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Abstract

Covariance matrix estimation is a ubiquitous problem in signal processing. In most modern

signal processing applications, data are generally modeled by non-Gaussian distributions

with covariance matrices exhibiting a particular structure. Taking into account this struc-

ture and the non-Gaussian behavior improve drastically the estimation accuracy. In this

paper, we consider the estimation of structured scatter matrix for complex elliptically dis-

tributed observations, where the assumed model can differ from the actual distribution of the

observations. Specifically, we tackle this problem, in a mismatched framework, by proposing

a novel estimator, named StructurEd ScAtter Matrix Estimator (SESAME), which is based

on a two-step estimation procedure. We conduct theoretical analysis on the unbiasedness

and the asymptotic efficiency and Gaussianity of SESAME. In addition, we derive a recur-

sive estimation procedure that iteratively applies the SESAME method, called Recursive-

SESAME (R-SESAME), reaching with improved performance at lower sample support the

(Mismatched) Cramér-Rao Bound. Furthermore, we show that some special cases of the pro-

posed method allow to retrieve preexisting methods. Finally, numerical results corroborate

the theoretical analysis and assess the usefulness of the proposed algorithms.
Keywords: Structured covariance matrix, scatter matrix estimation, Complex Elliptically

Symmetric distributions, mismatched framework.
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1. Introduction

Covariance Matrix (CM) estimation turns out to be a crucial step in most existing al-

gorithms used in various domains such as adaptive signal processing, financial engineering,

communication systems [1, 2]. By definition, a CM is Hermitian (symmetric for real ran-

dom variables) and belongs to the set of Positive Semi-Definite (PSD) matrices. However,

in many applications, the CM naturally holds also a specific structure such as Toeplitz or

Kronecker product [3, 4, 5, 6]. Taking into account this structure in the estimation prob-

lem usually implies a smaller parameter of interest vector to be estimated, and thus leads

theoretically to a better estimation accuracy. The structured estimation problem has been

investigated for various types of structures. For instance, the Toeplitz structure appears in

array processing with Uniform Linear Array (ULA) or in time series analysis [3, 4]. In MIMO

communications or spatio-temporal noise processes in MEG/EEG data, the CM exhibits a

Kronecker structure, where the factor matrices could be themselves structured [5, 6]. In

some applications, the CM lies in a low-dimensional subspace [7, 8].

In the afore-mentioned works the CM estimation is unequivocally improved, when the

prior structure is considered. However, they usually assume complex Gaussian distributed

samples. Then, the structured CM estimation is addressed either by projecting the Sample

Covariance Matrix onto a subset describing a structure [9, 10] or by deriving the Maximum

Likelihood (ML) estimator under structure constraints. In some practical applications,

performance is degraded because the assumption of Gaussian distribution leads to non-

robustness, either to heavy-tailed distributed data or to outliers in the sample set. In order

to overcome this issue, a wide class of distribution free methods based on the unstructured

Tyler’s estimate has been proposed [11, 12, 13, 14]. Those methods begin by normalizing the

zero mean observations to get rid of the potential power fluctuations. Specifically, in [11], a

robust extension of the COvariance Matching Estimation Technique (COMET) procedure is

derived. In [12, 13], estimators have been proposed which minimize a constrained version of

Tyler’s cost function using iterative Majorization-Minimization algorithms. In [14], a COn-

vexly ConstrAined (COCA) CM estimator is presented, based on the generalized Method
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of Moments (MoM) for Tyler’s estimate subject to convex constraints. An alternative ap-

proach is to model data following a Complex Elliptically Symmetric (CES) distribution [15]

in order to take into account prior information on the scaling factor (also called “texture”

in radar context). The main reason lies in the fact that the CES distributions encompass a

large number of distributions such as Gaussian, Generalized Gaussian, compound Gaussian,

t-distribution, W -distribution and K-distribution, just to cite a few examples. Those dis-

tributions turn out to fit accurately spiky radar clutter measurements or other heavy-tailed

observations [16, 17, 18].

In most estimation problems, a key assumption concerns the “good” knowledge of the

data model. In other words, if the assumed model to derive an estimation procedure coincides

with the true model of the observations, it is referred to as the matched case. However,

some misspecifications are often unavoidable in practice, due to imperfect knowledge of the

true data model for instance. In the literature, the misspecified model framework has been

investigated, notably the behavior of the ML estimator under mistmached conditions [19, 20].

More recently, some classical tools to conduct asymptotic analysis have been extended to

the misspecified context. More specifically for CES distributions, a lower bound on the error

covariance matrix of mismatched estimators has been derived, leading to the Misspecified

Cramér Rao Bound (MCRB) [21, 22, 23].

In this paper, we introduce a StructurEd ScAtter Matrix Estimator (SESAME), in the

mismatched framework, for any given CES distribution whose scatter matrix owns a con-

vex structure. This method is carried out in two steps. SESAME combines an unstruc-

tured ML-estimate of the scatter matrix and the minimization of an appropriate criterion

from the previous estimate. A theoretical analysis of the proposed SESAME’s asymptotic

performance (weak consistency, bias, efficiency and asymptotic distribution) is conducted.

Also, we propose a recursive generalization of SESAME that leads to a second method,

called Recursive-SESAME (R-SESAME), which outperforms SESAME in the sense that the

asymptotic behavior is reached for lower sample supports. In addition, we relate SESAME

to two special cases. The first one lies on a Gaussian assumed model, then the so-called

COMET procedure from [10] is a special case of SESAME. The second one is the matched
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case, which concurs with the EXtended Invariance Principle (EXIP) [24] applied to CES

distributions. In [25] the derivation is made for the particular case of the t-distribution.

The paper is organized as follows. In Section 2, a brief review of the CES distributions

and robust scatter matrix estimators is presented. Section 3 focuses on the proposed estima-

tor. The theoretical performance analysis is conducted in Section 4. An improvement of the

first proposed algorithm, called R-SESAME, is presented in Section 5. Two special cases of

SESAME are considered in Section 6, which are respectively related to the COMET method

from [10] and the EXIP from [24]. Numerical results illustrate the previous theoretical

analysis in Section 7 and we conclude in Section 8.

In the following, vectors (respectively matrices) are denoted by boldface lowercase letters

(respectively uppercase letters). The k-th element of a vector a is referred to as ak and

[A]k,` stands for the (k, `) element of the matrix A. The notation d= indicates “has the same

distribution as”. Convergence in distribution and in probability are, respectively, denoted

by d→ and P→. The used concept of consistency refers to the weak consistency, i.e., with

a convergence in probability. For a matrix A, |A| and Tr (A) denote the determinant

and the trace of A. AT (respectively AH and A∗) stands for the transpose (respectively

conjugate transpose and conjugate) matrix. Im is the identity matrix of size m. The vec-

operator vec(A) stacks all columns of A into a vector. The operator ⊗ refers to Kronecker

matrix product and finally, the subscript “e” refers to the true value. The notations ker (A),

rank (A) and span (A) denote the null-space, the rank of A and the subspace spanned by the

columns of A. The operator Ep [·] refers to the expectation operator w.r.t. the probability

density function (p.d.f.) p, which will be omitted if there is no ambiguity. Finally, the set

of non-negative real numbers is denoted by R+.

