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Member, IEEE

Abstract—Efficient object detection methods have recently
received great attention in remote sensing. Although deep con-
volutional networks often have excellent detection accuracy,
their deployment on resource-limited edge devices is difficult.
Knowledge distillation (KD) is a strategy for addressing this issue
since it makes models lightweight while maintaining accuracy.
However, existing KD methods for object detection have encoun-
tered two constraints. First, they discard potentially important
background information and only distill nearby foreground
regions. Second, they only rely on the global context, which limits
the student detector’s ability to acquire local information from
the teacher detector. To address the aforementioned challenges,
we propose Attention-based Feature Distillation (AFD), a new KD
approach that distills both local and global information from the
teacher detector. To enhance local distillation, we introduce a
multi-instance attention mechanism that effectively distinguishes
between background and foreground elements. This approach
prompts the student detector to focus on the pertinent channels
and pixels, as identified by the teacher detector. Local distillation
lacks global information, thus attention global distillation is
proposed to reconstruct the relationship between various pixels
and pass it from teacher to student detector. The performance of
AFD is evaluated on two public aerial image benchmarks, and
the evaluation results demonstrate that AFD in object detection
can attain the performance of other state-of-the-art models while
being efficient.

Index Terms—Deep neural network, object detection, knowl-
edge distillation, remote sensing images.

I. INTRODUCTION

RECENTLY, due to the advancement of deep convolution
neural networks (CNNs), significant progress has been

made in object detection in remote sensing images [1]–[4].
Nevertheless, most of cutting-edge CNNs, require a large
amount of processing power, preventing them from being
used on mobile phones and embedded systems. Knowledge
Distillation (KD) [5], Weight pruning [6], and model quan-
tization [7], are a few examples of the model compression
strategies developed to address this problem. KD in particular
has gained popularity as a method for both model compression
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and model accuracy improvement because of its simplicity
and efficacy. In the KD [5], [8], [9], a heavyweight teacher
network’s prediction logits are used to train a smaller, more
manageable student network. Therefore, the teacher network’s
soft labels can assist the student network in making decisions
like the teacher network, leading to better performance despite
the student network’s relatively few parameters.

The detection of objects and classification of object types
in remote sensing images is complicated due to the pres-
ence of multiple objects distributed across various locations.
This results in vagueness and imbalance in the details of
detection. The representations of different positions, such
as background, foreground, centers, or borders, may have
varying contributions, making the task of KD challenging.
The conventional KD approaches [10]–[12] were established
for the classification tasks (see Fig. 1(a)), due to a lack of
localization performance, cannot be used for the detection
tasks. For example, hint learning [13] is suggested to distill
the transitional feature maps, but it does not pass the local-
ization and classification knowledge of the teacher detector
to the student detector. In order to address this concern, [8]
introduces a new approach to object detection that improves
feature extraction, information localization, and classification.
Still, because of the disparity between the background and
foreground, [8] is not able to efficiently extract the teacher’s
knowledge. In [14], a feature distillation method is developed,
which uses ground truth to filter background regions in order to
only perform distillation from the efficient foreground regions.
However, this solution does not solve the issue of assigning
equal weights to different target regions. Consequently, in
[15], the authors suggest applying mechanism of attention to
global features in order to build soft weighted masks, whereby
these masks facilitate the access of information from certain
and highly important locations. However, we have noticed
two main problems that arise when relying only on global
feature contexts, potentially resulting in the loss of important
information within the teacher’s features. Firstly, there is a
tendency to primarily concentrate on foreground areas while
disregarding the background. Neglecting the background is
unfavorable for accurate object detection in remote sensing
images [16], [17] as it contains valuable information that
should not be overlooked. Therefore, efficiently balancing
and using all information from both the foreground and the
background is the key to boosting distillation performance in
object detection. Second, some significant local features that
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Fig. 1: KD detection pipelines. (Top) Conventional approaches. (Bottom) Our
AFD method. The AFD focuses on obtaining information from the teacher
network on both local and global basis.

are uniformly distributed in all regions might be overlooked
given that the global mask-based approaches just pay attention
to the features’ global contexts. Applying the softmax function
to the global region, would produce an enhanced mask that
supplies considerable attention to a foreground object while
ignoring the other objects and background areas [15].

To detect and classify objects in remote sensing images, we
propose Attention-based Feature Distillation (AFD) to address
the above constraints, as illustrated in Fig. 1(b). In AFD,
we propose a new multi-instance attention strategy that is
based on the detector’s local and global context features. AFD
applies an attention mechanism to local and global features
to generate attention masks. In this procedure, the model
estimates the attention of various channels and pixels of the
teacher’s feature map, enabling the student detector to more
focus to the teacher’s most significant channels and pixels. It
also distills the relationship between various pixels from the
teacher network and feeds it to the student network. To further
extract the teacher’s information, the created mask is applied
on the extracted features, the Region Proposal Network (RPN)
features, the classification output, and the regression output.

