
HAL Id: hal-04472970
https://hal.science/hal-04472970

Preprint submitted on 22 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An AI-as-a-Service Platform for an Artificial Intelligence
of Things (AIoT)
Ali Nadar, Jérôme Härri

To cite this version:
Ali Nadar, Jérôme Härri. An AI-as-a-Service Platform for an Artificial Intelligence of Things (AIoT).
2024. �hal-04472970�

https://hal.science/hal-04472970
https://hal.archives-ouvertes.fr

An AI-as-a-Service Platform for an Artificial
Intelligence of Things (AIoT)

Ali Nadar, Jérôme Härri
EURECOM, 450 route des Chappes, 06904 Sophia-Antipolis, France

ali.nadar, haerri@eurecom.fr

Abstract—With decentralized Machine Learning (ML) strate-
gies and modern edge Tensor Processing Unit (TPUs), smart
devices are no longer only consumers but also producers of
Artificial Intelligence (AI), transforming an Internet of Things
(IoT) into a global and decentralized Artificial Intelligence of
Things (AIoT). With the availability of a large amount of AI
actors comes not only the challenge to discover and network
with them, but also the potential to use their AI capabilities
as a service. However, the heterogeneity of the AI actors, their
AI capabilities, AI contextual environment, mobility or even
the AI characteristic available or sought requires not only
a robust IoT architecture but also flexible AI semantics. In
this paper, we present an AI-as-a-Service platform assisting AI
consumers to identify existing AI tailored to their needs among
the AIoT. We describe the architecture, the APIs, the message
flows and AI semantics to identify the most appropriate AI
workers when and where needed to efficiently generate AI models
from distributed vehicles. As a proof-of-concept, we select an
application scenario demonstrating the trainability/changeability
of AI models between vehicles according to their context using
the CARLA driving simulator.

Index Terms—AI-as-a-Service, AI-of-Things, Machine learn-
ing, Ontology, Semantic, Driving Simulator, CARLA.

I. INTRODUCTION

With advances in sensing, communication, and networking,
autonomous vehicles and unmanned aerial vehicles (UAVs) are
expected to play a vital role in a variety of Internet-of-Things
(IoT) areas, including Industry 4.0, logistics, transportation,
and public safety. Embedded with their multitude of sensors,
these IoT actors are expected to be a significant source of
data, which can be digested by state-of-art AI models to either
improve the operation of the IoT or as functions supporting
the IoT actors themselves. The inefficiency to share large
amount of data in the IoT coupled with the significant energy
requirement to train AI models on IoT infrastructures and the
availability of modern Tensor Processing Units (TPUs) enabled
an alternative strategy to distribute the AI tasks directly to the
IoT actors.

Providing AI-as-a-Service (AIaaS) yet faces various chal-
lenges. First, coordination would be required for decentral-
ized AI mechanisms to identify and cherry-pick the most
appropriate AIoT entities to cooperatively perform AI tasks.
Second, AI knowledge needs to be named and compared for a
match between demand and supply, and AI ontologies should
be defined for AI knowledge apparently named differently to
be inferred actually as similar. Finally, trust and traceability
should be enforced to guarantee the service outcome. In this
paper, we present an AIaaS platform that allows users to play
as AI actors by accessing and utilizing ML models without
the need for heavy investment in infrastructure and expertise
in producing such models.

Due to the diversity of user’s environment, the available
contexts may change over time. It is challenging to anticipate
a complete set of contexts while we design a context aware
system. In this paper, we propose a context modeling approach
which can dynamically handle various context types and
values. More specifically, our middleware platform is context-
aware embedded system designed and implemented to deploy
context management system for providing services to vehicles
depending to their contextual information. We use ontologies
to enhance the meaning of a user’s context values and auto-
matically identify the relations among different context values.
Our contributions are fourfold: first we provide an overview of
potential challenges to address AIaaS in AIoT; second we pro-
pose a centralized AI-as-a-Service (AIaaS) architecture called
Infrastructure Assisted Knowledge Management (IAKM); third
we propose a Map-based ML ontology for the metadata of
AI-models and our approach for proximity metrics; finally,
we conduct a tangible experiment showcasing the integration
of our IAKM platform with CARLA driving simulator. The
platform is available as open-source under an Apache 2.0
license and is developed as a multi-docker container platform.

