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I. INTRODUCTION

In domains as varied as telecommunications, psychology, or radar, detection theory is a crucial tool to separate ambient noise from signals of interest. In detection theory, received signals are submitted to a hypothesis test to discriminate useful signals from noise. Detection of signals with unknown deterministic parameters is classically addressed with a Generalized Likelihood Ratio Test (GLRT) that replaces the unknown parameters with their Maximum Likelihood Estimators (MLE) in the Likelihood Ratio detection test [START_REF] Scharf | Statistical signal processing: detection, estimation, and time series analysis[END_REF]. When analytical MLE solutions are not available for signal parameters of interest, most detection strategies assume for ease of implementation that those parameters lie over a discrete set, called the grid, usually chosen so that all tests on the grid are statistically independent when the tested signal consists of noise. However, parameters have no reason to fall precisely on the grid since they are often distributed over a continuous range. This induces a mismatch between the tested and true target parameters that deteriorates the detection performance of most state-of-theart tests made under the on-grid assumption. This paper will consider this very general problem in the radar context where unknown parameters can include Doppler shift, distance, or direction without loss of generality. The Normalized Matched Filter is the GLRT associated with the problem of detecting a known signal of unknown amplitude in Gaussian ambient noise of unknown power. It is also widely used for adaptive radar in non-Gaussian contexts [START_REF] Pascal | On a SIRV-CFAR detector with radar experimentations in impulsive noise[END_REF] for example when the noise is distributed according to a Complex Elliptically Symmetric (CES) distribution [START_REF] Ollila | Complex Elliptically Symmetric distributions: Survey, new results and applications[END_REF]. The off-grid mismatch impact is particularly dramatic for the Normalized Matched Filter (NMF) test [START_REF] Rabaste | Off-grid target detection with Normalized Matched Subspace Filter[END_REF]. In some cases, the detection probability may even vanish to 0 when the Signal to Noise Ratio (SNR) tends to infinity [START_REF] Rabaste | Off-grid target detection with Normalized Matched Subspace Filter[END_REF], especially for low Probabilities of False Alarm (P F A ), familiar in radar context. To overcome this problem, the most apparent solution consists of testing over the whole continuous support of the signal parameter, not just the grid: this is the true off-grid GLRT. However, to the best of our knowledge, the analytical expression of the null hypothesis statistic and the related P F A is unknown in the literature for this GLRT.

The robustness of detectors to mismatched signals is a wellexplored topic in the literature. Several types of mismatches are addressed thanks to the derivation of suited GLRTs, such as mismatch lying in a cone [START_REF] Maio | Robust adaptive radar detection in the presence of steering vector mismatches[END_REF]- [START_REF] Besson | Adaptive detection with bounded steering vectors mismatch angle[END_REF], quadratically constrained [START_REF] De Maio | Fractional QCQP with applications in ML steering direction estimation for radar detection[END_REF], among others [START_REF] Bandiera | Advanced Radar Detection Schemes Under Mismatched Signal Models[END_REF]. Sometimes, another approach is privileged, and other signal models are used to reduce interference from orthogonal signals [START_REF] Bandiera | An ABORT-like detector with improved mismatched signals rejection capabilities[END_REF]. Those works do not deal specifically with the very specific non-linear off-grid mismatch and are sub-optimal for this problem. Furthermore, the low P F A used in Radar context makes things even harder: for example, the cone approach can be used to deal sub-optimally with offgrid targets but is limited to high P F A in this case, which is not always realistic in practice [START_REF] Bosse | Adaptive subspace detectors for off-grid mismatched targets[END_REF].

While the off-grid issue has been studied extensively in inverse reconstruction problems [START_REF] Tang | Compressed sensing off the grid[END_REF], [START_REF] Lasserre | Bayesian sparse Fourier representation of off-grid targets with application to experimental radar data[END_REF] (in those contexts, the decrease in performance due to off-grid targets is particularly dramatic) and in sparse estimation problems (especially in offgrid Direction Of Arrival estimation in Radar contexts, see for example [START_REF] Dai | Root sparse Bayesian learning for off-grid DOA estimation[END_REF], [START_REF] Chen | Off-grid DOA estimation using sparse Bayesian learning in MIMO radar with unknown mutual coupling[END_REF]), off-grid target detection has received less interest as far as we are aware of.