Additionally, we incorporate a feature map normalization
technique and minimize the MSE loss between the normalized
features. This approach aims to mitigate the adverse impact of
magnitude disparities between the teacher and student detec-
tors, as well as variations between different Feature Pyramid
Network (FPN) layers and channels. In our AFD model, all
loss functions exclusively operate on features, allowing for
direct integration with different one/two-stage detectors. To
evaluate AFD’s performance, on two challenging benchmark
aerial datasets (DOTA [18], NWPU VHR-10 [19]), a com-
prehensive set of experiments were conducted. The results
show that AFD outperforms state-of-the-art KD approaches in
object detection. The following is a summary of this paper’s
significant inventions and contributions:

• We introduce an attention-based model for distilling both
local and global information from the teacher detector. As
a result, student detector focuses more to the foreground

objects and less to the background pixels.
• We introduce local and global distillation to enhance the

student detector’s attention to important teacher channels
and pixels, while also fostering an understanding of pixel
relationships.

• Comprehensive experiments conducted on two challeng-
ing benchmark datasets to thoroughly evaluate our ap-
proach. The results demonstrate impressive improvements
over other detectors. To illustrate the impact of each
module on our propose model’s performance, we also
performed a comprehensive ablation study.

The rest of this paper is structured as follows. Section II
dedicated to the brief review of CNN and KD-based object
detection methods in natural and remote sensing images. Sec-
tion III describes the proposed AFD model. The dataset details,
experimental and evaluation results are given in Section IV.
Section V concludes the paper.

II. RELATED WORK

Given wide references on object detection models, we focus
only on the most recent and closely relevant studies including
CNN-based object detection and KD methods.

A. Object Detection

Current CNN-based object detection models, whether one-
stage [20]–[22] or two-stage [23]–[25], need considerable
processing resources to achieve desired performance, making
them impractical for use on embedded devices with limited
computation power. These detectors often have a strong back-
bone, such as VGGs [26] and ResNets [27]. Consequently,
some researches focus on creating lightweight backbone.
MobileNet [28] is a lightweight deep neural network that
using depth-separable convolutions with a complementing
search strategie. Single Shot multibox Detector (SSD) [20],
MobileNetV2-SSD [29] and MobileNetV3 [30] are three ex-
amples of lightweight detectors created by combining Mo-
bileNet with one-stage detectors.

Existing object detection approaches often rely on adapting
image classification frameworks [26], [27] to tackle detection
tasks. But since classification and detection tasks are so
distinct from one another, a lightweight backbone is not ideal
for direct deployment. Hence, some lightweight detectors like
Tiny-deeply supervised object detection [31] and Pelee [32]
have developed specific backbones. To accomplish effective
real-time detection, ThunderNet [33] proposes integrating a
compacted backbone with a RPN.

These lightweight detectors often do not provide good
detection results when used for remote sensing imagery due
to its complex background and multiscale objects. In light
of this need, several deep learning-based detectors have been
proposed for remote sensing images. To better focus on tiny
objects, the authors of [34] propose adopting the atrous spatial
feature pyramid component and integrating multiscale context
information through a loss weighted by region. Merging
attention with deformable convolution for object detection is
proposed in [35], via context-based deformable module on the
basis of contextual information. Spatial misalignment between
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Fig. 2: Architecture of our KD method. The enhancement of AFD is based on three points. (a) Our new KD approach distils both local and global information
from the teacher network. (b) For local distillation, a multi-instance attention mechanism is proposed to identify the background from the foreground. (c)
Attention local and global distillation is proposed to reconstruct the relationship between various pixels and pass it from teacher to student detector.

anchors and ground truth is one of the problems of object
detection in remote sensing images. To address this issue, in
[36] a unique pseudo-anchor proposal module is introduced.
To efficiently address the problem of rotated objects, [2]
proposes a method that learns rotation invariants and trains
the network by applying additional constraints. In addition, to
boost geospatial recognition accuracy, [37] proposes a network
based on local-contextual feature fusion and [1] introduce a
new model to enhance feature maps quality for better object
detection. In [38], a survey of object detection and tracking
methods for remote sensing images is gathered that provides
thoughts for models further development. In [39], a pyramid
single-shot detector is proposed for small object detection
in remote sensing images. To further enhance small object
detection, in [40], an interactive U-Net architecture is proposed
which has higher feature learning by utilising object’s global
context information. In [41], a detector is proposed that
uses spatial-frequency channel features by incorporating both
rotation-invariant channel features and original spatial channel
features which enhances the system’s robustness, and accuracy.
However, these detectors are difficult to deploy on devices with
limited storage and computational power.

B. KD for Object Detection

To develop precise and lightweight detectors for natural
scenes, researchers have extensively utilize KD in recent years
[8]. The application of KD in this particular task focuses on

distilling the distinct locations of the detector. However, during
the process of imitating the feature maps, the imbalanced
distribution of foreground and background pixels is often
disregarded, leading to inferior performance. To solve this
problem, the authors of [14] suggest an imitation technique
for fine-grained features, which focuses the detector’s attention
on the objects. To identify the central foreground pixels, a
2-dimension Gaussian mask is applied in the ground-truth
regions for feature distillation in [42]. This strategy decreases
the imbalance at the expense of eliminating the backgrounds.
On the other hand, recent analysis [43], [44] has shown that
the background areas contain important information. Specially,
remote sensing objects are often connected to their environ-
ments. During the distillation process, it is important to pay
attention to the areas around the objects and the background.
In [45], Focal and Global Distillation is proposed that consists
of, focal distillation for foreground-background separation, and
global distillation for pixel relationship restoration.

