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Incremental Land Cover Classification Via Label
Strategy and Adaptive Weights

Bo Ren, Member, IEEE, Zhao Wang, Biao Hou, Member, IEEE, Bo Liu, Zitong Wu, Jocelyn
Chanussot, Fellow, IEEE, and Licheng Jiao, Fellow, IEEE

Abstract—During incremental learning tasks, catastrophic for-
getting occurs when old models are updated with new informa-
tion. To address this issue, we propose a novel method called
Label Strategy and Adaptive Weights (LSAW) that improves the
incremental learning process. The label strategy introduces the
old classes and solves the problem of how to reasonably use the
wrong samples predicted by the old model. In the cross-entropy
loss, we apply a threshold to filter the pseudo labels predicted
by the old model. Subsequently, we merge the pixel samples
with high probability with the current label. The probability
here refers to the probability that the pixel belongs to the true
class. This process enables the introduction of information from
old classes that are not directly accessible in the current stage.
Moreover, this information is relatively reliable, and the model
exhibits confidence in its accuracy. For the remaining pixels, we
retain all classes’ information through label smoothing. In the
distillation function, the old class and background pixel samples
are selected for distillation according to the prediction map of
the old classes. The weights of the classes are adaptively updated
and adjusted using specific label information from each batch
and the different stages of incremental learning. As demonstrated
by the results of our experiment, on three remote sensing image
datasets: CCF, Potsdam, and Vaihingen, our method achieves the
best results.

Index Terms—Semantic segmentation, land cover classification,
incremental learning.

I. INTRODUCTION

N recent years, the development of satellite sensors has

enabled us to capture large amounts of remote sensing data
and rich spectral information with high spatial resolution. For
a variety of applications, such as ocean monitoring, vegetation
coverage analysis, urban planning, and disaster relief, it is
essential to make full use of remote sensing image data. In
order to properly analyze remote sensing image data and
perform high-quality classifications, semantic segmentation
can be extremely helpful. Therefore, it is imperative to use
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semantic segmentation technology when studying remote sens-
ing images.

Segmenting an image semantically involves dividing it into
regional blocks containing a specific semantic meaning and
identifying the semantic class for each of these blocks. In
computer vision, semantic segmentation is considered to be
a fundamental and challenging problem. As neural networks
have developed and large-scale datasets have become available
for training, the accuracy of semantic segmentation has con-
tinued to improve. Using fully convolutional networks (FCN)
[1], the current approaches extend the deep architecture from
image-level classification to pixel-level classification. Seman-
tic segmentation models based on FCNs have been improved
in various ways over the years, including exploiting multi-
scale representations [2], [3], modeling spatial dependencies
and contextual cues [4], [5], and considering attention models
[6].

Research on land cover classification tasks in remote sensing
has been greatly improved by the development of semantic
segmentation. By assigning corresponding surface category
information labels to each pixel unit in the image, a large-scale
classification map can be generated that is easy to observe and
analyze.

While many developments have been made in existing
semantic segmentation methods, many of the proposed meth-
ods do not take into account how to maintain the network’s
memory ability for old classes while learning new classes. The
accuracy of the old classes will decline rapidly if no constraints
are imposed on the network during the learning process. At
the end of the training, the model is only able to achieve good
results for the newly learned classes, while it performs poorly
for the old classes. It is known as catastrophic forgetting [7].

Incremental learning is designed to solve the catastrophic
forgetting problem. While the problem of incremental learning
is solved through object recognition [8]-[10] and detection
[11]-[13], there are relatively few studies on incremental
learning in semantic segmentation. In incremental learning,
information is continuously processed to cope with the nonstop
flow of information that occurs in the real world. In addition
to optimizing existing knowledge, it also seeks to acquire new
information.

A major problem with remote sensing images is their large
scale and class imbalance. Furthermore, the label will often
change for the following reasons. Various remote sensing
datasets are collected from around the world, so they are
continuously expanding. A further problem with annotations
is that they are usually retrieved from different sources and
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often have varying classes, which makes it almost impossible
to have many standard and unique annotations. There may
be new classes in some regions that have been identified by
remote sensing images of different regions, or the label maker
may have divided the information in more detail, which will
result in new classes being identified.

It is crucial in the field of remote sensing to design an
incremental learning method for the reasons outlined above.
When faced with additional remote sensing datasets from
around the world, the model can learn new information about
the new classes while maintaining the performance of the old
classes without accessing the entire previous training data. In
addition to reducing training time, it can also improve the
model’s ability to cope with a variety of data types. Usually,
remote sensing image datasets are derived from large-scale
images, which results in unbalanced classes. Additionally, be-
cause the model receives different classes at different stages of
incremental learning, it will also cause an imbalance between
old and new classes.

To solve the problems of large-scale remote sensing, class
imbalances, and different numbers of classes in incremental
learning, we devised adaptive weights. Adaptive weights can
be applied depending on the number of classes in the image
and the number of old and new classes. This method is called
adaptive weights. Due to the lack of old classes’ information
in the training phase, it is necessary to obtain this information
using the old model, and simultaneously, a strategy must be
developed for filtering out the pixels with a high probability as
part of the fusion label. This method is called label strategy.

In summary, the contributions of this paper are as follows:

1. To improve the performance of land cover classification
tasks in incremental learning, we propose a new method.
It has the capability of simultaneously addressing the class
imbalance problem in remote sensing images at the current
stage and at different stages in the incremental task, as
well as making reasonable use of the incorrectly predicted
classification information of land cover.

2. A novel label strategy is proposed aimed at classifying
sample points into different classes based on their probabilities
of belonging to the correct class. It is necessary to perform
special processing for erroneous samples points since the
current stage must be trained using the labels obtained from
the model inference in the previous stage. Our label strategy
can eliminate the possibility of erroneous sample points in
remote sensing images that may adversely affect the analysis.

3. In order to address the issue of class imbalance in remote
sensing images, novel adaptive weights are proposed. There is
a greater problem of class imbalance in remote sensing images
as compared with optical images. In this approach, the classes’
weights can be adjusted adaptively based on the difference in
the number of classes. This method effectively addresses the
issue of class imbalance in remote sensing images.

II. RELATED WORK
A. Semantic segmentation

Semantic segmentation methods can be classified into tradi-
tional methods and deep-learning-based methods. With tradi-
tional methods, different land covers can be distinguished by

the use of feature extraction algorithms and classifier design
techniques. As a result of the uneven types of objects in remote
sensing images and the large differences in expressions of
similar objects, it is difficult to obtain satisfactory results.

Since the development of deep learning, semantic segmen-
tation has made significant progress. In 2014, Long et al. [1]
proposed the concept of a fully convolutional network (FCN),
which improved the structure of the original convolutional
neural network (CNN). By using a deconvolution layer, it is
possible to upsample the feature map generated by the last con-
volution layer from any size input image. During upsampling,
the feature map is restored to the same size as the input image,
allowing a prediction to be generated for each pixel while
preserving the spatial information. The upsampled feature map
is then classified pixel-by-pixel. The later improvements focus
primarily on upsampling and skipping layers of FCN, such as
SegNet, DeconvNet, and DeepLab(DL) [14]-[16]. U-net [17]
is a symmetric semantic segmentation model. Following this,
a number of multi-scale methods were developed, including
DeepLabv3 [18] and PSPNet [19]. Due to different representa-
tions and sensor-induced scale transformations, these methods
effectively address the issue of different scales of similar
objects.

