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Simple Summary: Chronic inflammatory enteropathies (CIEs) in dogs are currently classified ac-
cording to clinical response to sequential treatment trials. The resulting recognized categories are
food-responsive (FREs), antibiotic-responsive (AREs), immunosuppressant-responsive (IREs) and
non-responsive enteropathies (NREs). Although this classification has benefited clinicians by provid-
ing a standardized approach to managing CIEs for almost a decade, the results of recent research
challenge our understanding of the underlying pathophysiology and encourage a revision of these
categories. The role of diet has been reinforced, and the gut microbiota has been acknowledged as
an essential player in intestinal inflammation. Using antibiotics has been shown to result in delete-
rious, long-lasting effects; thus, approaches aimed at restoring a diverse and functional microbiota
(prebiotics, probiotics, fecal microbiota transplantation, etc.) are required. We subsequently propose
updating the classification of CIEs by replacing AREs with microbiota-related modulation-responsive
enteropathies (MrMREs). The introduction of such a category can serve as a basis for further studies
to assess the performance of options targeting the rebalance of the gut microbiota.

Abstract: Chronic inflammatory enteropathies (CIEs) in dogs are currently classified based on
response to sequential treatment trials into food-responsive (FREs); antibiotic-responsive (AREs);
immunosuppressant-responsive (IREs); and non-responsive enteropathies (NREs). Recent studies
have reported that a proportion of NRE dogs ultimately respond to further dietary trials and are
subsequently misclassified. The FRE subset among CIEs is therefore probably underestimated.
Moreover, alterations in the gut microbiota composition and function (dysbiosis) have been shown
to be involved in CIE pathogenesis in recent research on dogs. Metronidazole and other antibiotics
that have been used for decades for dogs with AREs have been demonstrated to result in increased
antimicrobial resistance and deleterious effects on the gut microbiota. As a consequence, the clinical
approach to CIEs has evolved in recent years toward the gradual abandonment of the use of antibiotics
and their replacement by other treatments with the aim of restoring a diverse and functional gut
microbiota. We propose here to refine the classification of canine CIEs by replacing the AREs category
with a microbiota-related modulation-responsive enteropathies (MrMREs) category.
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1. Introduction

Canine chronic inflammatory enteropathies (CIEs) are a group of diseases resulting
in chronic (i.e., a 3-week duration or longer) or recurrent gastrointestinal clinical signs,
including diarrhea, vomiting, nausea, borborygmus, flatulence, eructation, abdominal pain,
weight loss or a combination of these signs. The diagnosis is made after the exclusion of
extra-digestive disorders causing gastrointestinal clinical signs, intestinal parasitosis, and
digestive neoplastic and infectious disorders [1].

The origin of the inflammation remains debated, but the current prevailing hypothesis
is that the immune system excessively responds to environmental triggers (including to
food and microbiota) in genetically predisposed individuals. Canine chronic inflammatory
enteropathies are multifactorial diseases featuring a chronic immune response [2], the
disruption of intestinal permeability [3], and the altered composition and function of the
gut microbiota, referred to as dysbiosis [4]. Canine chronic inflammatory enteropathies
are thought to arise in genetically prone individuals under the influence of epigenetic
and environmental factors that alter immunotolerance and trigger the excessive activation
of the innate and adaptive response of the host immunity. The microbiota–gut–brain
axis is known for its bidirectional interactions between the central nervous system and
the digestive tract and is gaining interest in regards to the onset of inflammatory bowel
diseases [5].

CIEs are currently classified according to clinical response to treatment as food-responsive
enteropathies (FREs), antibiotic-responsive enteropathies (AREs), immunosuppressant-
responsive enteropathies (IREs) and non-responsive or refractory enteropathies (NREs). In-
flammatory bowel diseases (IBDs) encompass both IREs and NREs with demonstrated mu-
cosal inflammation. An additional group of CIEs named protein-losing enteropathies (PLEs)
refers to all chronic enteropathies that result in hypoalbuminemia [6,7].

This classification has benefited clinicians by providing a standardized and consistent
approach. However, our knowledge has continued to evolve, and significant limitations
now make this system less suitable. Our objective was to propose an updated classification
that considers recent advances in canine gastroenterology. With this review, we aim to
briefly summarize the rationale of the current classification, discuss its limitations as
underlined by recent research and propose a refined classification.

2. Current Classification of CIEs

The true prevalence of CIEs in dogs is unknown. In referral hospitals, CIEs account
for 1–2% of cases, and these percentages are likely to be underestimated because about
10 to 20% of consultations undertaken in primary facilities relate to gastrointestinal
clinical signs [1,6,8].

