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INVERSE SOURCE PROBLEM FOR DISCRETE HELMHOLTZ

EQUATION

ROMAN NOVIKOV AND BASANT LAL SHARMA

Abstract. We consider multi-frequency inverse source problem for the dis-
crete Helmholtz operator on the square lattice Zd, d ≥ 1. We consider this

problem for the cases with and without phase information. We prove unique-

ness results and present examples of non-uniqueness for this problem for the
case of compactly supported source function, and a Lipshitz stability estimate

for the phased case is established. Relations with inverse scattering prob-

lem for the discrete Schrödinger operators in the Born approximation are also
provided.

Keywords: discrete Helmholtz operators, multi-frequency inverse source
problem, phase retrieval, monochromatic inverse scattering in the Born ap-

proximation

1. Introduction

We consider the discrete Helmholtz equation

∆ψ(x)− λψ(x) = f(x), x ∈ Zd, d ≥ 1, (1)

where ∆ is the discrete Laplacian defined by

∆ψ (x) =
∑

|x′−x|=1

ψ (x′) , x, x′ ∈ Zd, (2)

and f is a scalar source term with sufficient decay at infinity. For example, our
considerations are focused on the case when

supp f is compact. (3)

We assume that
λ ∈ S := [−2d, 2d] \S0, (4)

where

S0 := {±4n when d is even,

±2(2n+ 1) when d is odd, n ∈ Z and 2n ≤ d}. (5)

Discrete Helmholtz equations are closely related to discrete Schrödinger equa-
tions which appear naturally in the tight-binding model of the electrons in crystals
[1, 2, 3]. Similar equations also appear in case of studies involving time harmonic
elastic waves in lattice models of crystals [4, 5, 6]; see, for example, [7, 8] specially
in the case d = 2. In the present work, we consider the simplest cubic lattice and
the simplest Laplacian ∆ defined by (2). But our considerations can be extended
to more complicated lattices and Laplacians.

For Eq. (1), we consider the following solutions:

ψ± (x) = lim
ν→λ±i0

(R
ν
f) (x), x ∈ Zd, (6)

where
Rν = (∆− ν)

−1
: l2
(
Zd
)
−→ l2

(
Zd
)
, Im ν ̸= 0. (7)
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To recall some properties of ψ±, we consider the surface

Γ(λ) = {k : k ∈ T d, ϕ (k) = λ}, λ ∈ [−2d, 2d] , (8)

where

ϕ (k) = 2

d∑
i=1

cos ki, k = (k1, . . . , kd), T d = Rd/2πZd. (9)

In particular, if

λ ∈ Λ = {ζ ∈ R : 2d− 4 < |ζ| < 2d}, (10)

then

Γ(λ) is smooth strictly convex with non-zero principal curvatures, (11)

and there is a unique point

κ = κ (ω, λ) ∈ Γ(λ), ω ∈ Sd−1, (12)

where
∇ϕ(κ)
|∇ϕ(κ)|

= ω. (13)

In connection with (10)-(13), see [9, 10, 11].

Remark 1.1. One can consider Γ(λ) to be symmetric with respect to the origin O

in Rd for λ > 0, and to be symmetric with respect to the point Oπ in Rd for λ < 0,
where all coordinates of Oπ are equal to π. In this case, when 2d − 4 < λ < 2d
(−2d < λ < −2d + 4), the surface Γ(λ) is located strictly inside the cube [−π, π]d
([0, 2π]d, respectively); see Lemma 2 in [9], and also Remark 1.1 in [12].

Under conditions (3), (10), the following asymptotic formula holds (see, for ex-
ample, [9]):

ψ± (x) =
e±iµ(ω,λ)|x|

|x|
d−1
2

a± (ω, λ) +O

(
1

|x|
d+1
2

)
, (14)

ω = x̂ := x/|x|, |x| −→ ∞, x ∈ Zd,

where

µ (ω, λ) = κ(ω, λ) · ω, (15)

a± (ω, λ) are smooth, and the remainder can be estimated uniformly in ω ∈ Sd−1.

Remark 1.2. The far-field amplitudes a± (ω, λ) arise in (14) for ω ∈ Ω, where Ω
is the countable, everywhere dense subset of Sd−1, defined by

Ω = {θ : θ = x/|x| for some x ∈ Zd}. (16)

However, we can consider a± (ω, λ) for ω ∈ Sd−1 taking into account that a± are
continuous, and even analytic, at least, under assumptions (3), (10).