In [8], the authors integrate the boundary regression loss
of teacher detector with the regression elements and the
transmission of unbounded regression data, which lacks dis-
tinctions between objects with varied levels of difficulty in
regression. In [42], a successful classification and regression
model is designed using the ℓ1 and binary cross-entropy losses.
These distillation approaches continue to underestimate the
importance of background, which result in loss of contextual
information around the objects. [44] introduces a distillation
mask-based method that focuses on discriminative patches by
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determining the differences between the teacher and student
results. Moreover, in order to restrict the feature maps, a
multiscale feature transition on the output of the FPN is
applied. Similarly, in [15], a soft mask-based method is
developed which extracts feature attention from its backbone.
Conversely, current global attention masks generally overlook
other significant regions as networks primarily have attention
to small objects or regions. In order to further boost detection
performance, we propose creating attention masks for all the
local patches. These masks would direct attention to other
important patches that contain local information.

III. METHODOLOGY

In this section, we outline the details of our local and global
attention mask to accurately represent the characteristics of
features. Then describe how the feature distillation and head
distillation are accomplished. Fig. 2 represents the overview
of our proposed AFD method.

A. Local and Global Attention-based Mask

A fundamental part of the proposed AFD is the local and
global attention-based masks (LGAM), which we discuss be-
low. LGAM incorporates channel attention Mcha with spatial
attention Mspa methods. To get the channel attention masks,
a softmax is applied to the channel dimension, as the average
weight of the feature components |xi,j | over the channel
dimension. The proposals PT

x generated by the RPN of teacher
are shared with the teacher and the student detector in order
to obtain the same candidates for loss computation between
the detectors. The RPN module has a positive impact on
proposal quality, localization accuracy, and efficiency. It allows
the student detector to benefit from the teacher’s knowledge,
leading to improved object detection performance.

Mcha(x) = HW.ρ (
1

HW .
∑H

i=1

∑W
j=1(|xi,j ,PT

x |)
T

), (1)

in which ρ(.) is the softmax operation and T denotes the
temperature parameter. For an input feature, H and W denote
its height and width. Consequently, the channel-wise feature
components |xk| is utilized in the operations of softmax with
the H and W dimensions to generate the spatial attention
masks as written below:

Mspa(x) = C.ρ (
1
C .

∑C
c=1(|xc,PT

x |)
T

), (2)

in which C denotes the feature’s channel of input. To create
LGAM that incorporate both local and global perspectives,
we divide each FPN output feature into P local features fp ∈
RI×I×C , in which I is the predetermined instance size and
p ∈ {1, 2, ..., P}. Consequently, we can write the local channel
and spatial masks (Lch, Lsp) as:

Lch, p = Mcha(f
T
p ) +Mcha(f

S
p ), Lch = ⊗(Lch,1, Lch,2,

..., Lch,P , )
(3)

Lsp, p = Mspa(f
T
p ) +Mspa(f

S
p ), Lsp = ⊗(Lsp,1, Lsp,2,

..., Lsp,P , )
(4)

Distillation

Student Network

Teacher Network

Normalized

Normalized

Fig. 3: Activations for the input image before and after normalization.
This process fills the gap between the patterns of the teacher detector and
the student detector, providing a more effective and smoother transfer of
knowledge.

in which T stands for teacher, S for student, and ⊗ for
the concatenation operator. An effective feature distillation ap-
proach must considers magnitude difference while generating
pairs for imitation. In addition, by analyzing the activation
patterns, we observe that the dominating FPN layers and
channels may directly interact with the student’s training phase
and lead to sub-optimal performance, which is ignored by
previous studies. To overcome this problem and optimize
the learning process as shown in Fig. 3, we suggest first
normalize the teacher’s features and the student ones. This
involves transforming the features to have a zero mean and
a unit variance. Once the normalization is complete, the
next step is to minimize the mean squared error (MSE)
between the normalized features. It is also important that
the normalization follow the convolution property, to ensure
that features are normalized uniformly at different regions of
the feature map. Let V represent the whole set of feature
map values that include the components of mini-batch and
its spatial locations. Therefore, for an u-size mini-batch and
h × w-size feature maps we take the functional mini-batch
of m = ||V|| = u − size.hw. Let s(c) ∈ Rm be the cth

channel in a batch of FPN outputs, therefore, we can obtain
the normalized values from the teacher T and the student S
detector. Consequently, in the same way that local features
are normalized, the global feature F ∈ RH×W×C can be
normalized. Therefore, the global channel and spatial masks
(Gch, Gsp) can be written as:

Gch = Mcha(FT ) +Mcha(FS),

Gsp = Mspa(FT ) +Mspa(FS).
(5)

In order to build our final channel attention masks LGch and
spatial attention masks LGsp, we integrate the local and global
masks as illustrated below:

LGch =
1

2
.(Lch +Gch), LGsp =

1

2
.(Lsp +Gsp). (6)

In our model, the feature maps normalization of both student
and teacher detectors helps to align the magnitudes, improve
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knowledge transfer, and enhance stability. These effects col-
lectively contribute to more effective and efficient distillation
and result in improved student detector performance.