The rest of this paper is organized as follows: Section III
introduces AIoT, whereas Section IV, we present the IAKM
platform and its components. We describe in Section V
our proposed ontology and the similarity search mechanism,
whereas in Section VI, we demonstrate an experiment for
IAKM-CARLA implementation and integration scenario, in
Section VII we summarize and conclude the paper.

II. LITERATURE SURVEY

A literature survey on the benefits and challenges of AI-
driven applications in IoT domains has been performed, and
the means of creating/consuming knowledge on decentralised
learning for distributing knowledge, as well as on Map-
based ML ontology for vehicular systems and AI proximity
metric have been proposed. In AIoT architectures literature,
in [1] Zhang and Tao made a comprehensive survey of
AIoT, covering AIoT computing architectures; AI technologies
for empowering IoT with perceiving, learning, reasoning,
and behaving abilities; promising AIoT applications; and the
challenges and opportunities facing AIoT research. In [2],
an architecture for an envisioned Knowledge IoT Platform
has been proposed, such proposal needs more elaboration
for components architecture, technology selection as well
as the deception of the followed methodology to manage
the messages processing between different components of
Edge/Client. Nevertheless, we noticed based on our survey
that the concept of AI-driven applications and AI knowledge
interchangeability remains on the conceptual/survey level and

Figure 1: Diverse semantic graph structures

its implementation or format is left for future work. This paper,
thus, provides an actual proposed an AIaaS platform and open
API enabling AI actors to produce, train or consume AI models
based in their capabilities and contexts. In Core map-based
machine learning ontology literature, Braga et al. [3] proposed
an ontology to represent the knowledge around the Machine
Learning discipline, they considered seven main classes, which
provides a natural structuring of ML parameters Algorithms,
Applications, Dependencies, Dictionary, Framework, Involved,
MLTypes. In [4] Lihua Zhao et al. proposed a core map
ontology for vehicle situation understanding. The proposed
ontology introduces the main classes of the map ontology. A
road consists of junctions and road segments, where a road
segment consists of an arbitrary number of lanes. In semantic
relatedness and similarity in map features, [5] José Paulo et
al. propose an algorithm to measure the relatedness of two
terms using the knowledge base of BDpedia by computing
the semantic relatedness of two terms as proximity rather than
distance, as in similar ontology based approaches. Searching
for data using a pure SPARQL query requires a full schematic
knowledge about the knowledge graph, including nodes, prop-
erties and their relationships. Although lots of efforts have
been devoted to the graph similarity search, [6]–[11], they
suffer from various drawbacks, where most of them focus on
the structure similarity, such as SAPPER [7], kGPM [8] and
Ness [7]. SAPPER [7] investigates the problem of approximate
subgraph search allowing some edges unmatched. It does not
support the vertex/edge label substitution. kGPM [8] proposes
a graph pattern query, which allows a path to match an edge.
However, it restricts that the vertex/edge labels specified in
the query graph q should be exactly matched. Exploiting the
neighborhood-based similarity measure, Ness [7] and NeMa
[9] try to identify the top-k approximate matches of a query
graph q. Generally speaking, most of these methods con-
centrate on the graph structure similarity without considering
the semantic similarity. However, in RDF graphs, two graph
patterns may have large structural dissimilarity, such as Fig.
1 (a), (b) and (c), but they describe the identical semantic
meaning for roundabout.

III. ARTIFICIAL INTELLIGENCE OF THINGS (AIOT)

Artificial Intelligence of Things (AIoT) relies on a service-
oriented IoT architecture to support decentralized large-scale
dynamic AI management. In an AIoT, every component pro-
duces or consumes AI-based knowledge. It is therefore likely
that an AI required by a particular service already exists in
the AIoT and can be transferred rather than being recreated if
it may be discovered.

Applying decentralized AI functions to IoT is however not
straightforward due to peculiar AI requirements. Considering
a risk assessment AI model for the roundabout scenario as

described by Duncan et al. in [12] and summarily illustrated
in Fig. 2, AIoT resources are defined not only in the spatial
domain (where) but also in the temporal domain (when). Red
vehicles train as long as they remain in the roundabout, blue
vehicles may train as soon as they enter the roundabout, and
other grey vehicles are simply not suited for training, either
because they never access the roundabout or do not have
the required capabilities. AIoT capabilities must therefore be
identified in space and time and match with the requirement
of AI models.