Remark 1.3. Eq. (1) can be re-written as

−(∆− 2d)ψ(x)− (2d− λ)ψ(x) = −f(x), x ∈ Zd, d ≥ 1, (17)

where ∆ is the discrete Laplacian defined by (2). In addition, for the continuous
case, the related equation can be written as

−△Ψ(x)− EΨ(x) = F (x), x ∈ Rd, d ≥ 1, E > 0, (18)

where △ is the usual continuous Laplacian and F is the source function.
Therefore, for λ close to 2d, under assumption (4), the solution ψ− in (6), (14)

corresponds to the physical (outgoing radiation) solution Ψ+ of (18) for E close to
0.
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In this connection, the related limit from discrete to continuous case is justified
in [7, 13, 14] for d = 2; see, for more details, Section 5.3 of [7] and Section 4.3 of
[13].

In the present work we consider the inverse source problem for Eq. (1) consisting
in recovering the source f from the far-field data a− (or a+), for simplicity, under
assumption (10).

We show that the far-field amplitude a− (or a+), given in a neighbourhood of
any fixed pair ω, λ, where ω ∈ Sd−1 and λ ∈ Λ with Λ defined in (10), uniquely
determines f under condition (3); see Theorem 2.1. A related Lipshitz stability
estimate is also given; see Theorem 2.9. However, we show that the far-field ampli-
tude a− (or a+), given on Sd−1 for finite but arbitrarily large number of the spectral
parameter λ ∈ Λ, fails to determine f under condition (3); see Theorem 2.2.

We also give uniqueness results on the phaseless inverse source problem for the
discrete Helmholtz equation (1) with background information; see Theorems 2.10,
2.11, 2.12.

Additionally, we show similarities of the multi-frequency inverse source problem
for discrete Helmholtz equations and the monochromatic inverse scattering prob-
lem for discrete Schrödinger operators in the Born approximation. Our Theorems
A.4, A.7, A.11, A.13, A.14, given in Appendix A for the latter case, are similar
to Theorems 2.1, 2.2, 2.9, 2.11, 2.12 mentioned above and presented in detail in
Section 2.

Remark 1.4. If d ≥ 3 then the case

|λ| < 2d− 4, λ ∈ S, (19)

is also possible. In this case, the asymptotic formula (14) should be replaced by
multi-term formula (5) in [9] which involves several far-field amplitudes a±. In
addition, formula (34) in our proofs should be replaced by formula (13) in [9] for
the aforementioned far-field amplitudes. It is not difficult to extend the results of
the present work to the case when λ satisfies (19). However, the considerations
become rather cumbersome and are not discussed in the present article.

Remark 1.5. To our knowledge, formulas (14), (34), and more general formulas,
mentioned in Remark 1.4, are available in the literature under assumption (3) only.
However, these formulas, apparently, remain valid for f exponentially decaying at
infinity and also for f decaying at infinity as O(|x|−N ) for sufficiently large N
depending on d. It seems that N > d is already sufficient with o(|x|−(d−1)/2) in place
of O(|x|−(d+1)/2) in (14), by analogy with the continuous case. In this connection
we also give Remarks 2.7 and 2.8.

Note that many important results are given in the literature for the inverse
source problem for Helmholtz equation in the continuous case; see, for example,
[15]–[24] and references therein. In particular, our work is motivated by obtaining
discrete counterparts, for the simplest model (1), of results of these works. To
our knowledge, the inverse source problem for the discrete Helmholtz equation (1)
has not been considered yet in the literature. For some discrete transport equation
the inverse source problem was considered in [25]. Potential applications of the
inverse source problem for discrete Helmholtz equations, including the simplest
case of Eq. (1) can be similar to the continuous case; for example, within the
tight-binding model of the electrons [3] as well as lattice dynamics in the harmonic
approximation [5] in crystals. Potential applications also include the domain of
inverse source problems in forced networks; see, for example, [26] and references
therein.
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On the other hand, inverse scattering for discrete Schrödinger equations was
studied already in many works; see, for example, [27], [28], [29], [30], [10], [31], [11]
and references therein. Note that the analysis of these works is rather complicated
specially in dimension d ≥ 2. In this connection, we were motivated by studying
inverse scattering for discrete Schrödinger equation within much simpler framework
of the Born approximation. In this case our results and proofs are relatively simple
since the analysis is similar to our analysis of the inverse source problem for the
discrete Helmholtz equation (1). In addition, it is known that results on inverse
scattering in the Born approximation admit an extension to the non-linearized case
in the framework of distorted Born approximation [32, 33]. See Appendix A for
more details.

Note also that the studies of phaseless inverse scattering for discrete Schrödinger
equations were initiated recently in [12].

As about the inverse scattering problem for the Schrödinger equation in the
continuous case, see, for example, [34, 32, 35, 33, 36, 23, 24] and references therein.

The studies on inverse scattering and inverse source problems for both contin-
uous and discrete cases use results on properties of Green’s function for related
Helmholtz operators. In connection with these properties for the discrete case, see,
for example, [37, 38, 39, 40, 9, 10, 11, 13, 41, 42, 43, 44] and references therein.