In dogs with chronic gastrointestinal signs, diagnoses of CIEs are considered after the
exclusion of intestinal parasitism and extra-digestive disorders. In the current classification,
once a CIE is suspected, several dietary trials are performed, usually including a highly
digestible diet, a hydrolyzed protein diet, a fiber-rich diet, and/or a home-cooked novel
protein diet with limited ingredients [9,10]. If clinical signs resolve with a dietary trial,
the diagnosis falls in the FRE category. If clinical signs fail to improve, antibiotics have
historically been advocated for (mainly metronidazole or tylosin). If the clinical response
to the antibiotic trial is adequate, it is classified as an ARE. In the absence of a response to
antibiotics, an ultrasound examination is usually pursued to exclude any focal disease of
the gastrointestinal tract. Then, a histological examination of gastrointestinal biopsies is
required to confirm mucosal inflammation and rule out diffuse neoplastic disorders and
atypical infections. The dogs are then given an immunosuppressant, and the enteropathy is
assigned to the IBD group (IRE or NRE, depending on the observed response). A graphical
representation of the currently used categories of CIEs is provided in Figure 1 [1].
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ease if mucosal inflammation is demonstrated. Reprinted with permission from Ref. [1]. Copyright 
2016 British Small Animal Veterinary Association. 
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in a cohort of 203 dogs diagnosed with CIEs [12]) and to exhibit more clinical signs con-
sistent with large bowel disease. They have a lower canine chronic enteropathy clinical 
activity index (CCECAI) score in comparison with that of dogs suffering from AREs or 
IBD (median FRE: 6, range: 2–12; median ARE: 8, range: 0–14; median IRE: 9, range: 5–14, 
p ≤ 0.001 in a cohort of 203 dogs diagnosed with CIEs) [9,12–14]. However, no useful cut-
off values for age or CCECAI scores and no specific clinical signs have been identified to 
help predict treatment response on an individual basis. Gluten-sensitive enteropathy in 
Irish setters and paroxysmal gluten-sensitive dyskesia in Border terriers (50% of affected 
dogs express gastrointestinal signs) are included in the FRE category [15,16]. 

Dogs with AREs enter clinical remission following metronidazole, tetracycline or ty-
losin administration. AREs account for 15 to 35% of CIEs [1,6,12,17]. Hypothesized under-
lying mechanisms include a decrease in the amount of deleterious bacteria within the gut 
microbiota and anecdotally direct immunomodulatory properties [18]. In particular, met-
ronidazole and tylosin have recognized anti-inflammatory effects through modulating the 
synthesis of several mediators and cytokines [19,20]. Affected animals seem to be young 
large-breed dogs, with an over-representation of German shepherds [12,21]. However, age 
and dog breeds largely overlap among subtypes of CIEs. Relapses are frequent (diarrhea 
relapses occurred in 12 of 14 dogs within 30 days after tylosin discontinuation in a pro-
spective study) [6,22]. 

Figure 1. Representation of the “old” classification of canine chronic inflammatory enteropathies.
FRE: food-responsive enteropathy, ARE: antibiotic-responsive enteropathy, IRE: immunosuppressant-
responsive enteropathy, NRE: non-responsive enteropathy and IBD: inflammatory bowel disease if
mucosal inflammation is demonstrated. Reprinted with permission from Ref. [1]. Copyright 2016
British Small Animal Veterinary Association.

To date, no pathognomonic clinicals signs or clear scoring values have been determined
to discriminate CIE categories.

Food-responsive enteropathies account for the majority of CIEs in dogs, ranging from
50 to 65% of cases [1,6,11,12]. Dogs with FREs seem to be younger than dogs with IREs
(FRE median: 3 years, range: 0–12; IRE median: 6 years, range: 1–13 years, with p ≤ 0.001 in
a cohort of 203 dogs diagnosed with CIEs [12]) and to exhibit more clinical signs consistent
with large bowel disease. They have a lower canine chronic enteropathy clinical activity
index (CCECAI) score in comparison with that of dogs suffering from AREs or IBD (median
FRE: 6, range: 2–12; median ARE: 8, range: 0–14; median IRE: 9, range: 5–14, p ≤ 0.001 in a
cohort of 203 dogs diagnosed with CIEs) [9,12–14]. However, no useful cut-off values for
age or CCECAI scores and no specific clinical signs have been identified to help predict
treatment response on an individual basis. Gluten-sensitive enteropathy in Irish setters
and paroxysmal gluten-sensitive dyskesia in Border terriers (50% of affected dogs express
gastrointestinal signs) are included in the FRE category [15,16].

Dogs with AREs enter clinical remission following metronidazole, tetracycline or
tylosin administration. AREs account for 15 to 35% of CIEs [1,6,12,17]. Hypothesized
underlying mechanisms include a decrease in the amount of deleterious bacteria within the
gut microbiota and anecdotally direct immunomodulatory properties [18]. In particular,
metronidazole and tylosin have recognized anti-inflammatory effects through modulating
the synthesis of several mediators and cytokines [19,20]. Affected animals seem to be
young large-breed dogs, with an over-representation of German shepherds [12,21]. How-
ever, age and dog breeds largely overlap among subtypes of CIEs. Relapses are frequent
(diarrhea relapses occurred in 12 of 14 dogs within 30 days after tylosin discontinuation in
a prospective study) [6,22].

Immunosuppressant-responsive enteropathies respond to glucocorticoids (prednisolone,
budesonide), other immunosuppressants (cyclosporine, azathioprine, chlorambucil) or a
combination of these treatments. IREs account for 10 to 25% of CIEs [6].

