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Abstract
The sex ratio is a key ecological demographic parameter crucial for population vi-
ability. However, the epigenetic mechanisms operating during gonadal development 
regulating gene expression and the sex ratio remain poorly understood. Moreover, 
there is interest in the development of epigenetic markers associated with a particular 
phenotype or as sentinels of environmental effects. Here, we profiled DNA meth-
ylation and gene expression of 10 key genes related to sex development and stress, 
including steroidogenic enzymes, and growth and transcription factors. We provide 
novel information on the sex- related differences and on the influence of elevated tem-
perature on these genes in zebrafish, a species with mixed genetic and environmental 
influences on sex ratios. We identified both positive (e.g., amh, cyp11c and hsd11b2) 
and negative (e.g., cyp11a1 and dmrt1) correlations in unexposed males, and negative 
correlation (amh) in exposed females between DNA methylation and gene expression 
levels. Further, we combined DNA methylation analysis with machine learning proce-
dures and found a series of informative CpGs capable not only of correctly identifying 
sex (based on cyp19a1a DNA methylation levels) but also of identifying whether males 
and females had been exposed to abnormally elevated temperature when young 
(based on amh and foxl2a DNA methylation levels, respectively). This was achieved 
in the absence of conspicuous morphological alterations of the gonads. These DNA 
methylation- based epigenetic biomarkers represent molecular resources that can cor-
rectly recapitulate past thermal history and pave the way for similar findings in other 
species to assess potential ecological effects of environmental disturbances in the 
context of climate change.
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1  |  INTRODUC TION

In contrast to the situation in birds and mammals, where sex is ge-
netically determined, in most reptiles and many fish and amphibians 
sex is determined by a combination of genetic and environmental 
influences (Penman & Piferrer, 2008; Valenzuela, 2008). While there 
is diversity in the sex- determining genes even in closely related spe-
cies (Nagahama et al., 2021; Tanaka et al., 2007), the components 
making up the downstream gene networks appear fairly conserved 
across vertebrates (Capel, 2017). In recent years, the contribution 
of epigenetic mechanisms in regulating gene expression during sex 
determination and differentiation has become progressively clearer 
(Gunes et al., 2016; Kuroki & Tachibana, 2018; Piferrer, 2013). 
Because epigenetics integrates both genomic and environmental 
information and sex is particularly plastic in fish, these animals con-
stitute good models to study the contribution of epigenetic changes 
during sex differentiation in response to environmental perturba-
tions (Beal et al., 2018; Ortega- Recalde et al., 2020).

An inverse relationship between epigenetic silencing and gene 
expression should be expected in genes that are preferentially 
expressed in males (“pro- male” genes) and females (“pro- female” 
genes) during sex differentiation. Thus, for example, in ovaries the 
DNA methylation in pro- female genes should be lower when com-
pared with the level of the same genes in males, while in pro- male 
genes DNA methylation should be high in the ovaries (Piferrer 
et al., 2019). The opposite would apply in developing testes. After 
reviewing the available data published at the time regarding genes 
related to sexual development in both gonochoristic and hermaph-
rodite fish species, cyp19a1a and dmrt1, two key genes for ovary and 
testis development, respectively, were found to follow this princi-
ple. However, in other genes, such as foxl2a and amh, the associa-
tion was not clear (Piferrer et al., 2019). This led to the formulation 
of the model of the “conserved epigenetic regulation of sex” (CERS) 
(Piferrer et al., 2019). This model states that epigenetic and gene ex-
pression patterns are more closely associated with the development 
of a particular gonadal phenotype (e.g., testis differentiation) rather 
than with the intrinsic or extrinsic causes that lead to the develop-
ment of this phenotype. Nevertheless, genes that also play import-
ant roles in gonad formation, such as those coding for steroidogenic 
enzymes (Caulier et al., 2015; Fernandino et al., 2012, 2013), have 
not been evaluated yet under this framework. In addition, to date, 
only a few studies have examined the effects of temperature on 
DNA methylation and in relation to gene expression patterns in 
fish gonads, such as the European seabass (Dicentrarchus labrax) 
(Anastasiadi, Vandeputte, et al., 2018; Navarro- Martín et al., 2011), 
the Nile tilapia (Oreochromis niloticus) (Wang et al., 2019), the half- 
smooth tongue sole (Cynoglossus semilaevis) (Shao et al., 2014), fugu 
(Takifugu rubripes) (Zhou et al., 2019) and zebrafish (Danio rerio) 
(Hosseini et al., 2022; Pierron et al., 2021).

DNA methylation changes occurring during early development 
determine lasting gene expression programmes (Bird, 2002; Feng 
et al., 2010). As in other animals, in fish early developmental peri-
ods are particularly vulnerable to external perturbations, which can 

affect the expression of sex- specific genes (Shen & Wang, 2014). 
These changes may remain permanent and detectable in adult go-
nads, even once the original cue has long disappeared (Anastasiadi, 
Esteve- Codina, & Piferrer, 2018). Because of the sensitive nature of 
DNA methylation marks (Flores et al., 2013), changes indicative of 
a given physiological state or as a result of an environmental influ-
ence can be stable and, if associated with a given phenotype, can 
be used as marks. Essential epigenetic marks (EEMs) are defined as 
“the number and identity of informative epigenetic marks that are 
strictly necessary, albeit perhaps not sufficient, to bring about a 
specific, measurable, phenotype of interest” (Piferrer, 2019). Thus, 
epigenetic markers can have many applications. For example, they 
are used in medicine (Mikeska & Craig, 2014) as a diagnostic tool 
to identify cancers of unknown primary origin (Moran et al., 2016). 
An example is the Epi proColon kit, designed to detect aberrant 
DNA methylation of the v2 of promoter region of the SEPT9 gene 
in blood- borne colorectal cancer cells (de Vos et al., 2009; Model 
et al., 2007). In ecology, DNA methylation changes can also pro-
vide reliable information for age estimation in animals, from hu-
mans (Horvath, 2013), other mammals and birds (De Paoli- Iseppi 
et al., 2019; Polanowski et al., 2014; Thompson et al., 2017) to fish 
(Anastasiadi & Piferrer, 2020). Epigenetic markers have been also 
used to identify the presence of pollutants or changes in tempera-
ture (Beal et al., 2018). DNA methylation marks were suggested to 
detect early stress in red blood cells of chickens later in life (Pértille 
et al., 2017). However, no studies have been conducted with epi-
genetic biomarkers to develop tools to detect past exposures to ab-
normal environmental conditions using machine learning procedures 
with predictive statistical power.

In this study, we used the laboratory zebrafish AB strain, which 
has a polygenic sex determination system (Liew et al., 2012) and 
where sex depends on genetic and environmental influences. In 
zebrafish, sex ratio responses to temperature and density are fam-
ily specific (Ribas, Liew, et al., 2017; Ribas, Valdivieso, et al., 2017a, 
2017b; Valdivieso et al., 2022). Our objectives were to study both 
sex- specific differences in DNA methylation in a suite of key sex-  
and stress- related genes and the effect of environmental influences 
on DNA methylation in the gonads. The ultimate goal was two- fold: 
first, by analysing genes other than cyp19a1a and dmrt1, to expand 
the catalogue of genes analysed to investigate whether the predic-
tions of the CERS model are fulfilled or not. This information, ob-
tained in animals subjected to different temperatures, is essential to 
advance our knowledge on the contribution of epigenetic regulatory 
mechanisms in integrating genomic and environmental information 
to bring about the phenotype, in this case the sexual phenotype. 
Second, we aimed to identify both sex- specific and persistent DNA 
methylation marks that could be used as EEMs indicative of the sex 
of a DNA sample obtained from a fish sample with no record of phe-
notypic sex, and whether fish had been exposed to abnormally el-
evated temperature. To this end, larvae zebrafish were exposed to 
elevated temperatures during sex differentiation to induce masculin-
ization (Ribas, Liew, et al., 2017). By using a locus- specific approach 
previously developed in our laboratory (Anastasiadi, Vandeputte, 
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et al., 2018), we adapted the method specifically for zebrafish and 
included the evaluation of the DNA methylation of ten genes includ-
ing steroidogenic enzymes (cyp19a1a, cyp11a1, cyp11c1, hsd11b2, 
hsd17b1 and hsd17b3), and growth and transcription factors (amh, 
dmrt1, dmrt3a and foxl2a). These genes are involved in reproduc-
tion and stress responses in fish (Brunner et al., 2001; Fernandino 
et al., 2012; Guo et al., 2005; Hsu et al., 2009; Lau et al., 2016; 
Mindnich et al., 2004; Rodríguez- Marí et al., 2005; Sreenivasan 
et al., 2008; Wang & Orban, 2007). In addition, we measured the 
expression of these genes to determine its relationship with DNA 
methylation.