B. Feature-based Distillation

In KD, the features of teacher detector generally contain
more information than the features of student detector. Hence,
we distill the FPN’s intermediate features to boost students’
performance. To carefully distill the region of interest, all
layers’ features are combined with the spatial and channel
attention masks. We define the loss of feature distillation as:

ℓfd =

L∑
l=1

(

C∑
c=1

H∑
i=1

W∑
j=1

(FT
lcij − ϕadj(FS

lcij))
2.LGsp,l.LGch,l)

1
2 ,

(7)
in which depth of the FPN is shown by L, l stands for
the lth FPN layer, while i and j are the locations of the
feature map with the corresponding H and W . ϕadj is the
1 × 1 convolution layer used to adjust the student’s features
to those of the teacher. In addition, LGch,l and LGsp,l are
the mean channel and the spatial masks of the lth layer,
respectively. Further, the attention features are distilled in order
to support the student to generate better LGAM. So, we can
write the procedure of channel attention feature and spatial
attention feature extraction as AFch(x) = 1

C .
∑C

c=1 xc and
AFsp(x) = 1

HW .
∑H

i=1

∑W
j=1 xij . Through the distillation

of local and global channel attention features, the channel
attention loss is computed. Furthermore, the features obtained
from local and global spatial attention are equivalent, while the
local features are derived through splitting the global features
in the spatial domain. Spatial attention loss, unlike channel
attention loss, mainly uses global spatial attention features.

TABLE I: OUR AFD’S ABILITY FOR GENERALIZATION IN DIFFER-
ENT OBJECT DETECTION MODELS ON THE DOTA AND NWPU. WE
COMPARE OUR MODEL’S PERFORMANCE BY mAP (%), FPS (f/s),
AND NUMBER OF PARAMETERS (M).

Method DOTA NWPU
mAP FPS Params mAP FPS Params

FR-CNN (T) 72.18 18 92.65 90.91 22 73.62
FR-CNN (S) 65.27 32 60.17 85.93 39 41.15
AFD 70.54 32 60.17 89.76 38 41.15
Cascade (T) 77.39 16 120.24 93.14 19 101.22
Cascade (S) 70.47 30 87.80 88.42 36 68.77
AFD 76.91 30 87.80 91.85 35 68.77
RetinaNet (T) 72.94 19 87.74 90.86 23 68.87
RetinaNet (S) 64.47 32 55.36 85.91 41 36.28
AFD 73.08 32 55.36 90.93 40 36.28
ATSS (T) 74.18 18 55.45 92.90 22 51.44
ATSS (S) 67.42 33 18.97 86.52 39 18.95
AFD 72.94 33 18.97 92.67 39 18.95
FCOS (T) 72.56 19 67.98 91.84 22 64.33
FCOS (S) 67.71 33 31.56 87.21 41 31.85
AFD 71.82 33 31.56 90.63 40 31.85

Thus, we can write our channel attention and spatial attention
losses (ℓcha, ℓspa) as:

ℓcha =
1

2
.(∥ AFch(FS)−AFch(FT ) ∥2+

1

N
.

P∑
p=1

∥ AFch(f
S
p )−AFch(f

T
p ) ∥

2
),

(8)

ℓspa = ∥ AFsp(FS)−AFsp(FT ) ∥2. (9)

Now we can write the feature attention loss ℓfa by combining
the channel attention loss and spatial attention loss

ℓfa = ℓcha + ℓspa. (10)

C. Global Distillation

The relationship [46], [47] between different pixels contains
useful information that is used to boost detection task perfor-
mance. In addition to feature attention, which aims to sever
the relationship between background and foreground, a global
distillation approach is also proposed. This approach facilitates
the transfer of key knowledge from the teacher detector to the
student detector by leveraging the global relationships between
neighboring pixels in the feature maps. To compel the student
detector to acquire knowledge about the pixels’ relationship
from the teacher detector, we use GcNet [46] for the purpose
of extracting the global relation information from an image, as
demonstrated in Fig. 4. Consequently, we can write the global
loss as:

ℓglob = Λ.
∑

(B(FT )−B(FS))2, (11)

in which B(F) = F+L3(N (ReLU(L2(
∑np

j=1
eL1Fj

eL1FM
Fj)))),

L1, L2, and L3 are layers of CNN. N is the normalizing layer,
np denotes the number of pixels and Λ represents the loss-
balancing hyper-parameter. This hyper-parameter controls the
trade-off between performance gains and knowledge transfer
in the student detector. It allows fine-tuning the amount of
knowledge transferred from the teacher detector while ensur-
ing that the student detector learns effectively from its own
training data.
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Fig. 5: Visualization of the attention maps produced by the student detector,
teacher detector, and different training phases of student detector using AFD.
Red denotes the highest level of attention, whereas other colors denote lower.

D. Head Distillation

By directing attention towards the outputs of the students,
the distillation process stimulates them to attain performance
levels comparable to that of the teacher. Nonetheless, in the
case of remote sensing images, where there exists a substan-
tial imbalance between background and foreground, directly
distilling the outputs from the teacher’s head may adversely
affect the detection performance of the student. That’s why
spatial attention masks are used to ensure that the response-
based distillation is as accurate as possible. In particular, from
the FPN we take the spatial attention masks (see Eq. (6))
to preform masked head distillation and we can write the
classification head loss ℓcls−h as:

ℓcls−h =

L∑
l=1

C∑
c=1

H∑
i=1

W∑
j=1

ℓce(o
S
lcij , o

T
lcij).LGsp,l, (12)

in which oS and oT denote the classification head’s outputs for
both student and teacher detectors, and ℓce is the cross-entropy
loss. As stated in [8], the student model receives inappropriate
information from unbounded teacher outputs. To address this
problem, IoU loss is adopted to distill the localization head
and we can define it’s loss as:

