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Abstract

Shape vectorization is a key stage of the digitization of large-scale historical maps, espe-

cially city maps that exhibit complex and valuable details. Having access to digitized build-

ings, building blocks, street networks and other geographic content opens numerous new

approaches for historical studies such as change tracking, morphological analysis and den-

sity estimations. In the context of the digitization of Paris atlases created in the 19th and

early 20th centuries, we have designed a supervised pipeline that reliably extract closed

shapes from historical maps. This pipeline is based on a supervised edge filtering stage

using deep filters, and a closed shape extraction stage using a watershed transform. It relies

on probable multiple suboptimal methodological choices that hamper the vectorization per-

formances in terms of accuracy and completeness. Objectively investigating which solutions

are the most adequate among the numerous possibilities is comprehensively addressed in

this paper. The following contributions are subsequently introduced: (i) we propose an

improved training protocol for map digitization; (ii) we introduce a joint optimization of the

edge detection and shape extraction stages; (iii) we compare the performance of state-of-

the-art deep edge filters with topology-preserving loss functions, including vision transform-

ers; (iv) we evaluate the end-to-end deep learnable watershed against Meyer watershed.

We subsequently design the critical path for a fully automatic extraction of key elements of

historical maps. All the data, code, benchmark results are freely available at https://github.

com/soduco/Benchmark_historical_map_vectorization.

1 Introduction

Map vectorization is the process of transforming scanned or rasterized graphical representa-

tions of geographic entities (often called instances) into a vector format which can be edited

using some Geographic Information System (GIS) software, in order to be better indexed, geo-

referenced, and analyzed spatially [1]. Vectorization is a key element for fostering information

extraction from archival documents and a critical step in the valorization of historical maps,

unlocking their potential for both spatial and temporal analysis. However, historical map vec-

torization is still generally performed by hand [2], mainly because of the absence of automated

or semi-automated solutions to assist researchers and practitioners. Even if such manual
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process is usually very costly, this absence can be partly explained by the extreme variability of

historical maps, and the multiple technical challenges they contain. Indeed, the quality of their

preservation, and the lack of constraints in their authoring, often leaves us with noisy images

and entities for which the meaningful semantics may be hard to identify [3].

In this study, we focus on a particular kind of historical maps, which exhibits consistent

meaningful semantics across a large set of documents: Paris (France) Atlases (“Atlas Munici-
pal”) from 19th and early 20th centuries at 1/5,000 scale. The extraction of closed shapes (which

represent building and building block boundaries, among others) is critical in the digitization

process, ultimately aiming at historically assessing the structural changes of the city over time

[4].

Automating such process requires facing some general challenges in automatic document

processing, like document degradation leading to non-flat, deformed and erased shapes,

uneven image contrast, as well as some challenges specific to this atlas series. First, such

maps have very limited color and texture, leading to the failure of texture-based semantic seg-
mentation deep learning approaches mentioned in [5] and that exhibit state-of-the-art per-

formances in geospatial image analysis today [6, 7]. Secondly, these atlases exhibit an

important amount of text and planimetric overlaps which make it difficult to distinguish and

separate objects.

Recently, [5, 8] proposed a versatile framework to address such challenges. They introduced

a two-stage framework which combines (1) an edge detection stage, leveraging deep segmenta-

tion networks, with (2) a shape extraction stage, relying on a watershed segmentation. Image

noise is filtered by the deep filters, and the watershed stage guarantees that the extracted shapes

will be closed, facilitating the detection of many object instances such as building, building

blocks, rivers, gardens, etc. However, this approach is severely penalized by failures in the ini-

tial edge detection scheme (which do not provide topological guarantees), where broken edges

(for which the probability of a pixel to belong to an edge collapses to zero) lead to leakage dur-

ing the shape extraction stage. Optimization is therefore conceivable at multiple stages and

should be objectively and comprehensively assessed to pave the way for a critical path in map

vectorization.

The benchmark we propose here is an extension of the work of [5, 8], which leverages exist-

ing open data and state-of-the-art methods to cope with current limitations of this approach.

It introduces the following contributions.

1. We propose an improved training protocol of the U-Net, HED and BDCN state-of-the-art

architectures on which the first stage heavily relies on (described in Section 2). This signifi-

cantly raises the baseline performance.

2. We show the original approach is penalized by the independent optimization of the two

steps of its pipeline. We propose a joint optimization strategy which further boosts the

results for U-Net, HED and BDCN networks as deep edge detector tested in [5].

3. Furthermore, we push the deep edge filtering stage as far as possible in several directions,

using dedicated topology-preserving and boundary-enhancing loss functions to reduce the

gaps in edge detections, assessing the performance of transformer-based networks on this

particular problem, as well as compact architectures, and implementing several augmenta-

tion strategies. This results in the superior generalization power of well-trained U-Net-

based filters.

4. We also enhance the watershed stage by comparing the performance of deep, end-to-end

learnable, watershed to the original approach. This exhibited the weaknesses of the deep

watershed.
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These contributions lead to an extensive benchmark which enables the identification of an

improved pipeline with superior performance, whose code, models and data will be made

available online for the final version of this paper. This paper is organized as follows: we first

review the approaches used in the original pipeline and the ones adopted for potential

improvement (Section 2). Then we present the modified pipelines that we consider and the

evaluation protocol we follow (Section 3); and finally we describe the experiment design and

report the results for each of the contributions we propose. (Sections 4 to 6). Conclusions are

drawn in Section 7.

2 Related work & tested approaches

2.1 Map digitization

The digitization of historical maps can be separated into three main categories: manual, auto-

matic, and hybrid methods. As noted by [9], the manual approach is still a popular solution in

digitizing maps when the dataset is small in coverage and time period. For larger datasets, col-

laborative approaches are often adopted with possibly many contributors—so-called crowd-

sourcing experiments, as in the works of [10, 11]— to speed up the digitization process.

However, manual processes are still limited in time and quality is highly fluctuating through

different contributors which leads to non-reproducible and heterogeneous results. Such prob-

lem requires objectively legitimating research on automatic and semi-automatic vectorization

techniques.

Colors in maps have been efficiently used to separate map layers [12], to extract specific the-

matic content [13–16], and to vectorize features [17–19]. The extraction of specific objects in

maps has also attracted attention, including the recognition of characters or text [20], parcels

[21, 22], road intersections [23] or road centerlines [24]. The interested reader will find a thor-

ough review on road extraction from raster maps in [25]. However, these methods are limited

to specific historical maps (with colors for instance) or ignore a vast majority of the map con-

tent, focusing on specific features (roads, parcels and so on, e.g., [26]). Subsequently, these

approaches cannot be easily generalized and adapted to other historical maps, especially with

complex shape structures and layouts such as urban areas.