Five to forty-five percent of dogs with CIEs remain non-responsive (NREs) [6]. These
CIEs carry a worse long-term prognosis with a high rate of euthanasia [9,23].

Protein-losing enteropathies (PLEs) encompass all enteropathies that potentiate pro-
tein leakage and malabsorption, resulting in hypoalbuminemia. Inflammatory PLEs are
considered to be severe versions of CIEs. The usual diagnostic workup and therapeutic
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approach for CIEs are often modified in the case of hypoalbuminemia. Gut biopsies are
usually taken immediately for histological examination and, instead of using a sequential
treatment approach, immunosuppressants (mostly glucocorticoids and chlorambucil) are
often started early, in combination with a highly digestible, ultra-low-fat diet, with or
without antibiotics [1,24–27]. In addition, PLEs are frequently complicated with a hyper-
coagulable state and consequently require thromboprophylactic treatment [28]. Although
the mechanism has not been clarified yet, the decrease in plasma antithrombin activity, the
underlying disease as well as drug treatments (glucocorticoids) are conceivably contribu-
tors, with pulmonary thromboembolism being one of the most serious complications in
these cases [29,30].

3. Limitations and Reconsideration of the Current Classification
3.1. Targeting the Microbiome toward Eubiosis

The role of the intestinal microbiota in health is now well established in humans
and animals. Alterations in the gut microbiota composition and function (dysbiosis) are
associated with canine CIEs. Essentially, there are overall decreased levels of richness
and diversity. Pseudomonadota and Actinomycetota phyla are overrepresented, and
Bacteroidota, Bacillota and Fusobacteria phyla are less abundant in most affected dogs.
Among the Pseudomonadota phylum, the abundance of the Enterobacteriaceae family is
increased. The abundances of the Bacteroidota phylum, Paraprevotellaceae family and
Porphyromonas genus are increased. Finally, among the Bacillota phylum, declines in
the Faecalibacterium (a single species of the genus F. prausnitzii), Blautia and Turicibacter
genera and Peptacetobacter hiranonis have been reported [18,31–35]. The dysbiosis index
(DI) was developed based on a mathematical algorithm using quantitative PCR testing of
eight bacterial groups (i.e., Blautia, Peptacetobacter hiranonis, Escherichia coli, Faecalibacterium,
Fusobacterium, Streptococcus, Turicibacter and total bacteria) that are commonly altered in
dogs with CIEs [36]. A DI with a threshold value of 0 distinguishes dogs with chronic
inflammatory enteropathy from healthy dogs with 74% sensitivity and 95% specificity.
This tool makes it possible to detect dysbiosis and to monitor the return to eubiosis after
appropriate treatment.

Gut dysbiosis entails the disruption of microbial-related metabolic pathways, such as
short-chain fatty acids (SCFAs) and indole synthesis, bile acid (BA) biotransformation and
proteolytic activities [31,37–46]. As an example, SCFAs (i.e., acetate, propionate and bu-
tyrate) are the main end products of the intestinal bacterial fermentation of non-digestible
food components, such as dietary fiber. SCFAs are an essential energy source for colono-
cytes; they enhance epithelial barrier function by strengthening tight junctions and regulate
T-lymphocyte function [47–50]. In another well-documented example, the deconjugation
and dehydroxylation of primary BAs into secondary BAs are executed using enzymes
carried by bacteria of the intestinal microbiota (Bacteroides, Clostridium, Bifidobacterium,
Lactobacillus. . .) [51]. A decreased excretion of secondary BAs was detected in dogs with
CIEs and presumably attributed to the decreased abundance of Fusobacterium and Peptace-
tobacter hiranonis [52]. Bile acids have been identified as antibacterial agents regulating
gut microbial populations and as signaling ligands for multiple receptors (hormone far-
nesoid X receptor, Takeda G protein receptor 5. . .), influencing both host metabolism and
immune response [51].

These data provide some evidence that intestinal dysbiosis promotes intestinal in-
flammation and thus provide the rationale to promote therapeutic strategies aimed at
restoring eubiosis [40].

3.2. Towards Restricted Use of Antibiotics

For decades, metronidazole and other antibiotics have been successfully used in dogs
with chronic gastrointestinal signs. However, evidence of deleterious effects on the gut
microbiota is accumulating. Persistent changes in microbiota richness and composition
are reported after metronidazole and tylosin treatments and may explain the frequency of
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clinical relapse after treatment interruption [4,12,22,53–59]. The design and conclusions of
published papers studying the microbial consequences of using metronidazole or tylosin
are summarized in Table 1.

Table 1. Summary of studies assessing the impact of metronidazole and tylosin treatments on gut
microbiota in dogs.

Antibiotic Reference Design Conclusions

Metronidazole

[60]

Metronidazole was administered twice
daily at 12.5 mg/kg PO to a group of

five healthy research dogs and
prednisolone at 1.0 mg/kg daily to a
second group of five healthy research
dogs for 14 days. Fecal samples were
collected on days 0, 14, 28 and 42 (14

and 28 days after cessation).

