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Abstract 

 

 

The dynamics of the charge distribution produced at the inner surface of an insulating capillary by 

low energy ion impact are investigated theoretically in the case when the entrance, exit and outer 

capillary surface are grounded. Starting with the surface continuity equation, that describes the charge 

dynamics at the inner surface, we deduced an analytical solution of the continuity equation in the 

form of a linear combination of surface charge moments that satisfy the corresponding boundary 

conditions. We determined the relaxation rate of each moment, which is given as a function of the 

dimensions and electrical properties of the capillary. We found an approximate expression of the time 

evolution of the electric potential and field generated by a charge patch during and after beam 

irradiation. The time evolution of the total charge is also described in detail. Our findings are 

illustrated with examples. 
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Introduction 
 

Under charged particle impact, insulator surfaces accumulate electric charges. The latter generate an 

electric field that, if sufficiently strong, prevents the following beam particles from hitting the 

insulator surface. Ion beam transmission through insulating capillaries and their surprising guiding 

power has been intensively studied since its discovery by Stolterfoht et al. [1] for nano-capillaries 

and by Ikeda et al. [2] for macroscopic glass capillaries. The injected ions are guided by the self-

organized formation of charge patches at the inner capillary walls. As a result, slow ions can pass 

through insulator capillaries, even when the geometrical conditions do not allow it. Experimental and 

theoretical studies of this topic have been summarized in three review articles [3-5].  While the 

guiding of ions by charged patches is qualitatively understood, the complex nature of the electric 

conduction in such insulators makes quantitative predictions still a challenging task. Indeed, for a 

given ion beam, the guiding is entirely determined by the dynamics of the charge patches at the 

surface, which in turn depend (i) on the electrical properties of insulators under ion beam irradiation 

and (ii) on the position and geometry of grounded electrodes.  In order to get some insights into the 

discharge dynamics of formerly created charged patches, a theoretical study of the charge relaxation 

in a glass tube is performed. For a capillary, tilted with respect to the beam axis, the beam generates 

one or several charge patches at various places at the inner capillary surface wall. If the injected beam 
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is blocked, the deposited charge patches relax due to conductivity of the insulator. We propose in this 

work to study the charge relaxation of injected charges patches during and after beam irradiation in 

the case of a glass tube capillary of large aspect ratio and where the entrance, the outlet and the outer 

surface are grounded. We give an analytical solution of the continuity equation in the form of a linear 

combination of surface charge moments that satisfy the corresponding boundary conditions. We 

deduce from the boundary conditions a general expression of the electric potential in the capillary as 

well as the guiding electric field. We also give the discharge of the total accumulated charge in the 

capillary. Finally, we illustrate the finding for the glass tube used in an experimental setup that will 

be described in a subsequent paper. We would like to mention that while the development in the 

manuscript has been done for a cylindrical shaped capillary, it can also be extended to conical shaped 

capillaries, which is another interesting class of capillaries. 

 

 

 

Surface charge dynamics 
 

We consider a cylindrically shaped glass capillary of length H, with an inner radius 𝑅1, an outer radius 

of 𝑅2 and which has a dielectric constant 𝜀𝑟 (see Fig.1). The entrance and the outer surface of the 

capillary are electrically grounded. The underlying model considers two interfaces namely the inner 

glass-vacuum interface of the capillary and the outer glass-metal interface. We assume here that each 

projectile of charge +𝑞  that hits the surface, injects exactly 𝑞 holes at the impact point, which are 

immediately trapped by hole-centers at the inner surface. We thus implicitly assume that the 

secondary electrons, emitted from the impact point, fall back to the impact point except for 

𝑞 electrons, which are picked up by the projectile [6]. In alkali glasses, the mobility of holes, electrons 

and anions is negligible compared to the mobility of alkali cations and the bulk conductivity 𝜅𝑏  in 

those glasses is dominated by the mobile cations. We further assume that the rate 𝜏ℎ
−1  at which the 

injected holes migrate into the bulk is negligible compared to the charge relaxation rate due to bulk 

conductivity, 𝜏ℎ
−1 ≪ 𝜏𝑏

−1 =
𝜅𝑏

𝜀0𝜀𝑟
. This implies that the charge accumulates only at the inner surface 

and not in the bulk and can thus be represented by a surface charge density 𝜎 [7]. Consequently, the 

mobile ions are driven by a divergence-free (solenoidal) electric field ∇⃗⃗ ⋅ 𝐸⃗ = 0 through the glass 

bulk. They can however accumulate or deplete at the interfaces. The dynamics of the surface charge 

density at the inner interface is given by the surface continuity equation,  

 
𝜕𝜎(𝑠 ,𝑡)

𝜕𝑡
= −𝜅𝑏𝐸𝑟(𝑠 , 𝑡) −

𝜕

𝜕𝑧
[𝜅𝑠 𝐸𝑧(𝑠 , 𝑡)] −

1

𝑅1

𝜕

𝜕𝜃
[𝜅𝑠 𝐸𝜃(𝑠 , 𝑡)] + γ(𝑠 , 𝑡)𝐼inj      (1) 