The main results of the present article on the inverse source problem for Eq.
(1) are given in detail in Section 2 and are proved in Section 3. Similar results on
monochromatic inverse scattering in discrete framework in the Born approximation
are given in Appendix A.

2. Main Results

We start with the inverse source problem for Eq. (1) for the phased case, that
is for the case when complex values of a− (or a+) are given.

Theorem 2.1. Let f satisfy (3). Then the far-field amplitude a− = a− (ω, λ) (or
a+) arising in (14) and given in an open nonempty neighbourhood N of any fixed
pair ω, λ, where ω ∈ Sd−1 and λ ∈ Λ with Λ defined in (10), uniquely determines
f .

Theorem 2.1 is proved in Section 3.
Let F denote the discrete Fourier transform defined by the formula

û(k) = Fu (k) = (2π)
−d/2

∑
x∈Zd

u (x) e−ik·x, k ∈ T d, (20)

where u is a test function on Zd and k · x :=
d∑

i=1

kixi.

We recall that

u (x) = F−1û (x) = (2π)
−d/2

∫
Td

û(k)eik·xdk, x ∈ Zd. (21)

In particular, we consider the discrete Fourier transform f̂ of the source f in (1).

Theorem 2.2. Let u be a compactly supported function on Zd and û = Fu. Let

f = F−1f̂ , where f̂(k) = û(k)
∏J

j=1(ϕ(k) − λj), ϕ is defined by (9), λj satisfy

(10), k ∈ T d, and J is a positive integer. Then f satisfies (3) and its far-field
amplitude a− = a− (ω, λ) (and a+) arising in (14) vanishes identically on Sd−1 for
each λ = λj, j = 1, . . . , J .

Remark 2.3. Under the assumptions of Theorem 2.2, the order of zero of a± =
a± (ω, λ) on Sd−1 for λ = λj is equal or greater than the multiplicity of λj as a root
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of the polynomial
∏J

j=1(z − λj) in z, where we do not assume that the numbers λj
are distinct.

Remark 2.4. The function f in Theorem 2.2 can be also written as

f =

(∏J

j=1
(∆− λj)

)
u. (22)

Theorem 2.2 is proved in Section 3.
One can see that Theorem 2.1 is a uniqueness result on multi-frequency in-

verse source problem for Eq. (1), whereas Theorem 2.2 gives a large class of non-
uniqueness examples for this problem. However, there is no contradiction between
these two theorems: the first theorem involves infinitely many frequencies in con-
trast to the second one.

Remark 2.5. Theorems 2.1 and 2.2 have analogues for the continuous case. In this
case, Eq. (1) is considered for x ∈ Rd, where ∆ is the standard Laplacian, λ < 0,
and ϕ(k) = −k2, k ∈ Rd. The analogue of Theorem 2.1 for the continuous case is
well-known. In the continuous analogue of Theorem 2.2, the function u should be
also sufficiently smooth on Rd in order to ensure a regularity of the function f on
Rd; see [15, 19] for the continuous case at least at a single frequency.

Remark 2.6. It is also interesting to compare Theorem 2.2 with results on recover-
ing point sources for the continuous Helmholtz equation at a single frequency. The
latter problem is uniquely solvable (see [18] and references therein) in contrast with
Theorem 2.2.

Remark 2.7. Theorem 2.1 remains valid for f exponentially decaying at infinity,
i.e.

|f(x)| ≤ βe−α|x|, x ∈ Zd, (23)

for some α, β > 0, under the assumption that formulas (14) and (34) remain valid;
see Remark 1.5.

Remark 2.8. Theorem 2.1 is not valid, in general, for f decaying at infinity as
O(|x|−∞) even if formulas (14) and (34) remain valid. Counter-examples can be
constructed using formulas (21) with f in place of u, where û is infinitely smooth
on T d and identically zero on

⋃
(θ,ζ)∈N κ(θ, ζ) mentioned in formula (36) in the

proof of Theorem 2.1.

In addition to the uniqueness theorem 2.1, we also have the following Lipshitz
stability result.

Theorem 2.9. Suppose that f1 and f2 satisfy (3), and N is the same as in Theorem
2.1, and N ⊂ Sd−1 × Λ. Suppose in addition that supp f1, supp f2 ⊂ D, where D
is a bounded domain in Rd. Then the following estimate holds:

∥f2 − f1∥ℓ2(D∩Zd) ≤ C±
D,N ∥a±2 − a±1 ∥L2(N ), (24)

where a±1 , a
±
2 are the far-field amplitudes for f1, f2, respectively, and C±

D,N are
positive constants depending on D and N only.

Theorem 2.9 is proved in Section 3. This proof involves a general idea going
back, at least, to [24].

We also consider the inverse source problem for Eq. (1) for the phaseless case,
that is for the case when only values of |a±|2 are given. We deal with this case
using the method of background information in phaseless inverse problems; see
[45, 46, 35, 47, 21] and references therein.