2  |  MATERIAL S AND METHODS

2.1  |  Animal rearing conditions

Zebrafish (AB strain; ZFIN ID: ZDB- GENO- 960809- 7) from the 
European Zebrafish Resource Center (EZRC, Germany) were housed 
at the experimental facilities of the Institute of Marine Sciences 
(ICM- CSIC, Barcelona). The housing conditions, the physicochemical 
water parameters and the feeding regime for fish were monitored as 
described elsewhere (Ribas, Valdivieso, et al., 2017a). Fertilized eggs 
were obtained after natural spawning and larvae were raised from 
6 to 18 days post- fertilization (dpf) under regular conditions of tem-
perature (28°C) and appropriate density levels (eight fish per litre) to 
avoid density- dependent induced masculinization (Ribas, Valdivieso, 
et al., 2017a). The animal facility used for the present study is li-
censed by the Bioethical Committee of the Government of Catalonia 
with reference code 9977.

2.2  |  Experimental design

The thermal experiment was carried out as previously described 
(Ribas, Liew, et al., 2017). Briefly, the larvae originating from one 
female and one male were randomly divided into two groups, each 
containing an equal number of fish, and were exposed from 18 to 
32 dpf to two different temperature treatments: 28°C (control) 
and 35°C (elevated temperature), which was achieved with the aid 
of an electric resistance and by a gradual increase until 22 dpf. In 
the 35°C group, temperature was maintained stable until 32 dpf, 
at which point it was gradually decreased back to 28°C by 36 dpf. 
Thereafter, all groups were reared in a recirculating system at 28°C. 
The experiment finished at 90 dpf and fish were killed by ice- water 
immersion. The whole experiment was repeated twice to allow for 
biological variability by using fish from a different family, also origi-
nating from the cross of one male and one female. Phenotypic sex 
was determined visually with the aid of a dissecting scope, and go-
nads were classified according to the degree of maturation based 
on their overall size, shape, colour and texture as immature (type 1), 
maturing (type 2) or mature (type 3) (Ribas, Liew, et al., 2017). For 
DNA methylation and gene expression analysis, we selected type 

3 gonads and made sure that those selected fulfilled this criterion 
within and between groups to avoid bias in the results. Gonads 
were extracted and kept at −80°C for molecular analysis. Detailed 
information on the total number of samples of each experiment and 
samples for DNA methylation analysis per each family, sex and tem-
perature are given in Table S1.

2.3  |  DNA and RNA extractions

Genomic DNA and total RNA were isolated from the same gonad 
sample to allow comparisons of DNA methylation and gene expres-
sion in the same individual. For DNA extraction, gonads were he-
misected and one half was treated overnight at 56°C with digestion 
buffer containing 1 μg of proteinase K to eliminate proteins (P2308; 
Sigma- Aldrich). Then, a standard phenol– chloroform– isoamyl al-
cohol protocol (PCI 25:24:1, by vol.) with 0.5 μg ribonuclease A 
(12091021; PureLink RNase A, Life Technologies) to eliminate trace 
RNA was performed. RNA extraction was carried out in the other 
half of the gonad by Trizol Reagent (T9424; Sigma- Aldrich) according 
to the manufacturer's instructions. The quality and quantity of DNA 
and RNA was measured by a NanoDrop (ND- 1000) spectrophotom-
eter (Thermo Fisher Scientific).

2.4  |  Gene selection

Ten genes were selected for DNA methylation analysis based on 
their functions in reproduction and stress in fish. These genes en-
code steroidogenic enzymes: cyp19a1a, cyp11a1, cyp11c1, hsd11b2, 
hsd17b1 and hsd17b3, and growth and transcription factors: amh, 
dmrt1, dmrt3a and foxl2a. The full name of the genes is given in 
Table S2.

2.5  |  Primer design for bisulphite converted DNA

The precise genomic regions and sequences were determined using 
the zebrafish genome (danRer10) obtained from the University of 
California Santa Cruz (UCSC) genome browser database (Karolchik 
et al., 2003). Primers were specifically designed for bisulphite- 
converted DNA using the methprimer software (Li & Dahiya, 2002). 
Amplicons targeted the proximal promoter and/or the beginning 
of the first exon of each gene, encompassing the maximum possi-
ble number of CpG sites, given the importance of these elements 
in the regulation of gene expression (Brenet et al., 2011; Deaton & 
Bird, 2011). Nextera adapter sequences were then added to the 5′ 
ends of the region- specific primers (Table S3) as described in the 
Illumina's protocol: “16 S metagenomic library preparation.” The 
genomic coordinates of the amplicons were checked using the 
Integrated Genome Browser (igv) software (version 2.3) (Robinson 
et al., 2010; Thorvaldsdottir et al., 2013). Detailed information 
on the sequences of the primers, the corresponding annealing 
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temperature, their length, and the total number of CpG sites and 
CpG islands within the amplicon are given in Table S2.

2.6  |  PCR of amplicons

One microgram of DNA per sample was bisulphite converted using 
the EZ DNA Methylation- Direct Kit (D5020; Zymo Research) fol-
lowing the manufacturer's protocol. PCR amplifications were 
performed using 2 μl of bisulphite- converted DNA (~26– 30 ng) 
as initial template, 4 μl MgCl2 (25 mm), 2 μl dNTPs (R0193,10 mm; 
Thermo Fisher Scientific), 0.5 μl forward and reverse prim-
ers (10 μm; Life Technologies), 5 μl 5× Green GoTaq Flexi Buffer 
(M7405; Promega), 0.12 μl GoTaq G2 Hot Start polymerase 
(M7405; Promega) and 10.8 μl MilliQ autoclaved water. The PCR 
conditions of the thermal cycler were: one step of 95°C for 7 min, 
followed by 40 cycles of 95°C for 1 min, then specific annealing 
temperature for each gene for 2 min (Table S2), 65°C for 2 min 
and a final step of 65°C for 10 min. The presence and the size of 
each amplicon were confirmed in all samples using 4 μl of PCR 
amplification product on a 2% agarose gel. In this step, one sam-
ple was discarded because no amplifications of any target gene 
were observed in the gel. Finally, the primers of each target gene 
were validated by Sanger sequencing using amplicons produced 
from a pool of three males and three females. The primers used for 
Sanger sequencing were complementary to the Nextera adapters 
(Table S3). The Sanger output sequences were checked using the 
blastn software (version 2.7.1) (Altschul et al., 1990) to ensure the 
identity of the amplicon.