In the group receiving metronidazole, their
bacterial diversity indices significantly decreased

on day 14 and recovered after cessation.
Bacterial composition was also significantly

altered by metronidazole on day 14 and returned
to its initial proportions by day 42. Conversely,

no effect of prednisolone was observed on either
the bacterial diversity or composition.

[61]

Prospective, non-randomized
controlled study. Dogs fed various
commercial diets were divided into
three groups: the control group; the

group receiving a hydrolyzed protein
diet, followed by metronidazole

administration; and the group receiving
metronidazole only.

Metronidazole significantly changed microbiota
composition in dogs treated with metronidazole

only, and that change did not fully resolve
4 weeks after treatment discontinuation.

Increased fecal total lactate and decreased fecal
deoxycholic acid and lithocholic acid (secondary

bile acids) were concurrently observed.

[62]

Twelve healthy adult female dogs were
used in an 8-week crossover design

study. All dogs were fed a control diet
during a 2-week baseline and then
randomly allotted to one of the two

treatment arms (diet only or diet + 1%
prebiotic GNU100) for another 6 weeks.

From weeks 2 to 4, dogs were orally
administered metronidazole

(20 mg/kg) twice daily.

Metronidazole reduced fecal microbial alpha
diversity and Blautia, Fusobacterium (genus

belonging to Fusobacteria phylum), Turicibacter,
Peptacetobacter hiranonis and Faecalibacterium
abundances and increased fecal Streptococcus

(genus belonging to Bacillota phylum) and
Escherichia coli (species belonging to

Pseudomonadota phylum) abundances.
Metronidazole also increased fecal primary bile

acids and reduced secondary bile acid
concentrations. Most changes returned to

baseline by week 8.

Tylosin

[56]

Sixteen healthy dogs were randomized
to receive 20 mg/kg of tylosin or a

placebo capsule PO q12h for 7 days.
The microbiota was assessed using 16S
rRNA gene sequencing. Unconjugated

bile acids were measured.

Samples from tylosin-exposed dogs exhibited
decreased bacterial diversity characterized by a
decrease in anaerobes Fusobacteriaceae (family of
Fusobacteria phylum) and Veillonellaceae (family

of Bacillota phylum) by day 7. Primary
unconjugated bile acid fecal concentrations were
increased on day 21 and day 63 compared to day

0 in dogs receiving tylosin. Changes did not
uniformly resolve after discontinuation of

tylosin on day 63.

[63]

In vitro effects of tylosin, alone or
associated with prebiotics, on a canine

fecal suspension and the residue of
in vitro digested dry dog food.

Tylosin resulted in lower total volatile fatty acids
and Lactobacillus abundance; higher

Peptacedobacter cluster I abundance after 6 h; and
higher pH values, spermidine, and E. coli
abundance throughout the study. When

associated with tylosin, prebiotics counteracted
some undesirable effects of the

antibiotic treatment.
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Table 1. Cont.

Antibiotic Reference Design Conclusions

Tylosin

[64]

Prospective, randomized,
placebo-controlled study. Sixteen

healthy dogs received 20 mg/kg PO
tylosin once daily (days 1–7) and were
randomly assigned to either receive one
fecal microbiota transplantation (FMT)

via enema (day 8), daily oral FMT
capsules (days 8–21) or daily placebo

capsules (days 8–21).

Tylosin altered the abundance of most evaluated
bacteria and induced a significant decrease in

secondary bile acid fecal concentrations by day 7
in all dogs. However, most parameters returned

to baseline by day 14 in all dogs.

[53]

Tylosin was administered at
20 to 22 mg/kg q 24 h PO for 14 days to

five healthy dogs with a pre-existing
jejunal fistula. Jejunal brush samples
were collected through the fistula on

days 0, 14 and 28.

Microbial diversity was reduced during tylosin
treatment. On day 14, the proportions of

Enterococcus-like organisms (genus of Bacillota
phylum), Pasteurella spp. (genus of

Pseudomonadota phylum) and Dietzia spp. (genus
of Actinomycetota phylum) significantly

increased, and proportions of Spirochaetes (class
of Spirochaetota phylum), Streptomycetaceae

(family of Actinomycetota phylum) and
Prevotellaceae (family of Bacteroidota phylum)

significantly decreased. On day 28, the
proportion of E. coli-like organisms was

increased in comparison to day 0, the
phylogenetic composition of the microbiota was
similar to that on day 0 in only two out of five
dogs, and Spirochaetes, Streptomycetaceae and

Prevotellaceae failed to recover.

In addition, there is a growing concern about antimicrobial resistance, which is one
of the most serious and imminent One Health-related problems worldwide. A report
showed that 54% of isolates of Clostridium perfringens from pet dogs with acute diarrhea
had decreased susceptibility to metronidazole, including dogs not having had any previous
treatment with antibiotics, suggesting that resistant strains might be transmitted from one
individual to another [65]. As a consequence, dogs are considered a possible reservoir for
antibiotic-resistant bacterial strains [66–70].