The use of these networks and their variants is widespread
in the field of remote sensing. For example, [20] embed-
ded an adversarial complementary learning strategy into a
convolutional neural network, which is able to extract com-
plementary information from multi-source data. In order to
extract meaningful multiscale information and fuse features
from multisource data, [21] developed an interactive multiscale
information extraction block and a global dependence fusion
module. In [22], a graph feature extraction module and a novel
graph fusion strategy-graph dependence fusion is designed to
extract topological structure information and combine with the
rich spectral-spatial information and enhance the association
and interaction between different graph features. The methods
described above are various algorithms for analyzing remote
sensing images and contributing to the land cover classifica-
tion.

B. Incremental Learning

The purpose of incremental learning is to solve the catas-
trophic forgetting problem. The issue has been extensively
studied in the context of image classification tasks. There are
three categories of previous work: replay-based, parameter-
isolation-based, and regularization-based. As a way of resolv-
ing catastrophic forgetting, the three types of work employ
different approaches.

1) Replay-based: The replay-based approach involves stor-
ing some samples of previous training data or generating previ-
ous training data. As a result, the model can maintain memory
for old data while dealing with new data. There are a number
of methods that are representative of this concept, including
Incremental Classifier and Representation Learning (iCaRL)
[9], Deep Generative Replay (DGR) [23], and Memory Replay
GANs (MRG) [24].

During training, iCaRL stores a small amount of data from
the old classes and gradually adds new classes. It learns a
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strong classifier and data representation simultaneously. As
a novel framework, DGR consists of a collaborative dual
model architecture that combines a deep generative model
with a task-solving model. Training data for previous tasks can
easily be sampled and interspersed with those for new tasks
using only these two models. According to MRG, sequential
fine-tuning prevented the network from correctly generating
images based on previous classes. This issue is addressed by a
conditional GAN framework that incorporates memory replay
generators into joint training with replay and replay alignment.

2) Parameter-isolation-based: In general, a method based
on parameter isolation extends the network. Its representative
methods are PackNet [25], Piggyback [26] and progressive
neural networks (PNNs) [27].

By performing iterative pruning and network retraining,
PackNet sequentially incorporates multiple tasks into a single
network while minimizing performance degradation and stor-
age overhead. Piggyback is a novel method of obtaining good
performance on new tasks by taking advantage of the fixed
weights of the network. Through the use of a new sensitivity
metric, PNNs can leverage prior knowledge by connecting
laterally to previously learned features.

3) Regularization-based: Prior-centric representative meth-
ods in the regularization-based approach include path integral
(PI) [28], elastic weight consolidation (EWC) [29], and Rie-
mannian walks (RW) [30]. Knowledge is defined as parameter
values that limit the learning of new tasks by penalizing
important parameter changes from the old tasks.

The PI introduces intelligent synapses that accumulate task-
relevant information over a period of time. In order to mem-
orize learned tasks, the EWC slows down the learning of
weights that are critical to those tasks. RW presents RWalk, a
generalization of EWC and PI with a theoretically grounded
Kullback-Leibler-divergence-based perspective.

Representative data-centric methods are learning without
forgetting(LWF) [8], LWF multi-class(LWF-MC) [9], incre-
mental learning techniques(ILT) [31], modeling the Back-
ground(MiB) [32], and Pseudolabeling and LOcal Pod(PLOP)
[33]. To prevent catastrophic forgetting, these methods utilize
distillation and the distance between the activations produced
by the old and new networks as a regularization term.

The LWF can be viewed as a hybrid of knowledge distil-
lation and fine-tuning. Based on the training data, the learned
parameters are discriminative for the new task while main-
taining the output of the original task. LWF-MC learns strong
classifiers and a data representation simultaneously. ILT retains
the knowledge of previously learned classes while updating
the current model to learn new ones based on the distillation
of the knowledge of the previous model. MiB introduces
a new distillation-based framework and introduces a new
method for initializing classifier parameters. PLOP proposes
a multi-scale pooling distillation scheme that preserves long-
range and short-range spatial relationships at the feature level.
Additionally, a pseudo-label based on entropy is designed.

C. Incremental learning for land cover classification

During the past few years, the use of deep learning meth-
ods for classification has greatly improved the classification

effect and the ability of this task to be applied. The model,
however, will always suffer catastrophic forgetting in the face
of updated data and new classes every day fetched from every
corner of the globe. Compared to ordinary images, remote
sensing images are larger. There is more information and
classes contained in a remote sensing image. It is possible
to include different classes in a single remote sensing image.
In general, class imbalances pose a more serious problem
than ordinary images. Due to the larger areas occupied by
background classes in remote sensing images, the background
offset problem is also more challenging. The Fig 1 illustrates
the incremental learning process for the entire remote sensing
image task.
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Fig. 1: Changes in labels during incremental learning.

There has also been research on incremental learning in
remote sensing. A radial basis function (RBF) is proposed
by Bruzzone L et al. [34] so that new information can be
acquired periodically as new training sets become available
while retaining the knowledge gained from previous training
sets. During each retraining stage, the network architecture is
automatically updated in order to accommodate new classes.
A frozen copy of a previously trained network is maintained
by Tasar O et al. [35] in order to update the network in the
absence of pre-class annotations. An updated network balances
the difference between the outputs from memory and previous
classes. Rong X et al. [36] propose a feature global awareness
module and a label reconstruction module. The former enables
the current model to pay more attention to regions related to
old classes identified by historical information when learning
new classes. During this time, the latter retrieves pixels be-
longing to the learned class from the background to address
the background shift problem and maintain the performance
of the old classes.

It is evident that incremental learning in land cover classifi-
cation is still relatively rare. Our research expands the research
content of incremental learning and studies the problems
existing in the process of incremental learning of remote
sensing images. Detailed information about the method is
provided in the following section.
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III. METHODOLOGY
A. Problem definition and notation

For the convenience of readers, we have added a symbol
table that contains the main symbols that appear in this article.
Table I presents the main symbol table.

TABLE I: MAIN SYMBOL TABLE

Symbol of stage

t the current stage
t—1 the previous stage
I the subsequent stage

Symbol of classes
o the background class

C'=1  the set of new classes in the ¢ — 1 training stage
Ct the set of new classes in the ¢ training stage

ot the set of new classes in the ¢’ training stage

C the total set of classes

ci the i-th class

Other main symbol

H the height of the input image

w the width of the input image

N the total number of pixels of the input image

X the input image

Y the input label

Al the output matrix of the ¢ stage model

G'~1  the pseudo-label predicted according to the ¢ — 1
stage model

L., the probability set of pixel belonging to the ¢; in
the pseudo-label

L;i the decreasing degree of confidence that the pixel

belongs to the ¢;.

M pseudo-label generated after the algorithm

Y The set of images

We, the weight of ¢;

len(C') the number of elements in the C

P the probability that the x-th pixel of the ¢; belongs
to this class

Ne; the threshold of the class ¢;

v; the pixel condition that participates in the calcula-
tion of the distillation function

Ne, the number of pixels belonging to c¢; in each image

He; the prediction accuracy of the previous stage model
for the ¢;

ny—1 the sum of pixels in the merged label for the

background and old classes
g the probability that the pixel belongs to the most
likely class inferred by the current model

In the incremental phase the current training stage is t,
the previous stage is ¢ — 1, and subsequent stage is t’. The
relationship between the number of classes at different stages
is as follows:

c=ctuct-tuctuct, (1)

in which C represents the total set of classes, and C? stands
for background class. C*~!, C*, and Ct are the set of new
classes in the ¢t — 1, ¢, and ¢’ training stage.