In the Bayesian context, when all target parameters are distributed according to a uniform probability distribution, it can be shown that the best detector in the sense of Neyman-Pearson criterion is the Average Likelihood Ratio Test (ALRT) derived in [START_REF] Selin | Detection of coherent radar returns of unknown Doppler shift[END_REF] assuming the signal amplitude as known and in [START_REF] Brennan | A comparison of averagelikelihood and maximum-likelihood ratio tests for detecting radar targets of unknown Doppler frequency[END_REF] assuming a random Gaussian signal amplitude.

In this paper, we focus on the deterministic case where the target amplitude and unknown parameters are supposed deterministic. In this context, the off-grid GLRT can be costly to implement but it offers very good detection performance.The most common way to perform GLRT detection is to over-sample the grid: other approaches include approximating the GLRT either with a subspace approach, by approximating the cell with Discrete Spheroidal Sequences subspace [START_REF] Rabaste | Off-grid target detection with Normalized Matched Subspace Filter[END_REF] or the Taylor expansion of the signal [START_REF] Besson | Matched direction detectors and estimators for array processing with subspace steering vector uncertainties[END_REF] in order to use subspace detectors [START_REF] Scharf | Matched subspace detectors[END_REF] or using a Monopulse-inspired method [START_REF] Develter | Off-grid radar target detection with the Normalized Matched Filter: A monopulsebased detection scheme[END_REF].

The analysis of the off-grid GLRT is often delicate. In particular, the theoretical P F A is difficult to investigate since the test quantity is the maximum of non-independent random variables, yet it is highly important as it is needed in order to implement the detector.

The search for the probability of a stochastic process or random field exceeding a threshold has been the subject of numerous works in the applied statistics literature (see for example [START_REF] Rice | Mathematical analysis of random noise[END_REF]- [START_REF] Worsley | Estimating the number of peaks in a random field using the Hadwiger characteristic of excursion sets, with applications to medical images[END_REF]). However, those works mainly focus on real processes and random fields and to our knowledge, few articles [START_REF] Hayward | CFAR detection of targets with unknown Doppler shifts[END_REF] link them with the detectors used by the signal processing community.

Based on earlier results on the volume of tubes on sphere [START_REF] Hotelling | Tubes and spheres in n-spaces, and a class of statistical problems[END_REF], [START_REF] Johnstone | On Hotelling's formula for the volume of tubes and Naiman's inequality[END_REF], we showed in [START_REF] Develter | On the false alarm probability of the Normalized Matched Filter for off-grid target detection[END_REF] how to obtain an upper bound for the P F A -threshold relationship. In this paper, we dive once again into tube theory to show how it also enables an original and simple derivation of the on-grid P F A -threshold relationship. Moreover, starting from studies on overlap [START_REF] Johansen | Hotelling's theorem on the volume of tubes: some illustrations in simultaneous inference and data analysis[END_REF], [START_REF] Kuriki | Tail probabilities of the maxima of multilinear forms and their applications[END_REF] we derive new conditions of equality of the proposed upper bound. We show that above a certain limit threshold, equality is met. Closed-form expressions for this limit threshold are derived under white noise. As we will show, the proposed formula is proved to be exact under P F A that are not too high, which is the standard regime of application of the NMF.

Section II presents the signal model, the off-grid problem, and the true GLRT formulation. Section III introduces the tube formalism and gives an original derivation of the P F Athreshold relationship using a formula related to the surface of tubes embedded on hyper-spheres. Section IV showcases the domain of validity of the relationship. It features the derivation of local overlap criteria for tubes around general multi-dimensional manifolds embedded on hyper-spheres. In Section V we check the validity of our derivations for our application by comparing the theoretical thresholds to Monte-Carlo simulations. The relationship between the correlation of the noise and the size of the domain of validity is also examined.