Linear features can also be used for region segmentation from images. These features can

be extracted with robust techniques, e.g., through Line segment detector (LSD) proposed by

[27], which is a well-known tool for detecting line segments from images. However, these seg-

ments do not guarantee the production of geometrical partitions or closed shapes (or poly-

gons) without designing a posterior spatial arrangement technique relying on such mid-level

image information. For instance, to be able to use those line segments to create geometrical

partitions, [28] construct a Voronoi diagram based on those line segments to produce shapes

with strong geometric properties.

Alternatively, [29] propose Kinetic polygonal partitioning (KIPPI) to create image parti-

tions in remote sensing images by progressively extending line segments until they meet each

other. However, these techniques are not learning-based and rely on heuristics which strongly

influences the quality of line segments as wrong parameter settings could lead to too many

falsely detected lines resulting in under- and over-segmentation. In addition, this penalizes the

generalization ability of the approach.

A more general and learnable pipeline for the automatic digitization of a variety of large-

scale historical maps is still in high demand and should be designed carefully. Indeed, a super-

vised framework appears to be the best solution for correctly fostering information extraction

from existing samples [30, 31]. Our historical maps lack color and textures consisting of high-

percentage geometrical shapes shared with the same thinned borders (edges). These edges
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should be used to extract shapes instead of using as complementary information as in remote

sensing image with strong textures and colors.

As a first attempt to design a pipeline for large-scale historical maps, the work of [5, 8, 32]

proposed a reference architecture in two stages to detect closed shapes, aiming to automated

extraction on a large amount of documents. This can be viewed as a complement to manual

annotation approaches like crowdsourcing or other hybrid approaches. As mentioned in Sec-

tion 1, their pipeline is decomposed in two stages:

1. an edge detection stage leveraging deep segmentation networks. Yet it can fail for some crit-

ical pixels on the boundary of the shapes, creating gaps in the contours;

2. a shape extraction stage relying on a watershed segmentation. While it can filter closed con-

tours, even weak ones, to discard small objects or false detection, cannot recover lost

boundary fragments.

At the end of this process, the watershed segmentation generates closed and thin, 1-pixel-

large boundaries between objects. This output can be easily converted to vector data in stan-

dard GIS format for later edition.

In the rest of this section, we review the solutions which were already tested in this two-

stage pipeline, and discuss the extra approaches which could be considered as a complement

to improve this comprehensive workflow, leading to a benchmark of state-of-the-art learning

and vision solutions for map vectorization.

2.2 Deep edge filteirng (DEF)

The work of [5, 8] considered the following three architectures for the deep edge filtering

stage.

U-Net [33]. Inspired by Fully Convolutional Networks (FCN) [34], this famous U-shaped

architecture features a symmetrical structure that can preserve high performance prediction

through accurate pixel spatial localization for semantic or instance segmentation task. The var-

iant implemented in [5, 8, 32] contains 17, 267, 393 trainable parameters.

Holistically edge detector (HED) [35]. HED is the most well-known end-to-end deep

learning based multiscale architecture based on the VGG-16 backbone [36] for semantic edge

detection. The novelty of this method is to apply skip-connections for combining multiple lev-

els of features. Several losses are used to measure in the intermediate outputs of VGG-16 to fil-

ter out useful edge features. The variant implemented in [5, 8] contains 138, 359, 027 trainable

parameters.

Bidirectional cascade network (BDCN) [37]. BDCN is inspired from HED and adds sev-

eral scale-enhancement modules (SEM) to every intermediate output of VGG-16 architecture.

These SEM substitute traditional convolutions with dilated convolutions, which enhance the

spatial context of the learned features, thus improving the model ability to capture larger spa-

tial patterns. Moreover, the BDCN architecture uses a bidirectional cascade architecture,

where it can enforce each layer to focus on a specific scale. The variant implemented in [5, 8,

32] contains 139, 944, 976 trainable parameters.

Regarding deep edge filtering, several key elements should be added to complement the

prior work from [5, 8, 32].

• The full potential of the U-Net architecture was not fully explored due to the separate opti-

mization of the deep edge filtering and closed shape extraction stages. This limitation will be

detailed in Section 2.4.
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• Many improvements can be made at this specific stage: while the authors considered only

binary cross-entropy, several topology-aware loss functions may improve edge detection.

Recent architectures could be considered, in particular Vision Transformers to better cap-

ture long-range context, and also lighter architectures which may be much easier to train;

data augmentation should be included in the training pipeline to boost performance as far as

possible;

• Many aspects in the training protocol can be improved: we will show in Section 4 that data

processing, weight initialization, batch size and the choice of pre-trained weights can lead to

a significant boots of the evaluation scores. We review hereafter the relevant approaches we

propose to introduce in this benchmark.

2.2.1 Transformers architectures. To detect linear structures from images with topologi-

cal properties, convolutional neural networks (CNN) architectures can achieve satisfactory

results with different topological-based losses. However, they suffer from the limited range of

their receptive field, as well as the discontinuity of their feature maps which may lead to topo-

logical inconsistencies in the predictions [38–40]. Transformer architectures, applied to com-

puter vision tasks, can address these issues. We propose to consider the two following

architectures in this benchmark.

Vision Image Transformer (ViT) [41]. Inspired by the success of self-attention framework of

Transformers architectures [42] in the field of natural language processing, ViT uses Trans-

former architecture to learn the self-attention for computer vision task. Although using the

Transformer architectures as network backbone achieved new state-of-art performance in

many tasks, its features are extracted at a single scale. Moreover, the computational and mem-

ory costs remain high for common input image sizes, and the output resolution depends on

the size of the input patches (the visual equivalent of textual tokens in transformer), which can

lead to blocky predictions.

Pyramid Vision Transformer (PVT) [43]. To tackle these two issues, [43] proposed another

pure Transformer-based backbone architecture, named Pyramid Vision Transformer (PVT),

that enables the network to learn different scales of features while significantly decreasing the

number of parameters in traditional ViT architectures, leveraging the concept of feature pyra-

mid proposed by [44].

According to recent publications from [45–48], the combination of CNN and transformer

architectures have become a promising trend in wide range of computer vision tasks. How-

ever, we only report results for ViT and PVT architectures in this work.