Like in [35] for the continuous case, we consider f0 and f on Zd, assuming that

supp f0 ⊂ D0, supp f ⊂ D, (25)
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where

D0, D are open convex bounded domains in Rd,

D0 ∩ Zd ̸= ∅, D ∩ Zd ̸= ∅. (26)

Let

diam D = sup
x,y∈D

|x− y|, (27)

−D := {−x : x ∈ D}, (28)

D1 +D2 := {x+ y : x ∈ D1, y ∈ D2}, (29)

where D,D1, D2 are bounded sets in Rd.

Theorem 2.10. Let f0, f satisfy (25), (26), where f0 ̸≡ 0. Then the following
formulas hold:

Ff(p) := (Ff0(p))−1Fq(p), p ∈ T d, (30)

q(x) := χD−D0(x)(u(x)− (2π)−d/2
∑

y∈D0∩Zd

f0(x+ y)f0(y)), (31)

u(x) := F−1(|F(f + f0)|2)(x) if dist (D, D0) > diam D, (32)

u(x) := F−1(|F(f + f0)|2)(x)−F−1(|Ff |2)(x) if dist (D, D0) > 0, (33)

where x ∈ Zd.

Note that, under our assumptions, formula (30) is defined correctly taking into
account that Meas Z = 0 in T d, where Z = {p ∈ T d : Ff0(p) = 0}.

Note also that Theorem 2.10 is just a result on phase retrieval for the Fourier
transform F defined by (20). For known results on phase retrieval for different
Fourier transforms, see, for example, [48, 49, 35, 47] and references therein. Us-
ing Theorem 2.10, we obtain the following results on the phaseless inverse source
problem for Eq. (1).

Theorem 2.11. Let f0, f satisfy (25), (26), where f0 ̸≡ 0, dist (D, D0) > diam D.
Let a−1 be the far-field amplitude for Eq. (1) with f replaced by f + f0. Then the
intensity |a−1 |2 = |a−1 (ω, λ) |2 given in an open nonempty neighbourhood of any fixed
pair ω, λ, where ω ∈ Sd−1 and λ ∈ Λ with Λ defined in (10), uniquely determines
f , assuming that f0 is known a-priori.

Theorem 2.12. Let f0, f satisfy (25), (26), where f0 ̸≡ 0, dist (D, D0) > 0. Let a,
a−1 be the far-field amplitudes for Eq. (1) and for Eq. (1) with f replaced by f +f0,
respectively. Then the intensities |a−|2 = |a− (ω, λ) |2 and |a−1 |2 = |a−1 (ω, λ) |2
given in an open nonempty neighbourhood of any fixed pair ω, λ, where ω ∈ Sd−1

and λ ∈ Λ with Λ defined in (10), uniquely determines f , assuming that f0 is known
a-priori.

Theorems 2.11 and 2.12 are also valid with a−, a−1 replaced by a+, a+1 .
Theorems 2.10, 2.11 and 2.12 are proved in Section 4.

Remark 2.13. For the continuous case, the analogues of Theorems 2.10, 2.11,
2.12 are given in [35]; see also [21] and references therein.

3. Proofs of Theorems 2.1, 2.2 and 2.9

We consider ϕ defined by (9), Γ(λ) defined by (8), and f̂ = Ff defined by (20).
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For compactly supported complex valued f , under assumption (10), due to for-
mula (13) from [9], we have that

a± (ω, λ) =

√
2πf̂ (κ (±ω, λ)) e±i(σ+2)π

4√
|K(ω, λ))| |∇ϕ(κ (ω, λ))|

, ω ∈ Sd−1, (34)

where a± = a± (ω, λ) are the far-field amplitudes in (14), κ(ω, λ) is the point in
(12), K(ω, λ) is the total curvature (i.e. the product of principal curvatures) of
Γ(λ) at the point κ (ω, λ), and σ = d−1. More precisely, formula (34) is mentioned

in [9] for a+ for real valued f . In addition, a− = a+ if f is real, as also mentioned
in [9]. In formula (34), we also use the symmetries of Γ mentioned in Remark 1.1.

Formulas (34) for complex valued f follow from the aforementioned results of [9]

for real f , linear dependence of a± on f , the definition of f̂ via (20) and the following
formulas: κ (−ω, λ) = −κ (ω, λ) , λ ∈ Λ, λ > 0; κ (−ω, λ)− 0π = −κ (ω, λ) + 0π, λ ∈
Λ, λ < 0; e2i0πx = 1, x ∈ Zd.

