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LGNet: Location-Guided Network for Road
Extraction from Satellite Images

Jingtao Hu, Junyu Gao, Member, IEEE, Yuan Yuan, Senior Member, IEEE, Jocelyn Chanussot, Fellow, IEEE, and
Qi Wang, Senior Member, IEEE

Abstract—Road connectivity is vital in road extraction for
accurate vehicle navigation. However, the segmentation-based
methods fail to model the connectivity resulting in broken road
segments. Therefore, we propose a Location-Guided Network
(LGNet) for promoting connectivity performance in a very
effective and efficient way. Specifically, an auxiliary Road Lo-
cation Prediction (RLP) task is designed to obtain global road
connectivity information, which improves the performance of
road segmentation. The RLP can predict the location coordinates
of the whole roads with row anchors and column anchors. By ag-
gregating the global location context to the segmentation branch
with a location-guided decoder (LG-Decoder), the features can
finally capture the connectivity of each road segment. Overall,
LGNet has the following advantages: 1) The proposed RLP and
LCG can plug into any encoder-decoder network and achieve
an impressive performance. 2) High computational efficiency.
In comparison with the multi-branch method, our proposed
LGNet requires about 6× fewer GFLOPs. 3) The superior road
connectivity performance. A series of experiments are conducted
on two road extraction data sets (SpaceNet and DeepGlobe),
confirming the effectiveness of the LGNet.

Index Terms—Road extraction, auxiliary task, road location
prediction, location-guided decoder.

I. INTRODUCTION

ROAD extraction, a fundamental problem in remote sens-
ing, aims to reconstruct the road network in a timely

and accurate manner from satellite images. It has many ap-
plications, such as road map updating [1], vehicle navigation
[2], and urban planning [3], [4]. In particular, current road
extraction methods based on segmentation have made signif-
icant progress. Most of these methods [5]–[10] consider the
road extraction as a pixel-wise classification task. However,
due to the complexity and diversity of the road network,
the pixel-wise segmentation methods are limited to ensuring
connectivity. The limited ability to connect road segments has
a very negative impact on topological accuracy.
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Fig. 1. Topological errors from the pix-wise segmentation methods, including
incomplete junction, interrupt road segments, and faulty connections.

A large receptive field is required to extract complex road
structure features effectively [11]. D-LinkNet [12] introduces
multiple dilated convolutions to fuse the features from different
receptive field and achieved good road segmentation. Deng
et al. [13] integrates the strip-pooling strategy [14] into D-
LinkNet, which captures the long-range context to adjust
the road topology. Although the above methods attain better
segmentation results, due to the shadows and occlusion, there
are still topological errors, e.g., incomplete junction, interrupt
road segment, and faulty connections as shown in Fig. 1.

In order to make up for the connectivity ability, some
works have been proposed to introduce the road centerline task
to benefit the road segmentation task [15]–[17]. Specifically,
Cheng et al. [18] proposes a cascaded convolutional neural
network (CNN) that includes a road detection network and a
road centerline extraction network to capture the topology of
the road. Further, Yang et al. [19] designs the recurrent CNN
U-Net with the joint network to perform pixel-wise classifica-
tion and road centerline extraction simultaneously. However,
the road centerline task is still a pixel-wise classification task,
which cannot explicitly increases the topological accuracy.

To obtain better road connectivity, some multi-task meth-
ods are proposed to predict the road orientation and pixel-
wise binary segmentation, simultaneously. Batra et al. [20]
focuses on classifying the road orientation angles using a
multi-branch model. DiresNet learns to infer the local road
directions via an asymmetric residual segmentation network
[21]. The road orientation prediction task introduces additional
supervised information that effectively improves road connec-
tivity. However, these orientation-based tasks aggregate the
context information in a homogeneous manner, which does
not meet the requirement that road segments need different
contextual dependencies. Most of the above methods perform
feature fusion at the end of models, resulting in insufficient
information fusion.

In this paper, we strive to achieve road connectivity while
providing sufficient information aggregation across tasks. An
auxiliary task, Road Location Prediction (RLP), is proposed
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to learn the road connectivity. Specifically, each road segment
is considered a road instance and obtained its horizontal and
vertical coordinates by road anchors. Then, the abscissa or
ordinate of each road instance is predicted by the RLP. Without
loss of generality, two branches are used to predict the location
coordinates so that the coordinate values can remain unique.
To distinguish each road segment, a new road formulation is
defined to parse all the roads. Meanwhile, we use the whole
feature maps to infer the connectivity, which gets the global
receptive field.