 

where all quantities are taken at the inner surface, 𝑠 = (𝑅1, 𝜃, 𝑧). The first right hand term, which is 

proportional to the bulk conductivity κb, stands for the mobile charge carriers that are driven from the 

inner to the grounded outer surface by the radial component 𝐸𝑟 of the electric field. The second and 

third right hand terms stand for the charge carriers that are field driven at the inner interface 

respectively along the symmetry axis by the tangential field  𝐸𝑧 and along the angular direction by 

the tangential field 𝐸𝜃. The surface current is proportional to the surface conductivity 𝜅𝑠. The last 

term represents the injected charge per unit time and unit area, with 𝐼inj being the beam current and 

𝛾 the hole injection cross-section. The electric field 𝐸⃗ (𝑟 , 𝑡) = −∇⃗⃗ 𝑉(𝑟 , 𝑡) that guides the ions and 

drives the deposited surface charge density 𝜎(𝑠 , 𝑡) away from the production region is deduced 

from the potential  
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𝑉(𝑟 , 𝑡) = ∫
(𝜎 + 𝜎𝑝)𝑑𝑠1
4𝜋𝜀0 |𝑟 − 𝑠 1|𝑆1

+ ∫
𝜎𝑓𝑑𝑠2

4𝜋𝜀0 |𝑟 − 𝑠 2|𝑆2

      (2) 

 

 

 

 
 

Figure 1: Scheme of the capillary. The outer surface S2 is grounded. The insulating inner surface S1 

carries the accumulated surface charge density 𝝈. The induced polarization charges 𝝈𝒑 and free 

charges 𝝈𝒇 are also shown. The tilted injected beam (large red arrow) deposits a charge patch near the 

entrance, which will relax in time due to a surface current along the angular direction (red arrows in 

left figure) a surface current along the axial direction and current through the bulk to the outer 

grounded surface (red arrows in right figure).  

 

 

where 𝜎𝑝 stands for the bounded (polarization) surface charges at the inner glass-vacuum interface  

(𝑆1)and 𝜎𝑓 for the induced free charges at the conducting outer surface (𝑆2). The induced bound 

polarization charges 𝜎𝑝 at the inner interface are obtained by satisfying the jump condition of the 

electric field through the interface separating two dielectric media, with 𝑅1
+ and 𝑅1

− being the 

respectively the outer and inner region at the interface 𝑆1, 
  

𝜀𝑟𝐸𝑟(𝑟 = 𝑅1
+) − 𝐸𝑟(𝑟 = 𝑅1

−) =
𝜎

𝜖0
   .   (3) 

 

The induced free surface charges 𝜎𝑓 at the outer glass-metal interface surrounding the capillary (also 

referred to as image charges) are deduced by satisfying the boundary conditions, i.e. the potential is 

zero at the outer surface, 

 

 𝑉(𝑟 = 𝑅2) = 0    .   (4) 
 

Multipole expansion 
 

To solve the continuity equation (1), we use a multipole expansion of the quantities involved in (1). 

The electric field being divergence-free means that the potential satisfies the Laplace equation with 

the boundary conditions given by (3) and (4). Also, the entrance and outlet being grounded, the 

potential is zero at the entrance, 𝑉(𝑟, 𝜃, 0) = 0 and at the outlet 𝑉(𝑟, 𝜃, 𝐻) = 0. The latter conditions 

allow for a simple expansion of the potential by discretizing the wave number 𝑘𝑛 = 𝑛𝜋 𝐻⁄ , with 𝑛 >
0. The symmetry axis of the beam and of the tilted capillary define the x0z plane. The potential is 

assumed symmetric with respect to the x0z plane, so that 𝑉(𝑟, 𝜃, 𝑧) = 𝑉(𝑟, −𝜃, 𝑧). The expansion of 

the potential on harmonic functions differs depending on the domain. The function 𝑉− represents the 

R1

R2

S2
εr

εr

S1

S2

E+
E- S1

V-

V+
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potential for the inner domain (0 ≤ 𝑟 ≤ 𝑅1) and 𝑉+ the potential for the domain (𝑅1 ≤  𝑟 ≤ 𝑅2), 
with the continuity condition 𝑉−(𝑅1, 𝜃, 𝑧) = 𝑉+(𝑅1, 𝜃, 𝑧) ,  
 

𝑉−(𝑟, 𝜃, 𝑧, 𝑡) = ∑ 𝑣𝑚,𝑛(𝑡)
𝐼𝑚(𝑘𝑛𝑟)

𝐼𝑚(𝑘𝑛𝑅1)
cos(𝑚𝜃) sin(𝑘𝑛𝑧)  𝑚,𝑛 , 0 ≤ 𝑟 ≤ 𝑅1   (5a) 

 

𝑉+(𝑟, 𝜃, 𝑧, 𝑡) = ∑ 𝑣𝑚,𝑛(𝑡)ℎ𝑚𝑛(𝑟) cos(𝑚𝜃) sin(𝑘𝑛𝑧)  𝑚,𝑛  ,   𝑅1 ≤  𝑟 ≤ 𝑅2          (5b)       

 

Where we introduced the auxiliary function ℎ𝑚𝑛(𝑟) defined as 

 

ℎ𝑚𝑛(𝑟) =
𝐼𝑚(𝑘𝑛𝑟)𝐾𝑚(𝑘𝑛𝑅2) − 𝐼𝑚(𝑘𝑛𝑅2)𝐾𝑚(𝑘𝑛𝑟)