2. Background and Problem Setup

In this section, we introduce the CES distribution model and some robust scatter matrix

estimators. A more substantial survey on CES distribution can be found in [15].
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2.1. CES distribution

A m-dimensional random vector (r.v.), y ∈ Cm follows a CES distribution if and only if

it admits the following stochastic representation [15]:

y d= m +
√
QAu, (1)

where m ∈ Cm is the location parameter and the non-negative real-valued random variable

Q, called the 2nd-order modular variate, is independent of the complex r.v. u. The latter

r.v. is uniformly distributed on the unit k-sphere CSk ,
{
z ∈ Ck | ‖z‖ = 1

}
with k ≤ m,

denoted by u ∼ U
(
CSk

)
. The matrix A ∈ Cm×k has rank(A) = k. Furthermore, if

they exist, the mean of y is equal to m and the covariance matrix of y is proportional to

the scatter matrix, R = AAH , more precisely E
[
(y−m)(y−m)H

]
= 1
k
E [Q] R. In the

following, we assume that m is known and equal to zero, without loss of generality and that

k = m, so rank(R) = m to belong to the absolutely continuous case. In this case, the p.d.f.

of such a vector exists and can be written as [15]:

pY(y; R, g) = Cm,g|R|−1g
(
yHR−1y

)
, (2)

in which the function g : R+ → R+ is called the density generator and satisfies δm,g ,
+∞∫
0
tm−1g(t)dt < ∞ and Cm,g = Γ(m)

πm
δ−1
m,g is the normalizing constant. In this case,

we denote y ∼ CESm (0,R, g) in short. Furthermore, thanks to (1), the quadratic form

yHR−1y d= Q has the following p.d.f.:

pQ (q) = δ−1
m,gq

m−1g (q) . (3)

As already indicated, numerous non-Gaussian distributions (e.g., Generalized Gaussian, t-

distribution, K-distribution, etc.) belong to the family of CES distributions. The expression

of the density generator function for these commonly used CES distributions is given in

Table 1.
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2.2. M-estimators

Let us consider N i.i.d. zero mean CES distributed observations, yn ∼ CESm (0,R, g),

n = 1, . . . , N , with N > m. A complex M -estimator of the scatter matrix, R, is defined as

the solution to the following fixed-point equation [15]:

M̂ = 1
N

N∑
n=1

u
(
yHn M̂

−1
yn
)

ynyHn , and R̂ ∝ M̂. (4)

In the case of the ML estimator, the function u(·) is given by uML(s) = −g
′(s)
g(s) , where g′(·)

refers to the derivative of g(·). In the case of unknown density generator function g(·), the

previous function uML(·) can be replaced by another, u(·), which satisfies a set of general

assumptions to ensure the existence and uniqueness of the solution1 of (4). For convenience,

let us consider the following equation, which expresses the limit towards which the equation

(4) converges when N tends to infinity

M = E
[
u
(
yHM−1y

)
yyH

]
, (5)

where y ∼ CESm (0,R, g). Under some mild assumption [15, 26, 27], (5) (respectively (4))

admits a unique solution M (respectively M̂) and

M = σ−1R,

where σ is the solution of E [ψ(σ|t|2)] = m with t ∼ CESm (0, I, g) and ψ(s) = su(s).

In addition, the estimator M̂ can be easily obtained by an iterative procedure and it has

been shown to be consistent w.r.t. M. Finally, the asymptotic distribution of M̂ has been

established for the complex case in [15, 28] and reads:

√
Nvec

(
M̂−M

)
d→ GCN (0,Σ,Ω) , (6)

1These conditions have been first studied in the real case by [26, 27] then generalized for the complex
case in [15]. They hold for N > m and the usual distributions reported in Table 1. (See Theorems 6 and 7
and Section V.B. of [15] for more details).
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where GCN (0,Σ,Ω) denotes the zero mean non-circular complex Gaussian distribution [29]
in which 

Σ = σ1MT ⊗M + σ2vec (M) vec (M)H ,

Ω = σ1
(
MT ⊗M

)
K + σ2vec (M) vec (M)T = ΣK,

(7)

and 

σ1 = a1(m+ 1)2

(a2 +m)2 ,

σ2 = 1
a2

2

[
(a1 − 1)− a1(a2 − 1)m+ (m+ 2)a2

(a2 +m)2

]
,

(8)

where K is the commutation matrix, which satisfies Kvec (A) = vec
(
AT

)
[30], and the

coefficients a1 and a2 are defined by:


a1 = 1

m(m+ 1)E [ψ2 (σ|t|2)] ,

a2 = 1
m
E [σ|t|2ψ′ (σ|t|2)] .

(9)

We remark that |t|2 = tHt d= Q, thus in the following, we note A = E [ψ2 (σ|t|2)] =
E [ψ2 (σQ)] and B = E [σ|t|2ψ′ (σ|t|2)] = E [σQψ′ (σQ)]. The subscript ML is used when A

and B are computed with ψML(s) = suML(s). Regarding the ML-estimator, we easily obtain
σ = 1. Indeed, as

+∞∫
0
tm−1g(t)dt <∞, i.e., g(t) ∝

+∞
t−m−α, α > 0, we obtain

E [ψML(Q)] = −
∫
R+

q
g′(q)
g(q) δ

−1
m,gq

m−1g (q) dq

= −δ−1
m,g

[
g(q)qm

]+∞
0

+ δ−1
m,g

∫
R+

mg(q)qm−1g (q) dq

= δ−1
m,g

∫
R+

mg(q)qm−1g (q) dq = m.

Similarly, we can show that BML = AML −m2, thus the coefficients σ1 and σ2, which fully

describe the asymptotic (pseudo)-covariance matrices of the scatter ML estimator, can be
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1 Gaussian Generalized Gaussian Student W -distribution K-distribution

1 CNm CGNm,s,b Ctm,d CWm,s,b CKm,ν
g(t) exp (−t) exp (−ts/b) s, b > 0 (1 + t/d)−(d+m) d > 0 ts−1 exp (−ts/b) s, b > 0

√
t ν−mKν−m

(
2
√
νt
)
ν > 0

Cm,g π−m
sΓ(m)b−m/s

πmΓ(m/s)
Γ(m+ d)
πmdmΓ(d)

sΓ(m)b−(m+s−1)/s

πmΓ((m+ s− 1)/s)
2
ν(ν+m)/2

πmΓ(ν)

AML m(m+ 1) m(m+ s)
m(m+ 1)(m+ d)

d+m+ 1
s(m+ s− 1) +m2 2−(m+ν)

Γ(ν)Γ(m)
∫
R+

xm+ν+1K
2
ν−m−1 (x)
Kν−m (x)

dx

σ1,ML 1
m+ 1
m+ s

d+m+ 1
d+m

m(m+ 1)
s(m+ s− 1) +m2 No closed form, numerical evaluation

from (10)
σ2,ML 0

1− s
s(m+ s)

d+m+ 1
d(d+m)

m(1− s)(m+ s)
s(m+ s− 1)(s(m+ s− 1) +m2)

Kλ (·) refers to the modified Bessel function of the second kind [31].

Table 1: Examples with common CES distributions

simplified by

σ1,ML = m(m+ 1)
AML

and σ2,ML = −σ1,ML(1− σ1,ML)
1 +m(1− σ1,ML) . (10)

For the common CES distributions already mentioned in Table 1, there are explicit

expressions for the constant AML and the coefficients σ1,ML and σ2,ML related to the scatter

matrix unstructured ML-estimator. The latter are needed for the derivation of the proposed

algorithms. All the results are summed up in Table 1 for a centered m-dimensional complex

random vector. The guidelines for the above calculations are given in Appendix A.

2.3. Problem setup

Let us consider N i.i.d. zero mean CES distributed observations, yn ∼ CESm (0,Re, g),
n = 1, . . . , N , where the function g(·) characterizes the true but unknown distribution. The
true p.d.f. is denoted by pY (yn; Re). In the following, the only assumption made on the
distribution of the data is the belonging to the class of zero mean CES distributions. Conse-
quently, we assume that the observations, y1, . . . ,yN , are sampled from a CES distribution
with a density generator gmod(t), possibly different from g(t) for all t ∈ R+, specifically the
observations are assumed to follow CESm (0,R, gmod). The assumed p.d.f. is then denoted
by fY (yn; R). Note that the mismatch only concerns the density generator function, in this
paper. Furthermore, we assume that the scatter matrix belongs to a convex subset S of
Hermitian matrices (e.g., Toeplitz, persymmetric, banded,. . .), for which there exists a one-
to-one differentiable mapping µ 7→ R (µ) from RP to S . Thus, the unknown parameter
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of interest is the vector µ with exact value µe, and Re = R (µe) corresponds to the true
structured scatter matrix. Note that there is no assumed misspecification of the scatter
matrix parameterization, since the latter is mostly derived from physical considerations on
the measurement system (e.g., Toeplitz structure for a uniform linear array). The assumed
log-likelihood function is given, up to an additive constant, by

L (y1, . . . ,yN ; µ) ,
N∑
n=1

log fY (yn; µ) = −N log |R (µ) |+
N∑
n=1

log gmod
(
yHn R (µ)−1 yn

)
. (11)

The above function is generally non-convex w.r.t. R, its minimization w.r.t. µ is therefore

a laborious and computationally prohibitive problem. To overcome this issue, we propose

in the next section a new estimation method, which is tractable and gives unique estimates.