To effectively leverage location context information, we
propose the location-guided decoder (LG-Decoder). Firstly,
the feature maps from RLP are input into LCA to aggregate
the global location context information. Then, we feed the
output into each LG-Decoder block, which includes a location
context guidance (LCG) module to achieve a better fusion of
the location information and the features from the previous
layer. Finally, road connectivity can be improved from the
location context information. The labels of the RLP are
directly extracted from the segmentation masks, and outputs
are convolutional feature maps. For the above reasons, the
location-guided decoder can be conveniently plugged into any
encoder-decoder based road segmentation network.

To summarize, our main contributions are the following:
(1) We propose a multi-task architecture that combines

road segmentation and road location prediction, effectively
learning road connectivity and improving road segmentation
performance.

(2) We propose the road location-guided decoder, which
can aggregate the road location contextual information into the
segmentation network. It can be plugged into various encoder-
decoder-based segmentation networks conveniently.

(3) Extensive experiments on the SpaceNet and DeepGlobe
data sets prove that LGNet is competitive and more efficient
than the state-of-the-art methods.

The remaining parts of the paper proceed as follows: The
section II examines the related work of the road extraction.
Next, we describe the overall architecture of the proposed
LGNet in section III. Section IV analyses the ablation study
and the comparison experiments. Finally, the conclusion and
future work are present in Section V

II. RELATED WORK

A. Segmentation-based Road Extraction

Recently, CNN-based methods are the most widely used for
road extraction due to the powerful feature representation and
generalization ability [22], [23]. Here, we briefly review the
encoder-decoder based methods for road segmentation. FCN
[24] is the first full convolutional neural network, which uses
skip connection to fuse feature maps from different levels.
U-Net [25] combines multi-level features with a U-shape
encoder-decoder architecture and achieves a better segmenta-
tion performance with less training data. For more efficiency,
LinkNet [26] combines downsampling and deconvolution in
the decoder to achieve the trade-off of accuracy and efficiency.
Most road segmentation methods are improved based on the
above baseline methods. CasNet [18] uses two CNNs for

road segmentation and centerline extraction, respectively. In
the centerline extraction network, the input features are from
the decoder of road segmentation, which bridge the two
tasks together. To combine with U-Net and residual units
in ResNet, deep residual U-Net (ResUNet) [27] outperforms
U-Net in road segmentation with fewer parameters. Similar
to the ResUNet, the dense block [28] and skip connections
are combined with the U-Net [29], strengthening the fusion
of multi-level features. To increase the reconstruction ability
of the decoder, [30] integrates multiple parallel upsampling
structures to the decoder layers, extracting better multi-scale
features. Instead of the convolutional units in U-Net, [19]
proposes the recurrent units, which use multiple summation
operations to preserve detailed spatial information. In [16],
the encoder of U-Net is integrated with multi-scale features,
which take advantage of the spatial information to improve
the feature extraction. Dilated convolutions are also applied
to enlarge the receptive field size for high-resolution satellite
images [12], [31].

B. Multi-Task Learning
Multi-task learning (MTL) is a training pattern where mul-

tiple sub-tasks are performed with a shared network simulta-
neously [32]. With these architectures, we gain advantages
such as improved data efficiency, reduced overfitting, and
fast learning [33]. There have been successful applications of
multi-task learning in a wide variety of fields, including natural
language processing [34]–[37] and computer vision [38]–[41].

In the road extraction field, segmentation-based methods
are often trained together with centerline extraction as an
auxiliary task [15]–[19]. Despite the centerline extraction task,
[20] predicts the road orientations for promoting road connec-
tivity. With feature fusion and multi-branch architecture, the
orientation task can efficiently improve road connectivity. By
joint segmentation and path classification, [42] reduces the
number of disconnected road segments. [43] designs three
sub-tasks including pixel-level, edge-level and region-level
classification. The MTL framework integrates different levels
of features, enhancing the topology of road segmentation.
In our work, we design a new auxiliary task, road location
prediction (RLP), which uses multi-task learning to correct
the disconnected road segments.

III. METHODOLOGY

In this section, we give the details of the proposed LGNet
for road extraction. We first describe the overview of our
LGNet. Then, the auxiliary road location prediction task will
be introduced. It captures the location context in horizontal
and vertical directions. To improve road connectivity, we pro-
pose the location-guided decoder module for transferring the
location context to the road segmentation branch. To obtain the
global location context, we use the attention-based approach
for location context aggregation [44]–[46]. Meanwhile, we
propose to use the location context information to guide the
feature map of the decoder of segmentation task for correcting
the disconnect road segments. In the following section, we
demonstrate how to build LGNet upon an encoder-decoder
based network.
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Fig. 2. The overall architecture of the proposed LGNet for road extraction.