𝐼𝑚(𝑘𝑛𝑅1)𝐾𝑚(𝑘𝑛𝑅2) − 𝐼𝑚(𝑘𝑛𝑅2)𝐾𝑚(𝑘𝑛𝑅1)
    , 

 

in order to simplify the notations, with 𝐼𝑚(𝑘𝑛𝑟) and 𝐾𝑚(𝑘𝑛𝑟) being modified Bessel functions of the 

first and second kind order 𝑚. Similar, we expand the surface density and injection cross section 

defined on the interface 𝑆1, using the same basis as for the potential. Indeed, the grounded inlet and 

outlet imply that the surface density and source term are also zero at 𝑧 = 0 and 𝑧 = 𝐻, 

 

𝜎(𝜃, 𝑧, 𝑡) = ∑ 𝜎𝑚,𝑛(𝑡) cos(𝑚𝜃) sin(𝑘𝑛𝑧)  𝑚,𝑛   (5c) 

 

𝛾(𝜃, 𝑧, 𝑡) = ∑ 𝛾𝑚,𝑛(𝑡) cos(𝑚𝜃) sin(𝑘𝑛𝑧)  𝑚,𝑛   (5d) 
 

 

Injecting equations (5a – 5d) into (1) yields an equation for each moment (m,n) of the expansion, 

 

𝜕𝜎𝑚,𝑛
𝜕𝑡

= 𝑣𝑚,𝑛 (𝜅𝑏 ℎ𝑚𝑛
′ (𝑅1) − 𝜅𝑠  (

𝑚2

𝑅1
2 + 𝑘𝑛

2)) + 𝛾𝑚,𝑛𝐼inj  (6)     

 

The primed quantities in (6) are first order derivatives with respect to the radial coordinate r, i.e.  

𝐼𝑚
′ (𝑘𝑛𝑟) =

𝑘𝑛

2
( 𝐼𝑚−1(𝑘𝑛𝑟) + 𝐼𝑚+1(𝑘𝑛𝑟)) and 𝐾𝑚

′ (𝑘𝑛𝑅1) = −
𝑘𝑛

2
 (𝐾𝑚−1(𝑘𝑛𝑟) + 𝐾(𝑘𝑛𝑟)) . Using 

the boundary condition (3), 

 

𝑣𝑚,𝑛  (𝜀𝑟ℎ𝑚𝑛
′ (𝑅1) −

𝐼𝑚
′ (𝑘𝑛𝑅1)

𝐼𝑚(𝑘𝑛𝑅2)
) = −

𝜎𝑚,𝑛
𝜀0
     (7) 

 

allows eliminating the potential moments 𝑣𝑚,𝑛 in (6), giving a first order differential equation for the 

surface charge moments 𝜎𝑚,𝑛(𝑡)   
 

𝜕𝜎𝑚,𝑛
𝜕𝑡

= −𝜎𝑚,𝑛(𝑡) (
𝑏𝑚,𝑛
𝜏𝑏

+
𝑐𝑚,𝑛
𝜏𝑠
) + 𝛾𝑚,𝑛(𝑡)𝐼inj    (8) 

 

where we have introduced the bulk relaxation rate 𝜏𝑏
−1 =

𝜅𝑏

𝜀0𝜀𝑟
 and the surface relaxation rate 𝜏𝑠

−1 =
𝜅𝑠

𝜀0𝑅1
 and the dimensionless factors 𝑏𝑚,𝑛 and 𝑐𝑚,𝑛 defined by  

 

𝑏𝑚,𝑛 = 
ℎ′𝑚𝑛(𝑅1)

ℎ′𝑚𝑛(𝑅1) − 𝜀𝑟−1  
𝐼𝑚′ (𝑘𝑛𝑅1)
𝐼𝑚(𝑘𝑛𝑅2)

    (9a) 
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𝑐𝑚,𝑛 = 
−
1
𝑅1
(𝑚2 + 𝑘𝑛

2 𝑅1
2)

𝜀𝑟ℎ𝑚𝑛′ (𝑅1) −
𝐼𝑚′ (𝑘𝑛𝑅1)
𝐼𝑚(𝑘𝑛𝑅2)

         (9b) 

 

The factors 𝑏𝑚,𝑛 and 𝑐𝑚,𝑛 give respectively the strength of the bulk relaxation rate and surface 

relaxation rate for each moment 𝜎𝑚,𝑛. They depend on the dimensions of the capillary, and more 

precisely on the ratios  𝑅1 𝐻⁄  and 𝑅2 𝐻⁄ , as well as its dielectric constant. The general solution of 

equation (13) is given by the expression 

 

 𝜎𝑚,𝑛(𝑡) =  𝜎𝑚,𝑛(0) exp (−𝑡 (
𝑏𝑚,𝑛

𝜏𝑏
+
𝑐𝑚,𝑛

𝜏𝑠
)) + 𝐼inj ∫  𝛾𝑚,𝑛(𝑡

′) exp ((𝑡′ − 𝑡) (
𝑏𝑚,𝑛

𝜏𝑏
+
𝑐𝑚,𝑛

𝜏𝑠
))

𝑡

0
𝑑𝑡′ (10)    

  

Each moment has its proper decay rate 
𝑏𝑚,𝑛

𝜏𝑏
+
𝑐𝑚,𝑛

𝜏𝑠
 and source term 𝐼inj 𝛾𝑚,𝑛(𝑡). Finally, the dynamics 

of the surface charge density can be obtained by injecting (10) into the surface charge expansion (5c).  