As a result, the clinical approach to CIEs has evolved in recent years toward the
gradual abandonment of the use of antibiotics and their replacement by approaches aiming
at restoring a functional gut microbiota [71].

3.3. Restoring Gut Microbiota

Several strategies aiming at restoring the functionality of the dysbiotic gut microbiota
have been explored in recent years and include dietary changes; the use of prebiotics,
probiotics, symbiotics, postbiotics; and fecal microbiota transplantation.

• Prebiotics are non-viable substrates that serve as nutrients for beneficial microor-
ganisms. They impact the composition of bacterial communities as well as micro-
bial metabolic activities, including the synthesis of SCFAs [72]. Studies in rodent
models and in humans suffering from IBD have demonstrated the benefits of prebi-
otic use which reduce histological lesions, proinflammatory cytokines and oxidative
stress [73–79]. Although the overall level of evidence of prebiotics’ efficacy in hu-
mans with IBD is low, the results of two randomized clinical trials (RCTs) are of
interest [80,81]. They evaluated germinated barley foodstuff (GBF), a dietary fiber
classified as a prebiotic, which was demonstrated to lower clinical disease activity
scores. In dogs with CIEs, two RCTs have been conducted to assess the potential
benefits of prebiotics [82,83]. In the first RCT, β-glucans and mannan oligosaccharides
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(MOSs) did not provide any significant clinical benefits in dogs suffering from a CIE;
however, the study was underpowered (with nine dogs in the supplemented group
and ten dogs in the placebo group) [82]. In the second RCT, dogs with chronic diarrhea
responding to a hydrolyzed diet (FRE) were randomly allocated either to a group sup-
plemented with β-glucans, MOSs, chondroitin sulphate and glycosaminoglycans or to
a placebo group. No significant differences in their relapse rates after returning to their
initial diet were shown between the groups, but the study was also underpowered
(with eight dogs in the test group vs. five in the control group) [83]. In a more recent
RCT, a symbiotic-IgY supplement (probiotics: Lactobacillus acidophilus‚ Lactobacillus
casei‚ Enterococcus faecium and Bacillus subtilis; prebiotics: beta-glucans, MOSs and
D-mannose; immunoglobulin IgY derived from chicken egg yolk) led to decreased
levels of fecal calprotectin and serum C-reactive protein; increased numbers of colonic
mucosal Clostridia (class of Bacillota phylum) and Bacteroides (genus of Bacteroidota
phylum); and decreased numbers of Enterobacteriaceae in CIE dogs. No clinical benefits
were demonstrated in that study [84]. Therefore, evidence of any benefit does not
exist in dogs and remains low in humans; nevertheless, no adverse effect has been
reported in either species. Fructooligosaccharide (FOS) supplementation may be a
more promising strategy and worth exploring [85,86].

• Probiotics are defined by the World Health Organization as “live microorganisms
which when administered in adequate amounts confer a health benefit on the host” [87].
In dogs suffering from CIEs, RCTs investigating the benefit of probiotics remain
scarce [84,88]. The multi-strain probiotic VSL#3 was compared to prednisolone/
metronidazole in dogs suffering from IBD [89]. Significant improvement in CCECAI
scores was found in both groups on day 90 when compared to those on day 0. In
another controlled trial, dogs with IBD were administered conventional treatment
(hydrolyzed protein diet, prednisolone and antibiotic) alone or in combination with
Saccharomyces boulardii (109/kg BID). The use of the yeast was associated with a lower
CCECAI score on days 45 and 60 [90]. Although the evidence remains sparse, these
data support the use of probiotics in dogs with CIEs. Based on individual experience
and on the VSL#3 study, multi-strain probiotics should be considered.

• Symbiotics result from the combination of pre- and probiotics in the same product and
have recently gained popularity for use in dogs and cats. Although studies about their
efficacy are scarce, they seem to be promising options in terms of compliance [84].

• Postbiotics refer to dead microorganisms or microbial metabolic products benefi-
cial to gut health [91]. Although postbiotics do not include live microorganisms,
they may have beneficial properties based on their pleiotropic effects, including anti-
inflammatory, antioxidant, immunomodulatory and anticancer properties [92,93].
After an exhaustive review of the literature, we found no study investigating the use
of a product with only postbiotic properties in dogs with CIEs.