2.2.2 Topology-preserving loss functions. When evaluating the topological quality of the

extracted map objects, the pixel-level performance of boundary detection does not always cor-

relate well with shape-level performance. Indeed, a missed detection for a single critical pixel

on the boundary of an object may create some leakage, and leads to a topological error at the

shape level, while the error at pixel level remains negligible. Although convolutional neural

networks perform well at filtering images (the pixel-based losses are continuously decreasing

during training), the limited range of pixel dependencies and global context in CNNs does not

guarantee the expected topological properties in the predictions (which can lead to a signifi-

cant drop in topology-level performance over the training). Recent approaches targetted to

improve the topology performance by adding a topology-oriented loss to approximate the cor-

rect topology in the output predictions. We propose to consider the following three categories

of mainstream methods to preserve topology in edge prediction task which are architecture-

based, persistent-homology-based and boundary-based loss functions.
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MOSIN loss [38]. MOSIN loss uses an neural network architecture to measure the topol-

ogy-awareness loss between two predictions. This early design of a topology-oriented loss

leverages elongation properties of the features of the VGG-19 architecture. To preserve line

consistency in the trained features, the differences between the VGG-19 features of the pre-

dicted and ground truth images are calculated for each layer to form a global loss. Although

theMOSIN loss function can improve the pixel consistency in the output (e.g, road detection),

it does not directly improve the performance of detecting the closed instances.

TopoLoss [39]. Topoloss is persistent-homology based loss function which enables to iden-

tify the critical failure points of the predicted object boundaries. It takes into account the width

and depth of the gaps in a differentiable loss function which encourages the network to recover

lost boundary components. However, this loss function is highly sensitive to noisy images.

BALoss [49]. BALoss is a boundary-based loss function which is inspired by the MALIS

([50]) and MALA ([51]) segmentation approaches which use the maximum-and-minimum

edges of the affinity prediction map to optimize shape-level segmentation performance. The

Boundary-Aware Loss aims to overcome the noise sensitivity of the previous approaches, and

improves the localization of maximum-and-minimum edges. The authors use the minimum

barrier distance and pre-defined seeds to compute critical paths between closed shapes. How-

ever, this loss function is not capable to localize and activate the broken pixels in the boundary

similar to watershed segmentation algorithm. Although the BAloss can correctly localize and

strengthen pixels within the boundary, this method cannot correctly activate boundary pixels

which have value of 0 (so-called broken edges).

2.2.3 Data augmentation. Though many data augmentation techniques were proposed

for computer vision (we refer the reader to the work of [52] for an overview), [53] appropri-

ately pointed out that not all of these transformations can be safely applied to historical map

images.

Indeed, while color transformation, noise and geometric transformations, to some extent,

can preserve the original signal, augmentation techniques like feature space transformation,

mixups, as well as strong geometric transformation, would break object boundaries and may

prevent the network from capturing local edge consistencies. Furthermore, some text and sym-

bols may not appear in all orientations, and their symmetric counterparts may not exist. The

effects of such augmentation are not well studied. We prefer to avoid such a strategy by

restricting our study to a safe subset of image augmentation techniques, in order to better

mimic the variations from different scanning conditions of historical maps: contrast and color

changes, and paper rotation and bumps. We therefore propose to consider the following aug-

mentation techniques:

• contrast stretching, which simulates well the differences between the color and lightning

calibrations (and paper properties) in our map collection;

• geometric transformations, in particular affine, homography and thin-plate splines (TPS)

transformations [54], which cover most of the cases present in the Paris atlases collection.

2.3 Closed shape extraction (CSE)

As previously mentioned, [5, 8] proposed to extract closed shapes from the edge probability

map (EPM) computed during the deep edge filtering stage, using a watershed segmentation.

Such segmentation is a very powerful tool which can leverage a global image context. It suc-

ceeds even in the presence of low contrast, and presents strong topological guarantees, like the

production of closed shapes exclusively. [5, 8, 32] restricted their work to the use of the Meyer
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Watershed [55] and showed that its sensitivity to noise could be mitigated thanks to the deep

edge filtering stage.

The Meyer watershed detects the catchment basins of the minima in the gradients of

images. The watershed process consists in flooding “water” from each catchment basin (also

called regional minima) until regions merge, creating watershed lines. The strength of water-

shed lines depends on the height at which basins get connected. The resulting image is called

the saliency map, and shape properties can be subsequently computed for extra filtering. [5, 8,

32] used two criteria to perform this shape filtering stage: shape area and edge dynamic, which

is the difference between some basin’s minimum and the height of the lowest point on its

boundary. Such CVE stage can re-weight weak edges, filter some weak or small shapes, but

cannot recover lost edges (for which the deep edge filter predicted very low edge probabilities).

An end-to-end system integrated with deep edge filtering is tested, in the case of the Deep

Watershed. The rest of this subsection details those two approaches introduced in this bench-

mark. To tackle the key limitations of classical watershed techniques, i.e, noise sensitivity and

difficulty to select filter parameters, [56] proposed a Deep Watershed Transform (DWS)

which learns the discrete watershed levels directly from multichannel images. However, learn-

ing watershed levels from original images is a difficult task because of the limited receptive

field of convolutional networks. To be able to learn the long-range dependencies between pix-

els and capture their level of inclusion (or distance to object boundaries), the authors intro-

duced an intermediate step where a direction fields is learned, mimicking the water flow of the

watershed segmentation algorithm.

This integrated architecture is supposed to exhibit good filtering images properties, which

can prevent the over-segmentation issues of traditional watershed approaches, while avoiding

the need for extra prior knowledge of the filtering attributes and their optimal values.

2.4 Joint optimization

Paper [5] optimized each stage of their vectorization pipeline independently. It follows the

common practice of optimizing the COCO PQ metrics of the resulting Edge Probability Map

at a fixed value (P = 0.5) in the validation set. However, it is possible to perform a global, joint

optimization of the parameters of both stages. There is no guarantee, with the previous

approach, that the combination of independently optimized stage is globally optimal. To

address this issue, we propose a global optimization procedure which will be introduced in the

experimental setup in Table 1.

3 Experimental setup

This section details the experimental setup of our extended benchmark. We provide an over-

view of the vectorization pipelines which are compared, then present the dataset, and the eval-

uation metrics.

3.1 Vectorization pipelines under test

The different vectorization pipelines are summarized in Fig 1. The first difference with the

prior work by [5, 8] is the joint optimization of the deep edge filtering and closed shape

extraction stages. The second is the inclusion of extra topological loss functions during the

training of the deep edge filters. The third is the inclusion of new architectures for deep edge

filtering. The fourth is the inclusion of extra watershed approaches, in particular an end-to-

end deep watershed transform which avoids the need for a prior deep edge filtering. We

extend the pipeline to deal with the deep watershed which merges the deep edge filtering with

watershed segmentation into end-to-end neural network. The benchmark we propose is
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decomposed into a series of experiments summarized in Table 1: the setup, results, and dis-

cussion for each experiment is detailed in a dedicated subsection. Extra details about the num-

ber of parameters used in each architecture are available in S1 Appendix, as well as a complete

listing of all experimental results.

Table 1. Overview of the experiments validating each aspect of the vectorization pipeline (columns), which will be described in the upcoming sections of the paper

(rows). For each cell, we indicate the variants under study and separate them with a coma. We emphasized main experiments using bold text.