 

In a nutshell, we have solved equation (1) in the general case of a cylindrical capillary with grounded 

outer surface (including the entrance and the outlet). The dimensions of the capillary are explicitly 

taken into account by the factors 𝑏𝑚,𝑛 and 𝑐𝑚,𝑛. The solution is given as a linear combination of time 

dependent surface charge moments 𝜎𝑚,𝑛(𝑡). 
From the above charge dynamics equation (10), we can evaluate the time evolution of the electric 

field as well as the time evolution of the total accumulated charge 𝑄 in the capillary. 

 

Inner electric potential and field 

 

 

The guiding power of insulating capillaries is due to the charge patch formation that guides the ions. 

A charge patch at the inner surface generates an electric field inside the capillary that deflects/guides 

the injected ion beam. Using relation (7) that links the surface charge moment to the potential 

moments, we obtain the time-dependent potential inside the capillary as a linear combination of the 

time-dependent surface charge moments 𝜎𝑚,𝑛(𝑡), 
 

 

𝑉−(𝑟, 𝜃, 𝑧, 𝑡) =∑
𝜎𝑚,𝑛(𝑡)

𝜀0
𝑎𝑚,𝑛

 𝐼𝑚(𝑘𝑛𝑟)

𝐼𝑚(𝑘𝑛𝑅1)
cos(𝑚𝜃) sin(𝑘𝑛𝑧)  

𝑚,𝑛
, 0 ≤ 𝑟 ≤ 𝑅1  ,     (11) 

  

   

with the dimensionless coefficients 𝑎𝑚,𝑛 defined by (12). The latter give the “intensity” of the 

potential field generated by each surface charge moment. 

 

𝑎𝑚,𝑛 =
1

𝜀𝑟ℎ𝑚𝑛′ (𝑅1) −
𝐼𝑚′ (𝑘𝑛𝑅1)
𝐼𝑚(𝑘𝑛𝑅2)

     (12) 
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The time-dependent inner electric field  is simply given by the gradient of the inner potential 

𝐸−⃗⃗⃗⃗  ⃗(𝑟 , 𝑡) = −∇⃗⃗  𝑉−. For example, let 𝑠 𝑝 = (𝑟 = 𝑅1
−, 𝜃 = 0, 𝑧 = 𝑧𝑝) be vector pointing at the center of 

a charge patch located at the inner surface. The time-dependent inner electric field normal to the 

surface (radial component) at position 𝑠 𝑝 is given by, 

 

𝐸𝑟
−(𝑠 𝑝) = ∑∑𝑎′𝑚,𝑛

𝜎𝑚,𝑛(𝑡)

𝜀0
𝑛>0

sin(𝑘𝑛𝑧𝑝)    ,             𝑟 < 𝑅1  (13)

𝑚≥0

  

 

with the dimensionless coefficients 

𝑎′𝑚,𝑛 = 𝑎𝑚,𝑛
𝐼𝑚
′ (𝑘𝑛𝑅1)

𝐼𝑚(𝑘𝑛𝑅1)
      

 

giving the intensity of the inner electric field for each surface charge moment. Again, the dimensions 

and dielectric constant of the capillary are “hidden” in the coefficients 𝑎𝑚,𝑛 and  𝑎′𝑚,𝑛. 

 

Total charge  

 

We may now turn to the evaluation of the total accumulated charge in the capillary. Integrating the 

surface charge density over the surface 𝑆1, yields the time evolution of the total charge,       

 

𝑄(𝑡) = ∫ 𝑑𝑧

𝐻

0

∫𝜎(𝜃, 𝑧, 𝑡)𝑅1𝑑𝜃 = 2𝜋𝑅1𝐻∑
𝜎0,𝑛(𝑡)

𝑛

1 − cos(𝑛𝜋)

𝜋
 

𝑛>0

𝜋

−𝜋

= 4𝑅1𝐻 ∑
𝜎0,𝑛(𝑡)

𝑛
 

𝑛>0, odd

                                                        (14a)  

 

Using the explicit expression of the surface charge moments 𝜎0,𝑛(𝑡) yields the general expression of 

the time evolution of the total charge in the capillary in the presence of a source term. 

 

𝑄(𝑡) = ∑
𝑞0,𝑛(0)

𝑛
exp (−𝑡 (

1

𝜏𝑏
+
𝑐0,𝑛
𝜏𝑠
)) 

𝑛>0, odd

+ 𝐼inj∫  
Γ0,𝑛(𝑡

′) 

𝑛
exp(−𝑡′ (

1

𝜏𝑏
+
𝑐0,𝑛
𝜏𝑠
))

𝑡

0

 𝑑𝑡′  (14b) 

 

For simplicity, we introduced in (14b) the initial charge moment 𝑞0,𝑛(0) = 4𝑅1𝐻 𝜎0,𝑛(0) and 

probability Γ0,𝑛(𝑡) = 4𝑅1𝐻 𝛾0,𝑛(𝑡). Only angular moment 𝑚 = 0 and wave numbers 𝑘𝑛  with odd 

integer 𝑛 contribute to the total charge. The selection rule on the integer 𝑛 is due to our boundary 

condition, i.e. the outlet is grounded. Relaxing the constraint would imply a continuously varying 

𝑘 and remove the selection rule as 𝑘𝐻/𝜋 would not necessarily be an integer any more. We also note 

that the weight of the charge moments decrease inversely proportional with n. For smooth patches 

the contribution of the higher modes to the total charge becomes negligible. 