Figure 2: Space & time AIoT resources for AI functions.

capability status(t) AI role(t)
A able to use asking to use AI-model AI consumer

B,C able to train training AI-model AI producer
D able to train ready for training AI-model AI producer
E not-able to train No computation resources -
F not-able to train unfitted vehicle class -
G able to train can train in roundabout -
H able to train exited roundabout -

Table I: AIoT resources for AI functions

Accordingly, the success of AIoT will depend on services
functions capable, among others, to solve the following chal-
lenges:

• Naming - what kind of AI model is it ?
• Context - where shall AI models be inferred/trained ?
• Timing - when shall AI models be inferred or trained?
• Processing - how can AI models be trained ?
Would these challenges be solved, an AIoT has the potential

to move the AI paradigm from traditional AI-as-a-Duty (i.e. I
create the AI I need) toward AI-as-a-Service (i.e. I create AI
for someone else).

IV. INFRASTRUCTURE-ASSISTED KNOWLEDGE
MANAGEMENT (IAKM)

We present in this section the Infrastructure-Assisted
Knowledge Management (IAKM) platform, as a centralized
implementation of AIaaS. The IAKM architecture consists of
a server and a client entity as depicted on Fig. 3. IAKM server
is accessed by An AI actor (consumer/producer) through an
IAKM agent over a RESTful AIaaS-APIs. The IAKM agent
may be located either on a vehicle or integrated in an external
entity requiring IAKM services.
A. IAKM server

The IAKM server corresponds to the backend processing
of the AIaaS framework, it consists of a message passing

Figure 3: IAKM actor/server architecture for AIaaS

component (MQTT), a data access management engine and
a Knowlege Management (KM) engine. For data storage, it
has a RDF knowledge graph database to store the metadata of
AI models as well as a file database to store byte-codes AI
models. Their roles are described below:

• Message Passing - provides publish/subscribe mecha-
nisms to exchange information either between the client
and the server or between different servers.

• Databases - provides a dual-storage approach, utilizing
file format storage database like ’MongoDB’ for AI mod-
els and graph format storage database like ’GraphDB’ for
context storage in RDF triples

• Knowledge Management - identifies AI models available
locally according to the AI engine proximity metric, or
coordinate the localization and predictive caching of most
appropriate AI models.

• Data Access Management - maps the AI model meta-
data to its byte-codes based on the KM requests,
also handles the transforms of graph-based queries into
SPARQL/Lucene query.

The IAKM server may be located either in the Cloud or at a
5G MEC or even on edge devices, and will adopt the semantic
context corresponding to its location or scope (i.e. to optimize
AI model caching).

B. IAKM Agent

IAKM agent could communicate with many AI actors, it
manages user request in threefold; first it exposes AIaaS-
API to receive request content. Second, using the semantic
functions described in section V-C, it interprets the graph-
based query to validate, analyse and align the query with the
structure of IAKM ontology. Finally, it communicates with
IAKM server microservices using publish/subscribe messaging
pattern. The described AIaaS-API as depicted on Fig. 3 is an
HTTP RESTful service, all requests must be in JSON/RDF-
format that describes the Actor/AI context. The proposed
endpoints are as following:

• Register - a client (AI actor) announces his availability to
train AI model for a given context. It sends a registration
request indicated by PUSH method and http://agent-
host:agent-port/actor available train/{context} as url

• Unregister - a client (AI actor) removes his
availability for a given context, either for not more
fitting his previous context or for saving resources.
It sends a remove registration request indicated
by DELETE method and http://agent-host:agent-
port/actor available train/{context} as url

• Find - while approaching a complex situation, an AI
actor (i.e. Consumer) asks for an AI model accord-
ing to a giving context. It sends a search request
indicated by GET method and http://agent-host:agent-
port/ai model/{context} as url.

• Store - a client (Producer) already owning a trained
AI model for a given context, it sends a save request
indicated by PUSH method using http://agent-host:agent-
port/ai model/{context} as url and the AI model byte-
codes in the message body.

C. AI actor

In our proposed architecture, AI actor acts as a client
for IAKM platform, it could be a consumer, producer or
even as an AI worker with ML model training task. The
actor communicates with IAKM agent using RESTful API
requests, the request should include a graph-based query that
contextually describes the needed AI, the map context and the
capabilities of an AI actor.