Section Tables DEF DEF selection CSE
Model archi. Training config. Loss func. Augment.

4. Improved Training Procedure for DEF
4.1. A better training configuration 3, 4 U-Net1,

HED1+2,

BDCN1+2

Chen et al. 21,

proposed

binxent none CC@0.5 CC@best,

MWS

4.2. Joint Optimization of DEF and CSE 5 U-Net1,

HED1+2,

BDCN1+2

proposed binxent none joint opt. MWS

5. Alternate Architectures and Training for DEF
5.1. Vision transformers 6 U-Net1,

ViT2,

PVT2

proposed binxent none joint opt. MWS

5.2. Topology-preserving loss functions 7 U-Net1 proposed binxent,

Mosin,

Topo,

BAL

none joint opt. MWS

5.3. Data augmentations strategies 8 U-Net1 proposed binxent {w/CS, wo/CS} ×
{none, Aff., Hom., TPS}

joint opt. MWS

5.4. Lightweight architecture 9 U-Net1,

mini-U-Net1
proposed binxent none joint opt. MWS

6. Alternate Watershed Implementations for CSE
6. Alternate Watershed Implementations for CSE 10 U-Net1 proposed binxent none joint opt. MWS,

DWS

Abbreviations used—Pipeline: Deep Edge Filter (DEF), Closed Shape Extraction (CSE).Model architectures:
1: trained from scratch,
2: trained using pre-trained weights,
1+2: both previous variants.

Training configuration: version of [5] or our proposed variant. Loss functions: Binary cross-entropy (binxent), Mosinska’s loss (Mosin), Topoloss (Topo), Boundary

Aware Loss (BAL), Augmentation: With or without contrast stretching (w/CS or wo/CS), Affine (Aff.), Homography (Hom.) or Thin-plate Splines (TPS) geometric

transform. DEF selection: connected component labeling (CC) using a thresholded edge probability map (EPM) at p = 0.5 (CC@0.5), joint optimization of DEF and CSE

parameters (joint opt.). CSE: connected component labeling using a thresholded EPM at the best threshold selected on the validation set (CC@best), Meyer watershed

(MWS) and Deep Watershed (DWS).

https://doi.org/10.1371/journal.pone.0298217.t001

Fig 1. Our proposed pipeline. DEF: deep edge filter; LOSS: binary cross entropy loss or topology-oriented losses; DWS: deep watershed; WS: watershed

segmentation (Meyer Watershed); ET: edge thinning; LINES: vector output; epm: edge probability map(image of likelihood); lwl: learned watershed

levels; (wl) or (sm): watershed lines or saliency maps; The number indicates in the top right of the blocks shows the stages of the processes from 1–4.

(Capital letters with box represents the methods and other represents the intermediate results).

https://doi.org/10.1371/journal.pone.0298217.g001
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3.2 Dataset of historical maps

The dataset (DOI:10.5281/zenodo.8325527) used in this paper is taken from paper [5] which is

one of the collection of Paris atlases. The performance of the different pipelines under test is

assessed using the protocol of the ICDAR 2021 competition on historical map segmentation

[57]. In particular, we follow the protocol of Task 1 (Building blocks detection from historical
maps)but use a different dataset, containing fewer images and for which all closed shapes were

annotated—not only building blocks. The dataset contains 2 large map images, extracted either

from a series of Paris Atlases (“Atlas Municipal”) dating from 1898 and 1926 (Atlas municipal
des vingt arrondissements de Paris. 1925. Bibliothèque de l’Hôtel de Ville. Ville de Paris).

Each map image was manually annotated to create 8,362 polygons in total for each closed

shape. Such annotation procedure makes it possible to generate the target Edge Probability

Map using the boundaries of the polygons, or to assess the final performance of the vectoriza-

tion process.

The dataset was split into the subsets summarized in Table 2. The training set is an excerpt

from the top of the first sheet of the 1926 edition of the Atlas Municipal, while the validation set

is built using the lower part of this particular sheet which used as early stop mechanism to pre-

vent over-fitting of the networks. For training and validation, we have selected data from a single

map but with varying geographic locations, allowing us to evaluate the performance of our

designed pipeline under different geographical contexts. The test set is built using the third sheet

of the 1898 edition to test the generalizability of the networks for other historical maps with dif-

ferent scanning conditions. It enables us to assess the adaptability of our pipeline. Ideally, the

pipeline that exhibits superior performance on the testing dataset will enhance the digitization

quality of other maps in this atlas, ultimately optimizing the overall map digitization process.

3.3 Evaluation metrics

We mainly follow the evaluation protocol used by [5, 8], which relies on the COCO Panoptic

metric from [58]. Indeed, such metric effectively focuses on the number of shapes which are

correctly detected (from the point of view of the ground truth) or predicted (from the point of

view of the prediction), leaving the relative size of the shapes as an optional extra indication

which may or may not be considered. The COCO Panoptic quality (PQ) term is to measure

the quality of intersection of union (IoU) between detected and ground truth instances:

PQ ¼

P
ðti ;pjÞ2TP

IoUðti; pjÞ

jTPj þ
1

2
jFPj þ

1

2
jFNj

; ð1Þ

where the FPmeans the predicted instances have smaller overlap with the ground truth; and

FNmeans the ground truth instances does not pair with any predicted instances. The term PQ
can also be represented as the product of segmentation quality SQ and recognition quality RQ

Table 2. Summary of the training, validation and test sets used in this study.

Subset Atlas Municipal
train 4,500px × 9,000px (3343 inst.)

val 3,000px × 9,000px (2183 inst.)

test 6,000px × 5,500px (2836 inst.)

https://doi.org/10.1371/journal.pone.0298217.t002
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where:

SQ ¼

P
ðti ;pjÞ2TP

IoUðti; pjÞ

jTPj
; RQ ¼

jTPj

jTPj þ
1

2
jFPj þ

1

2
jFNj

: ð2Þ

When appropriate, we will show Precision and Recall maps computed using the same IoU

values as the COCO Panoptic scores, as introduced by [59]. Precision maps will show, for each

predicted shape, the value of the highest possible IoU between this predicted shape and every

ground truth shape, using a color scale. Recall maps will conversely show, for each ground

truth shape, the value of the highest possible IoU between this expected shape and every pre-

dicted shape, using the same color scale. These two qualitative indicators, complemented by a

study of the detection quality against shape size, can provide deeper insights about the perfor-

mance of the segmentation systems we are studying.

4 Improved training procedure for deep edge filtering

4.1 A better training configuration

[5] noted several limitations in their work. We address here the apparent overfitting of the

U-Net model with relatively low performance. We introduce four changes in the original train-

ing protocol reported by the authors:

• Data preprocessing: instead of centering pixel values by subtracting their mean value, we

normalize their values in the [0, 1] range by dividing the original RGB values by 255.