 

Application to a borosilicate glass tube  

 
We illustrate the theoretical development with an example. In the following we consider the case of 

a borosilicate capillary with the dimension like the one used in our experimental setup. The 

borosilicate capillary is H=43 mm long with an inner radius 𝑅1 = 0.29 mm, an outer radius of 𝑅2 =
2.75 mm and has a dielectric constant 𝜀𝑟 = 4.6. Note the large difference in the ratios 𝑅1 𝐻⁄ ≪
𝑅2 𝐻⁄ . We assume in the following that the variation of the charge distribution along the z-axis is 
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sufficiently smooth within a step of 1 mm, so that the expansion in (10a-10d) can be limited to the 

integer 𝑁 =  Int (
𝐻

1
) = 43  and only wave numbers, 𝑘𝑛≤𝑁 , are considered. Further we assume that 

the charge distribution of a patch is well described by the first three angular moments, (𝑚 ≤  2), 
namely the monopole, the dipole and the quadrupole angular moment.  Note that the angular octupole 

moment (𝑚 = 3) can be added easily, if needed. The factors 𝑎𝑚,𝑛 𝑏𝑚,𝑛 and 𝑐𝑚,𝑛 and can now be 

evaluated and a selection of the factors for  𝑛 ≤ 𝑁  and 𝑚 ≤ 2 is given in the table 1. Additionally, 

the relative variation of the factors as a function of 𝑛 <  𝑁  is shown in figure 2.  

 

 
Table 1: A selection of factors 𝒃𝒎,𝒏 and 𝒄𝒎,𝒏, giving respectively the strength of the bulk and surface 

relaxation rate for each moment 𝝈𝒎≤𝑵,𝒏≤𝟐 . The coefficients 𝒂′𝒎,𝒏 give the ratio between the surface charge 

moment and the associated inner electric field 

 

n 𝒂′𝟎,𝒏  𝒂′𝟏,𝒏  𝒂′𝟐,𝒏  𝒃𝟎,𝒏  𝒃𝟏,𝒏  𝒃𝟐,𝒏  𝒄𝟎,𝒏  𝒄𝟏,𝒏  𝒄𝟐,𝒏  

40 0.03 0.151 0.173 0.97 0.847 0.826 0.061 0.18 0.362 

30 0.02 0.158 0.175 0.98 0.841 0.824 0.042 0.176 0.359 

20 0.01 0.165 0.177 0.988 0.834 0.823 0.023 0.174 0.358 

10 0.004 0.173 0.178 0.996 0.826 0.821 0.008 0.175 0.357 

5 0.001 0.175 0.178 0.999 0.824 0.821 0.002 0.176 0.357 

1 10 
−5 0.176 0.178 0.9999 0.823 0.821 0.0001 0.176 0.357 

 

 

The electric field generated by the monopole moments 𝜎0,𝑛≤𝑁 is weak compared to the one generated 

by the dipole 𝜎1,𝑛≤𝑁 and quadrupole moments 𝜎2,𝑛≤𝑁, as can be seen from the factors 𝑎𝑚,𝑛 in table 1. 

Indeed, for a given integer 𝑛, the coefficients 𝑎0,𝑛≤𝑁 of monopole term are at least 5 times smaller 

than those of the dipole and quadrupole term, 𝑎0,𝑛≤𝑁 ≪ 𝑎1,𝑛<𝑁 ≃ 𝑎2,𝑛≤𝑁 so that the monopole terms 

Figure 2: Relative variation of the factors as a function of n 
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can be neglected in the evaluation of the inner electric field. The time evolution of the field below the 

charge patch (𝑟 = 𝑠 𝑝) is then given by   

 

𝐸𝑟(𝑅1
−, 0, 𝑧𝑝, 𝑡) ≃ ∑ [𝑎′1,𝑛

𝜎1,𝑛(𝑡)

𝜀0
+ 𝑎′2,𝑛

𝜎2,𝑛(𝑡)

𝜀0
]

𝑁

𝑛>0

sin(𝑘𝑛𝑧𝑝)     (15) 

 

Table 1 and figure 2 show that the factors 𝑏1,𝑛≤𝑁 , 𝑐1,𝑛≤𝑁 , 𝑏2,𝑛≤𝑁  and 𝑐2,𝑛≤𝑁  vary by less than 3% 

when n goes from 1 to N=43, so that they can be considered constant over that range. Hence, 

introducing the dipole and quadrupole relaxation rates, 

 

1

𝜏1
=
0.83

𝜏𝑏
+
0.17

𝜏𝑠
1

𝜏2
=
0.83

𝜏𝑏
+
0.36

𝜏𝑠

 

 

 the dynamics of the dipole and quadrupole moments can be approached by  

 

𝜎1,𝑛≤𝑁 (𝑡) = 𝜎1,𝑛≤𝑁(0)𝑒
−𝑡/𝜏1 + 𝐼inj∫  𝛾0,𝑛≤𝑁(𝑡

′)𝑒−(𝑡
′−𝑡)/𝜏1

𝑡

0

𝑑𝑡′      (16a) 

 

𝜎2,𝑛≤𝑁 (𝑡) = 𝜎2,𝑛≤𝑁(0)𝑒
−𝑡/𝜏2 + 𝐼inj∫  𝛾2,𝑛≤𝑁(𝑡

′)𝑒−(𝑡
′−𝑡)/𝜏2

𝑡

0

𝑑𝑡′      (16b) 