Note that if f is compactly supported on Zd, then

f̂ is real-analytic on T d. (35)

Note also that if (ω, λ) is a fixed pair as in Theorem 2.1, and N is its open
nonempty neigbourhood in Sd−1 × Λ, where Λ is defined in (10), then there is an
open nonempty neigbourhood K± of κ(±ω, λ) in T d such that

K± ⊆
⋃

(θ,ζ)∈N

κ(±θ, ζ). (36)

We obtain (36) considering Γ(λ) as in Remark 1.1 and T d as the corresponding
cube in the same remark. We use that:

κζ : Sd−1 → Γ(ζ) is a homeomorphism, (37)

where κζ = κ(θ, ζ) at fixed ζ ∈ Λ;

κ : Sd−1 × Iλ,ϵ → Γλ,ϵ := ∪ζ∈Iλ,ϵ
Γ(ζ) is a homeomorphism, (38)

where κ = κ(θ, ζ), Iλ,ϵ := (λ−ϵ, λ+ϵ) for λ ∈ Λ, and some ϵ > 0 such that Iλ,ϵ ⊂ Λ;

Γλ,ϵ is an open domain in T d, (39)

where T d is considered as a cube as in Remark 1.1;

κ(±ω, λ) ∈ Γ(λ) ⊂ Γλ,ϵ. (40)

Property (36) follows from (38)–(40).
In turn, property (40) follows from our assumptions and the definition of Γλ,ϵ,

property (39) follows from the definition of Γ(ζ) via (8),(9). Next, κζ reduces to
the inverse of Gauss map for Γ(ζ) by definition of κ. In addition, due to (11),
Γ(ζ) is smooth and strictly convex, and it is known that the Gauss map is a dif-
feomorphism for smooth, strictly convex surfaces (as recalled, for example, in [11]).
The bijectivity of κ in (38) follows from the bijectivity of κζ and the property that
Γ(ζ1) ∩ Γ(ζ2) = ∅ if ζ1 ̸= ζ2. For homoeomorphism in (38), one should also use
smooth dependence of Γ(ζ) on ζ ∈ Λ. In this connection, one can also use explicit
parametrization of Γ(ζ) by points of Sd−1 as in formula (3.15) in [10].

Theorem 2.1 is proved as follows.
Due to formulas (34), (36), the function a±, given in a neigbourhood of any fixed

pair (ω, λ) as in Theorem 2.1, determines f̂ in a neighbourhood of κ (±ω, λ) in T d.

In turn, in view of (35), f̂ in a neighbourhood of κ ∈ T d uniquely determines f̂ on
T d via analytic continuation, and then determines f using (21).

This completes the proof of Theorem 2.1.
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Let

δ(x) =

{
1 for x = 0,

0 for x ∈ Zd \ {0}.
(41)

We also recall that

(2π)d/2F−1(û1û2)(x) = u1 ∗ u2(x) =
∑
y∈Zd

u1(x− y)u2(y), x ∈ Zd,

where ûj = Fuj , j = 1, 2, (42)

where u1, u2 are test functions on Zd.
Theorem 2.2 is proved as follows.
In fact, it is sufficient to prove that f is compactly supported on Zd. The rest

follows from the definition of f̂ in Theorem 2.2, formula (34), definition of Γ(λ) by
formulas (8), (9), and the property that κ(±ω, λ) ∈ Γ(λ) for ω ∈ Sd−1.

The proof that f is compactly supported is as follows.

Using the definition of f̂ and formula (42), we obtain

f(x) = u ∗ (fλJ
∗ fλJ−1

∗ . . . ∗ fλ1)(x), x ∈ Zd, (43)

where

fλ := F−1(ϕ− λ). (44)

In addition, we have that

F−1ϕ(x) = (2π)
d/2

∑
|x′|=1

δ(x− x′), x ∈ Zd, (45)

F−1λ(x) = (2π)
d/2

λδ(x), x ∈ Zd, (46)

where F−1λ is the inverse Fourier transform of a constant λ.
From (44)-(46), we see that

fλ(x) = (2π)
d/2

(
∑

|x′|=1

δ(x− x′)− λδ(x)), x ∈ Zd, (47)

and, in particular,

fλ is compactly supported on Zd. (48)

The property that f is compactly supported on Zd follows from formula (43),
property (48) for λ = λ1, . . . , λJ , the assumption that u is compactly supported
on Zd, and the property that the convolution of compactly supported functions is
compactly supported.

Theorem 2.2 is proved.
Theorem 2.9 is proved as follows.
We consider the linear maps

T ± : ℓ2(D ∩ Zd) → L2(N ), T ±f = a±, (49)

where f is supported on D ∩Zd and considered as f |D∩Zd , and a± are the far-field
amplitudes for f and considered as a±|N .

Note that the linearity of T ± follows from formula (34). The property that
a± ∈ L2(N ) follows from (34), the assumption that N ⊂ Sd−1 × Λ, and the fact
that the denominator in (34) does not vanish for λ ∈ Λ.