A. Network Architecture

LGNet consists of three components, a shared encoder
based on a deep convolution neural network(DCNN), two
task-specific decoders including road segmentation and road
location prediction, and the location-guided decoder across
the two tasks. The network architecture is shown in Fig. 2.
A satellite image is input DCNN to produce a feature map
F with the spatial size of H × W . For each branch in the
RLP task, given the F , we first apply a convolutional layer
with batch normalization and activation to obtain the feature
maps of road locations. Then the feature maps are followed
by a 1 × 1 convolutional layer to predict the road location
results. Then, we apply a point-wise addition operation to the
outputs of the two branches that can obtain the global road
location information F ′. To get the richer location context
information, feature map F ′ is fed into location context
aggregation (LCA). Therefore, the output feature map F ′′

gathers the information from all positions. In the segmentation
task, the feature map F ′′ is fed into each decoder block
through location context guidance (LCG). Finally, the fused
features through the successive location-guided decoder (LG-
Decoder) blocks are passed to the final layers of segmentation
to get the predicted mask of road segmentation. As mentioned
above, the modules, ie., RLP, LCA, LCG, and LG-Decoder
participate in the training and are trained simultaneously.

B. Road Instance Formulation

As mentioned in the introduction section, shadows and oc-
clusion mainly affect road extraction performance. Due to the
weak ability of learning road connectivity, the segmentation-
based methods are hard to solve the above problems. A road

formulation is proposed to extract individual road instances
which are used to capture the global context of each road
segment. Inspired by [47], we define several line anchors [48]
including row anchors and column anchors to obtain locations
of each road instance, as shown in Fig. 3. The road location
prediction is to predict the coordinate x or y of having a road
at anchors, aiming to enable independent prediction for each
road instance. Due to the complex topological structure of the
road, line anchors are divided into row anchors and column
anchors, which are used to tackle location confusion of road
instances parallel to the x-axis or y-axis.

The location coordination must be keep unique in each
line anchor. The road can intuitively be divided into different
categories based on its direction. However, more than one
road instance may have the same orientation in a dense road
scene. Thus, we sort all the road segments depending on the
starting point and select Ns instances from the same directions.
We can obtain the number of road types Nt = Nd × Ns, in
which Nd belongs to number of orientations and Ns belongs
to the number of road instances with the same orientation. To
facilitate the training, the Ns is set to a fixed number. Also, it
is essential to determine the grid size of road location Ĥ×Ŵ
in which Ĥ is the number of anchors and Ŵ is the length of
anchors. The value of Ĥ and Ŵ is preferably larger than the
road width to contain the whole road instance. Considering
that the roads have different widths, we perform a detailed
parameter analysis in section IV-C. The ground truth of road
locations can be extracted from the road masks and does not
require any extra annotation effort.
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Fig. 3. Road formulation parsed the road according to the directions.

C. Road Location Prediction Task

We introduce the road location prediction which is used to
promote the connectivity representation ability of the features
of CNN. RLP includes two branches to predict the road
location with row anchors and column anchors. In one branch,
the last feature maps of encoder Fglobal are pass through
a 3 × 3 convolutional layer with batch normalization and
LeakyReLU to encode the location information. Then, the
output features are input a 1 × 1 convolutional layer which
changes the feature maps into a half channel dimension. The
feature maps from two branches are finally summed to the
location context agregtion module, as shown in Fig. 2. Yrow ∈
R(Ŵ+1)×Ĥ×Nt represents the prediction of the row anchors
branch, where Yrow =

{
y1row, y

2
row, . . . , y

Ŵ
row, y

Ŵ+1
row

}
, in

which yŴrow ∈ RĤ×Nt , containing the correct location index
for each road instance. Ycol =

{
y1col, y

2
col, . . . , y

Ŵ
col, y

Ŵ+1
col

}
represents the prediction of the column anchors branch, in
which yŴcol ∈ RĤ×Nt . Suppose gi,jrow is the classifier which is
used for predict the road location coordinates on the i-th row
anchor, j-the road type. Then, the location prediction for road
instances can be described as:

Yi,j
row = gi,jrow(Fglobal), s.t. i ∈ [1, Ĥ], j ∈ [1, Nt], (1)

Yi,j
col = gi,jcol(Fglobal), s.t. i ∈ [1, Ĥ], j ∈ [1, Nt], (2)

in which Yi,j
row and Yi,j

col represents the probability of selecting
(Ŵ + 1) grid blocks for the i-th anchor, j-the road type. The
maximum probabilities represent the correct predicted loca-
tions and the ground truth of road locations is Trow ∈ RĤ×Nt

and Tcol ∈ RĤ×Nt . Then, the optimization corresponds to:

Lrow = LFL(Yrow,Trow), (3)

Lcol = LFL(Ycol,Tcol), (4)

in which LFL represents the Focal Loss [49].