• Fecal microbiota transplantation (FMT) is now recognized as the standard of care in
people suffering from recurrent Clostridioides difficile infection [94]. Available data
suggest beneficial effects of FMT in patients with mild to moderate ulcerative colitis
(UC), but there is insufficient evidence to recommend this therapeutic modality in
routine clinical practice, and its use is currently limited to a research setting [95]. In
dogs, only one RCT, one prospective study and six case reports/series on the use of
FMT in dogs with CIEs/IBD have been published to date [96–103]. In the RCT, dogs
with IBD were given either a FMT or a sterile saline enema as a placebo in addition
to prednisolone and a hydrolyzed diet [102]. CCECAI scores significantly improved
in both groups, but there were no significant differences between groups. The study
was, however, underpowered (with seven dogs in the FMT group and six dogs in the
control group) and might benefit from being repeated with larger cohorts of dogs. No
adverse effects were observed in the dogs that received FMTs. The largest study is a
retrospective case series on 41 dogs with CIEs not responding to diet, probiotics or
immunosuppression [101]. The included dogs received one to five FMTs with fresh
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frozen feces via rectal enemas. In 31/41 dogs (76%), FMT was associated with clinical
improvement. In 20/41 dogs, the dose of corticosteroids could be decreased and the
antibiotics treatment was interrupted. The canine inflammatory bowel disease activity
index (CIBDAI) significantly decreased. The study, however, did not include a control
group to better evaluate the role played by FMT in the observed improvement [101]. As
in humans, available data might support the use of FMT in dogs with CIEs, although
evidence remains limited and it requires further assessment in a research setting.

• Interestingly, a recent publication reports clinical remission in two dogs suffering
from NREs using cholestyramine, a bile acid sequestrant. The beneficial effects are
suspected to be due to the correction of excess primary bile acids resulting from bile salt
dysmetabolism associated with intestinal dysbiosis (a reduction in bacteria carrying
the bile salt dehydrogenase) or due to the reduction in apical sodium-dependent bile
acid transporter (ASBT) receptor expression at the brush border of the ileum in dogs
with CIEs [104].

Table 2 lists relevant studies on strategies for modulating the gut microbiota in dogs
with CIEs.

Table 2. Summary of studies assessing the effect of different strategies to modulate gut microbiota.

Strategy Reference Design Conclusion

Prebiotics

[82]

Twenty-seven IBD dogs were
randomized to be fed with chondroitin
sulphate and prebiotics (resistant starch,
β-glucans and mannaoligosaccharides)
or placebo in addition to a hydrolyzed
diet and were evaluated after 30, 60, 90

and 180 days of treatment.

No significant differences were found between
groups at any point for CIBDAI, WSAVA

histologic score or fecal microbiota evaluated by
PCR-RLFP.

[83]

Thirteen dogs with FREs were
randomized to be fed a combination of

prebiotics (β-glucans and mannan
oligosaccharides), chondroitin sulphate
and glycosaminoglycans or placebo in

addition to a hydrolyzed diet for 10
weeks. Relapse rate was monitored

every 2 weeks until week 18.

No significant differences were found over time
or between groups for CCECAI, endoscopy

scoring or histological scoring, nor in the relapse
rate after switching back to the original diet.

Probiotics

[88]

A systematic review of clinical effect of
probiotics in prevention or treatment of

gastrointestinal disease in dogs,
including twelve studies concerning

acute gastrointestinal disease and five
concerning chronic

gastrointestinal disease.

The current data point toward a very limited and
possibly clinically unimportant effect for

prevention or treatment of acute gastrointestinal
disease. For chronic gastrointestinal disease,

dietary intervention remains the major key in
treatment, whereas probiotic supplement seems

not to add significant improvement.

[89]

Twenty dogs with IBD were
randomized to receive multi-strain

probiotic (VSL#3) or
prednisolone/metronidazole,

monitored for 60 days and re-evaluated
30 days after completing treatment.

The CIBDAI and duodenal histology scores
decreased between days 0 and 90 in both groups.

[90]

Twenty dogs with CIEs were
randomized to receive Saccharomyces
boulardii (109/kg BID) or a placebo, in

addition to conventional treatment
(hydrolyzed protein diet, prednisolone

and antibiotic) for 60 days.

The administration of yeast was associated with
a lower CCECAI score on days 45 and 60
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Table 2. Cont.

Strategy Reference Design Conclusion

Symbiotics [84]

Twenty-four dogs with CIE were
randomized to be fed a hydrolyzed diet

and administered symbiotic-IgY
(β-glucans, mannan oligosaccharides,
D-mannose, Lactobacillus acidophilusn,
Lactobacillus casei, Enterococcus faecium,
Bacillus subtilis and immunoglobulin

IgY derived from chicken egg yolk) or
placebo for 6 weeks.

Dogs administered supplement exhibited
decreased levels of fecal calprotectin and

high-sensitivity C-reactive protein two weeks
post-treatment, decreased levels of hs-CRP two-

and six-weeks post-treatment, increased
numbers of mucosal Clostridia and Bacteroides

and decreased numbers of Enterobacteriaceae in
colonic biopsies at the completion of the trial.

Fecal microbiota
transplantation [96]

Diversity analysis, differential
abundance analysis and machine

learning algorithms were applied to
investigate the differences in

microbiome composition between
healthy and pre-FMT CIE-affected
dogs, while CCECAI changes and

microbial diversity metrics were used
to evaluate oral freeze-dried fecal

microbiota capsules’ effects.

In the healthy/pre-FMT comparison, differences
were noted in alpha and beta diversity and a list

of differentially abundant taxa was identified.
Improvement of clinical signs was noted in 74%

(20/27) of CIE-affected dogs, together with a
decrease in CCECAI. Alpha and beta diversity

variations between pre- and post-FMT were
observed for each receiver, with a high

heterogeneity in the response.