2.7  |  Size- selection and normalization of amplicons

The working solution of magnetic beads (65152105050250, Sera- 
mag Speed Beads; GE Healthcare) was prepared following the 
protocol described in Anastasiadi, Vandeputte, et al. (2018) and 
adapted from Rohland and Reich (2012). The size- selection and 
normalization of DNA quantities across the PCR amplicons were 
performed following the methodology described in Anastasiadi, 
Vandeputte, et al. (2018) from a customized version (Hosomichi 
et al., 2014). Briefly, for size- selection of the amplicons, 10 μl PCR 
amplification product from each gene in each sample was trans-
ferred to a new tube and 40 μl MilliQ water and 20 μl 2× beads 
(0.4×) were added. Samples were incubated at room temperature 
for 5 min, placed on the magnet for 5 min and supernatant was 
transferred to a new tube. Then, samples were mixed with 42 μl 
2× beads (0.6×), incubated for 5 min and placed on magnet dis-
carding the supernatant. Samples were carefully washed on the 
magnet with 200 μl of freshly prepared 70% ethanol for 10 s and 
were dried for 10 min. Samples were rehydrated in 22 μl MilliQ 
water outside the magnet for 5 min, then placed back on the mag-
net for five additional minutes and finally 20 μl of supernatant 
was transferred to a new tube. For the normalization step, 40 μl 

MilliQ water, 20 μl 20- fold diluted beads (2×) and 20 μl propan- 2- ol 
(I9516; Sigma- Aldrich) were added to the 20 μl supernatant from 
the previous size- selection step. Samples were then incubated for 
5 min, placed on the magnet for 5 min and a second ethanol wash 
was performed exactly as described above. Next, samples were 
rehydrated in 12 μl MilliQ water for 10 min and placed back on the 
magnet for 10 min. Finally, 10 μl of each gene of each sample were 
transferred to a new tube.

2.8  |  Index PCR

Three microlitres from the normalized amplicons of each gene be-
longing to the same sample were pooled in a new tube. To make 
libraries, samples were individually labelled by mixing 5 μl of the 
pool of each gene per each sample with 5 μl index Nextera prim-
ers (Nextera XT Index Kit V2 set A, FC- 131– 2001; Illumina), 25 μl 
2× KAPA HiFi HotStart Ready Mix PCR kit (07958919001; Kapa 
Byosystems) and 10 μl MilliQ water. The PCR conditions in the ther-
mal cycler were: one step at 95°C for 3 min, eight cycles of 95°C for 
30 s, 55°C for 30 s and 72°C for 30 s, with a final step at 72°C for 
5 min, according to the “Illumina's protocol for 16 S metagenomic 
library preparation.” Next, an extra clean- up step was carried out 
on the indexed samples, following the previous customized size- 
selection and normalization protocol but using 1× beads and elut-
ing the samples in 15 μl MilliQ water. Finally, 3 μl from each indexed 
sample was pooled in a tube making a single multiplex bisulphite 
sequencing (MBS) Library. Before sequencing, the DNA concentra-
tion of the single tub composed of 70 libraries was measured by a 
Qubit fluorimeter (Invitrogen) using a Qubit dsDNA HS Assay Kit 
(Invitrogen) and the distribution of pooled amplicons was checked 
by a High Sensitivity DNA Assay on a Bioanalyzer system (Agilent 
2100). The pooled samples containing the 70 libraries were se-
quenced on a MiSeq sequencing system (Illumina) using the 250 
paired- end (PE) protocol.

2.9  |  Bioinformatics analysis

Samples were demultiplexed based on the index codes by the 
Illumina software. The Nextera adapters were removed using trim 
galore! software (version 0.4.5) (Krueger, 2015) with parameters: 
- - nextera, −- quality 20 and - - phred64. After trimming, the number 
and quality of the reads were checked using the fastqc software 
(version 0.11.6) (Andrews, 2010). In parallel, the whole zebrafish 
genome (danRer10) was bisulphite converted in silico using the 
function “bismark_genome_preparation.” Alignments of the PE 
reads were performed using the function “bismark”: - - bowtie2, 
−- non- directional and - - score_min L, 0, − 0.6. The methylation sta-
tus of all CpG sites was obtained using the function “bismark_meth-
ylation_extractor”: - - bedGraph. All three steps were carried out 
by bismark software (version 16.0) (Krueger & Andrews, 2011). 
The efficiency of the bisulphite conversion was calculated for each 
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sample as 100% minus the percentage of the cytosines (C) methyl-
ated in the CHH context (where H indicates a non- G nucleotide). 
In this step, three samples were removed because they had less 
than 99.0% bisulphite conversion efficiency. The coordinates of 
all CpG sites were obtained using a specific package for zebrafish, 
“BSgenome.Drerio.UCSC.danRer10” from bsgenome (Pagés, 2018). 
We intersected CpG sites of the target gene using the amplicons' 
boundary coordinates by bed tools (Quinlan & Hall, 2010). Finally, 
the percentage methylation of the filtered CpG sites was calculated 
as: 

∑

methylated C

(
∑

methylated C+
∑

unmethylated C)
× 100. From the targeted CpG sites, 

only those that showed coverage >5× were retained for subsequent 
analysis.

2.10  |  Quantitative real- time PCR (qPCR)

From each sample, 1 μg RNA was treated with DNAse I 
Amplification Grade (18068– 015; Invitrogen) to remove any 
genomic DNA. Then, 500– 600 ng of RNA was reverse tran-
scribed into cDNA using the SuperScript III Reverse Transcriptase 
(18080093; Invitrogen) for qPCR. The qPCR primer sequences and 
the two references genes (eef1a1l1 and rpl13a), both previously 
validated for zebrafish (Tang et al., 2007), are listed in Table S4. 
The qPCR primers targeted regions between at least two exons 
to avoid amplification of possible traces of genomic DNA. The ef-
ficiencies of the primers (E = 10−1/slope) were estimated from the 
slope value derived from the log- linear regression from a stand-
ard curve of five serial cDNA dilutions (1, 1:5, 1:10, 1:50, 1:100, 
1:500) of a pool of 1 μl cDNA of all samples. The qPCRs were car-
ried out in triplicate, taking 2 μl of cDNA (1:10), 0.5 μl forward 
and reverse primer, 2 μl 5× PyroTaq EvaGreen dye (87H24- 001; 
Cultek) and 5 μl MilliQ water per well for each gene and sample 
with their corresponding negative controls. The qPCR conditions 
in the QuantStudio 12 K Flex (Thermo Fisher Scientific) thermal 
cycler were: 50°C for 2 min, 95°C for 10 min and 40 cycles of 95°C 
for 15 s and 60°C for 1 min followed by a melting curve to confirm 
single amplification product.

2.11  |  Statistical analysis

All statistical analyses were carried out using R software (version 
3.0.2) (Team, 2013). Significant results were considered at p < .05. 
All graphs were generated using the ggplot2 package (version 3.1.0) 
(Wickham, 2016).

2.11.1  |  Proportions of males and females

For the analysis of sex ratios, a χ2 test with Yate's correction 
(Yates, 1934) was applied to compare the number of males and fe-
males between the 28°C and 35°C groups.

2.11.2  |  Methylation data analysis

We calculated the mean DNA methylation across all the CpG sites 
from each gene for each sample. Finally, we averaged the DNA 
methylation data from all samples, grouped them per sex and tem-
perature for each family, and then combined all data of the two 
families. The effects of sex and temperature on DNA methylation 
were evaluated by two- way ANOVA followed by a Tukey's HSD test. 
Normality of the residuals was checked by the Shapiro– Wilk test, 
and a Levene's test for homogeneity of variance was used. When 
the assumptions of normality were not met, a logit transformation 
was applied. In cases when transformed data failed to follow the as-
sumptions, we used two- way ANOVAs with modified M- estimators 
and 5000 bootstraps (function pbad2way) using the wrs2 package 
(version 0.9.2) (Mair & Wilcox, 2020), as described in Anastasiadi, 
Vandeputte, et al. (2018).