• Weight initialization: instead of using a Random Normal initialization, we use a Kaiming

initialization [60].

• Batch size: instead of the batch size of 1, we use a batch size of 4 (following restricted experi-

ments with sizes of 1, 2, 4 and 6).

• Pre-trained weights: instead of the weights provided for the seminal from BDCN network,

we now rely on the weights from the PyTorch Image Models (“timm”) library from [61] for

the VGG backbone.

We do not change the data loading strategy, and use the same code and seeds as the original

authors. We also use the same loss formulation; a binary cross-entropy with reweighing of

imbalanced classes. The results we report compare both training processes, indicated as “origi-

nal” or “proposed”.

We follow the training and selection procedure proposed by the original authors, which

unfolds as follows.

• Training: For a given Deep Edge Filter DEF, using the train set, train the network for

M epochs. At each epoch i, we obtain DEFi which generates an Edge Probability Map

(EPM).

• DEF selection: Using the validation set, compute the corresponding set of Edge Probability

Maps EPMi using DEFi for i 2 {0, . . .,M}, then using a naive Closed Shape Extractor CSEnaive
(described hereafter), select the best Deep Edge Filter DEFbest based the topological score
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(COCO PQ) of the predicted shapes:

shapesi ¼ CSEnaiveðEPMiÞ

DEFbest ¼ argminiðPQðshapesiÞÞ

• CSE parameter tuning: Then, using the best Deep Edge Filter DEFbest as a base, restore or

recompute EPMbest, the set of Edge Probability Maps for the validation set, and grid-search

for the best θ parameters of the Meyer Watershed for Closed Shape Extraction (CSEbest),
over the set of possible parameters O:

shapesy ¼ CSEyðEPMbestÞ

CSEbest ¼ argminyðPQðshapesyÞÞ

• Global evaluation: The final evaluation on the test set is performed by combining the best

Deep Edge Filter DEFbest and the best Closed Shape Extractor CSEbest to compute the shapes

from test set samples.

We use the same naive CSE as the original authors, i.e, a threshold of the EPM at 0.5 fol-

lowed by a connected component labelling. However, for a fairer comparison with the water-

shed CSE, we add an edge-thinning step which allows obtaining thin, 1-pixel-large shape

boundaries. We use the same Meyer watershed CSE as the original authors, considering the

following values for area filtering with value of 50, 100, 200, 300, 400, 500 number of pixels,

and for following values for dynamic filtering with value from 1 to 10 correspond to the dis-

crete value of single pixel with step of 1. The area and dynamic filters are the pre-filtering step

for removing non-meaningful local minimum for Meyer watershed. The area is used to merge

the regions with size lower than a specific area threshold, while the dynamic refers to the water

elevation that is used to merge with other regions. This procedure gives us the opportunity to

report the performance (on test set) of two different pipelines:

• Best Meyer watershed for the CSE stage: This variant reports the performance of the full

pipeline previously described, combining the best Deep Edge Filter DEFbest and the best

Closed Shape Extractor CSEbest to compute the shapes from test set samples.

• Naive connected component labelling for the CSE stage: This variant reports the perfor-

mance DEFbest, combined with the naive Closed Shape Extractor CSEnaive. The purpose of

reporting this simpler pipeline is to confirm the benefit of using an elaborated CSE stage

based on some watershed. Please note that, contrary to [5], we do not optimize the EPM

threshold parameter and only report results for a 0.5 threshold value.

Based on this procedure, we report in Tables 3 and 4 results for the following Deep Edge

Filters, as in the [5]: U-Net, HED and BDCN. For HED and BDCN, we report whether we

used pre-trained weights as weight initialization before fine-tuning, or train the network

from scratch.

These results allow drawing the following conclusions.

• The proposed training procedure significantly improves the performance over the original

one, exhibiting superior performance no matter which combination of DEF and CSE is used.
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• With the proposed training procedure, the HED architecture is more accurate, and the naive

Connected Component labelling exhibits the best performance for the CSE stage.

• For both HED and BDCN architectures, we confirm the superiority of the pre-trained net-

works which always exhibit a better performance than when trained from scratch.

• The U-Net architecture exhibits much higher generalization performance, and now achieves

the best overall performance on the test set with a COCO PQ score of 46.7%.

4.2 Joint optimization of deep edge filtering and closed shape extraction

As previously mentioned, [5, 8] optimized each stage of their segmentation pipeline indepen-

dently. To enable the joint optimization of both stages, we propose to run a parameter selec-

tion (using a grid search) for the CSE stage, for each epoch of the training of each Deep Edge

Table 4. COCO Panoptic scores on validation and test set for the training configuration study, using the Meyer Watershed (MWS) for CSE. The training configura-

tion from [5] is indicated as “Original” while our proposed method is indicated as “Proposed”. The following parameters are static, and their respective columns are hid-

den: the loss function is the binary cross entropy, the best DEF is selected using the protocol of [5], no augmentation is performed. For the architectures, * indicates pre-

trained variants.

DEF Archi. Training config. CSE Param. Evaluation Val. set Test set

σ δ PQ SQ RQ PQ SQ RQ

U-Net Proposed 50.0 8.0 59.8 87.7 68.2 46.7 86.9 53.7

HED Proposed 400.0 10.0 47.5 86.8 54.7 41.0 85.2 48.1

HED* Proposed 400.0 10.0 51.5 87.5 58.9 43.9 86.2 50.9

BDCN Proposed 400.0 10.0 48.9 86.9 56.3 41.3 85.8 48.1

BDCN* Proposed 400.0 10.0 54.7 88.6 61.7 46.4 87.1 53.3

U-Net Original 50.0 0.0 56.6 87.7 64.5 18.3 85.2 21.4

HED Original 200.0 10.0 50.5 87.2 57.9 35.6 84.6 42.0

HED* Original 300.0 8.0 52.8 87.6 60.3 38.4 85.5 44.9

BDCN Original 300.0 8.0 52.5 87.8 59.8 34.9 85.8 40.6

BDCN* Original 300.0 7.0 53.0 88.1 60.1 37.8 86.4 43.8

https://doi.org/10.1371/journal.pone.0298217.t004

Table 3. COCO Panoptic scores on validation and test set for the training configuration study, using a naive connected component labelling for CSE. The training

configuration from [5] is indicated as “Original”, while our proposed method is indicated as “Proposed”. The following parameters are static, and their respective columns

are hidden: the CSE used is a naive connected component labelling ([5] used a grid search to find the best threshold θ for EPM binarization while we use a fixed value of

0.5), the loss function is the binary cross entropy, the best DEF is selected using the protocol of [5], no augmentation is performed. For the architectures, * indicates pre-

trained variants.