Fecal microbiota
transplantation

[97]

A 10-year-old toy poodle diagnosed
with IBD received nine FMTs by rectal

enema within 6 months. 16S rRNA
sequence analysis was performed

before and after the FMTs.

Fecal microbiome diversity after FMT resembled
that of the healthy donor dog’s fecal microbiome.

The clinical symptoms improved remarkably
with regard to the changes in the fecal

microbiome. No observable side effects were
noted.

[98]

FMTs were performed in nine dogs
with IBD. Fecal microbiome was

examined via 16S rRNA sequencing in
three dogs.

The proportion in Fusobacteirum in the post-FMT
fecal microbiome was increased, and the CIBDAI

decreased in all dogs.

[99]
A 7-year-old Shiba dog diagnosed with
protein-losing NRE received one FMT

along with chlorambucil.

A single FMT via endoscopic procedure into the
cecum and colon drastically recovered clinical

signs and clinicopathological abnormalities and
corrected dysbiosis in the dog. No recurrences or

adverse events were observed.

[100]

A 6-year-old Labrador dog diagnosed
with IBD received FMT in the form of
frozen oral capsules (five capsules/10
kg body weight for five consecutive

days, along with prednisolone).

The CIBDAI switched from mild to clinically
insignificant disease in 21 days. In the 18 months

following FMT, the dog had some relapses
defined as milder than before the FMT. No

adverse effects were reported.

[101]

Forty-one dogs with CIEs not
responding to diet, probiotics or

immunosuppression. Included dogs
received one to five FMTs with fresh

frozen feces via rectal enemas.

In 31/41 dogs (76%), FMT was associated with
clinical improvement. In 20/41 dogs, the dose of

corticosteroids was decreased and antibiotics
were interrupted. The CIBDAI

significantly decreased.

[102]

Thirteen dogs with IBD were
randomized to receive either FMT or
placebo via rectal enema, along with

cortisteroid therapy and a
hypoallergenic diet, and were

monitored for one month.

No significant differences in CCECAI
between groups.
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Table 2. Cont.

Strategy Reference Design Conclusion

Fecal microbiota
transplantation

[103]

Sixteen dogs with IBD received FMT,
nine via an endoscopic procedure with
five of them also given the transplant

orally, and seven were administered by
frozen capsules. They were monitored

for 3 months. At the time of
transplantation, all subjects were
receiving immunosuppressants,

antibiotics or both.

A clinical improvement was shown in most
patients after transplantation, whether

performed orally or endoscopically.

Bile acid
sequestrants [104]

One dog with NRE and one with IRE
but with unacceptable corticosteroids
side effects received cholestyramine

(2 g q12–24 h).

Treatment with cholestyramine resulted in
marked improvement of fecal consistency,

frequency of defecation and activity level in
both dogs.

3.4. Reaffirming the Importance of Diet

Dietary changes remain the simplest way to modulate the intestinal microbiota. In
addition to fiber-enriched foods that act as prebiotics, foods with hydrolyzed proteins,
initially designed to reduce immunogenicity, have also shown favorable effects on the
composition of the gut microbiota and on the biotransformation of bile salts [40]. It is
therefore hypothesized that the clinical improvement observed with hydrolyzed diets is
not exclusively linked to their immune effect but also to their beneficial effects on the
gut microbiota.

Several case series reinforce the role of dietary changes by showing that cases initially
classified as NREs could be ultimately reclassified as FREs after an additional dietary
modification. A prospective study reported that clinical remission was achieved in eight
out of ten dogs with steroid-resistant inflammatory PLEs using an additional dietary trial
as a sole treatment change [105]. Another retrospective multicentric study, conducted on
142 dogs suffering from CIEs, initially classified 18% of cases as NREs. However, 88% of
these “NREs” were then challenged by a novel commercial or home-cooked diet, and 68%
of them responded [106]. It then appears that, although acknowledged as the first step of
the current treatment-based approach, dietary benefit is not fully investigated in some dogs
before moving toward other therapies. This might have resulted from discouragement from
owners due to repeated non-responding trials. The recent evidence about “food-responding
NREs” encourages owners to pursue at least one diet of each of the following categories
for 2 weeks: a commercial highly digestible diet, commercial novel animal protein or
hydrolyzed diet, home-cooked limited-ingredient diet and home-cooked novel protein diet.
Also, evidence suggests that clinicians should retry dietary trials in the case of CIEs not
responding properly to immunosuppression.