Furthermore, for linear structures, we obtain closed form expressions of these estimates.

3. SESAME : StructurEd ScAtter Matrix Estimator

In this section, we propose a two-step estimation procedure of µ. The first step consists

in computing an unstructured estimate of Re, denoted by R̂m. The estimation of µ is then

obtained by minimizing an appropriate designed criterion based on the first-step estimate

and inspired from [10, 25]. For notational convenience, we omit the dependence on N for

the estimators based on N observations when there is no ambiguity.

3.1. Algorithm

Starting from the assumed distribution of the data, CESm (0,R (µ) , gmod), we compute

first the related unstructured ML-estimator of the scatter matrix, which is the solution to

the following fixed-point equation

R̂m = 1
N

N∑
n=1

umod

(
yHn R̂

−1
m yn

)
ynyHn , HN

(
R̂m

)
, (12)

with umod(s) = −g
′
mod(s)
gmod(s) . As already mentioned in the background section, the iterative al-

gorithm Rk+1 = HN(Rk) converges to R̂m for any initialization point with N > m [15, 27].
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Algorithm 1 SESAME
Input: N i.i.d. data, yn ∼ CESm (0,Re, g) with N > m

1: Compute R̂m from y1, . . . ,yN with (12)
2: Compute R̂ from y1, . . . ,yN (could be any consistent estimator of Re up to a scale

factor, e.g., R̂ = R̂m)
3: Return: µ̂SESAME by minimizing JR̂m,R̂(µ) (See (13) or (14).)

Moreover, the consistency w.r.t. σ−1Re where σ is the solution of E [ψmod (σ|t|2)] = m, in

which ψmod(s) = sumod(s) and t ∼ CESm (0, I, g) as well as the asymptotic Gaussianity,

verifying (6), of this estimator are established in [15, 28].

For the second step, we estimate µ by minimizing the following proposed criterion
JR̂m,R̂(µ):

µ̂ = arg min
µ
JR̂m,R̂

(µ) with (13)

JR̂m,R̂
(µ) =κ1Tr

(
R̂−1 (R̂m −R (µ)

)
R̂−1 (R̂m −R (µ)

))
+ κ2

[
Tr
(
R̂−1 (R̂m −R (µ)

))]2
,

where R̂ refers to any consistent estimator of Re up to a scale factor, such as for instance
R̂m, κ2 = κ1 − 1 and κ1 = EfY [ψ2

mod (|tmod|2)]
m(m+ 1) , 0 where tmod ∼ CESm (0, I, gmod). We

recall that fY is the assumed p.d.f. of yn. The criterion JR̂m,R̂(µ) is strongly related to the
Fisher information metric derived for CES distributions in [32]. Using the relations linking
the trace and the vec-operator [33, Tables 2 and 3], we rewrite (13) as

µ̂ = arg min
µ

(r̂m − r(µ))H Ŷ (r̂m − r(µ))

= arg min
µ

∥∥∥∥Ŷ1/2 (r̂m − r(µ))
∥∥∥∥2

2
, (14)

with Ŷ = κ1Ŵ
−1 + κ2vec

(
R̂−1) vec

(
R̂−1)H , Ŵ = R̂T ⊗ R̂, r̂m = vec

(
R̂m

)
and r(µ) =

vec (R (µ)). Thus R (µ̂) leads to a structured estimate of Re.

The SESAME algorithm is recapped in the box Algorithm 1. In practice, we choose R̂ =

R̂m and minimize the cost function JR̂m,R̂m
(µ). However, any other consistent estimator of

Re up to a scale factor can be used. This property will notably be exploited in Section 5.
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Given R̂m and R̂, the function JR̂m,R̂(µ) is convex w.r.t R (µ). Therefore, for R ∈ S

convex set, the minimization of (14) w.r.t. R (µ) is a convex problem that admits a unique

solution. Consequently, the one-to-one mapping ensures the uniqueness of µ̂.

3.2. Practical implementation for holding the PSD constraint

Through the mapping µ 7→ R (µ), SESAME ensures that the estimate R̂S = R(µ̂)

belongs to the desired convex subset S . In order to stress the reliance of the criterion

JR̂m,R̂(µ) defined in (13) on this mapping, we introduce the following notation:

CR̂m,R̂ (R (µ)) = JR̂m,R̂(µ),

leading to the following reformulation of SESAME

µ̂ = arg min
µ
CR̂m,R̂

(R (µ)) . (15)

Obviously, when it comes to scatter matrix estimation, the PSD constraint has to be
complied. Hence the considered subset is expressed S = S+

M ∩L , where S+
M is the cone of

PSD matrices, and L describes the particular structure of the CM (e.g., Toeplitz, banded,
persymmetric, etc.). However, in this case, the mapping µ 7→R (µ) does not usually possess
an explicit expression since the PSD constraint cannot be expressed in a simple system of
equations. To overcome this issue, let us consider an auxiliary mapping µ 7→ RL (µ) so
that RL (µ) ∈ L , ∀µ. The most common example (which holds for the aforementioned
structure) is the linear structure RL (µ) =

P∑
p=1

µpBp, where {Bp}p=1...P form a basis of a
linear convex set. We can then recast an equivalent SESAME as

µ̂ = arg min
µ
CR̂m,R̂

(RL (µ)) s.t. RL (µ) ∈ S+
M , (16)

which can be obtained using standard semi-definite program solvers. Nevertheless, this
approach can be computationally demanding. Therefore, it is worth noting that if the
constraint is omitted, the resulting SESAME

µ̃ = arg min
µ
CR̂m,R̂

(RL (µ)) , (17)

11



provides usually tractable expressions, and own closed form solutions for linear structures.

The major interest of this formulation is that (16) and (17) yield the same estimate if the

PSD constraint is naturally satisfied by RL (µ̃) from (17) retrospectively. Moreover, for suf-

ficiently large N , this latter relaxation provides a positive semi-definite matrix RL (µ̃) with

probability arbitrarily close to one, thanks to the consistency of SESAME (see Theorem

1.).

In Section 7, performance of these two proposed SESAME implementations are com-

pared. It is noted that imposing PSD constraint may be beneficial for a few number of

samples, but that performance of both implementations is generally equivalent.

In the following, µ̂ will be referred to as the SESAME estimate of µ, if there is no

ambiguity, and we address the study of its consistency and efficiency in Section 4.

4. Asymptotic Analysis

This section provides a statistical analysis of the proposed estimator SESAME, µ̂, which

is the unique solution minimizing the criterion (13) w.r.t. µ = (µ1, . . . , µP )T ∈ RP as

already mentioned. Again, it is recalled that we consider a mismatched scenario, i.e. the

function gmod may differ from the true one, g.

4.1. Pseudo-parameter and consistency

Theorem 1. The SESAME estimate, µ̂, given by (13), is a consistent estimator of µc such

that vec (R (µc)) = rc , σ−1re = σ−1vec (R (µe)). Likewise, R (µ̂) is a consistent estimator

of σ−1R (µe).