Notations: Matrices are in bold and capital, vectors in bold. For any matrix A or vector, A T is the transpose of A and A H is the Hermitian transpose of A. I is the N ×N identity matrix and CN (µ, Γ) is the circular complex Normal distribution of mean µ and covariance matrix Γ. S n-1 is the unit sphere in R n . The real and imaginary part operators of a complex number are denoted by Re(.) and Im(.). The operator u is the angle of a complex number u.

denotes the Hadamard product. Γ(.) is the gamma function. . denotes the classical l 2 norm for vectors.

II. PROBLEM FORMULATION

A. Signal Model

A very common detection problem in radar as well as in other domains consists in detecting a complex signal d ∈ C N corrupted by an additive noise n (clutter, thermal noise, etc.). This problem can be stated as the following binary hypothesis test, where the goal consists in deciding between two hypotheses H 0 and H 1 :

H 0 : r = n, (noise only) H 1 : r = α d(θ) + n,
(signal plus noise)

where r is the complex vector of size N of the sampled received signal, α is an unknown complex target amplitude and d(θ) stands for a generally known steering vector characterized by unknown target parameters θ (time-delay, Doppler or angle in radar). In the sequel, we will assume that n is a zeromean complex circular Gaussian noise vector with unknown variance σ 2 i.e. n ∼ CN (0, σ 2 Γ) and known shape matrix Γ (covariance matrix up to a scale factor). This context is known as a partially homogeneous Gaussian environment. All the results in this paper still apply to any other spherically invariant distribution. In this work, we will assume θ to be a deterministic unknown scalar. Although all general results of this paper apply to any signal model d(θ) (including chirp signals, in which case the unknown parameter θ models the unknown range of the target), in order to derive closed-form solutions, we choose the following common signal model:

d(θ) = 1 √ N 1, e 2iπθ , . . . , e 2iπ(N -1)θ T . (1) 
This model of steering vector is very common in spectral analysis and often encountered in radar Range-Doppler detection schemes (in which case θ represents the Doppler shift of the target) where the problem consists in estimating a complex sinusoid embedded in noise after range Matched Filter processing.

B. Normalized Matched Filter (NMF)

In classical detection theory, for unknown parameters {λ i } i∈[0,1] depending on each hypothesis {H i } i∈[0,1] (either parameters of interest and/or nuisance parameters), the usual procedure relies on the Generalized Likelihood Ratio (GLR) statistic, namely the ratio Λ(r) between the Probability Density Function (PDF) f H1 (.) of the data under H 1 and the PDF f H0 (.) under H 0 where the unknown parameters are replaced by their ML estimate:

Λ(r) = max λ1 f H1 (r) max λ0 f H0 (r) H1 ≷ H0 w 2 ,
where w 2 is the detection threshold set according to a desired P F A .

When λ 1 = {α, σ} and λ 0 = {σ} with θ known, the corresponding GLRT is known as the NMF (Normalized Matched Filter) [START_REF] Scharf | Statistical signal processing: detection, estimation, and time series analysis[END_REF]:

d(θ) H Γ -1 r 2 d(θ) H Γ -1 d(θ) r H Γ -1 r H1 ≷ H0 w 2 .
(

) 2 
This test is also widely used for adaptive radar in non-Gaussian contexts [START_REF] Pascal | On a SIRV-CFAR detector with radar experimentations in impulsive noise[END_REF], [START_REF] Conte | Asymptotically optimum radar detection in compound-Gaussian clutter[END_REF] for example, when the noise is distributed according to a Complex Elliptically Symmetric (CES) distribution [START_REF] Ollila | Complex Elliptically Symmetric distributions: Survey, new results and applications[END_REF]. Its statistic under H 0 , in this case, is the same as in the Gaussian case. Equivalently, Eq. ( 2) can be rewritten with normalized whitened vectors:

s(θ) H u 2 H1 ≷ H0 w 2 , (3) 
where

s(θ) = Γ -1/2 d(θ) Γ -1/2 d(θ) and u = Γ -1/2 r Γ -1/2 r .
The corresponding P F A -threshold relationship is well known and is found using statistical tools in [START_REF] Scharf | Statistical signal processing: detection, estimation, and time series analysis[END_REF]:

P F A = 1 -w 2 N -1 . (4) 
Note that the NMF expression (3) has a simple geometric interpretation. It is indeed the squared cosine of the angle between s (θ) and u. The threshold characterizes the squared cosine of the angle cos -1 w. A target is detected when the vector angle is below this limit angle.