2.11.3  |  Gene expression and correlation analysis

The quantification cycle (Cq) data were averaged, after eliminating 
samples that had more than 0.30 standard deviation between the 
three technical replicates. Data were normalized applying the for-
mula: ΔCq = Cq (Mean target gene) − Cq (Geometric mean eef1a1l1 and rpl13a). Gene 
expression was calculated as E(ΔCq), where E is the efficiency of the 
primer. The ΔCq values were analysed for normality and homogene-
ity of variances by the Shapiro– Wilk and Levene's test, respectively. 
The effects of sex and temperature on gene expression were evalu-
ated using two- way ANOVA followed by a Tukey test. To test the 
correlation between DNA methylation and gene expression for the 
same gene, a Spearman's rank correlation (ρ) test was applied using 
the corrplot package (version 0.84) (Wei & Simko, 2017).

2.11.4  |  Genes more influenced by sex and elevated 
temperature in males and females

First, and for each gene, we evaluated the differences between sexes 
by subtracting the mean DNA methylation of males minus the mean 
DNA methylation of females using data only from the 28°C group. 
Next, and for each sex, we evaluated the differences due to elevated 
temperature by subtracting the mean DNA methylation levels of the 
35°C group minus the mean DNA methylation of the 28°C group.

2.11.5  |  Epigenetic biomarkers: Indicators of 
phenotypic sex and exposure to thermal stress

Based on the observed sex-  and temperature- related differences 
of DNA methylation levels of the genes examined in this study, we 
reasoned whether these differences could be used as epigenetic 
biomarkers. Here, a two- step approach involving three separate 
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458  |    VALDIVIESO et al.

classifications was implemented. In the first classification, we used 
all fish to predict their sex regardless of the temperature they had 
been exposed to (N = 70 samples). For the second and third classifi-
cations, males (N = 37) and females (N = 33) were used separately. 
In the latter two classifications, the goal was to determine whether 
the temperature they had been exposed to during the period of 
gonad development while juveniles could be predicted from the 
DNA methylation levels in 90- day- old adults. We only used genes 
that showed significant differences by sex and temperature. If any 
sample(s) had missing data for the selected genes, the values were 
imputed by applying the mean value replacement method for the 
corresponding group in which the sample pertained (Zhang, 2016).

For the classification and prediction, we applied a flexible dis-
criminant analysis (FDA) with repeated K- fold cross- validation 
(10- fold and five repetitions) using the caret package (version 6.0– 
82) (Kuhn, 2008, 2020). The efficiency of the prediction accuracy 
(comparing the prediction result from the model output with the 
real data) and the Cohen's kappa coefficient test (κ) values were 
extracted from the caret package. The coefficient κ measures inter- 
rater agreement for qualitative (categorical) items and can take 
values between 1 (complete agreement) and 0 (no agreement). In 
addition, the level of the agreement classification was assigned as 
described in McHugh (2012). First, we evaluated each gene using the 
mean methylation (mean of all the CpGs of the amplicon) as a single 
variable predictor. Second, for the genes that showed the highest 
accuracy and κ, we broke down the methylation values to individual 
CpGs in order to improve the classification. Third, we combined the 
best predictors between them (those that showed the highest accu-
racy and κ values) to observe if the addition of more predictors could 
improve the classification efficiency. We used the ldahist function 
from the mass package (version 7.3– 51.1) (Venables & Ripley, 1999) 
to make stacked histograms of the discriminant coefficient.

2.11.6  |  Independent samples for machine 
learning validation

To validate the results of the sex prediction from the machine learn-
ing algorithm, we extracted the methylation data (15 CpGs of the 
cyp19a1a amplicon) of 20 testes and 20 ovaries from an unrelated 
offspring obtained from a third family produced as described above 
and sampled at the age of 90 dpf and raised at 28°C.

3  |  RESULTS

3.1  |  Temperature shifted the sex ratio

We tested two independent families, and in both cases the offspring ex-
posed to elevated temperature showed an increase of males (i.e., 42.6% 
and 20.4% increase for Family 1 and 2, respectively) although the pro-
portions between groups was only significant in Family 1 (Figure S1a). 
When taking the two families together, sex ratio analysis showed that 

the group exposed to 35°C had a significantly (χ2 = 31.32; p < .001) 
higher proportion of males when compared with the 28°C group 
(Figure S1b), indicating the effectiveness of the temperature treatment 
in inducing masculinization, as expected (Hosseini et al., 2019; Ribas, 
Liew, et al., 2017; Valdivieso et al., 2020, 2022). During sampling, visual 
inspection of the fish subjected to 35°C showed no obvious alterations 
of the gonads when compared with those of fish exposed to 28°C.

3.2  |  DNA methylation patterns in the gonads are 
sex-  and temperature- dependent

Regarding the quality of the methylation data, the number 
(mean ± SEM) of sequenced reads per sample was 469,779 ± 22,188, 
alignment efficiency 71.9 ± 1.63% and bisulphite conversion rate 
99.6 ± 1.36% (see Table S5). The final number of samples for Family 
1 and Family 2 was 34 and 36, respectively.

Although the effectiveness of temperature- induced masculiniza-
tion varied between families, and because we did not have exposed 
females at 35°C in Family 1 due to 100% masculinization, we ana-
lysed DNA methylation profiles by grouping the two families and 
considering sex and temperature as factors for the analysis. Further, 
we were interested in finding not family- specific differences but 
rather sex-  and temperature- specific differences that could be in-
dependent of family. However, we calculated the mean methyla-
tion of the 10 genes for each family separately (Table S6), and we 
compared mean methylation values of all 10 genes between these 
two families. The results showed no significant differences in fe-
males at 28°C (Family 1 = 35.13 ± 25.08; Family 2 = 31.05 ± 26.94, 
t = 0.3324, p = .74), in males at 28°C (Family 1 = 60.65 ± 39.38; 
Family 2 = 34.74 ± 25.5, t = 1.67, p = .15), or in males at 35°C (Family 
1 = 60.24 ± 41.66; Family 2 = 60.69 ± 38.77, t = 0.0226, p = .98). 
When grouping families, an overall assessment of DNA methylation 
revealed two main differences between sexes (Figure S2). First, in 
females the median DNA methylation values of the genes analysed 
in this study essentially covered the range 0%– 100%, whereas in 
males the DNA methylation values were either usually above 75% or 
below 10% with no intermediate values (Figure S2a). Furthermore, in 
males the DNA methylation at 28°C showed high variability among 
individuals, but this variation was reduced at 35°C (Figure S2b). 
These results show clear sex- related differences in DNA methyla-
tion in zebrafish and on the effect of temperature on these values.

We examined the DNA methylation of genes coding for six 
different steroidogenic enzymes (i.e., cyp19a1a, cyp11a1, cyp11c1, 
hsd11b2, hsd17b1 and hsd17b3), including those leading to the syn-
thesis of 11- ketotestosterone and oestradiol- 17β, considered the 
major androgen and oestrogen in fish, respectively, in terms of sex 
differentiation (Figure 1a– f). We observed significant (p < .001) sex- 
dependent differences in DNA methylation values in the 28°C group 
for all genes. Temperature significantly affected DNA methylation 
of cyp19a1a, cyp11a1, cyp11c1 and hsd17b3 (Figure 1a– c,f) and only 
cyp11a1 showed a significant interaction between sex and tempera-
ture (Figure 1b). We also examined the DNA methylation of genes 
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coding for key sex- related growth and transcription factors (i.e., amh, 
dmrt1, dmrt3a and foxl2a). Sex- specific differences were also ob-
served for all genes examined (Figure 1g– j). In contrast to amh, DNA 
methylation levels of dmrt1, dmrt3a and foxl2a were lower in males 
than in females, although for foxl2a DNA methylation values were 
very low (Figure 1h– j). Temperature was associated with an increase 
and decrease of the DNA methylation levels of amh and dmrt1 in 
males, respectively (Figure 1g,h), the former being the only one of 

the second group of genes where sex and temperature interaction 
was significant (Figure 1g).