 

Injecting (16a) and (16b) into (15) gives an expression that approaches the time-evolution of the inner 

electric field, 

𝐸𝑟(𝑅1
−, 0, 𝑧𝑝, 𝑡) ≃ 𝐸1𝑒

−
𝑡
𝜏1 + 𝐸2𝑒

−
𝑡
𝜏2 +

𝐼inj

𝜀0
∫  𝐽1(𝑡

′)𝑒−(𝑡
′−𝑡)/𝜏1 𝑑𝑡′

𝑡

0

+
𝐼inj

𝜀0
∫  𝐽2(𝑡

′)𝑒−(𝑡
′−𝑡)/𝜏2

𝑡

0

𝑑𝑡′           (17) 

 

where  

 

𝐸1(𝑧𝑝) = ∑𝑎′1,𝑛 𝜎1,𝑛(0) sin(𝑘𝑛𝑧𝑝) 𝜀0⁄

𝑁

𝑛>0

      (18a) 

𝐸2(𝑧𝑝) = ∑𝑎′2,𝑛 𝜎2,𝑛(0) sin(𝑘𝑛𝑧𝑝) 𝜀0       (18b)⁄

𝑁

𝑛>0

 

 

are the amplitudes of the dipole and quadrupole moment of the electric field at point 𝑧 = 𝑧𝑝 and  

𝐽1(𝑧𝑝, 𝑡) = ∑𝑎′1,𝑛𝛾1,𝑛

𝑁

𝑛>0

(𝑡)        (18c) 

𝐽2(𝑧𝑝, 𝑡) = ∑𝑎′2,𝑛𝛾2,𝑛

𝑁

𝑛>0

(𝑡)       (18d) 
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the dipole and quadrupole injection cross section at the observation point 𝑧 = 𝑧𝑝. In the case where 

no beam is injected, 𝐽1(𝑡) = 𝐽2(𝑡) = 0, the relaxation of the inner electric field simplifies to a sum of 

two exponential functions, corresponding to the dipole and quadrupole contribution.  

 

𝐸𝑟(𝑅1
−, 0, 𝑧𝑝, 𝑡) ≃ 𝐸1𝑒

−
𝑡
𝜏1 + 𝐸2𝑒

−
𝑡
𝜏2     (19) 

Expression (19) may be used to adjust the time-evolution of the force that deflects the ion beam. The 

advantage of using (19) as a fitting function of experimental data, is that it provides valuable 

information about the electrical conductivities of the insulating material. 

We turn now to the expression of the time evolution of the total charge in the capillary. We note in 

figure 2 that the factors 𝑏0,𝑛≤𝑁 ≃ 1 are close to unity, while we see in figure 3 that the factors 𝑐0,𝑛 are 

monotonically increasing with 𝑛, starting with 𝑐0,0 = 0. This differs from the 𝑐1,𝑛 and 𝑐2,𝑛 which are 

relatively constant. Also, the factors 𝑐0,𝑛≤𝑁  of the monopole moments are much lower than the factors 

𝑐1,𝑛≤𝑁 of the dipole moment. The reason is that, for 𝑚 = 0, one of the two surface relaxation channels 

becomes inactive, namely the one along the angular direction. The bulk relaxation channel dominates 

the surface relaxation channel for all modes 𝑛 ≤ 𝑁 if the following condition is satisfied,  

 

𝑐0,𝑛≤ 𝑁 ≪ 
𝜏𝑠
𝜏𝑏
  
𝑦𝑖𝑒𝑙𝑑𝑠
→      

𝑏0,𝑛≤𝑁 

𝜏𝑏
+ 
𝑐0,𝑛≤𝑁
𝜏𝑠

≃
1 

𝜏𝑏
     (20) 

 

In that case, the time evolution of the total charge reads  

 

𝑄(𝑡) ≃ 𝑄(0) exp (−
𝑡

𝜏𝑏
) + ∫  𝐼dep(𝑡

′) exp (
𝑡′ − 𝑡

𝜏𝑏
)

𝑡

0

𝑑𝑡′     (21) 

 

where we introduced the total initial charge 𝑄(0) =  ∑ 𝑞0,𝑛(0) 𝑛⁄  𝑛>0, odd and the deposited current 

 𝐼dep(𝑡) defined as the difference between the injected and transmitted current,  

 

  𝐼inj −  𝐼trans(𝑡) =  𝐼dep(𝑡) =  𝐼inj ∫ 𝑑𝑧
𝐻

0
∫ 𝛾(𝜃, 𝑧, 𝑡)𝑅1𝑑𝜃
𝜋

−𝜋
      (22) 

 

For borosilicate glass, the typical bulk conductivity is about 𝜅𝑏 ∼ 1.5 × 10
−13 S/m at room 

temperature [8,9] yielding a bulk relaxation rate of about, 𝜏𝑏
−1 = 3.7  mHz. The surface conductivity 

Figure 3: Dependence of the factors 𝒄𝟎,𝒏 on the integer n 
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in borosilicate is not a well-known quantity and depends strongly on the adsorbed impurities. At room 

temperature, it is typically less than 10−15 S in dry environment so that the surface relaxation rate is 

typically lower than 630 mHz (𝜏𝑠
−1 ≤  630 mHz).  Surface conductivity of Pyrex ® borosilicate glass 

plates have been recently measured by Gruber et al. [9], who found a surface conductivity of about 

𝜅𝑠 ∼ 10
−16 S.  Assuming thus a bulk conductivity of  𝜅𝑏 ∼ 1.5 × 10

−13 S/m and surface conductivity 

𝜅𝑠 ∼ 10
−16 S, (yielding a surface relaxation rate of 𝜏𝑠

−1 = 63 mHz) we see from table 1 that the 

condition (20) is only reasonably fulfilled for 𝑛 ≤ 𝑛𝑐 = 10 . 
 

