
α +

α − 1

α − β
β =

α − β

α − β
= 1,

so v belongs to Θ. This means that v is a strength vector of our model that
satisfies the desired ordering from Equation (A.1), which implies that there
is indeed an E-admissible ranking that starts with (k1, . . . , km). �

Appendix B. Additional experimental results

In this appendix, we introduce the experimental results on the different
datasets that we didn’t show in Subsection 4.3, as the results are pretty similar
between each dataset. This appendix is divided in two subsections: in a first
subsection, we compare our approach based on the contour likelihood function
with the state-of-the-art abstention approach when 60 % of the labels are missing,
or when 60 % of the labels are swapped, as presented in Paragraph 4.3.1. In a
second subsection, we compare both approaches when the amount of user data
in the training set is reduced, as presented in Paragraph 4.3.2. To evaluate
both approaches, we use correctness and completeness as presented in Paragraph
4.2.2.

Appendix B.1. Missing and swapped labels

In this subsection, we want to see how robust both methods are when the
training dataset is perturbed either due to missing labels or swapped labels on
the datasets we didn’t show before: Authorship, Bodyfat, Glass, Housing, Iris,
Stock, Vehicle, Vowel, and Wine. For each dataset, we first provide a comparison
of both methods when there are no perturbations on the dataset. Then, we
provide on the left a comparison when 60 % of labels are missing, and on the
right a comparison when 60 % of labels are swapped.

In general, both approaches have similar results, especially when labels are
swapped. We provide for each dataset additional comments if needed.

Authorship. We notice on Figures B.16 and B.17 that our likelihood-based
approach provides a higher correctness than the classic abstention approach
when the completeness is around 0.85. However, our approach has difficulties
reaching very low completeness values, even with β values close to 0.
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Figure B.16: Comparison of methods on Authorship with no perturbations

Figure B.17: Comparison on Authorship with
a missingness of 60 %

Figure B.18: Comparison on Authorship with
60 % of swapped label pairs

Bodyfat. Both methods perform very similarly on this dataset, and we have no
difficulties obtaining different completeness values. Perturbing the dataset does
indeed diminish the correctness for a given completeness value.

Figure B.19: Comparison of methods on Bodyfat with no perturbations
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Figure B.20: Comparison on Bodyfat with a
missingness of 60 %

Figure B.21: Comparison on Bodyfat with 60
% of swapped label pairs

Glass. Similarly to Authorship, as we can see on Figure B.23, our likelihood-
based approach provides a higher correctness than the classic abstention approach,
but this time for low completeness values, while having difficulties to reach the
lowest correctness values.

Figure B.22: Comparison of methods on Glass with no perturbations

Figure B.23: Comparison on Glass with a miss-
ingness of 60 %

Figure B.24: Comparison on Glass with 60 %
of swapped label pairs

Housing. Similarly to Bodyfat, both approaches are similar, but this time we
are unable to reach a completeness of less than 0.4.
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Figure B.25: Comparison of methods on Housing with no perturbations

Figure B.26: Comparison on Housing with a
missingness of 60 %

Figure B.27: Comparison on Housing with 60
% of swapped label pairs

Iris. We have the same type of behaviour as Authorship and Glass, with a
higher correctness for some values of the completeness with our approach, as
seen on Figure B.28, and a difficulty to reach low completeness values, as seen
on Figure B.29. Let us note that, despite having a very high correctness on
the standard dataset and the dataset with missing labels, the increase of the
correctness is very different when the labels are swapped, as seen on Figure
B.30, and is actually very similar to the increase of the correctness on the other
datasets when labels are swapped.
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Figure B.28: Comparison of methods on Iris with no perturbations

Figure B.29: Comparison on Iris with a miss-
ingness of 60 %

Figure B.30: Comparison on Iris with 60 % of
swapped label pairs

Stock. Similarly to Bodyfat or Housing, both approaches are similar, but reaching
low values of completeness is even more difficult.

Figure B.31: Comparison of methods on Stock with no perturbations
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Figure B.32: Comparison on Stock with a miss-
ingness of 60 %

Figure B.33: Comparison on Stock with 60 %
of swapped label pairs

Vehicle. Similarly to Bodyfat, Housing or Stock, both approaches are similar,
with a difficulty to reach low values of completeness.

Figure B.34: Comparison of methods on Vehicle with no perturbations

Figure B.35: Comparison on Vehicle with a
missingness of 60 %

Figure B.36: Comparison on Vehicle with 60
% of swapped label pairs

Vowel. This dataset is different from the others, as our method this time
actually gives a slightly lower correctness than the classic abstention approach
for given completeness values, like Wisconsin dataset on Figures 8 and 10. This
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is especially visible on Figures B.38 and B.39. This might be because both Vowel
and Wisconsin datasets have the most labels to rank (11 and 16 respectively),
and we may reach the curse of dimensionality, as we need to sample weights v

on a 10 and 15 dimensional space respectively.

Figure B.37: Comparison of methods on Vowel with no perturbations

Figure B.38: Comparison on Vowel with a
missingness of 60 %

Figure B.39: Comparison on Vowel with 60 %
of swapped label pairs

Wine. We have the same type of behaviour as Authorship, Glass and Iris, with
a higher correctness for some values of the completeness with our approach,
as seen on Figure B.41, and a difficulty to reach low completeness values, as
seen on the same figure. This is one of the easiest dataset to predict on (with
Iris), and we reach very high correctness values very easily, even with very high
completeness values (meaning we have full rankings). Nevertheless, we have the
same behaviour for swapped levels as Iris, as the increase of the correctness is
very different.
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Figure B.40: Comparison of methods on Wine with no perturbations

Figure B.41: Comparison on Wine with a miss-
ingness of 60 %

Figure B.42: Comparison on Wine with 60 %
of swapped label pairs

Appendix B.2. Change in the amount of data available

In the subsection, we want to see how both methods behave when the training
dataset is reduced, on the 8 datasets we didn’t show before: Authorship, Bodyfat,
Glass, Housing, Stock, Vowel, Wine and Wisconsin. For each dataset, we compare
the completeness and the correctness between both methods.

Compared to the previous subsection, we will not provide individual com-
ments for each dataset, as the results are very similar: the completeness of the
predictions with our likelihood-based approach decreases as the training set
diminishes in size, while the completeness of the predictions with the classic
abstention approach does not change, or increases after a certain point. On the
correctness, it is always higher for our approach, but the difference between both
approaches is not always significative on some datasets.
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Figure B.43: Completeness for Authorship Figure B.44: Correctness for Authorship

Figure B.45: Completeness for Bodyfat Figure B.46: Correctness for Bodyfat

Figure B.47: Completeness for Glass Figure B.48: Correctness for Glass
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Figure B.49: Completeness for Housing Figure B.50: Correctness for Housing

Figure B.51: Completeness for Stock Figure B.52: Correctness for Stock

Figure B.53: Completeness for Vowel Figure B.54: Correctness for Vowel
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Figure B.55: Completeness for Wine Figure B.56: Correctness for Wine

Figure B.57: Completeness for Wisconsin Figure B.58: Correctness for Wisconsin
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