Proof. Using the consistency of R̂m w.r.t. σ−1Re [15], we have r̂m
P→ σ−1re = rc =

vec (R (µc)). Then, since R̂ is any consistent estimator of Re up to a scale factor, i.e., R̂ P→

αRe, α > 0, we obtain, for large N , Ŷ P→ Y∞ , κ1α
−2
(
RT

e ⊗Re

)−1
+κ2α

−2vec
(
R−1

e

)
vec
(
R−1

e

)H .

Consequently from (14), we obtain µ̂
P→ µ∞ where µ∞ is the solution of the asymptotic

12



criterion (14) for N →∞, i.e.,

µ∞ = arg min
µ

∥∥∥Y1/2
∞ (rc − r(µ))

∥∥∥2

2
. (18)

Furthermore, we have

rank (Y∞) = rank
((

RT
e ⊗Re

)−1/2
(
Im2 +

(
1− 1

κ1

)
vec (Im) vec (Im)H

) (
RT
e ⊗Re

)−1/2
)

= rank
(
Im2 +m

(
1− 1

κ1

)
nnH

)
,

where
(
RT
e ⊗Re

)−1/2
is full-rank and n = 1√

m
vec (Im) is a unit vector. The matrix Y∞ is

full-rank if and only if

∣∣∣∣Im2 +m
(

1− 1
κ1

)
nnH

∣∣∣∣ ≡ 1 +m
(

1− 1
κ1

)
, 0 ⇔ EfY

[
ψ2

mod

(
|tmod|2

)]
, m2.

Since EfY [ψ2
mod (|tmod|2)] > m2, Y1/2

∞ is a full-rank matrix. Moreover, since the mapping

is one-to-one, the unique solution to the above problem is µ∞ = µc with probability one,

which establishes the consistency of µ̂ w.r.t. µc. Finally, the continuous mapping theorem

[34] implies R (µ̂) P→R (µc) = σ−1R (µe). �

With a potential model misspecification, the so-called pseudo-true parameter vector, µ0,

is classically introduced for an asymptotic analysis [20, 22, 23]. The latter is defined as

the minimizer of the Kullback-Leibler divergence (KLD) between the true and the assumed

models, i.e.,

µ0 = arg min
µ
D (pY‖fµ) = arg max

µ
EpY [log fY (yn; µ)] , (19)

where D (pY‖fµ) , EpY

[
log pY (yn; µe)

fY (yn; µ)

]
. In the following, we always assume the existence

and the uniqueness of the pseudo-true parameter vector, µ0 (the reader is referred to [22]

for necessary and sufficient conditions).

13



Corollary 1. The pseudo-true parameter vector, µ0, is equal to µc. Thus, the SESAME

estimate, µ̂, given by (13), is a consistent estimator of µ0 such that µ0 = arg min
µ
D (pY‖fµ).

Proof. For the derivation of the pseudo-true parameter vector, it is easier to work on R (µ)

than directly on µ. To this end, let us introduce

R0 = arg min
R(µ)
D (pY‖fµ) = arg max

R(µ)
EpY [log fY (yn; R (µ))] . (20)

The differential of the KLD w.r.t. R (µ) is given by [22]

∂D (pY‖fµ) = −EpY [∂ log fY (yn; R (µ))] = −EpY

[
∂ log |R (µ) |−1 + ∂ log gmod

(
yHn R (µ)−1 yn

)]
= Tr

(
R (µ)−1 ∂R (µ)

)
+ Tr

(
EpY

[
g′mod(QR)
gmod(QR)R (µ)−1 ynyHn R (µ)−1 ∂R (µ)

])
= Tr

(
R (µ)−1 ∂R (µ)

)
+ Tr

(
R (µ)−1EpY

[
g′mod(QR)
gmod(QR)ynyHn

]
R (µ)−1 ∂R (µ)

)
,

with QR , yHn R (µ)−1 yn. By following the standard rules of matrix calculus [35], the

derivative of the KLD w.r.t. R (µ) is then given by

∂D (pY‖fµ)
∂R (µ) = R (µ)−1 −R (µ)−1EpY

[
umod(QR)ynyHn

]
R (µ)−1 . (21)

Finally the matrix, which cancels (21), denoted by R0, is solution to the fixed-point equation

R0 = EpY

[
umod

(
yHn R−1

0 yn
)

ynyHn
]
,

which coincides with (5). Thus, by uniqueness of the solution of (5), we obtain R0 =

σ−1Re = Rc = R (µc). Therefore, there exists µ0 such that R0 = R (µ0) and µc = µ0 =

arg min
µ
D (pY‖fµ). Applying Theorem 1. concludes the proof. �

4.2. Asymptotic distribution

Theorem 2. Let µ̂N be the SESAME estimate obtained with Algorithm 1 from N i.i.d.

observations, yn ∼ CESm (0,R (µe) , g) but with an assumed model of CESm (0,R (µ) , gmod).

The estimate µ̂N is asymptotically unbiased and Gaussian distributed w.r.t. µ0, such that
14



µ0 = arg min
µ
D (pY‖fµ). Specifically,

√
N (µ̂N − µ0) d→ N (0,Γµ) , (22)

with

Γµ = (κ1C + κ2D)−1 (β1C + β2D) (κ1C + κ2D)−1 , (23)

where
 C = J (µ0)H W−1

0 J (µ0) ,

D = J (µ0)H U0J (µ0) ,
(24)

in which W0 = RT
0 ⊗ R0, U0 = vec

(
R−1

0

)
vec

(
R−1

0

)H
, β1 = σ1κ

2
1, β2 = σ1κ2 (2κ1 +mκ2) +

σ2 (κ1 +mκ2)2 and ∂r(µ)
∂µ

∣∣∣∣∣
µ

, J (µ) refers to the Jacobian matrix of r(µ) evaluated in µ.

Proof. The estimate µ̂N is given by minimizing the function JR̂m,R̂(µ). The consistency of
µ̂N (cf. Corollary 1.) allows us to write the following Taylor expansion around µ0:

0 =
∂JR̂m,R̂

(µ)
∂µ

∣∣∣∣∣
µ=µ̂N

=
∂JR̂m,R̂

(µ)
∂µ

∣∣∣∣∣
µ=µ0

+

 ∂2JR̂m,R̂
(µ)

∂µ∂µT

∣∣∣∣∣
µ=ξN

 (µ̂N − µ0),

with ξN on the line segment connecting µ0 and µ̂N , i.e., ∃ c ∈ ]0, 1[ such that ξN = cµ0 +
(1− c)µ̂N [36, Theorem 5.4.8], leading to

√
N (µ̂N − µ0) = −

 ∂2JR̂m,R̂
(µ)

∂µ∂µT

∣∣∣∣∣
µ=ξN

−1
√
NgN (µ0),

subject to invertibility, with gN (µ) =
∂JR̂m,R̂

(µ)
∂µ

.

• First, the consistency of µ̂N implies ξN
P→ µ0. Moreover, by consistency of R̂m w.r.t.

15



R0 = σ−1Re and R̂ w.r.t. αRe, the continuous mapping theorem yields to

∂2JR̂m,R̂
(µ)

∂µ∂µT

∣∣∣∣∣
µ=ξN

P→ ∂2JR0,αRe(µ)
∂µ∂µT

∣∣∣∣∣
µ=µ0

= α−2 ∂
2JR0,Re(µ)
∂µ∂µT

∣∣∣∣∣
µ=µ0

, α−2H(µ0). (25)

After some calculus, we obtain from (14)

H(µ0) = 2 ∂r(µ)
∂µ

∣∣∣∣H
µ=µ0

Ye
∂r(µ)
∂µ

∣∣∣∣
µ=µ0

= 2J (µ0)H YeJ (µ0) ,

where Ye = κ1W−1
e + κ2Ue, with We = RT

e ⊗Re and Ue = vec
(
R−1

e

)
vec

(
R−1

e

)H
.

• Second, the gradient gN(µ) is equal to

gN (µ) = −∂r(µ)
∂µ

H

Ŷ (r̂m − r(µ))− (r̂m − r(µ))H Ŷ∂r(µ)
∂µ

(26)

= −2<
(
∂r(µ)
∂µ

H

Ŷ (r̂m − r(µ))
)
.