V. MAP-BASED ML ONTOLOGY AND SEMANTIC

In fact, AIaaS framework enables AI actors to experi-
ment with AI for various purposes without a large initial
investment, these actors could belong to a various distributed
and heterogeneous systems. In vehicular systems domain,
every stakeholder has its own representations of knowledge,
concepts and proprieties. Therefore the data interpretation,
interoperability/interchangeability between the different AI
actors becomes challenging due the semantics ambiguity and
non-shared vocabularies. Therefore, a common knowledge
representation method is necessary to harmonize this diverse
data by providing a common framework for interpretation. In
this section, we focus on ontology/semantic activities; first
we define our domain of consideration; second we design an
ontology for IAKM platform; finally we describe our approach
to implement the AI semantic similarity search.

A. Knowledge Domains

Without loss of generalities, we define in this work an
IAKM ontology that includes terms and naming related to the
application of machine learning in vehicular systems. For this
purpose, we describe the main domains/concepts required to
create such ontology: ”Model” is the conceptual class for all
instance of AI models,”Framework” is the machine learning
framework required to manage AI models. ”Algorithm” is
a set of mathematical processes or techniques by which an
AI system conducts its tasks. ”Dependency” describes the
required inputs and the expected output for AI model. ”Dic-
tionary” is the acronyms, nicknames and phrases for which
an interpretation is required. ”MLType” identifies the type
of machine learning (supervised, unsupervised, reinforcement

learning ...). ”Actor” (respresents the IAKM client, it could
be) is all types of AI actors who created and improved the
available resources to facilitate the use and application of
Machine Learning the information of actors managing AI
models. ”Map” describes the contextual topology on which
an AI application (model) could be used.

B. Ontology

Braga et al. [3] proposed an ontology adapted to Machine
Learning, which provides a natural structuring of ML param-
eter. Zhao et al. [4] presented a core ontology for autonomous
driving. Inspiring by their contributions, in our study as
depicted on Fig. 4 we build an IAKM ontology that combines
the two ontological aspects. On top of it, we define 3 additional
entities which are directly related to our IAKM platform;
Actor to store actor capabilities and information as well as to
register/unregister the availability of AI workers according to
their context, Model to bind entities and store model metadata
and Map to describe the map context correspond to the AI
model.

Figure 4: Proposed IAKM Ontology

C. Semantic Search

AI semantics represent a critical function of AIaaS, and
needs to remain flexible enough to identify the most proximate
AI, when the request is either incomplete or an exact AI model
is not available. Compared to IoT or Named Data Networking
(NDN) semantics, it is highly unlikely that a globally agreed
way to describe an AI model or its usability context could be
defined, considering that any AIoT component may produce
any model under any condition. However, ontologies and
knowledge graphs are designed not only to describe content
but also to capture and infer relationships between data el-
ements. In the IAKM, semantic search mechanism is a data
search technique which uses the intent and contextual meaning
behind a search query to deliver more relevant results. In this
work, we present our methodology for searching the best fitted
AI model according to its metadata stored in graph database
and therefore find the unique identifier of AI data as stored
in file database. In Fig. 5, we describe our approach for AI
semantic search in IAKM platform

According to Fig. 5, the graph-based query passes through
multiple functions across IAKM component before being
landed at the SPARQL query endpoint. we describe below
the processing functions as the following:

Figure 5: Semantic processing & Similarity search

1) Query Validation Function (QVF): - In our approach,
for storing/retrieving AI metadata using query-based graph,
every node in the graph should be an instance of a class
included in IAKM ontology concepts, in other RDF term
every instance should has ”rdf:type” predicate to one class
within Model, Algorithm, Framework, Dependency, MLType
and Actor, otherwise query graph must be rejected. We except
the Dictionary class as it is not instantiable and considered as
a static class that contains all acronyms definitions.