DEF Archi. Training config. CSE Param. Evaluation Val. set Test set

θ PQ SQ RQ PQ SQ RQ

U-Net Original 0.9 34.8 80.5 43.3 8.1 78.2 10.4

HED Original 0.3 23.2 76.5 30.3 14.0 74.8 18.8

HED* Original 0.7 27.6 77.6 35.6 16.2 76.1 21.3

BDCN Original 0.9 27.7 80.6 34.4 10.2 80.4 12.7

BDCN* Original 0.8 27.6 82.1 33.7 8.9 82.8 10.7

U-Net Proposed 0.5 46.8 87.5 53.5 41.2 85.4 48.2

HED Proposed 0.5 52.2 86.8 60.2 42.7 85.2 50.1

HED* Proposed 0.5 32.4 87.0 37.3 44.5 85.2 52.3

BDCN Proposed 0.5 51.4 86.5 59.5 43.4 85.2 50.9

BDCN* Proposed 0.5 55.7 87.0 64.0 41.4 86.1 48.1

https://doi.org/10.1371/journal.pone.0298217.t003
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Filter. This process is implemented by merging steps 2 and 3 from the original training proce-

dure given in Section 4. At the end of each epoch i of the training of the DEF, generate the set

of Edge Probability Maps EPMi for the validation set using DEFi, then, using a grid-search,

select the parameters for the CSE stage which leads to the best performance (based on the

COCO Panoptic score) on the validation set. The overall, final performance is reported on the

test set (which was never used in any part of the joint optimization).

EPMi ¼ DEFiðval: setÞ

shapesi;y ¼ CSEyðEPMiÞ

fDEF;CSEgbest ¼ argmini;yðPQðshapesi;yÞÞ

We compare the following segmentation pipelines:

• Baseline (independent optimization of DEF and CSE stages). The best DEF parameters

(epoch) are selected based on the COCO Panoptic score obtained on the validation set,

using a simplified CSE stage: thresholding the EPM with a fixed value of 0.5, then extracting

the shapes using CC labelling. The best CSE parameters (for the watershed extractor) are

then computed for one DEF model only. This corresponds to the Best Meyer Watershed

(“best MWS”) variant in Section 4.

• Joint Optimization This variant tests all possible combinations of DEF and CSE configura-

tions for each epoch, reaching the best possible combination of DEF and CSE systems.

For the DEF stage, the set of possible parameters is defined as the different model trainings

obtained at each epoch, and for the CSE stage, we consider, as [5, 8], area filtering and dynamic

filtering for the watershed stage. Area filtering consists in discarding shapes with an area

smaller than a particular value (expressed in pixels here), and dynamic filtering discards the

shapes whose dynamic is smaller than a particular value (The dynamic value is in between [0,

255]). We used 6 different values for area filtering ranging from 50 pixels to 500 pixels (50,

100, 200, 300, 400, 500) (corresponding to small shapes according the dataset) and 10 values

for dynamic ranging from 1 to 10 with step of 1, exactly as in [5], for the Meyer watershed. All

DEF networks are training using a binary cross-entropy loss.

Quantitative and qualitative results are reported in Table 5 and Fig 2, for the same U-Net,

HED, and BDCN networks as previously, and show that the systematic superiority of the joint

optimization strategy over the baseline approach on the validation set (enforced by the selec-

tion protocol) does not always guarantee to reach the best performance on the test set for the

HED network and the BDCN network trained from scratch. However, it enables to further

Table 5. COCO Panoptic scores on validation and test set for the joint optimization study, using the Meyer Watershed for CSE and Joint Optimization (JO) for

DEF selection. The following parameters are static, and their respective columns are hidden: we use our proposed training configuration, the loss function is the binary

cross entropy, no augmentation is performed. For the architectures, * indicates pre-trained variants.

DEF Archi. CSE Param. Evaluation Val. set Test set

σ δ PQ SQ RQ PQ SQ RQ

U-Net 50.0 10.0 60.4 88.2 68.5 47.1 86.8 54.3

HED 400.0 10.0 47.6 86.8 54.9 40.8 85.0 47.9

HED* 400.0 10.0 51.8 87.5 59.2 43.7 86.2 50.7

BDCN 400.0 10.0 49.1 86.9 56.5 41.1 86.0 47.8

BDCN* 400.0 9.0 55.0 88.5 62.1 47.0 87.3 53.8

https://doi.org/10.1371/journal.pone.0298217.t005
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push the COCO PQ score of both U-Net and BDCN architectures, reaching a value of 47.1%

and 47.0% respectively, and defines a new reference score with 0.4 percentage point of

improvement over the best result.

5 Alternate architectures and training for deep edge filtering

5.1 Vision transformers

Vision Transformers tend to exceed CNN architectures in many tasks, thanks to their multi-

head self-attention with images [41]. We compare here two recent Transformer architecture

against the best U-Net variant obtained in Section 4.2: the Vision Image Transformer (ViT),

and the Pyramid Vision Transformer (PVT) [43] that can be easily adapted dense prediction

task compared to ViT.

As training Transformer architectures from scratch requires large amount of training data,

we initialize our network using weights pre-trained on the Cityscapes dataset [62] to speed up

the convergence of the models. We use the ADAM optimizer for both Transformers.

Fig 2. Predicted EPMs (Scale: 1:5,000, size: 500 px × 500 px) with U-Net, HED and BDCN with (*) or without pre-

trained weights. Pre-trained model produces less noise on the edges.

https://doi.org/10.1371/journal.pone.0298217.g002
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Quantitative and qualitative results, summarized in Table 6 and Fig 3, show that despite

their larger receptive field, transformer architectures reach much lower validation and test

scores in our experiments, compared to the traditional, U-Net architecture. This low perfor-

mance is caused by the fact that ViT has a low-resolution output, and that ViT and PVT may

require a much larger dataset for fine-tuning. However, the performance of these architectures

Fig 3. Zigzag effect of EPM produced by ViT architecture.

https://doi.org/10.1371/journal.pone.0298217.g003

Table 6. COCO Panoptic scores on validation and test set for transformer architectures. The following parameters are static, and their respective columns are hidden:

we use the Meyer Watershed (MWS) for CSE and Joint Optimization (JO) for DEF selection, we use our proposed training configuration, the loss function is the binary

cross entropy, no augmentation is performed. For the architectures, * indicates pre-trained variants.