ℓloc−h =

L∑
l=1

C∑
c=1

H∑
i=1

W∑
j=1

ℓIoU (k
S
lcij , k

T
lcij).LGsp,l, (13)

in which k denotes the output of the localization head.
By incorporating the outputs generated by the modules of

the detector with the Faster R-CNN [25], we properly set
the distillation losses and then compute the total loss by
aggregating the ℓcls−h and ℓloc−h for object detection as,

ℓtotal = νℓfd + υℓfa + ℓglob + β(ℓcls−h + ℓloc−h) + ℓrpn,
(14)

in which ν, υ and β represent the balancing-parameters for
the different losses. The ℓrpn denotes the loss of RPN [25] in
two-stage detector which written as:

ℓrpn = λ1
1

Ncls−h

∑
i

ℓcls−h(pi, p
∗
i )

+ λ2
1

Nreg

∑
i

p∗i ℓreg(ti, t
∗
i )

(15)

in which i is the index of a bounding box (BB), pi is the
probability of the ith anchor predicted as an object, p∗i is the
ground-truth type appointed to the ith anchor (0 if the box is
negative and 1 for the positive one), ℓreg is the smooth-ℓ1 loss,
ti represents the detected regression offset for ith anchor and
t∗i denotes the target BB regression offset for the ith positive
anchor. The hyper-parameters λ1 and λ2 denote the balancing
factors for losses, which we adjusted to 1 in our experiments
for simplicity. Ncls−h,Nreg denote normalization parameters
that help to reduce the effect of various object scales, resulting
in more effective training.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we encompass a detailed description of the
datasets used, the evaluation metrics employed, and the exper-
iments undertaken to assess the effectiveness and efficiency
of our KD approach. Furthermore, to determine the effect
of each module on the overall performance of the proposed
architecture, a comprehensive ablation study is conducted.

A. Datasets and Evaluation Metrics

DOTA [18] is a remote sensing image dataset for object
detection that contains 2806 images of various sizes. It consists
of 15 types of objects with various dimensions and orienta-
tions.

NWPU VHR-10 [19] is a dataset that contains 650 remote
sensing images of different sizes. It consists of 10 types of
objects.

For the DOTA dataset, the images are cropped into the
800 × 800 pixels patches with 200 pixels overlap with the
neighboring patches. For the NWPU dataset there are not
enough images for training. For expanding the training dataset,
we performed rescaling, rotation and flipping.

The metrics of mean average precision (mAP), frames per
second (FPS), and number of parameters (Params) are used
to assess the performance of AFD. Following is how mAP is
calculated:

mAP =

∫ 1

0

P (R) dR, (16)

where the predicted rates for accuracy and recall are P
and R, respectively, and d denotes the coordinates of the
estimated center point. In addition, to more accurately assess a
method’s ability for localisation and classification, the metrics
of Localization Error and Confusions with Background [48],
[49] are used.
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TABLE II: COMPARISON WITH STATE-OF-THE-ART OBJECT DETECTION KD METHODS ON THE DOTA USING RETINANET.

Methods Plane BD Bridge GFT SV LV Ship TC BC ST SBF RA Harbor SP HC mAP
Teacher 88.96 83.18 52.68 62.67 72.51 73.84 79.42 90.57 81.98 79.82 54.77 67.82 75.49 71.84 58.51 72.94
Student 86.67 72.63 40.58 51.69 71.82 65.61 77.46 89.64 68.22 72.78 41.59 56.42 64.87 69.05 37.98 64.47
FGFI [14] 88.45 75.96 44.51 56.30 72.89 63.58 74.96 90.78 76.81 72.19 48.43 61.63 70.06 69.11 45.51 67.41
TAR [42] 89.16 76.52 46.55 59.98 73.90 66.24 78.56 90.78 78.57 75.67 43.71 66.93 71.40 72.16 45.32 69.03
DKD [16] 89.48 81.48 46.38 60.52 76.25 64.18 78.36 90.79 78.60 78.31 53.12 65.06 73.05 74.11 59.98 71.31
FGD [45] 89.60 81.55 47.63 60.34 76.19 64.26 78.26 90.46 78.43 78.45 52.81 65.20 73.32 73.67 60.14 71.36
LD [9] 89.64 81.54 46.57 60.73 76.42 64.15 78.51 90.84 78.72 78.41 53.26 65.23 73.18 73.91 60.21 71.43
AFD (ours) 89.91 82.63 47.59 60.58 77.30 65.37 79.14 90.75 79.22 78.84 54.56 65.94 74.49 74.06 62.48 73.08

TABLE III: COMPARISONS OF DETECTION RATE AND SPEED FOR OUR MODEL WITH CASCADE AGAINST OTHER DETECTORS ON THE
DOTA DATASET FOR HBB TASK. THE BEST RESULTS ARE HIGHLIGHTED.