2) Context Map Alignment Function (CMAF): - In auto-
motive industries, car manufacturers provide HD-maps, which
may have their own structure, describing the road map, road
structure, and spatial composition based on a existing road
centerline concept. In such heterogeneous map description vo-
cabularies context, the IAKM platform uses semantic matching
to find the structural commonalities between the user’s map
context expression and the IAKM ontology definitions. To this
end, IAKM platform presents a semantic matching function
called Context-Map Alignment Function (CMAF) that uses
Natural Language Processing (NLP) to align large language
expressions with IAKM ontology. For this purpose, we use
NLP-as-a-Service powered by OpenAI API with the large
model gpt-3.5-turbo, this model could semantically select the
closest defined ontology concept to the unknown requested
map context expression.

semMatch(gpt, x, nodes) =

{
node ifx ∈ Roads

∅ ifx /∈ Roads

The function ”semMatch” takes as parameters; ’gpt’ for
openAI model, ’x’ for user unknown expression and ’nodes’
for list of all map context sub-classes of IAKM ontology. For
instance; CMAF could ask openAI with this message: ”in
one word, in roads context, which one is closer and could
mean ’circular intersection’: Lane, Junction, Intersection,
Roundabout, Turn, RoadSegment. In this case the function
matches the term ”circular intersection” with the ontology
class ”Roundabout”, which has semantically the same mean-
ing. In contrast, for tricky expressions in road context, such
as ’circular computer’, the function catchs the unrelatedness
by answering: ”None, it’s not a perfect match for a ’circular
computer’ in a roads context”

3) Literals Processing Function (LPF): - This function
helps to make inference-like process by finding the common
representation between the RDF global-KG attributes with

query graph attributes (RDF literals). In our study, we use
the exact match for attributes similarity as we keep LPF in
conceptual level.

4) SPARQL & Lucene: - In IAKM server,we propose a
similarity search technique using SPARQL query with Lucene
connector to determine how relevant a given stored AI model
is to a consumer query. Lucene uses the Boolean model to first
narrow down the documents that need to be scored based on
the use of Boolean logic in the query specification. GraphDB
Lucene engine is a Full-Text Search (FTS) using native Lucene
queries. Technically, our proposed similarity search is in 2
dimensions; first, transforming the graph triplets into SPARQL
query constraints in order to find a similar representation in
global IAKM RDF graph. Second, transforming the query lit-
eral attributes into FTS terms in order to find the most relevant
AI metadata available in IAKM RDF graph by leveraging
graphDB Lucene connector.

VI. IAKM IMPLEMENTATION WITH CARLA
Having established the theoretical outlines for IAKM archi-

tecture, map-based ML ontology and semantic search mech-
anism, our focus now shifts to presenting a clear experiment
that highlights the IAKM platform’s capabilities. Our approach
involves leveraging the capabilities of the CARLA driving
simulator to animate the interaction between IAKM and AI
actors within the virtual environment when an AI actor is
symbolically represented using a CARLA vehicle. CARLA
is an open-source simulator for autonomous driving research,
it has been developed from the ground up to support develop-
ment, training, and validation of autonomous driving systems.
In the following subsections we describe the implementation
steps for the experiment; First, we devise a ML control model
that caters to different types of road junctions, then we delve
into the requests processing among CARLA vehicles acting
as AI actors, adopting consumer/producer roles and the IAKM
server, and finally we explain the results of experimenting with
the proposed traffic scenarios.

A. ML model for dynamic decision control

To ensure the realism of our experiment in simulating AI
exchange between CARLA vehicles and the IAKM platform,
it is imperative to utilize an authentic machine learning model.
Without loss of generalities, in this work we introduce a
simplified ML model designed to make decision controls
for vehicles while nearing a complex traffic situations like
intersection, roundabout, etc.. Thus, we opted for the Random
Forest Classifier (RFC) due to its robust ensemble learning
capabilities. Ensemble methods, such as RFC, are known for
their ability to combine multiple weak learners to enhance
overall model performance. This is particularly advantageous
in our context of vehicle decision control, where the system
can benefit from the collective intelligence of diverse decision
trees within the random forest.

The proposed ML model aims to avoid collision, as shown
in Fig. 6, we identify a Collision-Spot in road way-points
where the paths of the two vehicles intersect, and then we
define a control area (in red) where the ego vehicle must
exercise caution, specifically by according priority to incom-
ing vehicles. Building upon this identification, we can now
precisely define four key features that form the foundation of
our model:

Figure 6: AI model for intersection management

• f1: Time-To-Collision for ’ego’ vehicle. Using speed and
distance metrics, we determine the time interval before
the ego vehicle reaches the identified collision point.