The set of images is ¥=(X, Y). The input image is denoted
as X, X& XMXWx3 where X € {i}%%, H and W represent

1=

the height and width of the input image. The total number of

pixels of the input image is N, and the input label is denoted
as Y, Y € (CPuCHT*W where (C? U C*H)H*W represents a
matrix with a length of H and a width of W, and the matrix
elements belong to the C® U C* set.

The overall frame diagram is shown in the Fig 2. GM
stands for Generate Merge module. This module generates
a trainable pseudo-label map from the merged label, which
contains the old classes and the real label of the current
stage. This algorithm filters the labels that contain old classes
based on the predictions of the previous stage. The cross-
entropy module uses the generated merged label (M) and the
output matrix(4’) of the current stage model for calculation.
To enhance the model’s memory of old classes, the knowledge
distillation module uses different model information from the
current stage(A?) and the previous stage(A*~1).

B. Cross-entropy based on merged label and label smoothing

In the first stage of training, the distillation function is 0
due to £ — 1 < 0, and the loss function contains only cross-
entropy. Background pixels received in the first stage contain
potential new classes that may emerge in subsequent stages.
The weight of the background is therefore reduced based on
the proportion of each class to the overall classes.

In this study, the offset function of sigmod denoted as g(x)
is used as the mapping for many cases. The calculation formula

is as follows: 1

“Tre e
The function g(z) is equivalent to a translation transfor-
mation of the sigmod function. When adaptive weights are
calculated, the ratio of the number of classes is positive.
Nevertheless, it may be extremely large or small, which will
have an impact on the training effect. Using the function g(x),
the calculated value is transformed. This transformation allows
the value to be distributed in a more reasonable manner when
the weight is adaptively adjusted later, thereby improving the
model’s training. The calculation formula is as follows:

N
g (%f) c; €Cb
we, = len(C*) +1 7 3)

(o)

where w,, represents the weight of c;, c; represents the ¢-th
class, n., represents the number of pixels belonging to ¢; in
each image, and len(Ctl) represents the number of elements
in the Ct/, which represents the number of new classes that
the model will learn in subsequent stages.

During the learning process, by reducing the weight of the
background, the model is more likely to avoid misclassifying
future new classes as background. As a result, the model is
able to devote more attention to learning the correct classes.
In future stages of training, the learning restrictions can
be relaxed so that the model can better accommodate the
new classes. As soon as t > 0, the incremental phase of
training begins. The prediction accuracy for the background
and the old classes from the previous stage is stored in a
list. The prediction accuracy of the previous stage model for

g(z) 2)

CiECt
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Fig. 2: Structure of the proposed method. GM stands for Generate Merge. The cross-entropy module uses the generated
merged label (M) and the output matrix(A?) of the current stage model for calculation. To enhance the model’s memory of
old classes, the knowledge distillation module uses different model information from the current stage(A?) and the previous

stage(A‘™1).

the background and old classes is recorded as [u.,], where
c; € Cb ucCctt,

1) Merged label: This part introduces the Generate
Merge(GM) module in Fig 2.

Sort-Select: The sort-select module is shown in Fig 3. The
pixels of each class are sorted according to probability and
selected according to a calculated threshold in this part. The
selected pixels are used as a component of the subsequent
merged label.

The output matrix of the previous stage model and
the current stage model are A' and A'"!. A"l ¢
RHxleen(CbUCt’l), Al € RHxlecn(CbUCt’IUC‘)’ where
len(x) represents the number of distinct elements in the set
x. According to the previous stage model output matrix A*~1,
we perform a softmax operation on the category dimension to
generate the matrix Bt 1, where Bt—1 € RHXWxlen(C'UC* ™),
The pseudo-label predicted according to the previous stage
model is G'~!, where B~! = arg max (¢!~ ) [h,w, ¢, G' '€
(Cb U Cvtfl)HXW_

The parts of the image pixels received in the current stage
that are not of the new classes is integrated into a list
L. L. = [p?,pgi,pgi, .. ,pf{cl, where L., represents the
probability set of pixel belonginglto the ¢; in the pseudo-label,
and p$ represents the probability that the z-th pixel of the c;
belongs to this class.

The elements in the list represent the probability that the
x-th pixel in the pseudo-label G'~! belongs to the c; class.
Sort the list in descending order, and denote the list in
descending order as L~C L;i represents the decreasing degree
of confidence that the pixel belongs to the c;. The higher the
probability of the pixel point belonging to c;, the higher the
degree of confidence and the greater the probability that it can
be used as a pseudo-label. We can calculate the threshold:

Ne, = len (L;) ,

“4)

where 7., represents the elements’ number of L,,. The calcu-
lation formula is as follows:

S

where 7)., represents the threshold of the class c;, and p.,
represents the prediction accuracy of the previous stage model
for the ¢;. Then we select the pixels larger than the threshold
as the components of the confident pseudo-label.

Generate Merged Label: After obtaining the required
threshold for each old class, the confident part of the pseudo-
label is generated. M is the pseudo-label éenerated after the
algorithm, where M € (C* U C!~tuU C?) . The specific
generation method is as follows:

nci = IJNC1 [rﬁcl X /’LCI] I

gt P >y €Clgl =y e Ct?
m; =< 255 py <ne;,yi € Clgit=c;eCt™t, (6)
Yi else

where m; is the i-th element of M, glt Lis the i-th element

of G'~1, and y; is the i-th element of Y. For pixels belonging
to the background class in the current stage label(Y), the real
label may be the background class or the old classes. It is
likely that a pixel belonging to the j-th class will be judged
correctly if its probability exceeds or equals the threshold of
the class. Therefore, it can be used for subsequent training. The
pseudo-label value of a pixel is set to 255 when its probability
of belonging to the j-th class is lower than the threshold for
this class. This indicates that this pixel is ignored during this
part. The pixels set to 255 are reserved for the calculation of
the next part. At the current stage, if the pixel’s label is a new
class, then its specific new class is used as the category of the
merged label.

The weights of the classes in this part are calculated after
the required confident labels have been obtained. Datasets are
obtained by cutting from large images, so they differ from the
original images. Some images are likely to have only a few
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classes, so when weighting the classes, it is necessary to soften
this part, and not use the ratio of each class to the overall class
directly. Each class’ weight is updated using the formula. The
formula is as follows:

ng—1 = § ﬁci

in which n;_; is the sum of pixels in the merged label for the
background and old classes.

¢ eCtuCt, (7)

nt—l/nCo ) b
I & me) < leni@?y) ™ €
— ntfl/nci t—1
We, e ’ . 8
, Ny s ) myeC ®)
gl m; € C*
N,

The equation above illustrates how the adaptive weights
are calculated. After the model receives the image, it judges
each pixel according to the merged label M generated in the
previous part. It is likely that the pixel’s class is the true
old class if it appears as an old class in the merged label.
The molecular part n;_1/n., represents the inverse of the
proportion of the ¢; vector in the old class. The denominator
part N/n;_; represents the inverse of the proportion of the
old class in the total class. A small proportion of the ¢; in
the old class will lead to a larger molecule, which will allow
the ¢; to maintain its learning ability. Additionally, if the old
classes constitute a small portion of the overall class, a limited
number of old class pixels will remain in the pseudo-label
after fusion. There may be a difficulty in learning the old
class, resulting in a low level of model prediction accuracy, or
there may be a limited number of pixels in the old class. By
reducing the weight of the old class c¢;, the model can reduce
the influence of misclassified old classes’ labels and focus on
the new classes. If m; is the background, the only difference
from the old classes is that the denominator part has more
len(Ctl), because the background pixels at the current stage
may also be new classes in the next stage. So, it is necessary
to further weaken the weight of the background according to
the number of new classes. The labels are accurate if m; is a
new class. However, in order to learn about the new class, it
is necessary to take into account the number of old classes in
the image, so n¢—1/n., is used. The weight will be greater if
the number of pixels in the new class c¢; is smaller than the
number of pixels in the old class. Doing so is more conducive
to learning new classes.