• Finally, using the asymptotic distribution of r̂m given by (6), we can show that (see
Appendix B for details)

−
√
NgN (µ0) d→ N (0,R∞) , (27)

with R∞ = 4α−4σ−4J (µ0)H
(
β1W−1

0 + β2U0
)

J (µ0) = 4α−4σ−4 (β1C + β2D)

According to Slutsky’s lemma with (25) and (27) [37, Chapters 2], we finally obtain

√
N (µ̂N − µ0) d→ N (0,Γµ) , (28)

with

Γµ = α4H (µ0)−1 R∞H (µ0)−H

= (κ1C + κ2D)−1 (β1C + β2D) (κ1C + κ2D)−1 , (29)

which concludes the proof on asymptotic unbiasedness and asymptotic Gaussianity of SESAME

estimator w.r.t. the pseudo-true parameter µ0. �
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4.3. Efficiency in the mismatched framework

In the matched context, the Cramér-Rao Bound (CRB) is a lower bound of the variance of

any unbiased estimator (which corresponds then to the Mean Square Error) of a deterministic

parameter. Such an estimator is said to be (asymptotically) efficient if its variance reaches

the CRB for an (in)finite number of samples.

Likewise, under misspecified models, the Misspecified Cramér-Rao Bound (MCRB) is

defined as a lower bound of the variance of any unbiased estimator µ̂g of µ0, where µ0 is

actually the pseudo-true parameter vector [22, 23]. Specifically, we have

Var
(
µ̂g

)
� 1
N

A−1 (µ0) B (µ0) A−1 (µ0) , 1
N

MCRB, (30)

where, for all k, ` = 1, . . . , P , [B (µ0)]k,` = EpY

[
∂ log fY (yn; µ)

∂µk

∣∣∣∣
µ=µ0

∂ log fY (yn; µ)
∂µ`

∣∣∣∣
µ=µ0

]

and [A (µ0)]k,` = EpY

 ∂2 log fY (yn; µ)
∂µk∂µ`

∣∣∣∣∣
µ=µ0

 and we define the m-efficiency property by

Definition (Property of m-efficiency). In the mismatched framework, an unbiased estimator

µ̂g of µ0 is said to be (asymptotically) m-efficient if its variance reaches the MCRB in the

(in)finite-sample regime.

Theorem 3. The SESAME estimate, µ̂N obtained with Algorithm 1, is asymptotically

m-efficient, i.e.,
√
N (µ̂N − µ0) d→ N (0,MCRB) , (31)

with

MCRB = σ1C−1 + σ2C−1DC−1 =
(
σ−1

1 C− σ2

σ1(σ1 +mσ2)D
)−1

, (32)

in which C and D are given in (24).

Proof. The study of the m-efficiency of µ̂N is reduced to prove the equality between Γµ and
MCRB, since Theorem 2. holds. First, we give the expression of MCRB from (30). The
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derivation of the MCRB for the considered problem has already been conducted in [23] and
is only summarized here

MCRB =
(
−a2 +m

m+ 1 C + 1− a2
m+ 1 D

)−1
(a1C + (a1 − 1)D)

(
−a2 +m

m+ 1 C + 1− a2
m+ 1 D

)−1
. (33)

Then, let us recall that the matrix D = J (µ0)H vec
(
R−1

0

)
vec

(
R−1

0

)H
J (µ0) has a rank

lower or equal to 1. Then, since the mapping µ 7→R (µ) is one-to-one, the matrix J (µ0) ∈

Cm
2×P is full-rank column. Let B ∈ Cm2×m2−P be the matrix, whose columns form an

orthonormal basis for the nullspace of J (µ0)H , that is J (µ0)H B = 0 and BHB = Im2−P .

• Case rank (D) = 0

If rank (D) = 0, i.e., D = 0, we obviously have from (29) and (33)

Γµ = β1

κ2
1
C−1 = σ1C−1 = a1

(
m+ 1
a2 +m

)2
C−1 = MCRB.

This occurs when vec (R0) ∈ span (B), i.e., vec (R0)H B , 0.

• Case rank (D) = 1

This more interesting case happens when vec (R0) < span (B), i.e., vec (R0)H B = 0. In
order to compare the matrices Γ (µ) and MCRB, we develop their expression using the
Sherman-Morrison formula [38]. On one hand, we obtain

Γµ = σ−2
(
δ1C−1 + δ2C−1DC−1 + δ3C−1DC−1DC−1 + δ4C−1DC−1DC−1DC−1

)
(34)

with



δ1 = β1
κ2

1
= σ1,

δ2 = 1
κ2

1

(
β2 −

2β1κ2
κ1 + εeκ2

)
,

δ3 = κ2
κ2

1(κ1 + εeκ2)

(
β1κ2

κ1 + εeκ2
− 2β2

)
,

δ4 = κ2
2β2

κ2
1(κ1 + εeκ2)2 .

On the other hand, we obtain

MCRB = σ−2
(
γ1C−1 + γ2C−1DC−1 + γ3C−1DC−1DC−1 + γ4C−1DC−1DC−1DC−1

)
(35)
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with



γ1 = σ1,

γ2 =
( 2σ1(1− a2)
a2 +m+ εe(a2 − 1) + a1 − 1

a1
σ1

)
,

γ3 = 1− a2
a2 +m+ εe(a2 − 1)

(2σ1(a1 − 1)
a1

+ (1− a2)σ1
a2 +m+ εe(a2 − 1)

)
,

γ4 = (1− a2)2(a1 − 1)σ1
(a2 +m+ εe(a2 − 1))2a1

,

where εe = Tr
(
DC−1

)
. It can be also noted that C−1DC−1DC−1 = εeC−1DC−1 and

C−1DC−1DC−1DC−1 = ε2
eC−1DC−1. Finally, we obtain

Γµ = σ−2σ1C−1 + σ−2
(
δ2 + δ3εe + δ4ε

2
e

)
C−1DC−1

= σ−2σ1C−1 + σ−2
(
σ1

κ2
2 (m− εe)

(κ1 + εeκ2)2 + σ2

(
κ1 +mκ2
κ1 + εeκ2

)2
)

C−1DC−1, (36)

and

MCRB = σ−2σ1C−1 + σ−2
(
γ2 + γ3εe + γ4ε

2
e

)
C−1DC−1

= σ−2σ1C−1 + σ−2
(
σ1

(a2 − 1)2 (m− εe)
(m+ 1)2 + σ2

(
a2(m+ 1)

a2(1 + εe) +m− εe

)2)
C−1DC−1.

(37)

Consequently, Γµ will be equal to MCRB, if εe = m. In the following we compute εe. Let
us note that,

εe = Tr
(
DC−1

)
= vec (R0)H W−1

0 J (µ0)
(
J (µ0)H W−1

0 J (µ0)
)−1

J (µ0)H W−1
0 vec (R0) .

(38)

According to Corollary 1 of [39], the following equality holds

J (µ0)
(
J (µ0)H W−1

0 J (µ0)
)−1

J (µ0)H = W0 −W0B
(
BHW0B

)−1
BHW0.

Thus, (38) can be rewritten as

εe = vec (R0)H W−1
0

(
W0 −W0B

(
BHW0B

)−1
BHW0

)
W−1

0 vec (R0)
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= vec (R0)H W−1
0 vec (R0)− vec (R0)H B︸            ︷︷            ︸

0

(
BHW0B

)−1
BHvec (R0)︸           ︷︷           ︸

0

= Tr
(
R−1

0 R0
)
− 0 = m, which concludes the proof.

�

5. Recursive SESAME

In this section, we propose a recursive procedure for SESAME based on an iterative
refinement of the cost function JR̂m,R̂(µ), which preserves the same asymptotic performance
as SESAME and turns out to provide an estimation accuracy improvement in most cases.
The SESAME algorithm provides an estimate µ̂ by minimizing JR̂m,R̂(µ), where JR̂m,R̂(µ)
is defined by either (13) or (14):

µ̂SESAME = arg min
µ
JR̂m,R̂

(µ),

where R̂m is an unstructured estimator of Re obtained with (12) and R̂ is any consistent
estimator of Re up to a scale factor. According to Theorem 1., R

(
µ̂SESAME

)
is a consistent

estimator of Re up to a scale factor. Intuitively, the better the estimator R̂ is, the better the
solution µ̂ should be. This leads naturally to a recursive procedure, where the minimized
norm is refined at each step by updating R̂ with the previously computed R

(
µ̂SESAME

)
.