D. Location-Guided Decoder

Combined with the auxiliary RLP task, the features of the
encoder are properly refined by the road location information.
Meanwhile, the road location information can be aggregated
with a decoder to improve the final segmentation results. Thus,
we propose the location-guided decoder (LG-Decoder) module
to fuse road location context effectively and efficiently. Before
fusion, we need the location information to be more discrimi-
native and less noisy. Thus, the lightweight non-local module
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Fig. 4. Our proposed location context aggregation module.

named location context aggregation is used to aggregate road
location features in different directions. Then, the enhanced
location features are input to each decoder block to filter the
features from the previous layer through the location context
guidance module. By directly learning road locations and
integrating them into segmentation networks, road connectivity
can be effectively improved. In the following paragraph, we
give the details about the location context aggregation module
and the location context guidance module.

1) Location Context Aggregation(LCA): For aggregating
road location information, we introduce a location context
aggregation (LCA) module to model the location context
dependencies of all the road instances using lightweight com-
putation and memory. LCA is a simplified non-local block
following the fact that variants with and without the query
achieve the comparable performance [45].As shown in Fig. 4,
the local location context feature map F

′ ∈ RB×C
′
×H×W first

inputs two 1 × 1 convolutions (Wk and Wv) to generate the
feature maps K and V , respectively, where K ∈ RB×1×H×W

and V ∈ RB×CV ×H×W . Then, the global location context
F

′′ ∈ RB×CV ×1×1 is obtained with matrix product operation.
The operation defined as follow.

F
′′
=

N∑
i=1

(Wv · F
′

i )
expWkF

′

j∑N
j=1 exp (WkF

′
j )

(5)

Finally, we feed the global location context F ′′ to each of the
decoder block to strengthen the road connectivity.

2) Location Context Guidance(LCG): Take LinkNet as an
example, and a 1×1 convolution is first employed to minimize
the channel dimension of features to reduce computational
cost within each LG-Decoder block. The features are then
combined with the global location context using the location
context guidance (LCG), which is shown in Fig. 5. Within
the LCG, a depth-wise convolution operation conditioned on
the road location representation is used to filter the input
features. Specifically, two fully connected layers are applied
to the location representation, followed by reshape operation
to produce filters. The input features are then processed with
a 3 × 3 depth-wise convolution and a 1 × 1 convolution to
produce F1. Moreover, LCG also learns to aggregate the global
location context to the filtered features. Specifically, F

′′
which

represents the global location information is passed through a
convolution layer to reduced the dimension in the LG-Decoder.
Then, the location feature is passed to two 1×1 convolutional
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Fig. 5. Our proposed location context guidance module.

layers to generate channel-wise weighted features F2. Finally,
we can get the output feature which is the sum of F1 and F2 .
The LCG can be embedded into other encoder-decoder based
architectures before the upsampling operation in the decoder.

E. Loss Function

We use the binary cross-entropy (BCE), and Dice loss [50]
to train the road segmentation task with direct addition:

Lseg = LBCE + LDice, (6)

The final learning objective function is shown as follow:

Loss = Lseg + λLrow + βLcol, (7)

where λ and β are scalar weights that control the influence of
auxiliary losses.

IV. EXPERIMENTS AND ANALYSES

To verify the effectiveness of the LGNet, experiments are
carried out on the two public datasets, SpaceNet [51] and
DeepGlobe [52]. Experimental results demonstrate that LGNet
achieves the state-of-the-art road connectivity performance on
Spacenet. In the following subsections, we first introduce the
datasets, the evaluation metrics, and training details, then we
perform a series of ablation experiments on Spacenet and
DeepGlobe data sets. Finally, we report our results on the
above two datasets.

A. Datasets and Evaluation Metrics

1) SpaceNet: The SpaceNet data set [51] provides 2,780
images from four different cities with pixel resolution
of 1300×1300 and the ground sample distance (GSD) is
0.3m/pixel. We randomly split the data set with the percentage
of 8:2 for training and validation. Following [20], we crop
each image into 650×650 patches with the overlapping of
215 pixels for training and without any overlapping window
for validation. After this process, the data sets are split into
35,584 train images and 2,224 validation images, respectively.

2) DeepGlobe: The DeepGlobe data set [52] includes 6,226
images with the spatial resolution of 1024×1024. The GSD
is 0.5m/pixel. Same as the Spacenet, the images are randomly
separated into train and validation sets with the percentage of
8:2. We create the crops of size 512×512, yielding 44,838 and
4,976 images for training and validation.

3) Evaluation Metrics: In our experiments, we use both
connectivity-based and pixel-based metrics for evaluation.

Conectivity-Based Metric: TLTS [53] statics the same
length of the shortest path between two points randomly
selected in the ground-truth and estimated road networks. It
records percentages of correct, too long, too short, and infeasi-
ble paths. In experiments, we report the results with the relative
length difference within 5%. Too long and too short indicate
the missing links and hallucinated connections, respectively.
Average Path Length Similarity (APLS) [51] is defined as the
average relative length difference. The difference of shortest
paths are compared between corresponding points sampled
from the ground truth and predicted road network graphs. The
definition of APLS is as follow:

APLS = 1− 1

N

∑
min (1,

|L(a, b)− L(a′, b′)|
L(a, b)

), (8)

where N is the total number of paths. L(a, b) represents
the length of path(a, b) sampled from the ground truth and
L(a′, b′) is from the predicted road network graphs where
(a′, b′) denotes the location in predicted graph closest to the
ground truth node (a, b).