Based on the weight parameters of each class in the
confidence label, the confidence part of the cross-entropy is
calculated as follows:

N
We, _
lcertain:_zwzlog((b)quaciECbUCt 1UCt

ci Jj=1
©))
where g; represents the probability that the pixel belongs to
the most likely class inferred by the current model.

2) Label Smoothing: The model in the previous stage can’t
predict a particular class satisfactorily. Pseudo-labels will not
be generated correctly when the threshold of some pixel points
is lower than the threshold we calculate. So we use not only

the values of pixels that are confident enough to calculate in
the previous part, but also pixels with probabilities smaller
than the threshold in this part. By including the probability
of each class in the calculation, the risk of incorrect labels is
reduced.

The second part of the loss function i certain generated by
the uncertain pixels in the label is as follows:

n
1
— At t—1
luncertain - _% g a; - a; -,

=1

(10)

. . ~ _ At
in which aﬁ, aﬁ 1 represent the element of A and At~1 where

At is the output matrix of the current stage model excluding
the part of the new classes. 7 represents the number of pixels
participating in the calculation of the formula. The condition
is that the current label is C?, the pseudo-label is C*t—1, and
the probability of belonging to the pseudo-label is less than the
threshold. The labels of the pixels that meet the requirements
are all uncertain old classes.

As shown in the Fig 3, during the training, the image
obtains the output matrix A*~! through the old model, the
label map G'~! is predicted according to the old model to
separate the pixels of different classes, and the pixels of
each class are clustered together. Pixels within each class are
arranged in descending order based on the size of the predicted
value. The sample points with high confidence are selected
as the pixels participating in the calculation of l.c,tqin. The
remaining sample points are used as pixels participating in the
calculation of I, certain. The pixel label of the unconfident
label is directly output. In the Generate Pseudo labels (GP)
module, the label for the selected confident sample point is
merged with the label for the current stage. The merged label
map M is output, where M is the label of I...+4;n, and uncertain
is the label of l,,certain-

The overall cross-entropy function is as follows:

(1)

in which « is a hyperparameter that can be used to adjust the
balance between different loss functions.

lOSSCG = lcertain +a- luncertain~

C. Knowledge distillation based on class information recon-
struction

It is added to the loss function as a regularization term,
keeping the model connected to the old classes while learning
new classes, effectively solving the problem of catastrophic
forgetting. After obtaining the model background and the
threshold of the old classes, the pseudo-labels used in the
distillation function are assigned according to the following
rules:

vi=1 y,€C gt ectuct, (12)

in which v; represents the pixel condition that participates in
the calculation of the distillation function, gffl is the i-th
element of G*~!, and y; is the i-th element of Y. When v;
is equal to 1, the corresponding pixel points participate in
the calculation of the distillation function. That means v; is
equal to 1 only when the current stage label and the generated
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Fig. 3: A detailed illustration of the Generate Merge module. After the input image passes through the model of the previous
stage, the output matrix(B*~!) is generated through the softmax function mapping. In the Sort-Select (SS) module, the pixels
are sorted in descending order according to the value of the class. Then the pixels’ threshold greater than 7 are selected as
components of the confident label. This part is merged with the real labels of the current stage to generate a merged label.
The remaining pixels are used as components of unconfident label and participate in the calculation together.

previous stage predicted label are both background or the
generated previous stage predicted label is the old class.
The weights of classes are calculated as follows:

We; = g(N/ncl)

To calculate the loss function, we count the number of
different classes of pseudo-labels predicted by the old model
and add them to the calculation. In this way, class imbalance
can be effectively alleviated.

The i-th pixel vector of the output matrix A’~! of the old
model is af_l, and the i-th pixel vector corresponding to the
output matrix A’ of the current model is a}. The af_l vector
is [z171],¢; € CPUC!™!, and the af vector is [z} ],¢; € CPU

Ct=1UC*. The following formula operations are performed:

~t ot t ‘ t
Tpy = Tey + E x., ¢ €C.
c;

13)

(14)

The transformed a! vector is denoted as a;. This allows us
to reconstruct the information about the classes. Based on the
information provided by the old and new models about the
input image, the following formula can be used to calculate
the knowledge distillation.

The overall knowledge distillation function is:

N
losska = — ) %Zlog (f (@)= f(@). as
Ck =1

in which ¢, € Ct U C* 1,
As shown in the Fig 4, during the training, the image
obtains the output matrices A*~! and A* through the old model

and the current model. They serve as component part of the
computation of the distillation loss function. At this stage, the
vector of the model output matrix A? is numerically converted,
as shown in the figure, and the values of the background
and the new classes are added as the real output value of
the background. Because the background and new classes’
pixels of the current stage belong to the background pixels
in the previous stage, the memory ability of the model can
be better maintained by this processing, and the learning of
the new classes will not be affected by the model. The pixel
point vector afl in the output matrix A’~! of the old model
(dimension is (1,len(C® U C*~1))) and the pixel vector a;
(dimension is (1,len(C® U C*=1) U C*)) of the current model
output matrix A? are calculated for lossyy. By reducing the
difference between the two vectors in this way, the purpose of
keeping the memory of the old classes is achieved.

D. Overall loss function

As the training time increases, the regularization coefficient
in the distillation function increases slowly, which can effec-
tively alleviate the forgetting of the old classes and enhance
the model’s memory and retention ability for the old classes:

€t - S¢
) -108Skd,

n n

108Stotar = 108Sce + 5+ f ( (16)
in which § is a hyperparameter that can be used to adjust
the balance between different loss functions, e; represents
the epoch of the current stage, s; represents the step in the
current stage, and e, and s, represent the total epochs and
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Fig. 4: Schematic diagram of distillation function calculation. By passing the input image through the previous stage model

and the current stage model, two matrices are generated, A'~! and A?. For matrix A%, the values of all new classes received

at the current stage are added to the background classes’ values. In this case, the dimension is changed to the number of the
old classes. Following that, the pixels at the same position of both matrices are calculated.

total steps in the training respectively. The distillation loss
will not be able to constrain the new model effectively if 3 is
too small. An unbalanced loss function will prevent the model
from learning features if 3 is too large. Accordingly, 5 serves
to balance the values of the two loss functions.

IV. EXPERIMENTAL ANALYSIS AND RESULTS
A. Experiment preparation

1) Dataset: Datasets Vaihingen and Potsdam are provided
by ISPRS [37]. There are many detached buildings and small
multi-story buildings in Vaihingen, which is a relatively small
village. This dataset contains 33 images of an average size of
2494 x 2064, which have been extracted from a larger top-
level orthophoto image. This process prevents the occurrence
of a situation in which there is no data. In the dataset, we use
images of RGB bands. The spatial resolution is 9 cm.

In contrast, Potsdam is a typical historic city with large
building blocks, narrow streets, and dense settlements. A total
of 28 images are contained in the dataset, with a size of 6000 x
6000. This dataset also consists of three-band remote sensing
TIFF files as well as single-band DSM files, in the same way
as the Vaihingen region. Moreover, we used images of RGB
bands in the dataset as well. The spatial resolution is 5 cm.