Methods Plane BD Bridge GFT SV LV Ship TC BC ST SBF RA Harbor SP HC mAP FPS
RICA [37] 86.97 80.93 46.68 67.47 66.19 71.56 74.33 86.43 80.37 71.42 51.76 64.78 71.35 76.84 56.11 70.21 24
DRN [50] 89.63 82.71 47.25 64.05 76.20 74.33 85.76 90.53 86.15 84.82 57.77 61.95 69.34 69.72 58.46 73.25 9
FMSSD [34] 89.15 83.51 49.23 69.84 69.32 74.57 77.83 90.64 83.62 75.28 55.37 67.42 75.31 80.72 60.36 73.48 17
Pelee [32] 87.61 73.84 52.93 73.88 72.32 78.15 76.30 90.16 79.24 76.13 44.89 68.20 72.63 78.81 79.36 73.62 28
BBAVectors [51] 88.65 84.07 52.14 69.58 78.24 80.37 88.03 90.82 87.16 86.41 56.07 65.71 67.02 71.94 63.97 75.34 11
R3Det [52] 89.84 83.79 48.23 66.85 78.71 83.36 87.90 90.86 85.44 85.46 65.74 62.75 67.49 78.83 72.64 76.53 10
Scrdet++ [53] 90.12 85.23 55.61 74.17 76.48 73.28 86.11 90.53 87.30 87.24 69.73 68.81 73.38 72.65 67.43 77.20 14
AFD (ours) 89.81 77.68 56.17 70.65 78.94 81.62 84.28 90.35 75.23 76.90 51.65 75.24 75.92 82.54 86.67 76.91 30
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Fig. 6: Classification accuracy and localization precision of the student
detector on FR-CNN with and without our AFD module on the DOTA dataset
during training.

B. Implementation Details

While the labels on DOTA objects are in a quadri-
lateral form, those on NWPU are in the common axis-
aligned bounding boxes (BBs). In order to have both op-
tions, our AFD method provides both oriented and horizontal
BBs (HBB, OBB), in which HBB:{xmin, ymin, xmax, ymax},
OBB:{xcenter, ycenter,W,H, θ}, while W is width, H is
height and θ is between [0, 90◦) for all objects. In training, a
set of rotating rectangles that appropriately overlap with the
given quadrilateral labels provide the OBB ground truth. AFD
only generates HBB results for the NWPU, due to the datasets’
lack of OBB ground truth. AFD, on the other hand, generates
both OBB and HBB outputs for the DOTA.

We compare the performance of our model with those
of previous KD methods using a variety of object detection
strategies [14]–[17], [43] in order to show the efficacy of our
approach. Our implementation is on the basis of MMDetection
[54] and on ImageNet the backbone networks are pretrained.
The model is implemented in Pytorch and we use four GeForce
RTX3090 GPUs for training with the batch size of 16.

The network is trains with 24 epochs using stochastic gra-
dient descent (SGD). The initial learning rate is 0.02 for FR-
CNN and 0.01 for the other modules, which are decrease in the
16th and 22nd epochs by a factor of 10. The momentum and
weight decay are set to 0.9 and 1e-4, respectively. The hyper-
parameters of losses are set to (κ = 5× 10−4, υ = 2× 10−2,
β = 1 × 10−1, and T = 1 × 10−1) in the case of one-stage
detectors (κ = 6 × 10−5, υ = 4 × 10−3, β = 1 × 10−1, and
T = 4× 10−1) in the case of two-stage detectors.

C. Evaluations using Various Detection Architectures
We evaluate our AFD’s generalization ability on several

detection frameworks, including RetinaNet [21] (one-stage
detector), FR-CNN [25] and Cascade [56] (two-stage detec-
tors), and ATSS [22] and FCOS [57] (anchor-free detectors).
We use ResNet18 as student backbones and ResNet101 as
teacher backbones for all detectors. As reported in Table I, our
AFD shows substantial improvements in mAP across various
types of detectors. Specifically, when applied to the DOTA
dataset, our approach achieves an impressive average mAP
enhancement of 5.8 points, surpassing the performance of
standard two-stage detectors. Among the various detectors,
our model shows the most significant performance improve-
ment when applied to RetinaNet, enhancing its mAP from
an initial 64.47 to 73.08. Moreover, when AFD used on
the NWPU dataset, it achieves remarkable mAP values of
91.85, 92.67, and 90.93 for Cascade, ATSS, and RetinaNet,
respectively. The achieved mAP values not only demonstrate
competitive performance but also show instances where the
student detectors outperform their respective teacher detectors.
Notably, in the case of RetinaNet, the incorporation of our
AFD yields a marginal yet discernible improvement in student
detector performance, attributed to the efficacy of our attention
module. These results show that our AFD is adaptable and
can be effectively integrated into a wide range of detector
architectures, yielding significant performance improvements.

Fig. 5 shows the visualization of attention maps derived
from both the student and teacher detectors, as well as from
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Fig. 7: Sample detection results of the student using Cascade detector trained with AFD on the DOTA.

Fig. 8: Sample detection results of the student using Cascade detector trained with AFD on the NWPU.

TABLE IV: PERFORMANCE COMPARISONS BETWEEN OUR KD DETECTOR WITH CASCADE AND STATE-OF-THE-ART OBJECT DETECTION
MODELS ON NWPU DATASET.