For a finite number of steps, Nit, we obtain the Recursive SESAME (R-SESAME) for µ,
denoted µ̂R-SESAME and achieved at the k-th stage by solving

µ̂(k+1) = arg min
µ
J

R̂m,R̂
(k)(µ) with R̂(k) = R

(
µ̂(k)

)
, for k = 1, . . . , Nit, (39)

with µ̂R-SESAME = µ̂(Nit+1). Since Nit <∞, the existence of R-SESAME estimate is always

ensured. The R-SESAME algorithm is recapped in the box Algorithm 2.

By applying Theorems 1. and 2. at each iteration, the next theorem follows immedi-

ately.

Theorem 4. Let µ̂R-SESAME
N be the R-SESAME estimate given by Algorithm 2 and

based on N i.i.d. observations, yn ∼ CESm (0,R (µe) , g) but with an assumed model
20



Algorithm 2 Recursive-SESAME
Input: N i.i.d. data, yn ∼ CESm (0,Re, g) with N > m

1: Compute R̂m from y1, . . . ,yN with (12)
2: Initialize µ̂(1) by minimizing JR̂m,R̂m

(µ)
3: for k = 1 to Nit do
4: Compute µ̂(k+1) from (39)
5: end for
6: Return: µ̂R-SESAME = µ̂(Nit+1)

of CESm (0,R (µ) , gmod). Therefore µ̂R-SESAME
N is a consistent estimator of µ0. Likewise,

R
(
µ̂R-SESAME
N

)
is a consistent estimator of σ−1R (µe). Moreover, it is asymptotically un-

biased, m-efficient and Gaussian distributed w.r.t. µ0, such that µ0 = arg min
µ
D (pY‖fµ).

Specifically,
√
N
(
µ̂R-SESAME
N − µ0

)
d→ N (0,MCRB) . (40)

R-SESAME improves SESAME in the sense that it empirically reaches its asymptotic

regime for lower sample supports. In practice, we can use a more flexible implementation

rather than imposing a fixed number of iterations. For example, the stopping criteria can

combine a maximal number of iterations, Nmax, and a relative gap between the estimates of

two successive iterations below a defined threshold, εtol.

6. Special Cases

In this section, we consider some special cases of the SESAME algorithm, notably under

a (wrongly) assumed Gaussian distribution and perfectly CES matched model.

6.1. Case 1: misspecification with assumed Gaussian distributed data

A common practice in array processing applications is to assume a Gaussian distributed

data. This prevalent choice leads generally to the simplest derivation and for a real-time

implementation of the algorithm. However, as already mentioned in the introduction, the

performance of Gaussian-based models can be strongly degraded with the presence of outliers

or heterogeneities in the data set.
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Let us assume a Gaussian model, i.e., gmod(t) = exp(−t); whereas, the data are CES
distributed, i.e., yn ∼ CESm (0,R (µe) , g), n = 1, . . . , N with gmod , g. In this case, the
proposed SESAME algorithm reads

µ̂ = arg min
µ
J SESAME-G

R̂SCM,R̂
(µ) with

J SESAME-G
R̂SCM,R̂

(µ) = Tr
(
R̂−1 (R̂SCM −R (µ)

)
R̂−1 (R̂SCM −R (µ)

))
, (41)

with the Sample Covariance Matrix (SCM) R̂SCM = 1
N

N∑
n=1

ynyHn , R̂ refers to any consistent

estimator of Re up to a scale factor. It is worth mentioning that replacing R̂ by R̂SCM leads

to the well-known COMET procedure [10].

Corollary 2. Let µ̂N be the SESAME-G estimate obtained by minimizing (41) from N

i.i.d. observations, yn ∼ CESm (0,R (µe) , g). Therefore µ̂N is consistent, asymptotically

unbiased, m-efficient and Gaussian distributed w.r.t. µ0, such that R (µ0) = σ−1
C R (µe)

with σ−1
C = EpY [Q]

m
. Specifically,

√
N (µ̂N − µ0) d→ N

(
0,ΓSESAME-G

µ

)
, (42)

with

ΓSESAME-G
µ = C−1 ((κ+ 1) C + κD) C−1, (43)

where κ = mEpY [Q2]
(m+ 1)EpY [Q]2

− 1 is the so-called elliptical kurtosis parameter [15, 40] and

Q
d= yHR (µe)

−1 y with y ∼ CESm (0,R (µe) , g).

Proof. We have ψmod(s) = s, thenm = EpY [ψmod (σCQ)] = σCEpY [Q]. According to Table 1,

we have κ1 = 1 and κ2 = 0. Moreover, we easily obtain a1 = κ+1 and a2 = 1, thus σ1 = κ+1

and σ2 = κ and finally β1 = κ + 1 and β2 = κ. Applying Theorems 1. and 2 concludes

the proof. �
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6.2. Case 2: SESAME in the perfectly matched model

In the situation where the assumed model coincides with the true one, it refers to the

matched case. Then the SESAME procedure is equivalent to the EXIP [24] derived for the

CES distributions and the structure R (µ) [25]. This estimator is referred to SESAME-E.

Corollary 3. Let µ̂N be the SESAME-E estimate obtained with Algorithm 1 from N i.i.d.

observations, yn ∼ CESm (0,R (µe) , g), where the function g(·) = gmod(·) is assumed to

be known. Therefore µ̂N is consistent, asymptotically unbiased, efficient and Gaussian

distributed w.r.t. µe. Specifically,

√
N (µ̂N − µe)

d→ N
(
0,F−1

)
, (44)

where F is the Fisher Information Matrix (FIM), which is expressed by F−1 = J (µe)
H YeJ (µe)

in which Ye = κ1W−1
e + κ2Ue.

Proof. The above expression of the FIM follows straightforwardly from [41]. Moreover, we

have obviously µ0 = µe and ψmod(·) = ψML(·), so σ = 1. According to Theorem 1., we

have then µ̂N
P→ µe. Furthermore, we have κ1 = σ−1

1,ML and σ2,ML = −σ1,ML(1− σ1,ML)
1 +m(1− σ1,ML) , thus

β1 = κ1 and β2 = κ2, which yields Γµ = (κ1C + κ2D)−1 = F−1. Finally, according to

Theorem 2., we obtain
√
N (µ̂N − µe)

d→ N
(
0,F−1

)
. (45)

�

7. Applications and Numerical Results

This section presents the SESAME in the particular case of linear structure under both

matched and mismatched models.

7.1. SESAME with linear parameterization

In the case of linear parameterization for the scatter matrix, where the PSD constraint

has been relaxed, SESAME yields a closed form expression. Indeed, there exists a basis of
23



Hermitian matrices {Bp}p=1...P ∈ C
m×m such that

R (µ) =
P∑
p=1

µpBp with µ = [µ1, . . . , µP ]T ∈ RP ,

with P ≤ m2. By using the vec-operator, we obtain a matrix, P ∈ Cm2×P , which relates the

vectorized matrix R (µ) to µ according to:

r(µ) = vec (R (µ)) = Pµ.

In this case, the PSD constraint is not taken into account. Considering this linear structure,

the SESAME criterion (14) reads

µ̂ = arg min
µ

∥∥∥∥Ŷ1/2
r̂m − Ŷ

1/2
Pµ

∥∥∥∥2
.