DEF Archi. CSE Param. Evaluation Val. set Test set

σ δ PQ SQ RQ PQ SQ RQ

U-Net 50.0 10.0 60.4 88.2 68.5 47.1 86.8 54.3

ViT* 500.0 10.0 38.6 80.9 47.8 34.7 80.4 43.1

PVT* 400.0 9.0 45.7 85.4 53.5 36.6 83.0 44.2

https://doi.org/10.1371/journal.pone.0298217.t006
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is not always worse than the U-Net one, especially for larger shapes (log(area) > 15), where

ViT outperforms U-Net. Some combination of these systems may be possible to obtain the

best possible performance, keeping only smaller objects from U-Net and larger ones from ViT

(shown in Fig 4). Regarding PVT, its overall performance is not better compared to the condi-

tions (baseline U-Net) we tested it against. Looking at the values of the best parameters for the

area and dynamic filtering, we can see that both ViT and PVT models require stronger filtering

compared to U-Net. This suggests that Transformer-based models are suffering from an

important amount of noise image in the predicted EPMs.

5.2 Topology-preserving loss functions

Several loss functions were designed in the literature [38, 39, 49] to better comply with the

topological requirements of several tasks. Most of these loss functions need to be combined

with a classical binary cross-entropy loss. We use a λ parameter to scale the value of the topo-

logical loss in the final loss.

L ¼ LBCE þ lLtopological:

We report here the performance of a U-Net network trained alternatively with each of the

following loss functions: (a)MOSIN: We set the λ = 0.001; (b) BALoss: We set the λ = 1000; (c)

Topoloss: We set the λ = 0.01; (d) Binary cross-entropy: the baseline. All variants are trained

using ADAM optimizer except for the Topoloss one, which is trained using SGD according to

authors’ recommendation. We set the initial learning rate to 1 � 10−4, a momentum of 0.9 and

a weight decay of 1 � 10−5.

We also report results for the two following pipelines:

• Naive connected component labelling (Abbr. cc) for the CSE stage. This variant, as

detailed in Section 4 improved training for DEF, enables to measure the quality of the EPM,

from a topological point of view.

• Joint Optimization. This variant, detailed in Section 4.2, is based on the joint optimization of

the Deep Edge Filter and Closed Shape Extraction stages, and leads to the best performance.

Fig 4. Shape statistics of convolutional-based (U-Net) and transformer-based (ViT and PVT) models. The figure represents the average IoU with

step of 0.5. The green dash line corresponds to the distribution of number of regions with different area values. ViT and PvT transformer-based

architecture have better performance for detecting large objects compare to U-Net architecture where U-Net are good at detecting small objects

(compare to transformer).

https://doi.org/10.1371/journal.pone.0298217.g004
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Table 7 summarizes the results for the different variants. It shows that despite the BALoss

variant is able to achieve a better performance on the validation set, it remains slightly less per-

formant than the baseline version on the test set. Hence, the traditional binary cross-entropy

seems to remain the more appropriate loss function for this training protocol, even if the

BALoss seems promising for a dataset which does not have much domain shift.

5.3 Data augmentations strategies

Online data augmentation at training time can improve the generalization performance of the

Deep Edge Filters. We consider the following geometric augmentation techniques, and the

examples of augmented figures are shown in Fig 5: affine transformation, homography trans-

formation (full perspective), and thin-plate splines (TPS) transformation. We also consider

contrast change for signal augmentation. Likewise, we study the effect of separate and com-

bined geometric and contrast augmentation. The joint optimization protocol with U-Net

model is described in Section 4.2.

Furthermore, we choose contrast g(x) = α � f(x) through image f(x) range of α from 0.8 to 1.2

(to prevent unrealistic dark or bright cases which will not occur in scanned maps) with uniform

distribution. For the setting of geometric transformation, we change settings in the work of [54]

to prevent large geometric transform which is not happened in different historical map sheets.

For affine transformation, we choose rotation angle y � Uð� 10
�

; 10
�

Þ (U is the uniform distri-

bution.), translation tx; ty � Uð� 0:1; 0:1Þ, anisotropic scaling factor l1; l2 � Uð0:9; 1:1Þ and

shear angle � � Uð� 10
�

; 10
�

Þ. For homography transformation, we add a random translation

sx; sy � Uð� 0:1; 0:1Þ to four control points in the corner. For TPS transformation, we use 9

points with random translation dx; dy � Uð� 0:1; 0:1Þ to prevent strong deformations.

Fig 5. Image examples with four different augmentation methods.

https://doi.org/10.1371/journal.pone.0298217.g005

Table 7. COCO Panoptic scores on validation and test set for study on topological loss functions. The following parameters are static, and their respective columns are

hidden: we use the Meyer Watershed (MWS) for CSE and Joint Optimization (JO) for DEF selection, we use our proposed training configuration, no augmentation is per-

formed. For the architectures, * indicates pre-trained variants: the network is trained first using binary cross-entropy, then using a custom loss.

DEF Archi. Loss function CSE Param. Evaluation Val. set Test set

σ δ PQ SQ RQ PQ SQ RQ

U-Net binxent 50.0 10.0 60.4 88.2 68.5 47.1 86.8 54.3

U-Net* bal 50.0 1.0 63.1 87.6 72.0 45.6 86.3 52.9

U-Net* topo 100.0 6.0 59.9 88.1 68.0 36.9 84.2 43.8

U-Net* mosin 50.0 1.0 57.7 88.3 65.3 36.0 87.4 41.2

https://doi.org/10.1371/journal.pone.0298217.t007
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Table 8 reports the results for the various combinations. All methods lead to improved per-

formance on the test set. The combined use of contrast and TPS augmentations leads to the

best COCO PQ score, reaching 51.1%.

5.4 Lightweight architecture

The superior performance of the U-Net architecture is vital for Deep Edge Filtering stage. We

also test mini-U-Net with a lower amount of parameters of this architecture. We report the

result of an additional experiment with a smaller variant of the U-Net architecture, referred to

as “mini U-Net”. This “mini U-Net” contains only 4 M parameters, compared to the 17 M

parameters of the baseline. We train both architectures with the joint optimization protocol

described in Section 4.2.

Results, summarized in Table 9, show that despite a much smaller footprint, the smaller

implementation is still very competitive, with a drop of 2 points, from 47.1 to 45.1, of the

COCO PQ score on the test set. As a conclusion, with some applications which require the lim-

ited memory, mini U-Net would be a good choice.

6 Alternate watershed implementations for closed shape extraction

[5, 8] considered two approaches for CSE: a naive, baseline system based on connection com-

ponent labeling (after thresholding the results of the DEF stage). A more elaborate one based

on the Meyer watershed algorithm, which can recover weak edges as long as they are stronger

than a minimal dynamic and enable to create shapes larger than a minimal area. We consider

one extra approach: a Deep Watershed Transform, which integrates the DEF and CSE stages

in a single pipeline.

Table 8. COCO Panoptic scores on validation and test set for the augmentation study. The following parameters are static, and their respective columns are hidden:

model architecture is U-Net (trained from scratch), we use the improved training variant, the loss function is the binary cross entropy, the best DEF is selected using joint

optimization, and Meyer Watershed (MWS) is used for CSE.