Methods Plane SH ST BD TC BC GTF Harbor Bridge Vehicle mAP FPS
EDAI [55] 77.12 72.86 60.34 70.08 59.48 64.82 78.61 67.59 71.94 68.84 69.17 14
RICA [37] 96.43 85.69 89.37 91.48 85.66 78.35 89.30 75.46 69.89 74.96 83.66 31
FMSSD [34] 99.62 88.71 89.54 97.23 84.65 95.28 98.56 73.76 79.43 87.54 89.43 24
Pelee [32] 99.45 91.15 96.21 97.82 88.79 90.34 98.30 86.63 86.92 87.85 92.34 29
AFD (ours) 99.51 90.88 97.13 97.36 89.45 94.67 98.95 85.94 86.34 88.19 92.85 35

different stages of the student detector using our AFD method.
By comparing these attention maps at various training stages,
we can observe the student’s progressive learning process and
its attempt to align with the teacher’s guidance. Fig. 5 demon-
strates that the teacher detector shows more accurate focus on
the airplanes in the image compared to the student detector,
which has undergone only five epochs of training. However,
as our AFD progresses, we observe a gradual convergence of
attention between the student and teacher. This observation
potentially explains why our smaller distillation method even
outperforms the teacher model in certain instances (using
RetinaNet as detector).

Moreover, Fig. 6 illustrates the progression of classification
and localization accuracy during the training process for
student detectors using FR-CNN, both with and without the
inclusion of our AFD. The data clearly indicates that the
incorporation of AFD has a substantial and positive influence
on enhancing the performance of the student detector. Notably,
the classification accuracy increases from 76.8% without AFD
to an impressive 84.3% when AFD is applied.

D. Comparative Analysis with Cutting-edge KD Approaches

On the DOTA dataset we evaluate our model together with
recent KD methods using RetinaNet to compare the results
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Input Student Teacher Student with AFD

Fig. 9: Attention maps visualization from different detectors.

Fig. 10: The qualitative evaluation of improvement in distillation learning on
the DOTA. The top row is the results of student detector without distillation
learning and the bottom row is the student that learned by AFD. (a) Plane,
(b) ship and harbor, (c) large and small vehicles.

with those of other KD approaches. The teacher detector is
RetinaNet with ResNet-101, while the student detector is Reti-
naNet with ResNet-18. We conducted a thorough performance
evaluation of AFD, comparing it to other state-of-the-art KD
models. The results provide clear evidence of AFD’s superior
performance. As shown in Table II, our AFD surpasses all
state-of-the-art KD approaches in distillation performance.
To be more specific, our model achieved a remarkable im-
provement, surpassing the dynamic global distillation method
[16] by an impressive margin of 1.77 mAP. This result
highlights the superiority of our approach in KD. Moreover,
our model achieved an impressive 73.08 mAP, surpassing
the recently developed distillation methods FGD [45] and
LD [9], which achieved 71.36 and 71.43 mAP, respectively.
These results highlight the significant impact of our method’s
superior extraction of local and global knowledge, resulting in
a substantial enhancement in distillation performance.

E. Comparative Analysis with CNN-based Detectors

We evaluate our KD method using the Cascade detector and
compare it to other CNN-based object detection models.
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Fig. 11: Performance analysis of the KD detectors on the DOTA dataset. (a)
mean Localization error. (b) Confusions with Background.

In Tables III on the DOTA and Table IV on the NWPU
datasets, we respectively evaluate the results of our KD de-
tector compared to the recent object detection models. On the
DOTA, FMSSD detects at a rate of 73.48 mAP and processing
17 FPS. On the other hand, BBAVectors [51] and R3Det [52]
detect at a rate of 75.34 and 76.53 mAP while processing at 11
and 10 FPS, respectively. Although SCRDET++ [53] obtains
the highest mAP of 77.20, its detection speed is just 14 FPS,
which notably lower when compared to the performance of
our AFD model. Empirically, we find our AFD obtains a better
detection/speed trade-off compared to other detectors (76.91
mAP / 30 FPS). Some sample detection results of AFD are
shown in Fig. 7. AFD has the most accurate classification
results for the Bridge, Small vehicle, Roundabout, Harbor,
Swimming Pool, and Helicopter classes.

As reported in Table IV, on the NWPU, AFD obtains state-
of-the-art results. Some sample detection results of our model
are shown in Fig. 8. Our detector achieves 92.85% mAP with
detection speed of 35 FPS which shows the superiority of AFD
compare to other state-of-the-art models for object detection
in remote sensing images. AFD detects 6 and 11 FPS faster
and has a 0.51% and 3.42% higher mAP than Pelee [32] and
FMSSD [34], respectively. AFD performs best in the Storage
tank, Tennis court, Ground track field, and Vehicle classes.

Fig. 9 illustrates the attention maps produced by the student
detector, teacher detector, and student detector with our AFD
method using Cascade. Upon observing the attention maps of
both the teacher and student detectors, noticeable disparities
in pixel distribution become apparent prior to applying the
distillation process. However, following training with AFD, the
student detector has a similar pixel distribution to the teacher
detector, indicating that the student relies on the same regions
as the teacher. This shows how AFD improves the performance
of the student detector.

The first row in Fig. 10 shows the baseline visualization
results (student detector without KD learning) and the next
row represents the results of the student detector learned with
our AFD. AFD has a stronger feature extraction ability than
the baseline, and the objects are more accurately detected.
For example, the detected small vehicles at the bottom of
Fig. 10(c) show that AFD produces more accurate regression
results than the baseline. To conduct a more comprehensive
evaluation of the AFD’s performance, in Fig. 11 the local-
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TABLE V: ABLATION STUDY FOR EACH MODULE’S CONTRIBUTION
TO AFD. ℓfd, ℓrpn, ℓcls−h, and ℓloc−h DENOTE DIFFERENT DISTIL-
LATION LOSSES OF OUR METHOD. “LGAM” IS OUR MASK FOR
DISTILLATION LOSSES.