Both datasets have been classified manually into six cat-
egories: impervious surfaces, building, low vegetation, high
vegetation, car, and clutter.

China Computer Federation (CCF) [38] dataset is the third
dataset from a competition supported by Jiage Data and
China Computer Federation. Dataset includes a high-resolution
remote sensing image of a region in southern China, as well
as surface cover samples (pictures) that have been visually
interpreted based on the remote sensing image. It has a spatial
resolution of sub-meters, a spectrum in the visible light band
(R, G, B), and the coordinate information has been removed.
There are five categories of samples provided: vegetation,
building, water, road, and others.

The distribution of each category of the above three datasets
is shown in the Fig 5.

2) Implementation details: We follow the parameters set
in MiB for all methods. Resnet101 is used as the backbone
and deeplabv3 is used as the model. A pretrained model of
ImageNet has been used to initialize the backbone. We use the
SGD algorithm for the gradient descent, with a corresponding
decay of the learning rate over training time, with a decay
rate of 0.9. In the incremental stage setting, the initial learning
rate is 1072 for the first stage, and 10~2 for the subsequent
stages. « is set at 1 and ( is set at 30. Training epochs for
the Potsdam and Vaihingen datasets are 10 and 20 for the
CCF dataset, respectively. During the first stage of training,
we use a batch size of 12. During the next incremental stage,
we trained the model with a batch size of 10. We randomly cut
the remote sensing image into 512 x 512 image patches. With
the CCF dataset, since there are only five images, the first four
images are randomly cropped by 2500 images as the training
set, and the last image is randomly cropped by 1000 images
as the validation set. Due to the large number of images in
the Potsdam and Vaihingen datasets, 1000 images are cropped
for each image. For the Potsdam dataset, the first 31 images
are used as the training set, while the remaining 7 images are
used as the validation set. In the Vaihingen dataset, the first
25 images are selected as the training set and the remaining
8 images are selected as the validation set.

B. Comparative methods

We choose Fine-tuning(FT), EWC, RW, PI, ILT, LWE,
LWF-MC, MiB, and PLOP as the comparison algorithms
for our experiments. We compare them with our proposed
algorithm. Joint represents that the model is trained on all
classes, and it represents the upper limit of incremental learn-
ing performance. Table II, Table III, and Table IV represent the
results of the algorithm on the CCF, Potsdam, and Vaihingen
datasets, respectively. Fig 6, Fig 7, Fig 8 represent the result
graphs of the algorithm on the CCF, Potsdam and Vaihingen
datasets, respectively. In Fig 9 and Fig 10, the experimental
results for the Potsdam and Vaihingen datasets are presented.
The evaluation indicators are Mean Acc (MA), Overall Acc
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TABLE II: THE EXPERIMENTAL RESULTS OF THE CCF DATASET