3.3  |  Gene expression in the gonads is altered after 
early heat response

For gene expression analysis we only considered the genes with 
significant sex- dependent DNA methylation differences (threshold 
>10%). We observed sex- related significant differences in gene ex-
pression in the 28°C group in cyp19a1a, cyp11a1, cyp1c, hsd11b2, amh 
and dmrt1 (Figure 2a– d,f,g) while the hsd17b1 gene remained invari-
able (Figure 2e). Elevated temperature during gonadal development 
significantly downregulated the expression of cyp11a1 (Figure 2b) 
and increased cyp11c1, amh and dmrt1 in testes but not in ovaries 
(Figure 2c,f,g, respectively).

F I G U R E  1  DNA methylation levels according to sex and early 
temperature. Box plot of percent DNA methylation levels on 
the promoter region of: (a) cyp19a1a, (b) cyp11a1, (c) cyp11c1, (d) 
hsd11b2, (e) hsd17b1, (f) hsd17b3, (g) amh, (h) dmrt1, (i) dmrt3a 
and (j) foxl2a genes from mature gonads of females and males 
exposed to 28°C and 35°C during sex differentiation (18– 32 days 
post- fertilization).The p- values for the factor effects of sex (S), 
temperature (T) or the interaction of both factors (SxT) are reported 
for each gene. Two- way ANOVA followed by post hoc Tukey test 
was applied in the dmrt3a and foxl2a genes and two- way ANOVA 
with robust estimation was applied in the cyp19a1a, cyp11a1, 
cyp11c1, hsd11b2, hsd17b1, hsd17b3, amh and dmrt1 genes
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3.4  |  Correlation analysis between DNA 
methylation and gene expression

We carried out correlation analyses between DNA methylation 
and gene expression levels of cyp19a1a, cyp11a1, cyp11c1, hsd11b2, 
hsd17b1, amh and dmrt1 in gonads of females and males exposed 
to 28 and 35°C (Figure 3). In females, we found a significant nega-
tive correlation in amh (r = −.69; p = .0423) only in the 35°C group. 
In contrast, in males exposed at 28°C we observed a significant 
negative correlation in cyp11a1 (r = −.79; p = .006) and dmrt1 
(r = −.78; p < .001), and a significant positive correlation in cyp11c1 
(r = .80; p = 9.3 × 10−5), hsd11b2 (r = .68; p = .002) and amh (r = .68; 
p = 4.9 × 10−5) (Figure 3). In males, the effects of 35°C made these 
relationships less evident when analysing the same genes. However, 
comparing results between temperature treatments, the genes 
hsd11b2 and dmrt1 showed the same tendency of the relationship 
whereas amh showed an opposite correlation. The cyp11c1 gene, 
due to the low number of samples, could not be compared even 
though it showed the same negative relationship. In summary, at the 
control temperature (28°C) we did not observe any significant corre-
lation, positive or negative, between DNA methylation and gene ex-
pression in any of the genes examined in females, whereas in males 
it was significantly positive for three genes (cyp11c1, hsd11b2 and 
amh) and negative for two (cyp11a1 and dmrt1). On the other hand, 
elevated temperature provoked a negative correlation for amh in fe-
males where there was none before and cancelled all correlations, 
positive or negative, found in males at the control temperature.

3.5  |  DNA methylation differed by sex and 
temperature

We were interested in knowing which genes had the highest sex- 
related differences in DNA methylation and which were the most 
affected by temperature in each sex. These would be ideal candi-
dates to apply predictive machine learning procedures. At control 
temperature and between sexes, the promoter regions of cyp19a1a, 
hsd11b2, amh and hsd17b1 showed the highest hypermethylation 
(>20%) in favour of males, whereas dmrt1 showed the highest hyper-
methylation (~20%) in favour of females (Figure S3a). Within females, 
the genes most affected by temperature were cyp11a1, cyp11c1, amh 
and foxl2a (Figure S3b). Within males, hypermethylation was highest 
in hsd11b2, amh, cyp19a1a, hsd17b1 and cyp11a1 whereas hypometh-
ylation was observed in dmrt1 (Figure S3c).

3.6  |  Prediction of sex and exposure to elevated 
temperature

Based on the previous results of DNA methylation differences by sex 
and temperature, we tested whether these sex-  and temperature- 
related differences in specific genes could be used as reliable indica-
tors of: (i) phenotypic sex (e.g., in a sample of unknown sex) and (ii) 

whether fish had previously been exposed to high temperatures. To 
achieve this, we used an FDA with K- fold cross- validation to evaluate 
the predictive model using the DNA methylation values, either using 
individual CpGs or the mean of CpGs per amplicon. The best predic-
tors (selecting single genes or different combinations of them) based 
on accuracy and κ values for each purpose are shown in Table 1.

To distinguish males from females at control temperature, the 
classifications gave good accuracies and κ values (between 0.85– 
0.88 and 0.72– 0.77, respectively), either using the mean methylation 
levels of cyp19a1a, dmrt1 and amh alone or the combination of all 
three genes. In contrast, the best sex predictor was cyp19a1a when 
using the values of the 15 targeted CpGs of the cyp19a1a ampli-
con. Thus, the DNA methylation values of 15 CpGs of the cyp19a1a 
zebrafish promoter can clearly distinguish whether a DNA sample 
comes from a male or a female regardless of previous temperature 
(Figure 4). However, using the mean methylation of these 15 CpGs 
of the cyp19a1a gene, the classifications gave similar accuracy and κ 
values. Accordingly, DNA methylation levels of the cyp19a1a gene in 
zebrafish gonads were enough to predict sex (Table 1).

Next, we wanted to evaluate whether the prediction of sex was 
reliable and whether the accuracy of the machine learning procedure 
obtained from these samples could be repeated with independent 
samples. First, we extracted the cyp19a1a mean DNA methylation 
of males and females of an unrelated offspring following the same 
procedure described earlier and found significantly higher DNA 
methylation levels in males (Figure S4a). Then, we used the algorithm 
for sex prediction used previously to classify these 40 independent 
samples. The accuracy of the classification was 100% and the pre-
dicted samples were classified within two clear distinct groups ac-
cording to their sex (Figure S4b).

To distinguish males previously exposed to high temperature, the 
best predictors were amh and cyp19a1a (accuracy = 0.71 and 0.69, 
and κ = 0.44 and 0.42, respectively) (Table 1). These values indicated 
that the power of classification was categorized as “moderate” ac-
cording to interpretation of Cohen's kappa values (McHugh, 2012). 
When methylation values of individual CpGs of amh (18 CpGs) 
were used, the reliability of the classification (accuracy = 0.64 and 
κ = 0.27) decreased to “fair.” Thus, to predict past developmental 
temperature in males, the mean methylation levels of amh in male 
gonads were sufficient (Figure 4).

Finally, to distinguish previous exposure to elevated temperature 
in adult females, among all predictors and combinations tested, the 
best were foxl2a (accuracy = 0.63 and κ = 0.28) and foxl2a + cyp19a1a 
(accuracy = 0.59 and κ = 0.20), achieving “fair” and “none to slight” 
reliability, respectively (Table 1). By using the individual CpGs of 
foxl2a as predictors (26 CpGs) (Figure 4) the classification improved 
(accuracy = 0.78 and κ = 0.55) and was categorized as “moderate.” 
Thus, to identify females that had experienced abnormally high tem-
perature during early development, the methylation levels of foxl2a 
in female gonads can be used (Figure 4).

In summary, the DNA methylation information extracted from 
promoter regions of cyp19a1a, amh and foxl2a were good epigene-
tic predictors to discriminate between sex and previous exposure 
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to abnormally high temperature in males and females (Figure 5a,b,c, 
respectively).