Pixel-Based Metric: We use Completeness (COM), Cor-
rectness (COR), and Quality (Q) which are widely used in
road extraction, where the definition has been relaxed within
a distance of 5 pixels [54]. The road intersection over union
(Road IoU) is also used to evaluate the performance with a
constant width. Specifically, the metrics are defined as follows:

COM =
TP

TP + FN
, (9)

COR =
TP

TP + FP
, (10)

Q =
2× COM × COR
COM + COR

, (11)

B. Experiments Setting

Dataset Preprocessing: Firstly, the road line strings are
extracted from the binary masks and smoothed with Ramer-
Douglas-Peucker (RDP) algorithm. We can obtain both the
road locations and orientations from the line strings. Then,
the correct vertical coordinates (with row anchors) or the
horizontal coordinates (with column anchors) can be obtained.
On the SpaceNet data set, similar to [20], we create the
centerline of the road from the line strings and use distance
transform with a Gaussian kernel along the centerline. The
binary masks are created with a threshold of 0.76. On the
DeepGlobe data set, we use its own binary masks. The Nd,
Ns, λ, and β is empirically set to 9, 4, 4, and 4.

Training Details: We randomly crop the images into 256×
256 for training. Data augmentation methods including random
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Fig. 6. Visualization of the feature maps on LinkNet34 and LG-LinkNet34.

horizontal flip, mirroring and 90/180/270 degree rotation are
utilized. Our models are trained with the batch size of 32 in
total 120 epochs and optimized by stochastic gradient descent
(SGD). The momentum is 0.9 and weight decay is set to
0.0005. The initial learning rate is 1 × 10−2 dropped with
10 at epochs 60, 90, 110. We perform simple post-process
to remove small segments, fill small holes, and use RDP to
smooth the final graph. All these settings keep the same with
the multi-branch [20] for fair comparison.

C. Ablation study

We conduct extensive ablation experiments on the validation
set of SpaceNet and DeepGlobe data sets to analysis the affect
of different settings for LGNet.

Effect of the road location prediction We first investigate
the performance of our proposed road location prediction
(RLP). The experiments are conducted on LinkNet34 (with
ResNet34 as the backbone), and we evaluate the Road IoU
and APLS metrics on the SpaceNet and DeepGlobe validation
set. As shown in Table I, the RLP can improve the Road IoU
from 62.94 % to 63.02% for SpaceNet. For DeepGlobe, it
also has a 0.25% increase. By incorporating the road location

(a) (b)

(c) (d)

Fig. 7. Ablation results of different encoder-decoder architectures on
SpaceNet and DeepGlobe data set. (a) and (b) are on SpaceNet. (c) and (d)
are on DeepGlobe.

TABLE I
COMPARISON OF JOINT LEARNING MODULES WITH ROAD LOCATION

PREDICTION (RLP) AND LOCATION-GUIDED DECODER (LG-DECODER)
INCLUDING LCG AND LCA FOR ROAD SEGMENTATION.

RLP LCA LCG
Spacenet DeepGlobe

Road IoU APLS Road IoU APLS

× × × 62.94 61.77 67.99 71.03
X × × 63.02 62.08 68.24 72.04
X × X 63.12 63.02 68.12 72.22
X X × 63.03 60.01 68.08 71.41
X X X 63.15 63.85 68.29 72.69

prediction, the results show that APLS is improved for both
datasets by 0.31% and 1.01%, respectively. The results show
that RLP improves the feature generalization to refine road
segmentation.

Effect of the location-guided decoder The key of our
method is the effective fusion of road location information
into the segmentation branch, resulting in improved road
connectivity. Table I shows that LinkNet with location context
guidance(LCG) outperforms the baseline on both the SpaceNet
data set (62.08% vs 63.12%) and the DeepGlobe data set
(72.04% vs 72.22%) in APLS. Using the location context
aggregation (LCA) module independently resulted in a signif-
icant decrease in connectivity, but when used in combination
with LCG, connectivity was further improved. This indicates
that the LCG module is a more effective way to leveraging
the road location information compared to simply adding it
to the segmentation network. By adding the location-guided
decoder (LG-Decoder) which uses both LCA and LCG, the
APLS improved significantly by 1.77% for the SpaceNet data
set and Road IoU also improved by 0.13%. The combination
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Fig. 8. Visulization of the segmentation results with or without LG-Decoder (ablation study). (a)–(d) are selected from the SpaceNet data set. (e)–(h) are
selected from the DeepGlobe data set.

of the LG-Decoder on the DeepGlobe data set also shows
a 0.65% improvement in the APLS measure. These results
consistently demonstrate the effectiveness of LGNet.