We identify ℓ2(D ∩ Zd) with CM , where

M := |D ∩ Zd|, (50)

and |A| denotes the number of points in A.
Due to Theorem 2.1, the maps T ± are injective. Therefore,

range T ± can be identified with CM with the norm induced by L2(N ), (51)
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for each T + and T −. Next, we identify T ± with M ×M complex matrices with
non-zero determinant.

The estimate (24) follows from the identifications above.

4. Proofs of Theorems 2.10, 2.11 and 2.12

The proof of Theorem 2.10 is similar to the proof of Theorems 3.1 and 3.2 in
[35] for the case of continuous Fourier transform.

To prove Theorem 2.10, we use formula (42) and the formulas

Fu = F ũ, ũ(x) = u(−x), (52)

(2π)
−d/2 F(u1 ∗ u2) = Fu1 Fu2, (53)

where u, u1, u2 are test functions.
We have that

Σ = (2π)d/2F−1(|F(f + f0)|2) = (f + f0) ∗ (f̃ + f̃0)

=
∑
y∈Zd

(f(x− y) + f0(x− y))(f(−y) + f0(−y))

=
∑
y∈Zd

f(x− y)f(−y) +
∑
y∈Zd

f0(x− y)f(−y)+

+
∑
y∈Zd

f(x− y)f0(−y) +
∑
y∈Zd

f0(x− y)f0(−y) =: Σ1 +Σ2 +Σ3 +Σ4,

(54)

where x ∈ Zd.
Let

Br = {x ∈ Rd : |x| < r}. (55)

Note that

Σ1(x) =
∑

y∈−D∩Zd

f(x− y)f(−y), (56)

supp Σ1 ⊂ Br, r = diam D, (57)

Σ2(x) =
∑

y∈−D∩Zd

f0(x− y)f(−y), (58)

supp Σ2 ⊂ D0 −D, (59)

Σ3(x) =
∑

−y∈D0∩Zd

f(x− y)f0(−y), (60)

supp Σ3 ⊂ D −D0, (61)

Σ4(x) =
∑

−y∈D0∩Zd

f0(x− y)f0(−y), (62)

supp Σ4(x) ⊂ Br, r = diam D0, (63)

where x ∈ Zd, and D0 −D,D −D0, Br are defined according to (28), (29), (55).
Similar to [35], we have that:

(2π)−d/2FΣ3 = Ff F f̃0; (64)

Σ3(x) = χD−D0
(x)(Σ(x)− Σ4(x)), if dist (D, D0) > diam D; (65)

Σ3(x) = χD−D0
(x)(Σ(x)− Σ1(x)− Σ4(x)), if dist (D, D0) > 0. (66)

Theorem 2.10 follows from formulas (54), (64), (65), (66), and (52).
Theorems 2.11 and 2.12 are proved as follows.
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For compactly supported f , under assumption (10), as a corollary of formula
(34), we have that

|a± (ω, λ) |2 =
2π|f̂ (κ (±ω, λ)) |2

|K(ω, λ))| |∇ϕ(κ (ω, λ))|2
, ω ∈ Sd−1. (67)

For compactly supported f , as a corollary of (35), we have that

|f̂ |2 = f̂ f̂ is real-analytic on T d. (68)

Due to formulas (36), (67), the function |a±|2, given in a neigbourhood of any

fixed pair (ω, λ) as in Theorem 2.12, determines |f̂ |2 in a neigbourhood of κ(±ω, λ)
in T d. Similarly, the function |a±1 |2 given in a neigbourhood of any fixed pair (ω, λ)

as in Theorems 2.11 and 2.12, determines |f̂ + f̂0|2 in a neigbourhood of κ(±ω, λ)
in T d.

In turn, in view of (68), |f̂ |2 in a neighbourhood of κ ∈ T d uniquely determines

|f̂ |2 on T d via analytic continuation. Similarly, |f̂ + f̂0|2 in a neighbourhood of

κ ∈ T d uniquely determines |f̂ + f̂0|2 on T d.
Finally, the use of Theorem 2.10 completes the proof of Theorems 2.11 and 2.12.

Appendix A. Inverse scattering for discrete Schrödinger operators
in the Born approximation

We consider the discrete Schrödinger equation

∆ψ(x) + v(x)ψ(x)− λψ(x) = 0, x ∈ Zd, d ≥ 1, (69)

where ∆ is the discrete Laplacian defined by (2), v is scalar potential such that

supp v ⊂ D, (70)

D is an open bounded domain in Rd, D ∩ Zd ̸= ∅, and λ ∈ S as in (4).
For Eq. (69) we consider the scattering solutions

ψ−(x, k) = ψ0 + ψ−
sc, (71)

where

ψ0(x, k) = eik·x, k ∈ Γ(λ), x ∈ Zd, (72)

and ψ−
sc(x, k) is the outgoing solution for the non-homogenous equation

(∆ + v)ψsc − λψsc = −vψ0, (73)

obtained using the limiting absorption principle, i.e. via formulas (6) and (7) with
sign −, where f = −vψ0 and ∆ is replaced by ∆ + v; see [9] and Remark 1.3.