Method Category IoU Category Acc MA OA mloU
background, vegetation, building, water, road background, vegetation, building, water, road
2-2
FT [0.6209 0.0000 0.0000 0.7040 0.6206] [0.7995 0.0000 0.0000 0.8482 0.7940] 0.4884  0.7438  0.3891
EWC [0.5658 0.0007 0.0000 0.5888 0.6381] [0.8482 0.0002 0.0000 0.7181 0.6722] 0.6015  0.7204  0.3586
RW [0.5034 0.0000 0.0000 0.5490 0.2997] [0.7299 0.0000 0.0000 0.7905 0.4623] 04562  0.6114 02704
PI [0.5317 0.0000 0.0000 0.6289 0.6734] [0.7264 0.0000 0.0000 0.9147 0.8273] 0.7088  0.7916  0.3668
ILT [0.5545 0.7912 0.7772 0.5389 0.5863] [0.6253 0.9028 0.8957 0.8297 0.7736] 0.6293  0.7406  0.6496
LWF [0.6696 0.7945 0.7822 0.6134 0.6565] [0.7615 0.9048 0.8956 0.8136 0.7718] 0.6034 0.722 0.7032
LWF-MC [0.6743 0.8145 0.7948 0.3776 0.6662] [0.9470 0.9078 0.9045 0.3900 0.6874] 0.6019  0.7183  0.6655
MiB [0.7033 0.7814 0.7750 0.5359 0.7138] [0.8979 0.9110 0.8980 0.5890 0.7518] 0.8095 0.7185  0.7019
PLOP [0.6250 0.7352 0.7879 0.6271 0.5581] [0.7481 0.8304 0.8974 0.8070 0.7412] 0.8048  0.7574  0.6667
LSAW [0.7543 0.8037 0.7486 0.7182 0.8331] [0.8400 0.8907 0.9458 0.8416 0.9187] 0.8874  0.8541 0.7716
2-1-1
FT [0.5747 0.0000 0.0000 0.6116 0.0000] [0.8388 0.0000 0.0000 0.7755 0.0000] 0.3229  0.6786  0.2373
EWC [0.5573 0.0000 0.0000 0.5965 0.0000] [0.8089 0.0000 0.0000 0.7861 0.0000] 0.3190  0.6667  0.2308
RW [0.5636 0.0000 0.0000 0.5776 0.0000] [0.8372 0.0000 0.0000 0.7339 0.0000] 03142 0.6645  0.2282
PI [0.5450 0.0000 0.0000 0.6279 0.0000] [0.7554 0.0000 0.0000 0.8847 0.0000] 0.3280  0.6710  0.2346
ILT [0.5801 0.7632 0.5448 0.5172 0.8282] [0.7160 0.8854 0.6814 0.7120 0.9182] 0.7826  0.7239  0.6467
LWF [0.6739 0.7679 0.6943 0.5803 0.8251] [0.8211 0.9018 0.8120 0.7068 0.9119] 0.8307  0.7895  0.7083
LWF-MC [0.6039 0.7809 0.0682 0.2994 0.8224] [0.9746 0.8848 0.0682 0.3062 0.9133] 0.6294  0.6686  0.5150
MiB [0.6306 0.7440 0.6991 0.2813 0.8108] [0.9299 0.9112 0.8342 0.2889 0.9050] 0.7738  0.7137  0.6332
PLOP [0.6539 0.6604 0.6305 0.5792 0.7801] [0.8117 0.6854 0.8221 0.7120 0.8899] 0.7842  0.7716  0.6608
LSAW [0.7353 0.7627 0.7103 0.7193 0.8329] [0.8175 0.8296 0.9767 0.8488 0.9476] 0.8841 0.8434  0.7521
Joint [0.7840 0.8234 0.7307 0.8452 0.7990] [0.8752 0.9172 0.8396 0.9324 0.9094] 0.8948  0.8701 0.7946
TABLE III: THE EXPERIMENTAL RESULTS OF THE POTSDAM DATASET
Method Category IoU Category Acc MA OA mloU
background, building, car, vegetation, tree, clutter ~ background, building, car, vegetation, tree, clutter
3-2
FT [0.4164 0.0000 0.0000 0.0000 0.5119 0.5703] [0.8778 0.0000 0.0000 0.0000 0.7090 0.8702] 0.4095  0.4961 0.2498
EWC [0.4149 0.0000 0.0003 0.0000 0.5061 0.5438] [0.9031 0.0000 0.0003 0.0000 0.5965 0.8114] 0.3852  0.4890  0.2442
RW [0.4113 0.8636 0.0051 0.0000 0.5165 0.5537] [0.9095 0.0000 0.0052 0.0000 0.5961 0.7913] 0.3837  0.4882  0.2478
PI [0.4188 0.0000 0.0000 0.0000 0.4336 0.5671] [0.8811 0.0000 0.0000 0.0000 0.6348 0.8659] 0.3970  0.4923  0.2366
ILT [0.7372 0.8266 0.7435 0.6827 0.4621 0.5232] [0.8523 0.8853 0.8208 0.8089 0.4895 0.7669] 0.7706  0.8207  0.6626
LWF [0.7701 0.8462 0.7517 0.6805 0.4716 0.5748] [0.8581 0.8942 0.8397 0.8028 0.5640 0.8214] 0.8304  0.8414  0.6825
LWF-MC [0.7143 0.8686 0.7486 0.6905 0.2982 0.5176] [0.9405 0.9074 0.8217 0.8189 0.3062 0.6002] 0.7325  0.8220  0.6396
MiB [0.7828 0.8491 0.7487 0.6810 0.5259 0.5977] [0.8522 0.9295 0.8672 0.8657 0.6243 0.7665] 0.8176  0.8487  0.6975
PLOP [0.7603 0.8520 0.7458 0.6099 0.4407 0.5342] [0.7984 0.9010 0.8309 0.6682 0.6210 0.8989] 0.7864  0.8177  0.6571
LSAW [0.7965 0.8679 0.7584 0.6905 0.5266 0.6167] [0.8938 0.9126 0.8999 0.8544 0.6120 0.7735] 0.8297  0.8530  0.7094
3-1-1
FT [0.4042 0.0000 0.0000 0.0000 0.0000 0.5908] [0.9532 0.0000 0.0000 0.0000 0.0000 0.7684] 02869  0.4654  0.1658
EWC [0.4005 0.0000 0.0000 0.0000 0.0000 0.5483] [0.9348 0.0000 0.0000 0.0000 0.0000 0.7662] 0.2835  0.4585  0.1581
RW [0.3946 0.0000 0.0000 0.0000 0.0000 0.5276] [0.9433 0.0000 0.0000 0.0000 0.0000 0.6973] 0.2735  0.4504  0.1537
PI [0.4056 0.0000 0.0000 0.0000 0.0000 0.5807] [0.9385 0.0000 0.0000 0.0000 0.0000 0.8081] 0.2911 0.4666  0.1643
ILT [0.7181 0.8322 0.7404 0.6902 0.4200 0.4842] [0.8829 0.8871 0.8078 0.8169 0.4378 0.6625] 0.7491 0.8130  0.6475
LWF [0.7596 0.8580 0.7483 0.6924 0.5297 0.5386] [0.9096 0.8944 0.8248 0.8202 0.5943 0.6930] 0.8238  0.8370  0.6877
LWE-MC [0.6783 0.8546 0.7299 0.6837 0.0080 0.4797] [0.9449 0.8870 0.7879 0.8010 0.0080 0.5750] 0.6673  0.7940  0.5723
MiB [0.7787 0.8475 0.7484 0.6672 0.5059 0.5423] [0.8676 0.9281 0.8790 0.8994 0.6862 0.6297] 0.8150  0.7185  0.6816
PLOP [0.7011 0.8355 0.7312 0.6264 0.3845 0.5150] [0.7179 0.8659 0.8504 0.6930 0.7785 0.8846] 0.7984  0.7894  0.6323
LSAW [0.7567 0.8519 0.7717 0.6992 0.5497 0.5628] [0.9096 0.8810 0.8915 0.8431 0.6756 0.6640] 0.8191  0.8392  0.6986
2-2-1
FT [0.4064 0.0000 0.0000 0.0000 0.0000 0.5877] [0.9609 0.0000 0.0000 0.0000 0.0000 0.7544] 0.2859  0.4659  0.1657
EWC [0.3996 0.0000 0.0000 0.0000 0.0000 0.5303] [0.9558 0.0000 0.0000 0.0000 0.0000 0.6892] 02742  0.4535  0.1550
RW [0.3929 0.0000 0.0000 0.0000 0.0000 0.5023] [0.9495 0.0000 0.0000 0.0000 0.0000 0.6516] 0.2668  0.4452  0.1492
PI [0.4049 0.0000 0.0000 0.0000 0.0000 0.5932] [0.9562 0.0000 0.0000 0.0000 0.0000 0.7653] 0.2869  0.4660  0.1664
ILT [0.6980 0.8679 0.7306 0.6006 0.4119 0.4471] [0.9027 0.9025 0.7931 0.7160 0.4386 0.5961] 0.7248  0.8010  0.6260
LWF [0.7498 0.8617 0.7383 0.6622 0.4978 0.5171] [0.9125 0.8899 0.8010 0.7944 0.5299 0.6854] 0.7689  0.8305  0.6711
LWF-MC [0.5513 0.8533 0.7139 0.0237 0.1021 0.3866] [0.9705 0.8863 0.7591 0.0237 0.1023 0.4455] 0.5312  0.6911 0.4385
MiB [0.7521 0.8505 0.7490 0.5720 0.5051 0.3073] [0.8949 0.9299 0.8839 0.9243 0.6342 0.3277] 0.7658  0.8011 0.6227
PLOP [0.6978 0.8101 0.6751 0.6052 0.3638 0.5287] [0.7176 0.8403 0.8334 0.8095 0.6772 0.8507] 0.7881 0.7847  0.6134
LSAW [0.7512 0.8467 0.7602 0.6837 0.5324 0.5835] [0.8958 0.8847 0.9154 0.8088 0.6637 0.7187] 0.8145  0.8403  0.6930
Joint [0.8109 0.8502 0.7738 0.6840 0.5273 0.6230] [0.8758 0.9197 0.8600 0.8365 0.6447 0.8065] 0.8239  0.8583  0.7115
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Fig. 5: The distribution of each category of the above three datasets.
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Fig. 6: Visualization of continual semantic segmentation results in the 2-2 (2 steps) setting of the CCF dataset. The picture’s
different columns of pictures indicate: (a) Image, (b) Ground truth, (c) FT, (d) EWC, (e) RW, (f) PI, (g) ILT, (h) LWF, (i)
LWF-MC, (j)MiB, (k)PLOP, and (1) LSAW.

(OA), and mean Intersection over Union (mloU). Our method
achieves the best results.

1) Quantitative Analysis on the CCF Dataset: 1)Addition
of Two Classes (2-2): In this experiment we perform two
learning steps. In the first, we learn about the three classes
of CCF, including the background. The second step involves
learning the remaining two classes of CCF. A number of
methods, including the FT, EWC, RW, and PI, perform poorly,
and the mloU of the previous old classes is close to 0. Thus,
the old classes have almost completely been forgotten. In spite
of this, prior-focused strategies are not competitive with data-
focused ones. This confirms the effectiveness of this data-
focused approach in preventing catastrophic forgetting, since

ILT, LwF, LWF-MC, MiB, and PLOP substantially outperform
them. While learning new classes, these methods preserve
the ability to memorize the old ones. Their mloU are all
above 60%. Our method, however, maintains the memory
ability of the old classes very well. Meanwhile, there is a
significant improvement in the ability to learn new classes as
well. Furthermore, our method achieves a mloU of 77.11%,
an improvement of 15% over the best-performing PLOP
algorithm.