To better understand the LGNet, we visualize the feature
maps of different layers of the baseline LinkNet34 and our LG-
LinkNet34. As shown in Fig. 6, we can see that the low-level
features include more discriminable road edge features. Our
method focuses more on the road foreground than the baseline
in the high-level feature map. It is evident that LG-LinkNet34
can significantly enhance the road connectivity information
and ease the background noise, thus undoubtedly strengthening
the road connectivity of the model.

Effect of various encoder-decoder architecture To fur-
ther verify the effectiveness of our method, we apply the
location-guided module to other architectures, which include
FCN, UNet, LinkNet, and D-LinkNet. Fig. 7 presents the

road segmentation and connectivity accuracy on SpaceNet
and DeepGLobe. The results identify the generality of our
method. With the LG-Decoder, four networks (FCN, U-Net,
LinkNet34, and D-LinkNet34) outperform the accuracy of
its corresponding baseline. Especially for road connectivity
in DeepGlobe datasets, FCN has a significant improvement
with a 9.03% increase. UNet, LinkNet, and D-LinkNet have
improved by 4.19%, 1.56%, and 0.83%, respectively.

Fig. 8 shows the quantitative results on the FCN, UNet, and
LinkNet combined with the LG-Decoder. As we can see from
the visualization results, the LG-Decoder effectively promotes
road connectivity. In complex road scenes, LGNet can obtain
smoother results that effectively improve the performance
of road segmentation. The above results further verify the
generalization performance of our method, which can be
applied in different encoder-decoder based road segmentation
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TABLE II
RESULTS OF THE APLS AND ROAD IOU WITH DIFFERENT GRIDS.

datasets metrics 16×16 16×32 16×64 32×16 32×32 32×64 64×16 64×32 64×64

SpaceNet [51] APLS 61.82 63.92 63.85 62.18 64.05 63.09 62.27 63.03 63.29
Road IoU 63.07 63.13 63.15 63.20 63.10 62.98 63.11 63.04 62.96

DeepGlobe [52] APLS 71.26 72.33 72.69 71.71 72.17 71.66 72.72 71.26 71.51
Road IoU 68.16 68.02 68.29 67.70 68.10 67.93 68.21 67.97 68.02

TABLE III
THE RESULTS OF COMPARATIVE EXPERIMENTS ON SPACENET DATA SET FOR ROAD EXTRACTION.

Model

Connectivity-based Metric Pixel-based Metric

TLTS
APLS

CCQ
Road IoU

correct too long too short infeasible↓ COR COM Q

FCN [24] 57.34 4.87 3.96 33.83 52.65 81.09 80.25 67.60 60.71
UNet [25] 60.02 5.17 4.02 30.80 56.55 79.88 83.26 68.82 61.68

LinkNet34 [26] 65.99 4.45 4.51 25.04 61.77 82.83 82.84 70.69 62.94
D-LinkNet34 [12] 64.77 5.08 4.48 25.67 61.74 81.47 82.86 69.73 62.44

DeepRoadMapper [55] 51.77 5.48 3.60 39.15 46.01 76.00 79.81 63.74 55.56
RoadCNN [56] 60.16 4.56 3.90 31.38 57.36 82.51 80.91 69.07 60.83
ResUNet [27] 42.28 5.94 3.38 48.40 37.15 73.04 79.38 61.39 56.79
Diresnet [21] 56.55 5.03 5.27 33.15 47.17 66.01 64.1 48.19 45.64
CoANet [57] 66.23 4.28 4.45 25.04 62.73 82.24 83.36 70.64 61.30
GCBNet [58] 62.73 4.40 4.19 28.68 62.04 83.97 82.36 71.18 61.40

Multi-Branch [20] 66.76 4.59 4.55 24.10 63.46 84.34 82.94 71.87 63.35

LG-DLinkNet34(ours) 67.34 4.52 5.06 23.08 63.31 83.39 83.07 71.28 63.24
LG-LinkNet34(ours) 68.12 4.54 4.93 22.41 63.85 82.73 83.38 71.02 63.15

networks with an improvement.
Effect of the different grid size In the road location

prediction task, there are two parameters, Ĥ and Ŵ , which
represent the spatial size of the location feature map. In Table.
II, we show how this parameters impact the APLS and Road
IoU on SpaceNet and DeepGlobe datasets. We find that the
Road IoU metric is insensitive to the parameters, and its
fluctuation range does not exceed 0.6%. The APLS has the
best result in the grid size of 32 × 32 for SpaceNet, but the
result on DeepGlobe is not. Thus, for the trade-off, we selected
the grid size of 16× 64.