We recall that, under assumption (10), ψ− has the asymptotic expansion

ψ−(x, k) = eik·x +
e−iµ(ω,λ)|x|

|x|
d−1
2

A (k, ω) +O(
1

|x|
d+1
2

)

as |x| −→ ∞, ω = x
|x| , x ∈ Zd, (74)

where µ is as in (14), (15) and the coefficient A (k, ω) is smooth and the remainder
can be estimated uniformly in ω; see [27, 9]. The coefficient A is the scattering
amplitude for (69).

Remark A.1. In our previous article [12], Eq. (69) is misprinted with −∆ in place
of ∆; see Eq. (1) and Eq. (10) in [12]. However, there exists some disagreement
regarding the standard conventions to present the discrete Schrödinger operators on
Zd; compare, for example, the conventions of [9] and [10].
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Remark A.2. In the present article, we define µ exactly as in [9]. This µ differs in
sign from that defined in our previous article if 2d− 4 < λ < 2d. See also Remark
1.2 in [12].

In this appendix, we consider the inverse scattering problem for Eq. (69) con-
sisting in recovering the potential v from the scattering amplitude A, for simplicity,
under assumption (10).

As we mentioned already in introduction, many important results are given in
the literature on inverse scattering for Eq. (69). Below in this appendix, we discuss
relations between inverse scattering for Eq. (69) in the Born approximation for
small v and the inverse source problem for Eq. (1), for simplicity, under assumption
(10).

In the Born approximation for small v, under assumption (10), we have that

A(k, ω) = −
√
2πv̂ (κ (−ω, λ)− k) e−i(σ+2)π

4√
|K(ω, λ))| |∇ϕ(κ (ω, λ))|

, k ∈ Γ(λ), ω ∈ Sd−1, (75)

where A is the scattering amplitude in (74), v̂ is the Fourier transform of v, defined
according to (20), K, ϕ, κ, σ are the same as in (34).

Formula (75) follows from (71)-(73), where in (73) the product vψsc is replaced
by 0 in the Born approximation, and from formula (34) with f = −vψ0.

In connection with formula (75), we also consider v̂ on

B(λ) := {p = κ− k : κ, k ∈ Γ(λ)}, (76)

where Γ(λ) is as in Remark 1.1, and B(λ) can be considered as a subset of Rd as
well as a subset of T d.

Remark A.3. For comparisions with the continuous case, in a way similar to
Remark 1.3, note that Γ(λ) ≈ {k ∈ Rd : k2 = 2d − λ}, ϕ(k) ≈ 2d − k2 in a
small neighbourhood of Γ(λ), κ(−ω, λ) ≈

√
2d− λ ω as λ → 2d. In view of these

approximate equalities, the structure of (75) is similar to the structure of formula
for the scattering amplitude in the Born approximation for the continuous case; see,
for e.g., [36].

The multi-frequency inverse source problem for Eq. (1) and monochromatic in-
verse scattering for Eq. (69) in the Born approximation for d ≥ 2 have considerable
similarities following from the similarities of formulas (34) and (75). In particu-
lar, Theorems A.4, A.7, and A.11 given below for the latter case are analogues of
Theorems 2.1, 2.2, and 2.9 for the former.

Theorem A.4. Let v satisfy (70), λ satisfy (10), and d ≥ 2. Then the scattering
amplitude A for Eq. (69), arising in (75) and given at fixed λ in an open non-empty
neighourhood N of any fixed pair k, ω, where k ∈ Γ(λ) and ω ∈ Sd−1, uniquely
determines v.

Under our assumptions, Theorem A.4 follows from the statements:
(i) The function A is real-analytic on Γ(λ) × Sd−1. Therefore, A on N uniquely
determines A on Γ(λ)× Sd−1.
(ii) A on Γ(λ)× Sd−1 uniquely determines v̂ on B(λ) in (76) via (75).
(iii) v̂ is real-analytic on T d. Therefore, v̂ on B(λ) uniquely determines v̂ on T d,
and v on Zd.

Remark A.5. Theorem A.4 remains valid under assumption (10) but without the
assumption that v is small. For example, it remains valid under the assumptions
of [11]. In this case, this result follows from the statement (i) as in the proof of
Theorem A.4 above and from the uniqueness for inverse scattering from full A on
Γ(λ)× Sd−1 proved in [11].
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Remark A.6. Similar to Remarks 2.7, 2.8, our Theorem A.4 remains valid for
v exponentially decaying at infinity, and is not valid, in general, for v decaying at
infinity as O(|x|−∞).