C. Detecting on a grid and related issues

The test (3) was derived with the parameter θ supposed to be known. In practice, this is not the case, and this is why tests are made for several fixed parameter values. The collection of parameters θ where detection tests are run is called the grid. For our model, the usual grid is generally

G = k N , k ∈ [0, 1, . . . , N -1]
. Fourier resolution cells for this grid are then the following

D k = k N - 0.5 N , k N + 0.5 N , (5) 
where k ∈ [0, 1, . . . , N -1].

When the point θ where the NMF is tested is different from the true parameter θ 0 of the target, the target is said to be off-grid. This induces a mismatch δ θ = θ -θ 0 between the real target steering vector s(θ 0 ) and the steering vector s(θ) under test. Unfortunately, it was shown in [START_REF] Rabaste | Geometrical design of radar detectors in moderately impulsive noise[END_REF] that the NMF detector is very sensitive to steering vector mismatch, potentially leading to a dramatic deterioration of the detection performance: the detection probability can even tend to 0 when the SNR tends to infinity. This phenomenon occurs [START_REF] Rabaste | Off-grid target detection with Normalized Matched Subspace Filter[END_REF] for P F A as high as 10 -3 in the chosen resolution cell of width 1/N . Figure 1 represents the average probability of detection of the NMF as a function of the SNR for δ θ uniformly distributed in D 0 : the asymptotic probability is well below 1 for a threshold corresponding to a P F A of 10 -6 . Note that this simulation was done under white noise. The NMF behavior can be even worse when Γ = I. In this case, the detection probability depends on the considered cell D k .

D. The off-grid GLRT

Instead of assuming that the target parameter lies on a grid, it is more realistic to assume that it is unknown. This leads to the general off-grid GLRT procedure, which gives in our case: where D is the search domain relative to the unknown parameter θ. Usually, for the steering vector defined in Eq. ( 1), D is defined as one of the Fourier resolution cells D k . This detector corrects the off-grid issue of test (3) as can be seen in Figure 1: its probability of detection is close to that of the oracle detector that knows the positions of the targets. In the next section, we derive its P F A -threshold relationship, the difficulty consisting here to evaluate the statistic of the maximum of a continuum of non-independent random variables.

GLRT (u, D) = max θ∈D s(θ) H u 2 H1 ≷ H0 w 2 , (6) 

III. AN ANALYTICAL P F A -THRESHOLD RELATIONSHIP WITH A GEOMETRICAL INTERPRETATION

Through geometrical considerations, Hotelling [START_REF] Hotelling | Tubes and spheres in n-spaces, and a class of statistical problems[END_REF] derived a methodology to study statistical tests over the real sphere thanks to the computation of the surfaces of tubes around a curve. Indeed, for a spherically invariant noise on the sphere, evaluating the P F A of a test reduces to computing the surface of the acceptance zones, which are tubes. His formula for the surface of tubes is presented in Section III-A. It enables us to provide an alternative derivation of the well-known P F Athreshold relationship (4) for the NMF in Section III-C thanks to a simple rewriting of the NMF test quantity in Section III-B. Unfortunately, as will be explained in Section III-D, Hotelling's formula cannot be directly applied to the case of the off-grid NMF expressed in [START_REF] Besson | Detection of a signal in linear subspace with bounded mismatch[END_REF]. Indeed, as we will show, finding the P F A in the radar case with one unknown parameter requires the computation of the volume of a tube around a manifold of dimension M = 2: this is addressed in Section III-D thanks to [START_REF] Johnstone | On Hotelling's formula for the volume of tubes and Naiman's inequality[END_REF].