D. Comparisons with state-of-the-arts

1) SpaceNet Data Set: In this section, we conduct exper-
iments on the SpaceNet data set. The compared methods
include the baseline FCN [24], the U-Net [25], and the
LinkNet34 [26]. We also compare with the sate-of-the-art
road segmentation methods include D-LinkNet [12], Deep-
RoadMapper (DRM) [55], RoadCNN [56], CoANet [57],
GCBNet [58], Multi-branch [20], and DiresNet [21]. The
last two networks are the multi-task architecture, which is
used to compare our proposed auxiliary task to verify the
advantages. Table III presents the comparative quantitative
results measured with pixel-based metric and connectivity-
based metric. The best performance is denoted in bold, and the
second-best is marked with underlines in the table. As shown
in Table III, our method outperforms baseline in both pixel-
based metrics and connectivity-based metrics. Compared with

the two multi-task networks, our method LG-DLinkNet34 and
LG-LinkNet34 are essentially the best or second-best results
on the connectivity-based metric. LG-LinkNet34 achieves the
state-of-the-art performance of 63.85% in the APLS met-
ric. Multi-branch achieves the second best performance with
stacked hourglass network [59] through the multi-task fusion
strategies of simple feature addition. In contrast, our LG-
LinkNet34 adopts a depth-wise convolution to fuse the multi-
task features more effectively and efficiently and achieve the
best results.

Fig. 9 shows the visualization results of road segmentation
results. The top four rows show the segmentation results on
the SpaceNet Datasets. And the bottom four rows are on
the DeepGlobe. Compared with the RoadCNN, DRM, and
ResUNet, we can see that our method has less noise. For the
first row of Fig. 9, there is an irregularly curved road with
occlusion in the top right of the image. Our method effectively
predicts the continuous road, but other methods do not. As
shown in the Fig. 9 (c) and (d), the prediction of CoANet
has more wrong road segments than our method. In the last
three rows, there is a situation where the road has shadows
and is mostly occluded with trees. As is evident, our method
shows the best road connectivity results against the shadow
and occlusion situation, connecting the separated road segment
efficiently.

2) DeepGlobe Data Set: In this section, we report the results
of the road extraction on DeepGlobe data set. The DeepGlobe
data set has more rural scene which includes some narrower
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CoANet GCBNet

Fig. 9. Visualization of the segmentation results output by our proposed LGNet and other baseline methods for the comparison. (a)–(d) are selected from
the SpaceNet data set. (e)–(h) are from the DeepGlobe data set.

TABLE IV
THE RESULTS OF COMPARATIVE EXPERIMENTS ON DEEPGLOBE DATA SET FOR ROAD EXTRACTION.

Model

Connectivity-based Metric Pixel-based Metric

FLOPsTLTS
APLS

CCQ
Road IoU

correct too long too short infeasible↓ COR COM Q

FCN8s [24] 59.83 4.04 3.59 32.53 60.23 89.12 86.35 78.11 66.72 25.54G
UNet [25] 59.61 4.01 3.27 33.12 67.42 90.53 86.44 79.27 67.71 40.13G

LinkNet34 [26] 67.37 3.67 3.95 25.00 71.03 90.18 87.12 79.57 67.99 6.85G
D-LinkNet34 [12] 66.63 3.81 3.71 25.83 71.25 90.88 86.73 79.79 68.11 7.44G

RoadDeepMapper [55] 50.64 3.71 3.28 42.37 60.23 89.22 83.04 75.47 61.97 -
RoadCNN [56] 49.55 3.38 2.99 44.08 58.86 93.17 77.83 73.62 60.76 -
ResUNet [27] 42.07 3.28 3.09 51.48 54.63 88.90 82.32 74.65 63.78 80.98G
CoANet [57] 65.69 2.74 2.96 28.60 68.93 88.55 86.45 77.76 65.78 69.31G
GCBNet [58] 66.87 2.93 2.56 27.57 71.38 90.61 87.70 80.40 68.07 8.43G
Diresnet [21] 65.46 3.58 3.55 27.46 71.55 91.99 87.28 81.11 69.09 19.00G

Multi-Branch [20] 72.58 3.66 4.01 19.62 74.46 89.52 88.26 80.01 68.19 41.55G

LG-DLinkNet34(ours) 68.18 3.53 3.86 24.44 72.08 90.72 87.63 80.42 68.19 7.69G
LG-LinkNet34(ours) 67.99 3.58 3.81 24.62 72.69 91.17 87.35 80.54 68.29 7.09G



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 10

（a） （b）

Fig. 10. Visualization of failure examples of our proposed LGNet. White
represents True Positive, Blue represents False Positive, and Red represents
False Negative.

curved roads than the SpaceNet data set that do have not
enough road context information. The insufficient road context
reduces the ability of the model to handle with shadows
and occlusions. Our method models the road as multiple line
segments and ignores some short-length road segments due to
the fixed grid size in the location prediction task resulting in
the reduction of performance in road connectivity.