In addition, two recent publications have suggested that at least some inflammatory
PLEs respond to diet only. In a case series of eleven Yorkshire terriers suffering from
confirmed (n = 4) or presumed (n = 7) inflammatory PLEs that were all treated with a
diet change without an immunosuppressant, clinical and biological improvements were
observed in eight dogs [25]. In another case series of 27 dogs with confirmed inflammatory
PLEs that were treated with an ultra-low-fat diet alone, 23 dogs improved (complete
response in 12/27 dogs and partial response in 11/27 dogs) [107]. Interestingly, a CCECAI
cut-off of eight showed a sensitivity of 83% and a specificity of 89% to discriminate between
food-responders and non-food-responders. An ultra-low-fat diet might therefore be useful
as a first-line treatment in many dogs suffering from inflammatory PLEs of low to moderate
clinical severity. Based on the response to treatment, PLEs may be subcategorized as
either food-responsive PLEs (FR-PLE) or non-food-responsive-PLEs requiring additional
immunosuppressant treatment and then subclassified as immunosuppressant-responsive
PLEs (IR-PLE) or non-responsive PLEs (NR-PLE).
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4. Proposition of a Refined Classification of CIEs in Dogs

A proposal for an updated classification of canine CIEs is depicted in Figure 2.
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4.1. Strengthening the Positioning of FRE

Several arguments lead to the resizing of the category of FRE and the consideration
that its proportion is certainly underestimated:

1. Several studies report that a proportion of NREs are in reality unidentified FREs,
which increases the proportion of FREs and reinforces the idea that testing dietary
changes constitutes the cornerstone of the diagnostic and therapeutic approach to
chronic digestive disorders in dogs [105,106].

2. Intestinal dysbiosis has emerged as an important contributing factor in intestinal
inflammation in humans and animals. With diet being the most effective means of
modulating the intestinal microbiota, it is likely that part of the beneficial effects
observed clinically are due to the rebalancing of the gut microbiota.

3. Finally, a proportion of PLEs respond to dietary changes and therefore fall into the
FRE category and may be subcategorized as FR-PLE. In practice, it is always difficult
to limit treatment to dietary changes in a potentially unstable animal. The CCECAI
score could be a valuable tool to distinguish cases that could benefit from dietary
changes alone (CCECAI < 8) from those also requiring the administration of an
immunosuppressive agent (CCECAI > 8) [107].

4.2. Replacement of AREs by MrMREs

The use of antibiotics in the treatment of CIEs has been gradually replaced by other
approaches to intestinal dysbiosis treatment. The term idiopathic intestinal dysbiosis
has been suggested by others but does not reflect the extent of the existing treatment
options [108]. We propose the replacement of AREs by a category that encompasses
all methods of modulation of the intestinal microbiota (microbiota-related modulation-
responsive enteropathy—MrMRE). This category would include enteropathies responding
to prebiotics, probiotics, postbiotics, symbiotics, fecal microbiota transplantation, bile acid
sequestrants and certain dietary changes. In this concept, FRE and MrMRE partially overlap
because changing diet might result in clinical improvement attributable to the modulation
of the microbiota or another immune or non-immune mechanism. The MrMRE category
has the advantage of being adaptable over time because it is reasonable to assume that new
modalities will appear in the years to come.
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There is no reliable diagnostic criterion for MrMRE category. The clinical relevance
of using the dysbiosis index to predict response to microbiota modulation strategies has
not yet been demonstrated. This tool remains of interest to monitor animals suffering
from intestinal dysbiosis. The association of hypocobalaminemia, hyperfolatemia and
normal serum trypsin-like immunoreactivity, although very insensitive, should raise our
suspicion of gut dysbiosis (increased consumption of vitamin B12 and increased folate
production by the deviated microbiota) [109]. Hypocobalaminemia remains an unspecific
observation since it can occur in exocrine pancreatic insufficiency, ileal malabsorption or
Imerslund–Gräsbeck syndrome [109].

4.3. Reduction in the Place of IRE and NRE

Due to the growing proportion occupied by FREs and MrMREs, IREs and NREs
now appear to constitute a minority of CIEs. New epidemiological studies are needed to
determine their real proportions. Also, new treatments (including bile salt sequestrant
and specific pre-/pro-/postbiotics aimed at restoring a functional microbiota) that should
emerge as beneficial options in subsets of diseased individuals might further lead to a
reduction in the proportion of dogs suitable for immunosuppression or dogs that do not
respond to any treatment.

The diagnosis of IRE and NRE remains complex because it is the culmination of a
complete process of exclusion of all other causes including FRE and MrMRE. A study
showed that a serum CRP concentration of 9.1 mg/L or greater distinguished dogs with
IRE from dogs with FRE or ARE with a sensitivity of 72% and a specificity of 100% [110].
The use of CRP testing to identify IRE dogs may be clinically relevant, but further studies
performed with the current classification on large cohorts are required to confirm this result.

5. Conclusions

In conclusion, we have proposed a refined classification of canine CIEs that takes into
account recent advances in our understanding of these diseases. The most relevant new
insights are that (i) dietary changes are thought to be more important; (ii) the decreasing
use of antibiotics leaves room for several strategies for modulating the intestinal microbiota;
and (iii) cases requiring the use of immunosuppressive treatment seem to be less frequent
than currently assumed.

Microbiota-related modulation-responsive enteropathies (MrMREs) might encompass
an important part of CIEs by focusing on addressing a key pathogenic element. However,
the best way to rebalance the gut microbiota remains to be clarified. Future research on
such options should aim at testing their ability to restore a functional microbiota.
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