The well known analytical solution gives

µ̂ =
(
PHŶP

)−1
PHŶr̂m. (46)

As an example, we consider the Toeplitz structure, which is frequently exhibited in array
processing. Let Re = R (µe) ∈ Cm×m belong to S, the convex subset of Hermitian matrices
with Toeplitz structure. A natural parameterization is as follows:

R (µ) =



R1 R2 · · · Rm

R∗2
. . .

. . .
...

...
. . .

. . . R2

R∗m · · · R∗2 R1


and µ =



R1

< (R2)

= (R2)
...

< (Rm)

= (Rm)


∈ R2m−1.
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7.2. Validation of the statistical analysis

First, we illustrate the previous theoretical analysis on SESAME performance under

misspecifications. For the simulations, we choose a scatter matrix with an Hermitian Toeplitz

structure. For m = 5, the true scatter matrix has its first row [2, ρ, ρ2, . . . , ρm−1], with

ρ = 0.8 + 0.3i. The coefficients κ1 and κ2 needed in SESAME algorithm are connected to

σ1,ML w.r.t. the assumed p.d.f., whose explicit expressions can be found in Table 1. The

others coefficients σ, σ1 and σ2 are numerically computed. We consider two scenarios of

misspecifications:

S1: the true and assumed p.d.f. are t-distributions with different degrees of freedom,

specifically we have


g (t) =

(
1 + t

d

)−(d+m)
, with d = 3,

gmod (t) =
(

1 + t

dmod

)−(dmod+m)
, with dmod = 5.

S2: the true p.d.f is a W -distribution and we assume a Gaussian model, which would be

the most common hypothesis as already mentioned in the introduction. Thus, we have


g (t) = ts−1 exp

(
−t

s

b

)
, with b = 2 and s = 0.8,

gmod (t) = exp (−t) .

The estimate obtained by SESAME under misspecification is generally referred to as µ̂Mis-SESAME

whereas the one computed in the matched case is denoted by µ̂SESAME-E. For Gaussian as-

sumed models, we consider the particular COMET estimate, designated as µ̂COMET. We

also compare the performance of SESAME under both matched and mismatched models

with the CRB and the MCRB. To draw the comparison, we define the Pseudo Mean Square

Error (PMSE) w.r.t the pseudo-parameter µ0 by

PMSEµ0 (µ̂) = E
[
(µ̂− µ0) (µ̂− µ0)T

]
.
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Figure 1: PMSE of SESAME procedures, true and assumed models are t-distribution with d = 3 and
dmod = 5.
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Figure 2: PMSE of SESAME procedures, true p.d.f. is W -distribution with b = 2 and s = 0.8 and assumed
model is Gaussian.

In Fig. 1 and Fig. 2, the asymptotic covariance of the SESAME estimates under both

matched and mismatched models reach the corresponding CRB derived in either matched or

mismatched scenarios, i.e., the (m-)efficiency of the algorithm is verified. The unbiasedness
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as well as the consistency can be also indirectly observed in Fig. 1 and Fig. 2.

7.3. On implementations

In the following, we consider the matched case only and we desire to illustrate the

discussion on the PSD constraint conducted in the Subsection 3.2 and the performance

improvement brought by R-SESAME compared to SESAME. For these numerical results,

we consider an Hermitian Toeplitz scatter matrix with t-distributed (cf Section 2.1 and

Table 1) observations. For m = 4, the Toeplitz scatter matrix is defined with its first row:

[1,−0.83− 0.20i, 0.78 + 0.37i,−0.66− 0.70i]. We generate 5000 sets of N independent m-

dimensional t-distributed samples, yn ∼ Ctm,d (0,Re), n = 1, . . . , N with d = 5 degrees of

freedom.
We compare the performance of the proposed algorithms to the state of the art and the

CRB. Furthermore, we display the performance of SESAME estimation scheme by replacing
the first step by the joint-algorithm proposed in [42] to deal with the possibility of unknown
parameter d (a possible relaxation of the assumption on the knowledge of the true model).
For the performance of R-SESAME, we only consider the unstructured ML estimator as first
step at each iteration. Our algorithms are compared to RCOMET from [11], COCA from
[14] and Constrained Tyler from [12]. The three methods are based on the Tyler’s scatter
estimator [43] using normalized observations zn = yn/‖yn‖. It should be noted that, for
Constrained Tyler, the Algorithm 3 in [12] derived for real-valued PSD Toeplitz matrices can
not be directly applied. However, the Vandermonde factorization of PSD Toeplitz matrices
[44] allows us to use the Algorithm 2 of [12]. In this algorithm, the set of PSD Toeplitz
matrices is parameterized by S =

{
R | R = APAH

}
through the unknown diagonal matrix

P � 0 and with A = [a(−90◦), a(−88◦), · · · , a(86◦), a(88◦)], where

a (θ) =
[
1, e−jπ sin(θ), · · · , e−jπ(m−1) sin(θ)

]T
.

Finally, we compare to the empirical estimate µ obtained by averaging the real and imaginary

parts of diagonals of the unstructured ML estimator, which corresponds to the Euclidean

projection onto the Toeplitz set.
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Figure 3: Efficiency simulation

The asymptotic efficiency of our estimator is checked in Fig. 3 : its MSE reaches the

CRB as N increases. RCOMET, Constrained Tyler and COCA do not reach this bound

since they do not take into account the underlying distribution of the data. Despite the

absence of convergence proof for the joint-algorithm in [42], we notice that optimal asymp-

totic performance for µ may be approached with unknown d thanks to an appropriate first

estimation step. Performance of the proposed estimation scheme with the joint-algorithm

as first step are not displayed for small N , since the joint-algorithm of [42] did not converge

for part of the 5000 runs. In addition, the asymptotic unbiasedness of SESAME as well as

those of the other algorithms can be indirectly observed on the Fig. 3.

In Fig. 4, the comparison is drawn between SESAME and R-SESAME with various

numbers of iterations through the MSE. As already stated, we observe that the CRB is

reached faster with R-SESAME than SESAME.

In Fig. 5 we analyse the influence of the PSD constraint on the performance of SESAME

and R-SESAME. Working with a linear parameterization, the solution of SESAME without

the PSD constraint is given by the closed form (46). We can check the positive semidef-

initeness a posteriori. If the estimate R (µ̂) is not PSD, then we solve the problem (16)
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Figure 4: Efficiency simulation R-SESAME

N
RCOMET Projection SESAME SESAME R-SESAME R-SESAME R-SESAME R-SESAME Constr. SESAME COCA

[11] 1©: ML 1©: ML PSD 1©: ML 1 iteration PSD 1 it. 4 it. PSD 4 it. Tyl. [12] 1©: [42] [14]

100 0.012s 0.018s 0.018s 0.018s 0.018s 0.018s 0.019s 0.019s 0.21s 0.46s 2.18s

500 0.048s 0.086s 0.086s 0.086s 0.087s 0.087s 0.087s 0.088s 0.76s 1.94s 15.10s

1000 0.090s 0.17s 0.173s 0.173s 0.173s 0.173s 0.174s 0.174s 1.44s 3.63s 50.40s

Table 2: Average calculation time
(Matlab R2017 a, CPU E3-1270 v5 @ 3.60 GHz, 32 GB RAM)

with CVX [45, 46]. Thus, we obtain SESAME PSD and R-SESAME PSD. For R-SESAME

PSD, we draw the results for both stopping criteria: a fixed number of iterations and a

combination of a maximal number of iterations and a relative gap between two successive

estimates sufficiently small.

According to Fig. 5, the performance of SESAME with or without the PSD constraint

appears almost identical, even for small sample support. However for small N , R-SESAME

is strongly improved when the PSD constraint is considered.

Table 2 summarizes the average calculation time of the different algorithms. The pro-

posed algorithms appear to be an interesting and time-efficient alternative to the current

state of the art. The estimation scheme with the joint-algorithm is slower than the one using

the exact ML-estimator, which makes sense since the degree of freedom of the t-distribution
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Figure 5: Comparison SESAME/R-SESAME with or without the PSD constraint

is also estimated. The COCA estimator suffers from heavy computational cost, since the

number of constraints grows linearly in N .