Theorem A.7. Let u be a compactly supported function on Zd, û = Fu, and λ
satisfy (10). Let v = F−1v̂, where v̂(p) = û(p)

∏J
j=1(ϕ(p+ kj)−λ), ϕ is defined by

(9), p ∈ T d, kj ∈ Γ(λ), and J is a positive integer. Then v is compactly supported
on Zd and the scattering amplitude A = A (k, ω) arising in (75) vanishes identically
on Sd−1 for each k = kj, j = 1, . . . , J .

Remark A.8. The function v in Theorem A.7 can be also written as

v =

(∏J

j=1
(Lkj − λ)

)
u, (77)

where Lkj
u(x) = e−ikjx∆(eikjxu(x)), x ∈ Zd.

The proof of Theorem A.7 is similar to the proof of Theorem 2.2.

Remark A.9. Theorem A.7 and Remark A.8 admit straightforward polychromatic
versions involving several λ.

Remark A.10. Theorems A.4 and A.7 have analogues for the continuous case.
In this case, Eq. (69) is considered for x ∈ Rd, where ∆ is replaced by the the
standard Laplacian △, ϕ(k) replaced by Φ(k) = −k2, k ∈ Rd, and λ < 0. The
analogue of Theorem A.4 for the continuous case is well-known. In the continuous
analogue of Theorem A.7, the function u should be also sufficiently smooth on Rd

in order to ensure a regularity of the potential v on Rd, and Γ(λ) should be replaced

by Sd−1√
|λ|

= {k ∈ Rd : −k2 = λ}; see [34] for the continuous monochromatic case.

Theorem A.11. Suppose that v1 and v2 satisfy (70), λ and N are the same as in
Theorem A.4, and N ⊂ ∪ζ∈ΛΓ(ζ)× Sd−1. Then the following estimate holds:

∥v2 − v1∥ℓ2(D∩Zd) ≤ CD,N ∥A2 −A1∥L2(N ), (78)

where A1, A2 are the scattering amplitudes arising in (75) for v1, v2, respectively,
and CD,N is a positive constant depending on D and N only.

The proof of Theorem A.11 is similar to the proof of Theorem 2.9.

Remark A.12. An open question consists in an extension of Theorem A.11 to the
case when v is not small. In this connection, one could combine techniques of [11]
and [24].

In connection with the case of phaseless inverse scattering, Theorems A.13 and
A.14, given below for Eq. (69) in Born approximation, are similar to Theorems
2.11 and 2.12 for phaseless inverse source problem for Eq. (1).

Theorem A.13. Let v0, v satisfy assumptions (25), (26) in place of f0, f , where
v0 ̸≡ 0, dist (D, D0) > diam D. Let A1 be the scattering amplitude for Eq. (69)
arising in the Born approximation in (75), under assumption (10), with v replaced
by v + v0. Then the intensity |A1|2 = |A1 (k, ω) |2 given in an open nonempty
neighbourhood N of any fixed pair k, ω, where k ∈ Γ(λ) and ω ∈ Sd−1, uniquely
determines v, assuming that v0 is known a-priori.

Theorem A.14. Let v0, v satisfy assumptions (25), (26) in place of f0, f , where
v0 ̸≡ 0, dist (D, D0) > 0. Let A and A1 be the scattering amplitudes for v and v+v0,
respectively, arising in (75), under assumption (10). Then the intensities |A|2 =
|A (k, ω) |2 and |A1|2 = |A1 (k, ω) |2 given in an open nonempty neighbourhood N of
any fixed pair k, ω, where k ∈ Γ(λ) and ω ∈ Sd−1, uniquely determines v, assuming
that v0 is known a-priori.
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The proofs of Theorems A.13 and A.14 are similar to the proofs of Theorems
2.11 and 2.12.

Remark A.15. In the present work, we consider reconstruction from far-field mea-
surements. Reconstruction from near-field measurements can be reduced in many
cases to reconstruction from far-field measurements. For discrete problems, results
in this direction can be found in [11, 12]. In particular, [12] gives formulas for
finding phased far-field amplitude A from phaseless measurements of ψ− for the
discrete Schrödinger equation (69).

Remark A.16. Open questions include extensions of the results of the present work
to the case of Helmholtz and Schrödinger equations on more complicated lattices,
for example, as in [50, 42].

Remark A.17. Open questions also include extensions of results of the present
work to the case of inverse scattering for Eq. (69), and more general discrete
Schrödinger equations, in the framework of distorted Born approximation. In this
connection for the continuous case, we refer, for example, to results of [32, 33, 47].
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Sādhanā, 42, 713-728.

[15] Devaney, A., Sherman, G. (1982). Nonuniqueness in inverse source and scattering problems.
IEEE Transactions on Antennas and Propagation, 30(5), 1034-1037.

[16] Bao, G. , Lin, J. , Triki, F. (2010). A multi-frequency inverse source problem, Journal of

Differential Equations, 249, 3443–3465.
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