A. Hotelling's original geometrical approach

In this section, we present Hotelling's original theorem for computing the surface of tubes on a sphere. Consider a curve γ(ξ) on the sphere radius φ is defined as the set of points with geodesic distance to the curve inferior to φ. Formally:

S n-1 , with ξ ∈ [0, b]. A tube T of geodesic
T = u ∈ S n-1 , ∃ ξ ∈ [0, b], u T γ(ξ) > cos(φ) .
T can be seen as the union of the spherical caps SC ξ = u ∈ S n-1 , u T γ(ξ) > cos(φ) . A graphical example of a tube is provided in Figure 2. In [START_REF] Hotelling | Tubes and spheres in n-spaces, and a class of statistical problems[END_REF], Hotelling gives a formula for computing the surface of T for a closed curve (γ(0) = γ(b)).

Theorem 3.1: [START_REF] Hotelling | Tubes and spheres in n-spaces, and a class of statistical problems[END_REF] The surface enclosed by a tube of geodesic radius φ around a closed curve on the real unit sphere S n-1 is the product of the length of the axial curve by the volume of the n -2 ball of radius sin φ:

π (n-2)/2 Γ n 2 sin n-2 (φ) . (7) 
When dealing with a non-closed curve, one has to add the surface of the two end semi-spherical caps to Hotelling's formula in order to find the surface of T .

Note that, in general, for Hotelling's formula to hold, it is necessary that each point in the tube belongs to a unique crosssection. Following Hotelling, this restriction will be called the non-overlap condition. Overlap phenomenons can happen when a tube draws back into itself (non-local overlap) and when its curvature becomes too high (local overlap). Nonoverlap is locally guaranteed when φ is low enough. More specifically, for a curve of constant radius of curvature ρ, Hotelling shows in [START_REF] Hotelling | Tubes and spheres in n-spaces, and a class of statistical problems[END_REF] that the condition for having no local overlap is the following:

sin φ ≤ ρ . (8) 
In case of overlap, the surface given by Hotelling's theorem becomes an upper bound.

A study of overlap phenomenon is given in Section IV.

B. The complex manifold

The goal of this section is to rewrite the NMF test quantity (3) using real vectors in order to apply Hotelling's formula [START_REF] Besson | Adaptive detection with bounded steering vectors mismatch angle[END_REF]. Indeed, for any α ∈ [0, 2π], let us remark that Re s (θ)

H u exp (-iα) ≤ s (θ) H u , those two quantities 𝛾(𝜃, 𝛼) cos -1 𝓌 𝒮𝒞 𝛼 Fig. 3: T (in violet) embedded on the unit sphere S 2 in R 3 . SC α is drawn in blue. [START_REF] Hohenwarter | GeoGebra -ein Softwaresystem für dynamische Geometrie und Algebra der Ebene[END_REF] being equal for α = s (θ)

H u. We then have, decomposing s (θ) and u into real and imaginary parts:

Re s (θ) H ue -iα = γ 1 (θ) T u cos α + γ 2 (θ) T u sin α ,
where

γ 1 (θ) = Re(s (θ)) Im(s (θ)) , γ 2 (θ) = -Im(s (θ)) Re(s (θ)) and u = Re(u) Im(u) is a 2N -real valued noise vector drawn uniformly on S 2N -1 under H 0 . Denoting γ(θ, α) = γ 1 (θ) cos α + γ 2 (θ) sin α , (9) 
we have, therefore:

max α∈[0,2π] γ(θ, α) T u = s (θ) H u . ( 10 
)
We see that the complex case leads to consider a 2D real manifold γ(θ, α). The GLRT (6) reads:

max θ,α γ(θ, α) T u H1 ≷ H0 w . (11) 
C. An original alternative derivation of the on-grid PFAthreshold relationship

In this section, we provide a simple alternative derivation to [START_REF] Scharf | Statistical signal processing: detection, estimation, and time series analysis[END_REF] for the on-grid P F A of (3). Indeed, finding the P F A reduces to a simple geometrical problem, which enables us to apply Hotelling's theorem. Readers interested in the derivation of the P F A for the GLRT (6) can skip to Section III-D. In this section, θ is considered fixed in D: we deal with the on-grid case.