• f2: Time-To-Collision of ’target’ vehicle. Using speed
and distance metrics, we determine the time interval
before the ego vehicle reaches the identified collision
point.

• f3: speed of the ego vehicle
• f4: normalized float distance in [0,1] interval for ’ego’

vehicle within the red control area.
While ego is in control area, data collection is performed

at each time step to capture the 4 input features and the
control tag as output label for RFC model, we pick up the
label according to the mapping table using the pair of (throttle
& break) of actual dynamic control. Once ego vehicle leaves
the control area, ego vehicle trains its ML model using the
collected dataset where the combination of features helps the
model learn patterns and make accurate predictions. For the
categorical output label, we identify 15 dynamic control labels
as showing in Table.II

Dynamic Control
Throttle Break Label

0.0 < t ≤ 0.1 0 t1
0.1 < t ≤ 0.2 0 t2

.....
0.6 < t ≤ 0.7 0 t7

0 0 n
0 0.0 < b ≤ 0.1 b1
0 0.1 < b ≤ 0.2 b2

.....
0 0.6 < b ≤ 0.7 b7

∗RFC model has 15 labels: 7/7 levels for throttle/break and neutral

Table II: Mapping control(throttle,break) to model target(label)

B. IAKM integration with CARLA driving simulator

The designed ML model serves as a key integration for the
systematic exchange process between the AI actors (CARLA
vehicles) and the backend server (IAKM). In Fig. 9a, [veh-A]
is considered as human-driven control and already has a non
trained RFC ML model for driving control, while approaching
a roundabout inside the control area, it collects the dataset (4
features, 1 label), then by exiting the control area it trains
the model with the dataset, and as AI producer it pushes the
model to IAKM server according to its context as depicted
in (Fig. 7). At another point in time, [veh-B] upon nearing
a road junction, it recognizes the complexity and lacks an
ML model to aid in decision-making, it acts as AI consumer
and asks IAKM server for AI model according to its context.

At IAKM server, upon request receipt, it activates a similar-
ity search mechanism to locate the closest model, noticing
that in our experiment we consider 70% as the similarity
threshold for SPARQL/Lucene search in graphDB for context
closeness of consumer’s graph-based query. Upon receiving
a response from the server, the vehicle dynamically adapts
its behavior: if the server provides a high-scored (bigger than
70%) machine learning model, the vehicle incorporates it for
decision-making; otherwise, it employs a waiting strategy as a
benchmark for control, wherein it remains stationary until the
surrounding environment is devoid of other vehicles, ensuring
a safe and opportune moment to cross the junction, as shown
in Fig. 9b [veh-C] remains in a halted state until the blue zone
is clear of incoming vehicles, ensuring a safe and obstruction-
free environment before proceeding, and consequently leading
to a traffic queue formation behind it.

Semantically speaking and according to our defined ontol-
ogy, as a producer [veh-A] produces his trained ML model
along with its context as a graph-based query as illustrated in
Fig. 7, this graph/model should be stored in IAKM server at
graphDB/fileDB respectively, the graph describes the semantic
context that a vehicle as a consumer should fit in order to
receive and consume the relevant ML model. To construct the
graph, the producer instantiates all entities in IAKM ontology
as following; for [MapContext], according to the producer
vocabulary, he describes his map context as round intersection,
for [algorithm] the ML type is ”RandomForest”, for [frame-
work] the package is ”sklearn”, and for [dependency] context
the model has four features and one output label as shown
in Fig. 6, and finally it connects all instances to the core
model instance, the latter has ”control” attribute for its [type]
and ”NIL” for its [unique-ID] (UID). We note at this stage
that model UID is marked as ”NIL” in order to be assigned
to graph in IAKM server level after the model storage in
fileDB. Once producer sends his model/graph-based query, the
query should be successfully processed in semantic functions
of IAKM agent. For the case of [veh-A], the MapContext
is described with round intersection which is not defined in
IAKM ontology. For this reason, CMAF makes a processing in
map alignment with IAKM ontology by replacing the unknown
round intersection entity with the defined roundabout entity in
IAKM ontology. Finally, IAKM server receives the producer
message, and save consequently its ML model in fileDB and
query graph at its RDF graphDB.