4  |  DISCUSSION

Given the importance of sex ratios as a major population demo-
graphic parameter, we studied the influence of the environment 
on the DNA methylation of a group of genes related to sex differ-
entiation as well as the stress response in vertebrates. In addition, 
we aimed to identify robust epigenetic biomarkers linked to both 
phenotypic sex and past thermal insults. To this end, we used a lab-
oratory zebrafish strain (AB), a good model to study the interplay 
between genetics and the environment (Ribas, Liew, et al., 2017), 
subjected to two temperatures, 28°C (control) or 35°C, during the 
critical period of gonadal development (18– 32 dpf) and sampled 
when adults at 90 dpf. Our results on sex ratio response confirmed 

previous results (Ribas, Liew, et al., 2017; Ribas, Valdivieso, 
et al., 2017a, 2017b; Valdivieso et al., 2020, 2022) and allowed us to 
study the integration of environmental information through epige-
netics. We were keen to minimize differences in DNA methylation 
and gene expression due to possible differences in gonad matura-
tion of the 70 samples used, as well as due to effects induced by el-
evated temperature, although the proportion of germ cells affected 
is very small in the context of the whole gonad, as shown in a recent 
study from our laboratory (Valdivieso et al., 2022). Overall, we con-
sider that these differences have little effect on DNA methylation. 
Apart from the environmental information, the genetic background 
may influence the DNA methylation variation between individuals. 
The details of this are far from clear and constitute a relevant topic 
in environmental epigenetics. In this study, we showed variation in 
DNA methylation between individuals, indicative of a genetic basis. 
Interestingly, this variation was more pronounced in males than in 
females.

F I G U R E  3  Relationship between 
DNA methylation and gene expression. 
Correlations of percentage DNA 
methylation of the promoter regions 
and gene expression levels for cyp19a1a, 
cyp11a1, cyp11a1, hsd11b2, hsd17b1, amh 
and dmrt1 in the gonads of females and 
males exposed to 28°C and 35°C during 
sex differentiation (18– 32 days post- 
fertilization). Spearman's rank correlation 
coefficient (ρ) are shown. The direction 
of the long axis of the ellipses and the 
colour indicate the type of correlation: 
Negative is shown in red and positive in 
blue. The short axis of the ellipse and the 
intensity of the colour are proportional 
to the correlation coefficients. Significant 
correlations are considered when p < .05 
(red frame square). The letter n inside the 
squares indicates the sample size for each 
correlation
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Recently, after reviewing the available data on DNA methylation 
and gene expression in sexual development- related genes from both 
gonochoristic and hermaphroditic fish species, we proposed the 
CERS model, which incorporates the inverse relationship between 
DNA methylation and gene expression, something that is apparent 
across species at least for cyp19a1a and dmrt1 (Piferrer et al., 2019). 
However, such a relationship was in fact the opposite for amh and 
foxl2a whereas in other genes such as sox9, gsdf, and amhr2, the as-
sociation between DNA methylation and gene expression was not 
clear (Piferrer et al., 2019). Here, DNA methylation for a set of ten 
genes related to sex differentiation, in particular steroidogenic en-
zymes and growth and transcription factors, have been studied in 
detail to expand our knowledge with new data.

Steroidogenic enzymes are responsible for the synthesis of sex 
steroids, which play a key role in vertebrate sex differentiation and 
gametogenesis (Nakamura et al., 1998). Without exception, all genes 
coding for steroidogenic enzymes analysed in this study exhibited 
sex- dimorphic DNA methylation. In a similar manner, this observa-
tion was found previously in two immune- related genes in adult ze-
brafish gonads (Caballero- Huertas et al., 2020). The gene cyp11a1 
encodes an enzyme that participates in the conversion of cholesterol 

to progesterone, a precursor for the synthesis of testosterone and 
17β- oestradiol (Simpson, 1979). The DNA methylation levels for 
cyp11a1 confirmed that this enzyme shows sexual dimorphic pat-
terns with higher DNA methylation levels and concomitant lower 
gene expression levels, particularly in males. Thus, cyp11a1 follows 
the CERS model predictions. Cyp19a1a is a steroidogenic enzyme 
that catalyses the conversion of androstenedione and testosterone 
into oestrone and 17β- oestradiol, respectively. Then, the hsd17b1 
steroidogenic enzyme converts oestrone into 17β- oestradiol (Haller 
et al., 2010; Mindnich et al., 2004). 17β- Oestradiol is key for sex 
differentiation as it is required for ovarian development in all non-
mammalian vertebrates (Guiguen et al., 2010; Hinfray et al., 2018; 
Lau et al., 2016; Piferrer et al., 1994). In the present study, cyp19a1a 
was hypomethylated in the ovaries while its expression was higher 
in ovaries than in testis. The DNA methylation patterns found in 
the two sexes were in agreement with those reported in other fish 
species, such as the European seabass (Anastasiadi, Vandeputte, 
et al., 2018; Navarro- Martín et al., 2011), the half- smooth tongue 
sole (Shao et al., 2014), the black porgy (Acanthopagrus schlegelii) 
(Wu & Chang, 2018) and barramundi (Lates calcarifer) (Domingos 
et al., 2018).

TA B L E  1  Epigenetic biomarkers: Predictors of phenotypic sex and previous thermal exposure

Objective Predictor Accuracy Cohen's kappa
Interpretation of 
Cohen's kappa

To distinguish males from females at 28°C cyp19a1a 0.88 0.77 Substantial

dmrt1 0.88 0.76 Substantial

amh 0.87 0.75 Substantial

foxl2a 0.73 0.47 Substantial

amh + dmrt1 0.82 0.64 Substantial

cyp19a1a + amh + dmrt1 0.85 0.72 Substantial

cyp19a1a + foxl2a + dmrt1 0.88 0.76 Substantial

cyp19a1a (using 15 individual 
CpGs)

0.88 0.77 Substantial

To distinguish males at 28°C from males at 35°C amh 0.71 0.44 Moderate

cyp19a1a 0.69 0.42 Moderate

dmrt1 0.68 0.38 Fair

amh + cyp19a1a 0.63 0.32 Fair

amh + dmrt1 0.68 0.39 Fair

cyp19a1a + dmrt1 0.68 0.41 Moderate

amh + cyp19a1a + dmrt1 0.71 0.40 Moderate

amh (using 15 individual CpGs) 0.64 0.27 Fair

To distinguish females at 28°C from females at 
35°C

foxl2a 0.63 0.28 Fair

cyp19a1a 0.27 −0.29 No agreement

hsd11b2 0.29 0.52 No agreement

foxl2a + cyp19a1a 0.59 0.20 None to slight

foxl2a (using 26 individual 
CpGs)

0.78 0.55 Moderate

Note: Predictors were used either alone or in combination. The kappa values obtained from each predictor follow the classification and interpretation 
proposed by McHugh (2012). For all predictors, the mean of all CpGs in that predictor were used. Within each objective, the best predictor was also 
assayed using the values of all the individual CpGs.
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We also studied the “pro- male” steroidogenic enzymes, 
cyp11c1, hsd11b2 and hsd17b3 (Guiguen et al., 2010), which use 
androstenedione and testosterone as substrates to convert 
11β- hydroxyandrostenedione and 11β- hydroxytestosterone to 
11- ketotestosterone, a potent androgen in teleost fish (Baroiller 
et al., 1999; Mindnich et al., 2004). Analysis of DNA methylation of 
cyp11c1, hsd11b2 and hsd17b3 showed hypermethylation in males 
compared with females. Expression levels of cyp11c1 and hsd11b2 
were higher in males as confirmed in other fish species in which 
higher expression of these genes is required for testis development 
(Baker, 2004; Kusakabe et al., 2003; Wang & Orban, 2007). The cor-
relations between DNA methylation and gene expression of both 
cyp11c1 and hsd11b2 were positive in males but only at the control 
temperature.