A false alarm occurs when u ∈ T , where

T = u ∈ S 2N -1 , max α∈[0,2π] γ(θ, α) T u > w .
The tube T we deal with here is represented in Figure 3 in R 3 . Note that T is drawn around a closed curve: indeed γ(θ, 0) = γ(θ, 2π). Since u has been whitened, u is uniformly distributed over the unit 2N -sphere under the null hypothesis, the P F A is the ratio of the surface of T and the surface of the unit sphere.

We can apply Theorem 3.1 to the tube T previously defined around the curve γ(θ, α) with fixed θ and parameterized by α to find the P F A of the NMF (4). The length of the axial curve is equal to 2π. In this case, the tube is closed and one does not need to add end spherical caps to Hotelling's formula. Furthermore, we prove that T does not overlap in Section A of the appendix so that the surface given by Hotelling's formula is thus exact in this case. Applying Theorem 3.1 with n = 2N , φ = cos -1 w gives:

Surface(T ) = 2π π N -1 Γ(N ) sin 2(N -1) (φ) , = 2 π N Γ(N ) 1 -w 2 N -1 . (12) 
Dividing ( 12) by the surface 2 π N Γ(N ) of S 2N -1 leads to the expected result (4). This geometrical approach provides an alternative to the traditional one based on statistical tools [START_REF] Scharf | Statistical signal processing: detection, estimation, and time series analysis[END_REF].

D. Extending Hotelling's approach to the GLRT Unfortunately, Hotelling's result is not immediately applicable to the considered GLRT [START_REF] Bosse | Adaptive subspace detectors for off-grid mismatched targets[END_REF]: since a maximization on the parameter θ is introduced, the surface of interest is spread around a 2D manifold as will be seen now.

The acceptance region in this case is a new tube T around the two-dimensional manifold γ(θ, α):

T = u ∈ S 2N -1 , max θ∈D,α γ(θ, α) T u > w .
Note that in this case, T follows a manifold that is often not closed since, writing D = [θ 1 , θ 2 ], γ(θ 1 , α) = γ(θ 2 , α) in general. Unlike previously, when computing the surface of the tube, a term accounting for its boundaries will appear.

Hotelling's result does not cover this multi-dimensional manifold case as it gives the surface of a tube around a curve. However, in [START_REF] Johnstone | On Hotelling's formula for the volume of tubes and Naiman's inequality[END_REF] and [START_REF] Knowles | On Hotelling's approach to testing for a nonlinear parameter in regression[END_REF], this result is extended to a special case of two-dimensional manifolds embedded on S n-1 which is of interest to us:

Theorem 3.2: [26] For i ∈ [1, 2], let γ i : [θ 1 , θ 2 ] → S n-1 be regular curves. Assume γ 1 (θ) T γ 2 (θ) = 0 for all θ. Let Z(θ) = γ 1 (θ) T u 2 + γ 2 (θ) T u 2 1/2
where u is uniformly distributed on S n-1 . Then for 0 < w < 1, we have:

P max θ1≤θ≤θ2 Z (θ) > w ≤ (1 -w 2 ) (n-2)/2 + Γ n 2 w (1 -w 2 ) (n-3)/2 2π 3/2 Γ n -1 2 × θ2 θ1 2π 0 γ1 (θ) cos Ω + γ2 (θ) sin Ω 2 - γ1 (θ) T γ 2 (θ) 2 1/2 dΩ dθ , (13) 
where γi (θ) is the derivative of γ i (θ) with respect to θ.

When there is no overlap (see Section IV for a detailed study), i.e. low P F A regimes, this inequality becomes equality.

It turns out that we can reformulate our problem in order to fulfill the assumptions of the above theorem with n = 2N . Indeed, using ( 9) and [START_REF] Bandiera | An ABORT-like detector with improved mismatched signals rejection capabilities[END_REF], we can check that:

s (θ) H u 2 = γ 1 (θ) T u 2 + γ 2 (θ) T u 2 ,
so that Theorem 3.2 gives us the desired P F A (when equality holds in ( 13)). Follows our result:

Corollary 3.2.1: In the absence of overlap (low P F A regimes), the P F A for the GLRT (6) for a search interval D = [θ 1 , θ 2 ] with the steering vector d (θ) defined in (1) is given by:

P F A = (1 -w 2 ) N -1 + (14) Γ(N ) w (1 -w 2 ) N -3 2 π 1/2 Γ N -1 2 θ2 θ1 γ1 (θ) T P ⊥ γ2(θ) dθ.
where

P ⊥ γ2(θ) = I -γ 2 (θ)γ 2 (θ)
T is the orthogonal projector on γ 2 (θ). Under white noise (Γ = σ 2 I), this result simplifies to:

P F A = (1 -w 2 ) N -1 + (15) π 3 Γ(N ) w (1 -w 2 ) N -3 2 Γ N -1 2 N 2 -1 1 2 (θ 2 -θ 1 ) .
When D = [0, 1], the first term has to be removed from the equations. The integral in ( 14) can be easily evaluated numerically.

Proof: First, notice that the derivatives γ1 (θ) and γ2 (θ) are orthogonal, and that γ1 (θ) = γ2 (θ) . Thus, for all Ω ∈ [0, 2π], we have that

γ1 (θ) cos Ω + γ2 (θ) sin Ω 2 = γ1 (θ) 2 ,
which does not depend on Ω. The double integral simplifies:

θ2 θ1 2π 0 γ1 (θ) cos Ω + γ2 (θ) sin Ω 2 - γ1 (θ) T γ 2 (θ) 2 1/2 dΩ dθ , = 2π θ1 θ2 γ1 (θ) 2 -γ1 (θ) T γ 2 (θ) 2 1/2 dθ, = 2π θ2 θ1 γ1 (θ) T P ⊥ γ2(θ) dθ, (16) 
In the case of white noise, this integral can be computed analytically. Let x be the following vector:

x = 2π [0, 1, . . . , N -1] T , so that γ1 (θ) = x x γ 2 (θ) , (17) 
γ2 (θ) = - x x γ 1 (θ) . (18) 
Then:

γ1 (θ) = γ2 (θ) = 2π (N -1)(2N -1) 6 . ( 19 
)
and

γ1 (θ) T γ 2 (θ) = x x γ 2 (θ) T γ 2 (θ) , = 2π N N -1 k=0 k = π (N -1) . (20) 
Then, injecting [START_REF] Scharf | Matched subspace detectors[END_REF] and ( 20) into ( 16):

2π θ2 θ1 γ1 (θ) T P ⊥ γ2(θ) dθ = 2(θ 2 -θ 1 )π 2 (N 2 -1) 3 . 
(21) Replacing the double integral in [START_REF] Lasserre | Bayesian sparse Fourier representation of off-grid targets with application to experimental radar data[END_REF] with [START_REF] Rice | Mathematical analysis of random noise[END_REF] gives the expected result.

Interestingly, note that the first term in [START_REF] Chen | Off-grid DOA estimation using sparse Bayesian learning in MIMO radar with unknown mutual coupling[END_REF] represents the surface of the two semi-spherical caps at the extremities of the tube. As such, it is equal to the P F A of the NMF expressed in [START_REF] Rabaste | Off-grid target detection with Normalized Matched Subspace Filter[END_REF]. The second term shows the influence of the manifold induced by the off-grid nature of the problem. It is analogous to the one-dimensional case of Theorem 3.1, divided by the surface of S 2N -1 . Here, θ 2 -θ 1 plays the role of the manifold length, and the rest of the rightmost term is the surface of the cross-section divided by the area of S 2N -1 .

The relationships given in Corollary 3.2.1 are upper bounds in the presence of overlap. In this case, they still hold interest in the radar context where controlling the P F A is fundamental. The next section investigates the conditions under which no overlap happens.

IV. ON THE APPEARANCE OF OVERLAP

The goal of this section is to determine for which thresholds formula (13) (formula [START_REF] Chen | Off-grid DOA estimation using sparse Bayesian learning in MIMO radar with unknown mutual coupling[END_REF] in the case of white noise) holds equality. This requires us to investigate the conditions under which overlap occurs. We will start by exhibiting general results from [START_REF] Johansen | Hotelling's theorem on the volume of tubes: some illustrations in simultaneous inference and data analysis[END_REF], [START_REF] Kuriki | Tail probabilities of the maxima of multilinear forms and their applications[END_REF] as well as some original results on shiftinvariant manifolds before delving into our specific problem.