8. Conclusion

In this paper, we have introduced structured scatter matrix estimation algorithms for

centered CES distributions. Firstly, we have derived a two-step estimation procedure for

the structured scatter matrix of CES distributions referred to as SESAME, taking into ac-

count possible misspecifications on the statistical model of the observations. Then, we have

conducted a theoretical asymptotic analysis to demonstrate the consistency, the unbiased-

ness, the asymptotic Gaussianity and m-efficiency of SESAME method in the mismatched

framework. In addition, we have analytically expressed the coefficients appearing in the

criterion for common CES distributions. Secondly, we have proposed a recursive applica-
30



tion of the SESAME algorithm, which procedure leads to R-SESAME, possessing the same

asymptotic performance but leading empirically to a faster convergence to the (M)CRB

than SESAME. Thirdly, we have shown that some established procedures corresponds to

special cases of SESAME. More specifically, with Gaussian assumed model, we retrieve the

COMET procedure as a special case whereas in the matched case, SESAME coincides with

the EXIP approach for centered CES distributions. Finally, numerical results corroborated

the theoretical analysis and assessed the interest of the proposed algorithms.

9. Appendices

9.1. Appendix A: detail of calculus for Table 1

9.1.1. Complex Generalized Gaussian distribution

The density generator function is given by:

g(t) = exp
(
− t

s

b

)
with s > 0, b > 0 and Cm,g = sΓ(m)b−m/s

πmΓ(m/s) .

We obtain uML(t) = s

b
ts−1 and ψML(t) = tu(t) = s

b
ts. To ensure the convergence of the

ML scatter matrix estimator, the parameter s has to be strictly lower than 1. Thus, by
recognizing a generalized Gamma distribution, we have

AML = E
[
ψ2

ML (Q)
]

= s3

Γ(m/s)b2+m/s

∫
R+

xm−1+2se
−
xs

b dx

= s3

Γ(m/s)b2+m/s
Γ(m/s+ 2)b2+m/s

s
= m(m+ s).

9.1.2. Complex W -distribution

The density generator function can be written by:

g(t) = ts−1e
−
ts

b with s > 0, b > 0 and Cm,g = sΓ(m)b−(s+m−1)/s

πmΓ
(
s+m− 1

s

) .
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We obtain uML(t) = s

b
ts−1 − (s − 1)t−1 and ψML(t) = tu(t) = s

b
ts − (s − 1). To satisfy

the Maronna’s condition defined in [26], the parameter is necessarily s < 1. Again, the
generalized Gamma distribution allows us to write

AML = s

Γ
(
s+m− 1

s

)
b

s+m− 1
s

∫
R+

(
s

b
xs − s+ 1

)2
xs+m−2e

−
xs

b dx

= (m+ 2s− 1)(m+ s− 1)− 2(s− 1)(m+ s− 1) + (s− 1)2

= (m+ s− 1)s+m2.

9.1.3. Complex K-distribution

The density generator function is

g(t) =
√
t ν−mKν−m

(
2
√
νt
)

with ν > 0 and Cm,g = 2ν
(ν+m)/2

πmΓ(ν) ,

where Kλ (·) denotes the modified Bessel function of the second kind. Straightforward, we

get uML(t) =
√
ν

t

Kν−m−1
(
2
√
νt
)

Kν−m
(
2
√
νt
) and ψML(t) =

√
νt
Kν−m−1

(
2
√
νt
)

Kν−m
(
2
√
νt
) . Therefore, we obtain

AML = E
[
ψ2

ML (Q)
]

= 2ν(ν+m)/2+1

Γ(ν)Γ(m)

∫
R+

√
xm+νK

2
ν−m−1 (2

√
νx)

Kν−m (2
√
νx) dx

= 1
2m+νΓ(ν)Γ(m)

∫
R+

xm+ν+1K
2
ν−m−1 (x)
Kν−m (x) dx.

The integral expression can not be simplified into an explicit form.

9.1.4. Complex t-distribution

The reader is referred to [42].

9.2. Appendix B: proof of equation (27)

The starting point is the expression of the gradient evaluated in µ = µ0, i.e.,

gN (µ0) = − ∂r(µ)
∂µ

∣∣∣∣H
µ=µ0

Ŷ (r̂m − r0)− (r̂m − r0)H Ŷ ∂r(µ)
∂µ

∣∣∣∣
µ=µ0

(47)
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= −2<
(
∂r(µ)
∂µ

∣∣∣∣H
µ=µ0

Ŷ (r̂m − r0)
)
.

Consistency of Ŷ w.r.t. Y∞ = α−2Ye together with the asymptotic distribution of
√
N (r̂m − r0)

(cf (6) and (7)) yield, by using Slutsky’s lemma [37, Chapters 2], to

−
√
NgN (µ0) d→ N (0,R∞) ,

where the asymptotic covariance R∞ reads [47]

R∞ = 2
[
DhΣDH

h + <
(
DhΩDT

h

)]
, (48)

with

Dh = ∂r(µ)
∂µ

∣∣∣∣H
µ=µ0

α−2Ye = α−2J (µ0)H Ye and Ω = ΣK (cf (7)).

Moreover, we can easily check that

KYT
e = YeK and K ∂r(µ)

∂µ

∣∣∣∣∗
µ0

= ∂r(µ)
∂µ

∣∣∣∣
µ0

,

where K is the commutation matrix satisfying Kvec (A) = vec
(
AT

)
and A∗ refers to the

conjugate matrix. Then, we obtain

R∞ = 2α−4
[
J (µ0)H YeΣYeJ (µ0) + <

(
J (µ0)H YeΣYeJ (µ0)

)]
. (49)

Furthermore, we have Σ = σ−2
(
σ1We + σ2vec (Re) vec (Re)H

)
with coefficients σ1 and σ2

defined by (10). To lighten the notations, we introduce Ve = vec (Re) vec (Re)H . Moreover,
we have vec (Re)H vec

(
R−1

e

)
= m. After some calculus, we obtain:

YeWeYe = κ2
1W−1

e + κ2 (2κ1 +mκ2) Ue

YeVeYe = (κ1 +mκ2)2 Ue

YeΣYe = σ−2
[
σ1κ

2
1W−1

e + σ1κ2 (2κ1 +mκ2) Ue + σ2 (κ1 +mκ2)2 Ue

]
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= σ−2 σ1κ
2
1︸ ︷︷ ︸

β1

W−1
e + σ−2

[
σ1κ2 (2κ1 +mκ2) + σ2 (κ1 +mκ2)2

]
︸                                               ︷︷                                               ︸

β2

Ue.

Then, (49) becomes

R∞ = 2α−4σ−2
[
J (µ0)H

(
β1W−1

e + β2Ue
)

J (µ0) + <
(
J (µ0)H

(
β1W−1

e + β2Ue
)

J (µ0)
)]

= 4α−4σ−2J (µ0)H
(
β1W−1

e + β2Ue
)

J (µ0) = 4α−4σ−4J (µ0)H
(
β1W−1

0 + β2U0
)

J (µ0) ,

since

[
J (µ0)H W−1

e J (µ0)
]∗

= (J (µ0)∗)H W−1∗
e J (µ0)∗ = (KJ (µ0))H KW−1

e KKJ (µ0)

= J (µ0)H W−1
e J (µ0) ,[

J (µ0)H UeJ (µ0)
]∗

= (J (µ0)∗)H
(
W−1/2

e vec (Im) vec (Im)H W−1/2
e

)∗
J (µ0)∗

= J (µ0)H KKW−1/2
e Kvec (Im) vec (Im)H KW−1/2

e KKJ (µ0)

= J (µ0)H W−1/2
e vec (Im) vec (Im)H W−1/2

e J (µ0) = J (µ0)H UeJ (µ0) .

Finally, we obtain

−
√
NgN (µ0) d→ N (0,R∞) .
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