ℓfd ℓrpn LGAM ℓcls−h ℓloc−h mAP
71.82

✓ 73.41
✓ ✓ 74.63
✓ ✓ ✓ 76.23
✓ ✓ ✓ ✓ 76.56
✓ ✓ ✓ ✓ 76.48
✓ ✓ ✓ ✓ ✓ 76.91

TABLE VI: EXPERIMENTS ON HOW PERFORMANCE CHANGES WITH
DIFFERENT ATTENTION MASKS AND WITHOUT NORMALIZATION.

Local Global Normalization mAP
75.54

✓ 75.82
✓ ✓ 76.65
✓ ✓ ✓ 76.91

ization error and confusions with Background curves on the
DOTA dataset is shown. As it shows, our model outperforms
the other baselines in terms of localisation and classification
accuracy. This performance is due to our proposed local and
global distillation approach which enables the student detector
to understand the relationship between pixels. The following
factors have significantly contributed to this progress.

1) The proposed attention feature distillation approach en-
hances the students’ learning of foreground objects while
suppressing students’ learning of background pixels.

2) The proposed local and global feature distillation allows
the student detector to not only focus on the important
pixels and channels of the teacher, but also to recognize
the connection between different pixels.

F. Ablation Study

In this section, a comprehensive ablation experiments is
conducted to assess the importance of the proposed modules
of our framework.

1) AFD Modules: We compare the AFD detection perfor-
mance with and without different modules of Eq. (14) to
evaluate the impact of each of them. Table V reports some
results of our ablation experiment. On the classification and
regression heads, AFD improves mAP by 0.33 and 0.25,
respectively. When the distillation process is applied jointly
to both the classification and regression heads, our model
shows an improvement of 0.68 mAP. These results provide
clear evidence that each component of our total distillation
loss significantly contributes to the overall enhancement.

2) Distillation Effect of Local and Global Attention Masks:
Since the global attention mask is not distributed equally,

TABLE VII: EFFECT OF SPATIAL AND CHANNEL ATTENTION.

Spatial
attention

Channel
attention

mAP

73.44
✓ 76.73

✓ 76.08
✓ ✓ 76.91
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Fig. 12: The mAP during training. (a) Performance evaluation on DOTA. (b)
Performance evaluation on NWPU. Channel and spatial masks can improve
mAP in training stages.

TABLE VIII: THE RESULTS OF VARIOUS LOSS FUNCTIONS UTILIZED
IN ℓloc−h.

Loss ℓ1 smooth−ℓ1 ℓMSE ℓIoU
mAP 76.84 76.69 76.72 76.91

KD only with the global feature attention module can extract
information from large objects. Alternatively, we believe that
small objects can be retrieved using local feature attention. We
conduct different distillations using local and global attention
masks to determine which is more effective. Based on the data
in Table VI, it is clear that local attention leads to a higher
mAP than global attention. Despite that, the global attention
results are inferior to the local ones, however, detection
performance further improves when both local and global at-
tention are used together. Following these observations, AFD’s
local attention mask should work with the global attention
mask to boost performance further. Furthermore, by using
normalization process, a large uniform value of loss weight
can be obtained between the teacher and student detectors to
maintain the balance of the detection and distillation losses.
This balance is important to ensure that both the detection loss
and the distillation loss have appropriate contributions to the
overall learning process. Without normalization, one of the
losses (detection or distillation) might dominate the training
process due to large magnitude differences. This can lead to an
imbalance in learning objectives and hinder the effectiveness
of KD. Normalization mitigates this issue by ensuring that
both losses have comparable magnitudes and influence the
training process in a more balanced manner.

3) Analysis of Different Attentions and Distillation Losses:
As shown in Table VII, spatial and channel attentions boost
mAP by 3.29 and 2.64, respectively. On the other hand,
combining the two attentions result in 3.47 mAP improve-
ments. The findings indicate the valuable contributions of both
channel attention and spatial attention, highlighting their effec-
tive combination as a means to enhance overall performance.
Indeed, the teacher detector effectively guides the student
detector’s focus towards important components by using a
spatial and channel attention mask. We analyze the impact
of different masks in Fig. 12. Each attention mask increases
our model efficiency, particularly the spatial attention mask.
However, the best result is obtained by combining both the
masks. Additionally, we evaluate the effects of the various
loss functions of Eq. (13). In order to evaluate the regression
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loss in Eq. (13), we analyze the result of several losses such
as ℓIoU , ℓMSE , ℓ1, and smooth − ℓ1. The ℓIoU has the best
performance compared to the others, as reported in Table VIII.

V. CONCLUSION

This paper introduced AFD, a new mask-based KD ap-
proach for target detection in remote sensing images that
efficiently uses local and global attention methods to obtain
local features and background information. To extract local
features, we split the feature maps of input image into patches
and apply attention methods. Our method enhances distillation
performance by extracting both fine-grained features and more
important background information from a range of objects.
We showed that AFD outperforms other KD techniques when
combined with the different detection systems. The detection
results demonstrate that AFD surpasses state-of-the-art models
performance and can be adopted in various detectors such as
single-stage, two-stage, and even anchor-free. Moreover, we
conducted an ablation experiment and analysis, demonstrating
the importance of distilling local information from multiple
regions for object detection. We believe our work represents a
turning point for traditional KD approaches that only rely on
global information, into more effective model that incorporate
both local and global information.
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