2)Addition of One Class in Two Steps (2-1-1): Three steps
are involved in this experiment. In the first learning step, we
learn the three classes of CCF, including the background. In
the following steps, we will learn the remaining two classes
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Fig. 7: Visualization of continual semantic segmentation results in the 3-1-1 (3 steps) setting of the Potsdam dataset. The
picture’s different columns of pictures indicate: (a) Image, (b) Ground truth, (c) FT, (d) EWC, (e) RW, (f) PI, (g) ILT, (h)
LWF, (i) LWF-MC, (j)MiB, (k)PLOP, and (1) LSAW.

sequentially. FT, EWC, RW, and PI methods almost forget
the previous classes, similarly to the above analysis. Other
algorithms are still capable of remembering the old classes.
In spite of this, due to the addition of new learning steps, the
mloU of all algorithms has been reduced, which is consistent
with our theory. It is important to note that our algorithm still
maintains a good performance, which is 6% higher than the
best-performing LWF algorithm.

2) Quantitative Analysis on the Potsdam and Vaihingen
Dataset: In the design of incremental learning tasks, Potsdam
and Vaihingen are considered together since they have the
same categories.

1)Addition of Two Classes (3-2): Two learning steps are
performed in this experiment. In the first learning step, we
learn the first four classes including the background of these
two datasets. The second learning step involves learning the
remaining two classes. Due to the fact that these two datasets
have one more class than the CCF dataset and are composed
of more complex data than the CCF dataset, the results of
the experiment have declined. FT and PI methods have lost
the ability to remember the third class, while EWC and
RW methods still possess a weak memory for it. The ILT,
LWE, LWF-MC, MiB, and PLOP methods still maintain good
results. As the penultimate class occupies a small number of
categories in the image, the algorithm has a poor learning
effect on it. Additionally, our method achieves the highest
mloU for this class while still preserving the memory capacity

of the older classes. Compared to the best performing MiB
algorithm, our algorithm outperforms it by 1.7%.

2)Addition of One Class in Two Steps (3-1-1): Three
learning steps are performed in this experiment. In the first
learning step, we learn about the four classes of the two
datasets, including the background. The remaining two classes
are learned sequentially in the remaining two steps. It poses a
challenge to the algorithm designers to maintain the memory
ability of the penultimate classes during the final step of this
experiment, due to the small number of penultimate classes.
This class is not well memorized by algorithms. Despite this,
we still achieve the highest mIoU value of 54.97% in this
class. In terms of performance, our algorithm is superior to
the best-performing LWF algorithm by 1.6%.

3) Addition of Two Classes in the First Step and Addition
of One Class in the Second Step (2-2-1): Three learning steps
are performed in this experiment. In the first learning step,
we learn about the first three classes of the two datasets,
including the background. The second learning step involves
learning about the fourth and fifth classes. Lastly, we learn
about the sixth class. It is important to note that since there is
one fewer class available in the first stage, the model initially
obtained less data information, which made all algorithms
less accurate than previously experimented with. There is
significant forgetting in the LWF-MC algorithm, which has
performed relatively well in the past. This results in a mloU
value of 43.85%, which is significantly lower than those
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TABLE IV: THE EXPERIMENTAL RESULTS OF THE VAIHINGEN DATASET

Method Category IoU Category Acc MA OA mloU
background, building, car, vegetation, tree, clutter background, building, car, vegetation, tree, clutter

3-2
FT [0.4742 0.0000 0.0000 0.0000 0.2551 0.5769] [0.9228 0.0000 0.0000 0.0000 0.4346 0.9169] 0.3790  0.5234  0.2176
EWC [0.4594 0.0003 0.0006 0.0000 0.1066 0.5995] [0.9543 0.0003 0.0006 0.0000 0.1170 0.8219] 0.3157  0.5161 0.1943
RW [0.4555 0.0029 0.0015 0.0001 0.1249 0.5979] [0.9591 0.0029 0.0015 0.0000 0.1386 0.7918] 03157  0.5136  0.1971
PI [0.4745 0.0000 0.0000 0.0000 0.2547 0.5785] [0.9256 0.0000 0.0000 0.0000 0.4218 0.9134] 0.3768  0.5238  0.2179
ILT [0.7738 0.8572 0.5603 0.6193 0.0802 0.5856] [0.8826 0.9191 0.6319 0.6627 0.0895 0.8327] 0.6698  0.8380  0.5793
LWF [0.7935 0.8586 0.5574 0.6137 0.2219 0.6020] [0.8945 0.9176 0.6248 0.6533 0.2543 0.8532] 0.7253  0.8534  0.6078
LWF-MC [0.7470 0.8630 0.5673 0.6366 0.0191 0.5480] [0.9577 0.9140 0.6278 0.6909 0.0192 0.6315] 0.6402  0.8336  0.5635
MiB [0.8110 0.8469 0.5546 0.6592 0.1881 0.6284] [0.9104 0.9264 0.6363 0.7303 0.2222 0.8066] 0.7054  0.8574  0.6147
PLOP [0.8110 0.8453 0.5811 0.5216 0.2038 0.5581] [0.8724 0.9123 0.8186 0.5395 0.2211 0.8929] 0.7095  0.8296  0.5868
LSAW [0.8386 0.8716 0.6148 0.6362 0.3343 0.6397] [0.9150 0.9271 0.7619 0.6827 0.4722 0.8631] 0.7703  0.8670  0.6559

3-1-1
FT [0.4659 0.0000 0.0000 0.0000 0.0000 0.6177] [0.9557 0.0000 0.0000 0.0000 0.0000 0.8622] 0.3030  0.5228  0.1806
EwWC [0.4478 0.0000 0.0000 0.0000 0.0000 0.5887] [0.9797 0.6174 0.0000 0.0000 0.0000 0.7069] 0.2811 0.5045  0.1727
RW [0.4425 0.0000 0.0001 0.0001 0.0021 0.5582] [0.9818 0.0000 0.0001 0.0001 0.0000 0.6504] 02732 0.4964  0.1671
PI [0.4659 0.0000 0.0000 0.0000 0.0000 0.6187] [0.9558 0.0000 0.0000 0.0000 0.0000 0.8631] 0.3031 0.5230  0.1807
ILT [0.7395 0.8646 0.5501 0.6280 0.1974 0.5472] [0.9412 0.9207 0.6096 0.6769 0.2729 0.6404] 0.6770  0.8302  0.5877
LWF [0.7624 0.8651 0.5394 0.6231 0.2195 0.5937] [0.9481 0.9137 0.6219 0.6666 0.2615 0.7037] 0.6714  0.8372  0.6005
LWF-MC [0.7003 0.8539 0.5228 0.6040 0.0000 0.5051] [0.9715 0.8912 0.5580 0.6406 0.4575 0.5556] 0.6028  0.8105  0.5310
MiB [0.7945 0.8477 0.5473 0.6823 0.1199 0.5914] [0.9255 0.9224 0.6302 0.7926 0.2464 0.6828] 0.7000  0.8497  0.5972
PLOP [0.7938 0.8497 0.5772 0.5325 0.0038 0.5831] [0.9146 0.9117 0.7910 0.5522 0.0040 0.8290] 0.6671 0.8339  0.5567
LSAW [0.7957 0.8733 0.6172 0.6169 0.3398 0.6373] [0.9384 0.9096 0.7441 0.6506 0.7341 0.7885] 0.7942  0.8554  0.6467