As shown in Fig. 9, the bottom four rows visualize the
results of the compared methods. The DRM is the worst that
misses some road segments and brings additional background
noise. Although our method also gets some wrong road
segments, it retains better connectivity. For example, in some
scenes where the road is occluded by the trees (Fig. 9 (e)),
the road extractions by other methods may be disconnected or
wrong-connected, while our LGNet maintains the better road
connectivity. As shown in Table IV, we can see LG-LinkNet34
performs the second-best connectivity, which is similar to the
visualization results in the qualitative evaluation. The DiresNet
achieves the best performance in the pixel-based metric, while
our method is also the second-best. In the connectivity-based
metric, the infeasible path of the proposed LG-LinkNet34 is
much smaller than the Diresnet. It can show that our methods
predict more correct connected roads which is more effective
in reality application.

E. Analysis of Road Extraction Failure

As mentioned in the above experiments, our proposed
LGNet achieves the best connectivity performance on
SpaceNet and the second-best on DeepGlobe. As shown in
Fig. 10, our method still has road extraction errors with
hallucinated and missing connections. In Fig. 10 (a), the
incorrect connection of road segments is caused by occlusion
and shadows created by tall buildings. In these areas, the roads
may not be visible in satellite images, leading to inaccurate
mapping. Fig. 10 (b) illustrates this issue, which is also
compounded by incomplete labeling of parking areas. Fig.
10 (b) shows a stacked road scene, where our LGNet model
predicts most of the roads accurately. However, some roads
are still incorrectly connected due to the complex nature of
the scene. By comparing the shortest path lengths of ground-
truth and predicted road graphs, we can quantify the accuracy
of a predicted road network. Tables III and IV demonstrate

TABLE V
COMPARISON OF COMPUTATION COST AND MEMORY COST IN TERMS OF

PARAM. AND FLOPS, RESPECTIVELY.

method #param. FLOPs
APLS

SpaceNet DeepGlobe

FCN8s [24] 18.64M 25.54G 52.65 60.23
UNet [25] 17.27M 40.13G 56.55 67.42

LinkNet [26] 21.64M 6.85G 61.81 71.03
D-LinkNet [12] 31.08M 7.44G 61.74 71.25
ResUNet [27] 13.04M 80.98G 54.63 37.15
DiresNet [21] 21.56M 19.00G 47.17 71.55
CoANet [57] 59.15M 69.31G 62.73 68.93
GCBNet [58] 31.23M 8.43G 62.04 71.38

Multi-branch [20] 29.00M 41.55G 63.46 74.46
LG-LinkNet34(ours) 27.66M 7.09G 63.85 72.69

that incorporating LG-Decoder into LinkNet and D-LinkNet
results in a slight increase in the ”too short” metric on the
SpaceNet data set, and a slight decrease on the DeepGlobe
data set. Meanwhile, the ”correct” metric increased for both
datasets, indicating that our method can effectively improve
road connectivity without introducing excessive connectivity
errors. In future work, we will introduce multi-modal infor-
mation including depth and trajectories of buses which can get
the local spatial relationship and information compensation to
predict the continuous road more effectively.

F. Complexity of LGNet

For fairly evolution, the memory and computation cost are
compared in Table V. The FLOPs are calculated based on the
spatial size of 256 × 256. Our LG-LinkNet34 has a 6.02M
increase in the total parameters compared with the baseline
LinkNet34. It also has 0.24 GFLOPs1 improvement in the
computation cost. Despite the baseline models, LG-LinkNet34
has fewer parameters and the least FLOPs which indicate that
it is a lightweight and effective model for road extraction.
LG-LinkNet34 is almost 6× fewer than multi-branch in terms
of FLOPs while it has competitive performance in road
extraction on both SpaceNet and DeepGlobe data sets. Our
method achieves the best trade-off between performance and
complexity.

V. CONCLUSION

In this paper, we have presented LGNet combining the
auxiliary road location prediction for the road extraction task,
which captures the road connectivity through the continuous
coordination prediction. To feed the connectivity information
to the segmentation decoder, we introduce the location-guided
decoder, which aggregates the global location context and
filters the road features by the road location information.
The experiments demonstrate that LGNet promotes the road
connectivity of the network at less computation cost. In the
future, we will explore semi-supervised road extraction to
further reduce the training computation cost and improve the
efficiency of learning road connectivity.

1We use the flops-counter to calculate GFLOPs
https://github.com/sovrasov/flops-counter.pytorch.

https://github.com/sovrasov/flops-counter.pytorch
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