𝑐0,𝑛𝑐 = 0.008 ≪  
𝜏𝑠
𝜏𝑏
= 0.06         (23a) 

 

For 𝑛 ≥ 𝑛𝑐   the condition holds less and less, and the surface relaxation channel participates in a non-

negligible way to the decay of the charge moments 𝑞0,𝑛>𝑛𝑐. The trend of the factors 𝑐0,𝑛≤𝑁 is shown 

in figure 2. Note that the factors 𝑐0,𝑛 increase almost linearly for  𝑛𝑐 < 𝑛 < 𝑁 with the slope 𝛽 =
0.002,  

𝑐0,𝑛≥𝑛𝑐 ≃ 𝛽(𝑛 − 𝑛𝑐)        (23b)  

 

We will in the following try to give a general expression for decay of the initially accumulated charge 

in the absence of source term (no injected beam). Without losing any generality we can rewrite the 

decay of the accumulated charge using an auxiliary function 𝑄𝑐(𝑡), which corresponds to the part of 

the charge that decays not only via the bulk channel but also via a non-negligible surface channel,   

 

𝑄(𝑡) ≃ exp (−
𝑡

𝜏𝑏
) [𝑄(0) − 𝑄𝑐(0) + 𝑄𝑐(𝑡𝛽/𝜏𝑠) ]  (24) 

 

with 

𝑄𝑐(𝑡𝛽/𝜏𝑠) =  ∑
𝑞0,𝑛(0)

𝑛
exp (−𝑡

𝛽(𝑛 − 𝑛𝑐)

𝜏𝑠
) 

𝑛≥𝑛𝑐 , odd

  (25) 

 

At this point, we have to make an assumption about the initial occupation numbers of the 

moments 𝑞0,𝑛(0) . We give here the example, where the initial occupation numbers of the charge 

moments decrease inversely proportional with ≥ 𝑛𝑐 , 
 

𝑞0,𝑛≥𝑛𝑐(0) ≃
𝑞0,𝑛𝑐(0)

𝑛
                      (26) 

 

In this particular case, the auxiliary function can be approached by 

 

𝑄𝑐 (
𝑡𝛽

𝜏𝑠
) ≃ 𝑞0,𝑛𝑐(0) ∑

𝑒−𝑡𝛽(𝑛−𝑛𝑐) 𝜏𝑠⁄

𝑛2
= 𝑞0,𝑛𝑐(0)∑

(𝑒−𝑡𝛽 𝜏𝑠⁄ )
𝑛

(𝑛 + 𝑛𝑐)2
        (27)

∞

0

 

∞

𝑛=𝑛𝑐

  

 

The last term in (27) has been rearranged to reveal the definition of the Lerch transcendent function 

ϕ(𝑥, 𝑛𝑐, 2) = ∑ 𝑥𝑛 (𝑛 + 𝑛𝑐)
2⁄∞

0 . Noting that 𝑄𝑐(0) = 𝑞0,𝑛𝑐(0) 𝜙(1, 𝑛𝑐 , 2), the auxiliary function 

may be expressed by 

 

𝑄𝑐 (
𝑡𝛽

𝜏𝑠
) ≃ 𝑄𝑐(0) 

 𝜙(𝑒−𝑡𝛽 𝜏𝑠⁄ , 𝑛𝑐, 2)

𝜙(1, 𝑛𝑐, 2)
         (28) 
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We obtain finally an approximated expression for the decay of the total charge,  

 

𝑄(𝑡) ≃ 𝑒−𝑡 𝜏𝑏⁄ [(𝑄(0) − 𝑄𝑐(0)) + 𝑄𝑐(0) 
 𝜙(𝑒−𝑡𝛽 𝜏𝑠⁄ , 𝑛𝑐 , 2)

𝜙(1, 𝑛𝑐 , 2)
 ]   (29) 

 

The quantity  𝑄(0) − 𝑄𝑐(0) is the charge that decays purely via the bulk channel to the outer surface 

and 𝑄𝑐(0)  the amount of charge located near the entrance and outlet and that decays via both 

channels, surface and bulk. In figure 4 we illustrate the influence of the surface decay channel on the 

total charge decay by showing normalized discharge curves for three different surface charge rates 

𝜏𝑠
−1, ranging from 0 to 630 mHz. We used 𝛽 = 0.002, 𝑛𝑐 = 10,  and 𝜏𝑏

−1 = 3.7 mHz. The percentage 

of the amount of charge that decays via both channels was fixed to (𝑄𝑐(0) 𝑄(0)⁄ = 20%).  For  

𝜏𝑠
−1 = 0 mHz, the surface channel is deactivated and all the charge decays via the bulk channel. With 

increasing 𝜏𝑠
−1, the initial decay is accelerated by the additional surface channel but tends then 

asymptotically to the bulk decay rate as the charge located near the grounded entrance and exit is 

removed. The effect becomes non-negligible for 𝜏𝑠
−1 ≥ 630 mHz. 