The expression of steroidogenic enzymes is regulated by the 
action of transcription factors (Manna et al., 2003), and some of 

them are also important for vertebrate sex differentiation (Yang 
et al., 2017). All the transcription and growth factors analysed in 
this study (amh, dmrt1, dmrt3a and foxl2a) showed significant sex- 
specific differences in DNA methylation. The two genes of the dmrt 
family, dmrt1 and dmrt3a, located on chromosome 5 of zebrafish 
(Guo et al., 2005), were hypomethylated in males when compared 
to females. Our results with dmrt1 are in accordance with previ-
ous observations in the European seabass, half- smooth tongue 
sole, the Japanese flounder (Paralichthys olivaceus) and Culter al-
burnus (Anastasiadi, Vandeputte, et al., 2018; Jia et al., 2019; Shao 
et al., 2014; Wen et al., 2014) suggesting a conserved DNA methyl-
ation pattern across species. The dmrt1 gene was significantly more 
highly expressed in males, and thus an inverse relationship between 
methylation and gene expression levels was present, conforming to 
CERS predictions (Piferrer et al., 2019). Further, in this study amh 
showed higher methylation levels in accordance with other studies 

F I G U R E  4  DNA methylation patterns in the adult gonads of females and males of zebrafish subjected to either low (control, blue) 
or elevated (red) temperature when larvae. Data indicated are for the steroidogenic enzyme cyp19a1a, the growth factor amh and the 
transcription factor foxl2a. Values on the x- axis show the distance in base pairs (bp) relative to the transcription start site (TSS) of the gene 
denoted as 0. Each datapoint corresponds to an individual CpG
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in zebrafish (Laing et al., 2018), barramundi (Domingos et al., 2018) 
and half- smooth tongue sole (Shao et al., 2014), although in the 
European seabass the methylation levels were similar between 
sexes (Anastasiadi & Piferrer, 2020). Gene expression of amh is typ-
ically required for testis development in fish (Pfennig et al., 2015) 
and so higher amh expression levels indicated a positive correlation 
with DNA methylation levels, thus not following CERS predictions 
(Piferrer et al., 2019).

Foxl2a is a transcriptional regulator of cyp19a1a and is import-
ant for ovarian differentiation in nonmammalian vertebrates (Wang, 
Bartfai, et al., 2007; Yang et al., 2017; Zhang et al., 2017). The meth-
ylation levels of foxl2a were much lower than those of cyp19a1a and 
were significantly hypermethylated in females when compared with 
males. These results are in accordance with the methylation levels 

of foxl2a found in the ovaries of the European seabass (Anastasiadi, 
Vandeputte, et al., 2018), barramundi (Domingos et al., 2018) and 
Japanese flounder (Si et al., 2016). In the Japanese flounder, a strong 
inverse relationship between methylation levels in foxl2a and cy-
p19a1a with its respective gene expression at different ovarian de-
velopment stages was observed (Si et al., 2016). In the ovaries of 
different fish species, there is a positive correlation between the 
transcriptional levels of foxl2a and cyp19a1a (Baron et al., 2004, 
2005). Here, we did not study the expression levels of foxl2a. 
However, our methylation data for foxl2a and cyp19a1a with gene 
expression data from cyp19a1a in females, based on previous re-
sults in fish (Wang, Kobayashi, et al., 2007), suggest a similar pat-
tern for both genes, involved in female gonadal development (Fan 
et al., 2017, 2019).

Notably, when we checked the correlation between DNA meth-
ylation and gene expression patterns at the control temperature, we 
detected a strong negative correlation in cyp11a1 and dmrt1 in males 
and a positive correlation in cyp11c1, hsd11b2 and amh genes only in 
males. However, the lack of significant correlation in the other genes 
in females could be due to different reasons. First, the methodology 
used, MBS, a locus- specific resolution and high- coverage technique, 
has a physical limitation in which the maximum length of DNA to 
be interrogated is around 500 bp. This allowed us to study only a 
limited number of CpG sites (ranging from four to 34 in the genes 
studied), forcibly leaving out other CpG sites that may be relevant 
in gene regulation. Classically, the most well- studied targeted region 
for DNA methylation is the promoter region close to the transcrip-
tion start site (TSS). However, recently, it has become evident that 
other genomic regions, such as the first exon and the first intron, 
have the same or even better correlation with DNA methylation than 
the promoter (Anastasiadi, Esteve- Codina, & Piferrer, 2018; Brenet 
et al., 2011). Further, evidence also exists suggesting that hyper-
methylation of the promoter may be associated with high transcrip-
tional activity under certain circumstances (Smith et al., 2020). This 
may explain the lack of some of the expected correlations between 
DNA methylation and gene expression levels.

We also studied the effects of elevated temperature on the 
methylation patterns of genes involved in sex differentiation. This 
was done almost 2 months after the temperature treatment ceased 
in order to evaluate persistent effects in the adult gonads. In males, 
temperature was associated with an increase in the methylation lev-
els of cyp19a1a, cyp11a1, cyp11c1, hsd17b3 and amh. In some cases, 
this increase of methylation in males was also associated with an 
upregulation of gene expression, such as in amh and in cyp11c1 or, in 
contrast, with a downregulation of gene expression, as in cyp19a1a. 
In males, elevated temperature strongly decreased dmrt1 methyla-
tion levels, while an upregulation of its expression was found, con-
firming previous results analysing temperature and gene expression 
in zebrafish (Ribas, Liew, et al., 2017). Regarding cyp19a1a, no ef-
fect was observed in the ovaries of high- temperature vs. control- 
exposed fish as had been observed in the half- smooth tongue sole 
(Liu et al., 2019). This may be due to the fact that in zebrafish at 14 
dpf, a dimorphic proliferation of primordial germ cells is detected 

F I G U R E  5  Flexible discriminant analysis (FDA) classifying 
samples according to sex or early temperature using DNA 
methylation. Density histogram of prediction values obtained from 
FDA using (a) cyp19a1a DNA methylation values to distinguish the 
sex of the fish, (b) amh DNA methylation values to distinguish males 
at 28°C from males at 35°C, and (c) foxl2a DNA methylation values 
to distinguish females at 28°C from females at 35°C
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in which an elevated threshold of these cells is required for ovar-
ian development (Tzung et al., 2015). Consequently, this time lapse 
might have hindered stable epigenetic marks for female differentia-
tion at the time when we subjected fish to high temperatures in our 
experiment (18– 32 dpf). Thus, the effects of temperature on DNA 
methylation in females could have been stronger if applied earlier. 
This was shown in the European seabass, in which temperature be-
fore sex differentiation was able to alter DNA methylation levels of 
the genes in ovaries (Anastasiadi, Vandeputte, et al., 2018; Navarro- 
Martín et al., 2011). In genotypic female Japanese flounder, elevated 
temperature during gonad differentiation hypermethylated the 
promoter of cyp19a1a and its transcriptional activator foxl2a with a 
concomitant downregulation of their expression levels, resulting in 
male development (Fan et al., 2017, 2019). These results open new 
avenues for studying how DNA methylation marks are established 
before, during and after gonadal development in fish when exposed 
to environmental stressors.