Figure 7: graph-based query to store AI metadata for veh-A (Producer)

At a later stage, an AI consumer [veh-B] while approaching
the T-intersection, it realises the complexity of the situation
where no local AI model is available to make a control
decision. Therefore, it generates graph-based query by defining

the map-context as ”junction”, and in similar way for other
entities like in producer case but with more generic to simplify
the request and to emphasis on similarity search process to find
best fitted AI model. Likewise, at the IAKM agent level, the
query graph passes through the semantic functions where QVF
validates its structure, CMAF finds the structure conformity of
”junction” with IAKM ontology and for LPF function we skip
it as we keep the module at a conceptual level and we will
define and implement it in future work.

Figure 8: graph-based query to find AI metadata for veh-B (Consumer)

Once IAKM server receives the query, the DataAccess
manager activates the similarity search process using SPARQL
engine with Lucene embedded to determine how relevant a
stored AI models is to a consumer graph query. Lucene uses
the Boolean model to first narrow down the documents that
need to be scored based on the use of Boolean logic in the
query specification. As illustrated in Table. III, we apply the
similarity search in 2 phases; in first we make sure that query
structure is aligned with the proposed ontology, and second
we applied Lucene connector functionality to find the most
relevant AI metadata. we see more detailed description in
section VI-C.

C. Experimentation

As we previously mentioned, we use CARLA simulator to
incorporate a traffic scenario integrated with IAKM platform
where a producer [veh-A] and a consumer [veh-B] as illus-
trated in Fig.9a could precept their surrounding environments.
We start the simulation by spawning a considerable number
of auto-piloted vehicles, then we spawn [veh-A] in autopilot
mode before the red control area of the ”round intersection” in
order to collect a full featured dataset for its dynamic control
during his existence in the red control area, upon leaving
the designated area [veh-A] initiates ML model training and
subsequently pushes the trained model to the IAKM server
specifying ”round intersection” as the map context in a graph-
based query. In a later step, we spawn [veh-B] without any AI
model, also in autopilot mode at a random position before the
control area of ”junction”, then by approaching this ”junction”,
it detects the complexity of such situation and sends request
to IAKM server to get the best fitted AI model and indicating
”junction” as map context in its graph-based query.

On IAKM server, the DataAccess service activates the query
transformation from RDF graph format to SPARQL query
format. As depicted in table.III the similarity search approach
is bi-dimensional:

• SPARQL constraints; by adding graph instances and its
relations as SPARQL constraints to ensure that all result-
ing models adhere to the graph structure of the query.

• Lucene FTS; by adding all attributes of query graph into
the Lucene FTS field as a chain of (key:value) pairs

(a) training in [veh-A] & inferring in [veh-B]

(b) AI model NOT found in IAKM server according
to [veh-C] context

Figure 9: CARLA-IAKM scenarios

in order to identify the best proximity (highest scores)
withing the retrieved models.

Table III: Similarity Search SPARQL/Lucene

Query Level Expression
?model rdf:type iakm:model .
?map rdf:type iakm:junction .

E1 ?dependency rdf:type iakm:dependency .
SPARQL Search ?inputs rdf:type iakm:inputs .

(instances ?outputs rdf:type iakm:outputs .
& ?model iakm:hasMap ?map .

relationships) ?model iakm:hasDependency ?dependency .
?dependency iakm:hasInputs ?inputs .

?dependency iakm:hasOutputs ?outputs .
type : control

E2 TTC-ego : float
Lucene Search TTC-other : float

(attributes) speed : float
distance : float

label : float

Full query
PREFIX luc: http://ontotext.com/connectors/lucene

PREFIX luc-index: http://ontotext.com/connectors/lucene/instance
PREFIX iakm: http://example.org/IAKM.owl

SELECT ?model ?score {
?search a luc-index:iakm-lucene-connector;

luc:query ”E2”; luc:entities ?model .
{ E1 } }

In SPARQL constraints, logically speaking and as we de-
fined in our ontology for MapContext, every roundabout is
a junction, but not every junction is a roundabout. Accord-
ingly, inference might be very complicated in SQL/NoSQL
database. However being a semantic database, graphDB lever-
ages OWL2-RL rulesets for advanced inferences, allowing it
to implicitly identify relations through graph reasoning. In
the proposed IAKM platform, the similarity result may yield
zero or more pairs of ”model-id” and ”scores”, if bigger than
zero, IAKM server selects the best scored model-id and finds

its associated AI model in fileDB in order to send it to the
consumer, otherwise if zero, it means the query context does
not match, then it replies with NIL response to the consumer
as shown in Fig.9b.