 

 

 
 

Figure 4: Discharge curves Q(t) for three different surface relaxation rates namely 𝛕𝐬 = 𝟎 (grey full 

line), 𝛕𝐬 = 𝟔𝟑 mHz (dashed black line), 𝛕𝐬 = 𝟔𝟑𝟎 mHz (black full line). The percentage of the amount 

of charge that decays via both channels was fixed to 20%   (𝐐𝐜(𝟎) 𝐐(𝟎)⁄ = 𝟎. 𝟐).  
 

The auxiliary function 𝑄𝑐(𝑡) defined by (25) depends on charge occupation numbers 𝑞0,𝑛(0). For a 

different law than (26), the auxiliary function 𝑄𝑐(𝑡) will be modified accordingly. In this example, 

we used a glass capillary with the ratios 𝑅1 𝐻⁄ ≃ 4 × 10−3 ≪ 𝑅2 𝐻⁄ ≃ 5 × 10−2. Choosing a 

capillary with an outer radius 𝑅2 of the order of 𝑅1would significantly reduce the factors 𝑐𝑚,𝑛 which 

are associated with the surface relaxation channel. Indeed, taking for example 𝑅2 = 0.3 mm, would 

reduce by 70% the dipole and by 30% the quadrupole factors associated with the surface channel 

while increasing in (lower proportion) the factors 𝑏𝑚,𝑛associated with the bulk channel. The 

development can also be applied to cylindrical shaped nano-capillaries in silicon sheets.  

 

The idea was here to propose a general method for predicting the decay of the total charge as a 

function of the initial surface charge distribution. Expression (29) may be used, for example, to fit 

the decay of the total charge of a cylindrical capillary that was initially charged by a tilted ion beam 

as a non-negligible part of the charge is located near the grounded entrance. The charge decay deviates 
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from a purely exponential decrease, putting boundaries on the value of the surface conductivity of the 

insulator. 

 

 

 

 

Conclusion: 

 

We solved the surface charge continuity equation in the case of an insulating capillary tube with the 

outer surface, entrance and exit grounded. The analytical solution is given as a linear combination of 

surface charge moments that satisfy the corresponding boundary conditions. Each surface charge 

moment decays exponentially with a relaxation rate depending on its mode (m,kn) and on the 

dimensions of the capillary. The analytical expression of the relaxation rate of each surface charge 

moment is given explicitly. Each relaxation rate includes contributions of the three possible relaxation 

channels, namely through the bulk, along the angular and along the axial direction at the surface. We 

showed that, depending on the mode (m,kn), the relative importance of the three channels varies. We 

deduced from the boundary conditions the time evolution of the electric potential and electric field 

due to the charge patch produced by the injected ions at the inner capillary surface. The equations 

given in the text are of general scope and can be used to evaluate the charge dynamics in insulating 

capillaries of different dimensions and even in nano-capillaries of cylindrical shape. The method 

developed in the paper can also be extended to conical shaped capillaries, following the same 

approach. We illustrated our findings by an example that shows in particular how to use our solutions 

for the electric field and for the total charge to fit experimental data, allowing an easier interpretation 

of the experimental results. 

 

 

 

  

 

Acknowledgements 

This work was supported by PICS N° 245 358 Hongrie 2018 founding, by Hubert Curien (PHC) 

Balaton 2018 program, project number 40301VK and by the Bilateral relationships between France 

and Hungary in Science and Technology (S&T) under the project number 2017-2.2.5-TÉT-FR-2017-

00008. 

 

Bibliography 

 

[1] N. Stolterfoht, J.-H. Bremer, V. Hoffmann, R. Hellhammer, D. Fink, A. Petrov and B. Sulik, 

Phys. Rev. Lett. 88  (2002) 133201 

 

[2] T. Ikeda, K. Yasuyuki, T. M. Kojima, Y. Iwai, T. Kambara, Y. Yamazaki, M. Hoshino, T. 

Nebiki and T. Narusawa, Applied Phys. Lett. 89 (2006) 163502 

 

[3] C. Lemell, J. Burgdörfer and F. Aumayr, Progress in Surface Science 88, Issue 3 (2013) 237 

 

[4] N. Stolterfoht, Y. Yamazaki, Physics Reports 629 (2016) 1–107 

 

[5] T.M. Kojima, J. Phys. B: At. Mol. Opt. Phys. 51 (2018) 042001 

 



13 

 

[6] A. Cassimi, T. Ikeda, L. Maunoury, C. L. Zhou, S. Guillous, A. Mery, H. Lebius, A. 

Benyagoub, C. Grygiel, H. Khemliche, P. Roncin, H. Merabet, and J. A. Tanis, Phys. Rev. A 86 

(2012) 062902. 

 

[7] E. Giglio, R.D. DuBois, A. Cassimi and K.Tőkési, Nucl. Instr. and Meth. Phys. Res. B 354 (2015) 

82 

 

[8] M.M.R.A. Lima, R.C.C. Monteiro, M.P.F. Graça, M.G. Ferreira da Silva, Journal of Alloys and 

Compounds 538 (2012) 66 

 

[9] E. Gruber, G. Kowarik, F. Ladening, J. P.Waclawek, F. Aumayr, R. J. Bereczky, K. Tőkési, P. 

Gunacker, T. Schweigler, C. Lemell and J. Burgdröfer, Phys. Rev. A 86 (2012)  062901 