In recent years, the link between DNA methylation, gene ex-
pression and certain phenotypes has prompted the identification 
of the DNA methylation- based epigenetic markers (Jin & Liu, 2018). 
Some of them associate with age, lifestyle or environmental cues 
(Marsit, 2015), and have been used to predict age in humans and 
other vertebrates including fish (Anastasiadi & Piferrer, 2020; De 
Paoli- Iseppi et al., 2019; Horvath, 2013; Polanowski et al., 2014; 
Thompson et al., 2017), sex in fish (Anastasiadi, Vandeputte, 
et al., 2018) and early life stress in chickens (Pértille et al., 2017). 
In medicine, the methylation status of some genes has been associ-
ated with diseases (Jones & Baylin, 2007). Therefore, the methyla-
tion levels of specific CpGs have been used to develop tests (Moran 
et al., 2016) for the diagnosis and prognosis of diseases (Costa- 
Pinheiro et al., 2015). For instance, DNA methylation of genes in-
volved in lung and colorectal cancer has been used to develop a 
test for their early detection (Li et al., 2019; Lind et al., 2011; Model 
et al., 2007). Nevertheless, there is still a wide range of sensitivity 
and specificity in such types of tests (20%– 90% and 65%– 100%, re-
spectively) (Dong & Ren, 2018; Li et al., 2019), indicating that more 
efforts in developing epigenetic tools for diagnosis are needed. One 
way to circumvent this has been to combine the methylation levels 
of CpGs from different genes into a single panel, which has increased 
the sensitivity and specificity of diagnosis (Lind et al., 2011). In fish, 
techniques that allow to measure methylation levels for specific CpG 
contexts facilitate the identification of EEMs for a particular pheno-
type of interest (Piferrer, 2019). Our results showed that one can 
reliably infer the sex of an animal, in this case the zebrafish model, 
examining only a DNA sample. Since sex is a strong covariate influ-
encing many biological variables, being able to infer sex from a DNA 
sample would be very useful to assign phenotypic sex in DNA sam-
ples under a variety of different scenarios: for example, when the 
sex of the donor individual was not recorded, when the information 
was lost or, in the case of sex reversals, the phenotypic sex does not 
match with genotypic sex.

Environmental perturbations, especially occurring during early 
development, can induce lifelong phenotypic changes mediated 

by the epigenetic regulation of gene expression. These changes 
underlie phenotypic plasticity and are thought to contribute to 
rapid adaptation to new environments (Beal et al., 2018; Jaenisch 
& Bird, 2003). Thus, epigenetic alterations, including changes to 
the methylome, constitute a sort of “epigenetic memory” that po-
tentially could allow detection of past exposures to environmental 
stressors such as pollutants (Wang et al., 2009) or increase of tem-
perature (Mirbahai & Chipman, 2014), the latter being important 
to understand climate change responses. Examples of epigenetic 
marks associated with thermal stress have been discovered in ma-
rine species. In oyster (Crasssotreas gigas), the relationship between 
increasing temperature and histone methyl- marks was associ-
ated with delayed development and growth (Fellous et al., 2015). 
The Antarctic polychaete Spiophanes tcherniani showed an epi-
genetic acclimation mechanism in which individuals stressed by 
a slight increase of temperature recovered normal metabolic 
rates after a month by an increase of DNA methylation (Marsh & 
Pasqualone, 2014). Another example is found in four wild popu-
lations of the ascidian Ciona robusta taken from different habitats 
around the world. The methylation profiles of CpGs located in the 
heat- shock protein 90 (hsp90) and Na+– K+– 2Cl− cotransporter 
(nkcc) genes, with roles in responses to temperature and salinity, 
allowed the identification of the population of origin, indicating that 
different geographical locations (in addition to genetics) resulted in 
characteristic epigenomes (Pu & Zhan, 2017).

Taking into account the possible existence of such an “epigenetic 
memory” of past environmental stressors, here we used the DNA 
methylation levels of carefully selected CpGs, not only to infer sex 
but also to determine what thermal conditions fish had experienced 
more than 2 months before, when they were larvae. Based only on 
the methylation of 15 CpGs of the cyp19a1a gene, we were able to 
classify the sex of fish with 88% accuracy, a remarkable value con-
sidering the polygenic nature of sex determination in domesticated 
zebrafish (Liew et al., 2012). In addition, in the present case, we were 
able to validate the results with a set of independent samples with 
100% success, reinforcing our sex inference model.

In addition to sex, in the present study epigenetic marks have 
been used to determine past environmental conditions in fish. 
Strikingly, and for the first time, using the DNA methylation levels 
of amh in testes and of foxl2a in ovaries, we were able to accurately 
predict (71% and 78%, respectively) whether fish had been exposed 
to elevated temperature during early development. Thus, here we 
present a reliable epigenetic method to infer both sex and past 
thermal events. Recently, epigenetic marks have been shown to re-
cord the long- term consequences of heatwaves in fish (Anastasiadi 
et al., 2021), and epigenetic changes due to elevated temperature 
persist in the unexposed offspring of exposed parents (Valdivieso 
et al., 2020). Because the zebrafish is a well- established model for 
aquaculture (Ribas & Piferrer, 2014), toxicology (Dai et al., 2014; 
Tanguay, 2018) and environmental issues (Brown et al., 2015), fur-
ther research should be facilitated by our framework of epigenetic 
biomarker development presented here that should hold to detect 
exposure to different environmental disturbances.
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We want to point out that a key aspect is whether one could 
identify sex or past temperature exposure from noninvasive sam-
pling using DNA methylation patterns in blood or fin clip samples. 
This is not straightforward since methylation levels are tissue specific 
(Husby, 2020). Determining blood DNA methylation levels in our case 
was not feasible because the zebrafish is a small fish and although 
blood can be collected (Zang et al., 2015), the amount would prob-
ably not be sufficient to obtain enough DNA for methylation by the 
targeted approach we used (the MBS technique) and also for gene 
expression analysis. Although, theoretically, one alternative would 
be to perform several extractions from the same individual with a 
few recovering periods, this, in practice, would entail handling stress, 
which could affect the results, and increase the risk of infections and 
possibly loss of several individuals, thus reducing the number of rep-
licates. Therefore, our study constitutes a proof of concept that DNA 
methylation marks not only are sex- and temperature- dependent but 
also that they can be used to infer sex from a DNA sample and past 
environmental temperature. This paves the way for similar studies 
with larger species. There, determining whether blood or fin clips 
can also be used would make more sense. Note also that in routine 
campaigns for the monitoring of fish populations, including nonmodel 
species for ecologically oriented research or fisheries, researchers 
typically kill the fish to assign phenotypic sex. Therefore, the fish is 
already dead, gonadal sampling is routinely undertaken and gonadal 
tissue represents the best tissue for analysis. From our results we 
could infer past temperature exposure in both sexes. The applica-
bility of this study can be envisaged to extend not only for natural 
abiotic factors but also to pollutants or contaminants that can be re-
flected in gonads due to disrupted endocrine actions.

5  |  CONCLUSIONS

This study provides novel information on the DNA methylation dy-
namics of a suite of 10 genes, including steroidogenic enzymes and 
transcription and growth factors. In three cases, they represent 
the first measurement of the DNA methylation in fish gonads (i.e., 
cyp11c1, hsd17b1 and dmrt3a). Sexually dimorphic patterns were ob-
served in all studied genes. DNA methylation and gene expression 
relationships were sometimes inverse, allowing us to identify four 
genes that follow CERS predictions, namely cyp19a1a and dmrt1, 
confirming previous results, and cyp11a1 and hsd17b1 described here 
for the first time. Interestingly, elevated temperature affected DNA 
methylation levels of sex- related genes (e.g., dmrt1 and dmrt3a) and 
the steroidogenic pathway (e.g., hsd11b2 and hsd17b1) more in males 
than in females. We show that analysis of the methylation levels of cy-
p19a1a alone in a DNA sample is capable of correctly identifying the 
sex with close to 90% accuracy, reinforcing the idea that sex identifi-
cation in other species with a similar approach is feasible. Further, we 
show that analyses of the DNA methylation levels of amh for males 
and foxl2a for females are sufficient to deduce whether fish had been 
exposed to suboptimal environmental conditions (temperature in this 
case) in the absence of conspicuous morphological alterations of the 

reproductive tissues. Thus, epigenetic biomarkers can be used not 
only for the identification of key phenotypic traits but also to infer 
past environmental conditions. These set of CpGs represent EEMs 
that correctly recapitulate past thermal history. This study paves the 
way for similar findings in other species that should be particularly 
useful to assess potential effects of environmental disturbances in 
the context of a climate change scenario.
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