VII. FROM THEORY TO APPLICATION: IAKM KEY
CONTRIBUTIONS AND CONCLUSIONS

We introduced in this paper the potentials of AI-as-a-
Service for an AI-of-Things (AIoT) and presented an archi-
tecture for the Infrastructure Assisted Knowledge Manage-
ment (IAKM) platform as a centralized implementation of an
AIaaS framework, wherein we designed an integrated map-
based ML ontology tailored to accommodate diverse AI-driven
applications within vehicular domains. To address semantic
nuances, our research introduced a framework outlining the
methodology for the storage and retrieval of AI models based
on contextual information and leveraging an integrated strat-
egy, we employed the SPARQL/Lucene engine for similarity
search mechanisms while relying on the semantic alignment
prowess of the OpenAI large language model to harmonize
diverse context vocabularies. Additionally, we proposed the
implementation of a RESTful API to enable seamless and de-
coupled communication between AI actors and IAKM agents.
Furthermore, to validate the effectiveness of our approach,
we conducted a real experiment using the CARLA driving
simulator, specifically focusing on machine learning support in
an AI-driven junction risk assessment scenario. The platform is
provided as open-source, the full code and video for the IAKM
implementation and its integration with CARLA in a concrete
junction management scenario is available on EURECOM
gitlab: gitlab.eurecom.fr/cats/carla-iakm

REFERENCES

[1] J. Zhang and D. Tao, “Empowering things with intelligence: A survey
of the progress, challenges, and opportunities in artificial intelligence of
things,” 2020.

[2] D. Deveaux, “On the networking of knowledge in vehicular networks,”
Ph.D. dissertation, 2021, © EURECOM. Personal use of this material
is permitted. Systems and Control[cs.SY]. Sorbonne Université, 2021.
English. ffNNT : 2021SORUS294ff. fftel-03592855.

[3] J. Braga, F. Regateiro, J. Dias, and I. Stiubiener, “A machine learning do-
main ontology to populate knowledge base to support intelligent agents
working in autonomous systems domains of the internet infrastructure,”
07 2021, pp. 1–12.

[4] L. Zhao, R. Ichise, S. Mita, and Y. Sasaki, “Core ontologies for safe
autonomous driving,” 10 2015.

[5] J. P. Leal, V. Rodrigues, and R. Queirós, “Computing Semantic
Relatedness using DBPedia,” vol. 21, pp. 133–147, 2012. [Online].
Available: http://drops.dagstuhl.de/opus/volltexte/2012/3519

[6] S. Zhang, J. Yang, and W. Jin, “Sapper: Subgraph indexing and ap-
proximate matching in large graphs,” Proc. VLDB Endow., vol. 3, pp.
1185–1194, 2010.

[7] A. Khan, X. Yan, and K.-L. Wu, “Towards proximity pattern mining in
large graphs,” 06 2010, pp. 867–878.

[8] J. Cheng, X. Zeng, and J. X. Yu, “Top-k graph pattern matching over
large graphs,” in 2013 IEEE 29th International Conference on Data
Engineering (ICDE), 2013, pp. 1033–1044.

[9] A. Khan, Y. Wu, C. C. Aggarwal, and X. Yan, “Nema: Fast graph search
with label similarity,” Proc. VLDB Endow., vol. 6, pp. 181–192, 2013.

[10] Y. Wu, S. Yang, and X. Yan, “Ontology-based subgraph querying,” in
2013 IEEE 29th International Conference on Data Engineering (ICDE),
2013, pp. 697–708.

[11] S. Yang, Y. Wu, H. Sun, and X. Yan, “Schemaless and structureless
graph querying,” Proc. VLDB Endow., vol. 7, pp. 565–576, 2014.

[12] D. Deveaux, T. Higuchi, S. Uçar, J. Härri, and O. Altintas, “A knowledge
networking approach for ai-driven roundabout risk assessment,” in 2022
17th Wireless On-Demand Network Systems and Services Conference
(WONS), 2022, pp. 1–8.