2-2-1
FT [0.4640 0.0000 0.0000 0.0000 0.0000 0.6353] [0.9716 0.0000 0.0000 0.0000 0.0000 0.6353] 02999  0.5228  0.1832
EWC [0.4397 0.0000 0.0000 0.0000 0.0000 0.5182] [0.9781 0.6174 0.0000 0.0000 0.0000 0.5182] 0.2671 0.4893  0.1597
RW [0.4289 0.0000 0.0003 0.0009 0.0000 0.3514] [0.9905 0.0000 0.0001 0.0001 0.0000 0.3845] 0.2294 04517  0.1302
PI [0.4646 0.0000 0.0000 0.0000 0.0000 0.6345] [0.9710 0.0000 0.0000 0.0000 0.0000 0.8313] 0.3004  0.5232  0.1832
ILT [0.7049 0.8629 0.5633 0.5128 0.0018 0.4700] [0.9305 0.9187 0.6382 0.5736 0.0018 0.5796] 0.6071 0.7976  0.5193
LWF [0.7587 0.8682 0.5678 0.6068 0.1019 0.5694] [0.9393 0.9154 0.6404 0.6636 0.1083 0.7002] 0.6589  0.8356  0.5788
LWF-MC [0.5656 0.8524 0.5396 0.0836 0.0000 0.4152] [0.9649 0.8966 0.5846 0.0838 0.0000 0.4316] 0.4936  0.7044  0.4094
MiB [0.7408 0.8493 0.5608 0.6026 0.2565 0.2733] [0.9325 0.9255 0.6725 0.8844 0.3148 0.2790] 0.6681 0.7969  0.5472
PLOP [0.7363 0.8438 0.5075 0.5918 0.2801 0.5054] [0.7710 0.8980 0.9029 0.7190 0.3976 0.8177] 0.7510  0.8036  0.5775
LSAW [0.8098 0.8634 0.6334 0.6372 0.3800 0.6397] [0.9167 0.9163 0.8364 0.6909 0.6198 0.8138] 0.7990  0.8602  0.6606
Joint [0.8528 0.8742 0.6182 0.6717 0.2639 0.6635] [0.9427 0.9233 0.7113 0.7397 0.3478 0.8344] 0.7499  0.8781 0.6522

obtained by algorithms ILT, LWF, MiB, and PLOP. The results
will still be significantly affected if the memory ability of
an individual class is poor, even if the memory and learning
abilities of other classes are good. Our algorithm achieves an
mloU value of 69.30%, which is 3.2% higher than the best-
performing LWF algorithm.

C. Ablation experiment

LWF and our proposed method are selected as comparison
algorithms and tested on the Vaihingen dataset. Table V
represents the results of ablation experiments on the Vaihin-
gen dataset. We use the LWF algorithm as a baseline for
comparative experiments. A modified cross-entropy (CE) is
first added to the baseline. By introducing pseudo-labels into
the cross-entropy loss, which enhance the model’s ability to
distinguish between old and new classes, the model is more
effective at learning new classes. Particularly, the mloU of the
fifth category has been improved significantly. Adding our self-
designed cross-entropy to three different incremental learning
tasks improved performance over the previous baseline. The
most noticeable improvement is in the 2-2-1 task, and the
mloU value of the fifth category has increased from 9.77% to
34.68%. In addition, the overall mIoU value improved from
57.71% to 65.64%, an improvement of 13.7%. A distillation
loss (KD) is added to the baseline. Due to the distillation loss,
the model became more capable of remembering old classes,

improving its performance as a whole. After adding KD to the
3-1-1 task, the overall mIoU value increased from 58.74% to
62.15%, an increase of 5.8%. After adding our cross-entropy
and distillation loss at the same time, the results are the best in
the 3-1-1 and 2-2-1 tasks. In the 3-2 task alone, the results are
basically the same when the cross-entropy function is added.
Therefore, the two losses are mutually beneficial. They can
improve each other’s outcomes, and work together on the task.
Our proposed method has been demonstrated to be effective
through ablation experiments.

V. CONCLUSION

In this paper, we propose an incremental learning algorithm
based on adaptive weights and selection of merged labels for
incremental learning tasks on remote sensing images. Cross-
entropy and distillation functions have been redesigned. With
the label strategy, the old classes are introduced and the
problem of how to reasonably use incorrect samples predicted
by the old model is solved. The weight of the remote sensing
image class is dynamically adjusted based on the input image
because of the imbalance of remote sensing image classes.
The algorithm we propose solves the problem of catastrophic
forgetting well, and it is capable of memorizing old classes
as well as learning new ones. The results on three remote
sensing datasets demonstrate the effectiveness of our method.
In the future, we will continue to explore and mine information
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(a) Image (b) Ground truth

(d) EWC

(i) LWF-MC

(j) MiB

(k) PLOP

(1) LSAW

Fig. 8: Visualization of continual semantic segmentation results in the 3-1-1 (3 steps) setting of the Vaihingen dataset. The
picture’s different columns of pictures indicate: (a) Image, (b) Ground truth, (c) FT, (d) EWC, (e) RW, (f) PI, (g) ILT, (h)

LWEF, (i) LWEF-MC, (j)MiB, (k)PLOP, and (1) LSAW.

TABLE V: RESULTS OF ABLATION EXPERIMENTS ON THE VAIHINGEN DATASET

Method

Category IoU

Category Acc

mloU

background, building, car, vegetation, tree, clutter

background, building, car, vegetation, tree, clutter

3-2

LWF
LWF+CE
LWF+KD

LWF+CE+KD

[0.8130 0.8626 0.6050 0.6338 0.1945 0.6067]
[0.8368 0.8713 0.6036 0.6390 0.3491 0.6393]
[0.7848 0.8473 0.5868 0.5921 0.1056 0.5771]
[0.8386 0.8716 0.6148 0.6362 0.3343 0.6397]

[0.8861 0.9259 0.7815 0.6845 0.2139 0.8600]
[0.9164 0.9288 0.7250 0.6859 0.5055 0.8567]
[0.8710 0.9075 0.6970 0.6284 0.1132 0.8739]
[0.9150 0.9271 0.7619 0.6827 0.4722 0.8631]

0.6193
0.6565
0.5823
0.6559

3-1-1

LWF
LWF+CE
LWF+KD

LWF+CE+KD

[0.7544 0.8544 0.5276 0.6220 0.1724 0.5936]
[0.7986 0.8311 0.5539 0.6192 0.2081 0.6377]
[0.7821 0.8700 0.6069 0.6392 0.2252 0.6053]
[0.7957 0.8733 0.6172 0.6169 0.3398 0.6373]

[0.9463 0.9046 0.5738 0.6617 0.2311 0.7108]
[0.9397 0.8651 0.6339 0.6505 0.7514 0.7967]
[0.9361 0.9258 0.7122 0.6836 0.3691 0.7339]
[0.9384 0.9096 0.7441 0.6506 0.7341 0.7885]

0.5874
0.6081
0.6215
0.6467

2-2-1

LWF
LWF+CE
LWF+KD

LWF+CE+KD

[0.7586 0.8671 0.5649 0.6050 0.0977 0.5689]
[0.8168 0.8745 0.6227 0.6412 0.3468 0.6363]
[0.7729 0.8659 0.6053 0.6078 0.2232 0.5700]
[0.8098 0.8634 0.6334 0.6372 0.3800 0.6397]

[0.9407 0.9128 0.6345 0.6609 0.1029 0.7014]
[0.9287 0.9218 0.7740 0.6988 0.4678 0.8076]
[0.9272 0.9212 0.7296 0.6707 0.2570 0.7160]
[0.9167 0.9163 0.8364 0.6909 0.6198 0.8138]

0.5771
0.6564
0.6075
0.6606
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class

Fig. 9: Line chart of results on Potsdam datasets.

class

Fig. 10: Line chart of results on Vaihingen datasets.

from the previous model to improve the effect of incremental
learning tasks on the segmentation of remote sensing images.
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