DEF Augmentation Contrast streching Geometric transform CSE Param. Evaluation Val. set Test set

σ δ PQ SQ RQ PQ SQ RQ

no none 50.0 10.0 60.4 88.2 68.5 47.1 86.8 54.3

yes none 100.0 6.0 57.3 88.2 65.0 47.2 86.7 54.4

no Aff. 100.0 9.0 61.0 87.9 69.4 47.7 86.5 55.1

yes Aff. 100.0 10.0 61.1 88.1 69.4 50.7 86.8 58.5

no Hom. 200.0 10.0 58.4 87.9 66.5 49.6 86.9 57.1

yes Hom. 200.0 10.0 59.5 88.2 67.4 50.4 86.7 58.2

no TPS 100.0 10.0 59.8 88.3 67.8 47.9 86.9 55.1

yes TPS 100.0 7.0 59.6 88.2 67.5 51.1 86.8 58.8

https://doi.org/10.1371/journal.pone.0298217.t008

Table 9. COCO Panoptic scores on validation and test set for U-Net variants. The following parameters are static, and their respective columns are hidden: we use our

proposed training configuration, the loss function is the binary cross entropy, no augmentation is performed, DEF selection is performed with Joint Optimization (JO),

and we use the Meyer Watershed (MWS) for CSE.

DEF Archi. CSE Param. Evaluation Val. set Test set

σ δ PQ SQ RQ PQ SQ RQ

U-Net 50.0 10.0 60.4 88.2 68.5 47.1 86.8 54.3

mini U-Net 100.0 10.0 56.7 87.7 64.6 45.1 86.0 52.5

https://doi.org/10.1371/journal.pone.0298217.t009
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The training strategy from [56] is to train a direction network and a watershed network sepa-

rately, then perform fine-tuning in an end-to-end style. However, we found that the overfitting

of both direction and watershed networks make fine-tuning hard to converge, while training the

direction network first and fine-tuning the two networks together can achieve better perfor-

mance in terms of COCO Panoptic score. Furthermore, instead of using the original architecture

from [56], we used two U-Net architectures for both direction and watershed networks to main-

tain better spatial information for each pixel. We trained the direction network using an ADAM

optimizer with the initial learning rate of 1 � 10−5, a momentum of 0.9 and a weight decay of 1 �

10−5. Then, end-to-end fine-tuning used the same settings, except for a smaller learning rate of 1

� 10−6. In order to ensure a fair comparison with other approaches, we generated object bound-

aries with the following process: we first performed the equivalent of a “watershed cut” by select-

ing the highest value on the learned watershed levels (this creates thick boundaries), then we

performed an edge-thinning to recover thin, 1-pixel large object boundaries.

We compare in Table 10 the results of the Deep Watershed approach and of the leading

approach, composed of a U-Net combined with a Meyer Watershed, trained using the joint

optimization. Despite encouraging performance, the Deep Watershed fails to generalize on

our test set, reaching much lower performance than our leading approach. It is due to the fact

that deep watershed learns an approximation function which transforms image into watershed

level but without providing any topology guarantee (closed shapes) in the final prediction of

watershed levels due to limited spatial context.

7 Conclusion

In this paper, we comprehensively evaluated the most suitable solution for automatic and effi-

cient vectorization of historical maps. We explored the numerous possibilities on both sides of

the two-stage framework proposed in [5]. We tested the main state-of-the-art variants either

separately or simultaneously. We found large improvements for variants joint optimization

(Deep Edge Filtering + Meyer watershed), minor improvements for variants of topology-

related loss functions, and decrease in performances for variants Transformer-based archi-

tecture, lighter version of U-Net and deep watershed segmentation techniques.Joint opti-

mization is proved to be an effective tool to select the best combinations of Edge Probability

Maps and watershed segmentation. Moreover, the BALoss is the best loss among all the topol-

ogy-related variants which activates the correct boundaries in the predicted EPM and

decreases the number of weak pixels that leads to topology failures. Also, the combination of

topology-related loss functions with the joint optimization process provides an improvement.

We tested Transformer-based architectures with self-attention mechanism, and they are

proved to be effective in detecting large instances compared to Convolutional Neural Net-

works. However, they fail in detecting fine-grained local cues which leads to skip finding

objects with small areas. Concerning data augmentation strategies, contrast stretch combines

with thin-plate-spline has the most generalizability. A lighter version of U-Net (mini-U-Net)

Table 10. COCO Panoptic scores on validation and test set for U-Net+Meyer Watershed vs Deep Watershed. We use the MWS as a post-processing without filtering

on Deep Watershed outputs to thin the prediction edges. The following parameters are static, and their respective columns are hidden: we use our proposed training con-

figuration, the loss function is the binary cross entropy, no augmentation is performed, and DEF selection is performed with Joint Optimization (JO).

DEF Archi. CSE Method Param. Evaluation Val. set Test set

σ δ PQ SQ RQ PQ SQ RQ

U-Net MWS 50.0 10.0 60.4 88.2 68.5 47.1 86.8 54.3

DWS MWS 0.0 0.0 54.0 87.4 61.7 28.5 84.9 33.5

https://doi.org/10.1371/journal.pone.0298217.t010
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was tested, and it showed similar performance compared to the original version of U-Net,

which can be useful in some historical map applications with limited memory. Nonetheless,

due to the complexity and challenges structure of historical maps, more parameters of net-

works are necessary to receive better filtering performance. We also modified the end-to-end

learnable watershed level (Deep watershed) for adapting to the historical map vectorization

tasks. We shown that worse performance is achieved compared to our joint optimization pro-

cess since it does not guarantee the topology properties in the predicted likelihood image. We

wish this work can help researchers to extract high vectorization quality from historical maps

as well as leverage the human annotation effort.

Digitized maps provide numerous research opportunities that offer substantial benefits to

different sectors. These opportunities include analyzing historical maps to uncover the growth

and transformation of cities and urban areas, which can be particularly valuable for municipal

planning. They are also a valuable resource for archaeologists, aiding in the mapping and

preservation of archaeological sites and cultural heritage locations. Furthermore, digitized

maps facilitate the examination of historical maps, enabling a deeper understanding of past

geopolitical boundaries and territories. This capability is beneficial for historians and cartog-

raphers alike as they explore the history of cartography and mapmaking processes. To con-

lcude, it is important to note that these applications only scratch the surface of the wide-

ranging possibilities made accessible through digitized maps. The automated map digitization

process will greatly accelerate research progress across numerous fields.

The data, codes, and instructions that support the findings of this study are available at the

public Zenodo platform https://zenodo.org/records/10567765 and Github repository https://

github.com/soduco/Benchmark_historical_map_vectorization.
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