Let us consider an M -dimensional manifold M = {γ(ξ), ξ = (ξ 1 , . . . , ξ M ) ∈ D} defined on the search domain D over S n-1 and let us consider the tube T over S n-1 around M consisting of the points u satisfying u T γ(ξ) > w for some ξ in D. M can be seen, loosely speaking, as the axis of T . The cross-section CS ξ defined in [START_REF] Johansen | Hotelling's theorem on the volume of tubes: some illustrations in simultaneous inference and data analysis[END_REF] at a point ξ belonging to M is the set of points of T orthogonal to the derivatives of γ in ξ. Formally:

CS ξ = u ∈ T , u T ∂γ ∂ξ T = 0, u T γ(ξ) > w . ( 22 
)
Excluding the edge effects defined later in this section, the tube defined as the union of cross-sections overlaps if and only if a point u of T belongs to more than one cross-section: in this case, Hotelling's geometrical approach and its extensions lead to an overestimation of the Probability of False Alarm. Otherwise, the equality holds true in [START_REF] Lasserre | Bayesian sparse Fourier representation of off-grid targets with application to experimental radar data[END_REF]. There are two types of overlap defined in [START_REF] Hotelling | Tubes and spheres in n-spaces, and a class of statistical problems[END_REF]: local overlap, which derives from local differential properties of the manifold generating the tube, and non-local overlap, which depends on the overall shape of the tube. Global overlap encompasses both types of Fig. 4: Illustration of all the phenomena leading to an overestimation of the P F A when using [START_REF] Chen | Off-grid DOA estimation using sparse Bayesian learning in MIMO radar with unknown mutual coupling[END_REF].

overlap. It is linked to a limit overlap threshold w lim and there is no overlap if: w ≥ w lim .

The limit threshold can be equivalently seen as an angle φ lim such that cos φ lim = w lim , and there is no overlap if

φ = cos -1 w ≤ φ lim .
In the sequel, the conditions are expressed in terms of φ lim .

In addition to those phenomena, edge effects also have to be considered. They can appear when dealing with nonclosed manifold and cause the same problems as overlap i.e. an overestimation of the P F A . In the 1D case illustrated in Figure 2, edge effects would occur when the green semi-spherical caps at the end overlap each other. A manifold is said to be closed along dimension k if its k-th variable ξ k belongs to an interval [ξ k1 , ξ k2 ] such that γ(ξ 1 , . . . , ξ k1 , . . . , ξ M ) = γ(ξ 1 , . . . , ξ k2 , . . . , ξ M ) for all ξ i , i = k. A manifold is said to be closed if it is closed along all its dimensions.

Figure 4 summarizes all the phenomena that can arise.

A. The general case

In this section, we give the conditions under which no overlap happens under general conditions for any M -dimensional manifold γ(ξ 1 , . . . , ξ M ) embedded in S n-1 .

In [START_REF] Johansen | Hotelling's theorem on the volume of tubes: some illustrations in simultaneous inference and data analysis[END_REF], a criterion for characterizing the overlap of a tube embedded on a sphere around a curve is introduced that is a direct consequence of the fact that the union of the cross-section needs to be disjoint. It turns out that the arguments used by the authors can be generalized in order to find overlap criteria for tubes around any M -dimensional manifolds, as suggested in [START_REF] Kuriki | Tail probabilities of the maxima of multilinear forms and their applications[END_REF].

Theorem 4.1: [START_REF] Johansen | Hotelling's theorem on the volume of tubes: some illustrations in simultaneous inference and data analysis[END_REF], [START_REF] Kuriki | Tail probabilities of the maxima of multilinear forms and their applications[END_REF] Let γ(ξ) be a C 2 M -dimensional manifold parameterized by ξ = (ξ 1 , . . . , ξ M ) ∈ D. Let φ lim be the limit angle for which no overlap occurs, related to w lim [START_REF] Worsley | Estimating the number of peaks in a random field using the Hadwiger characteristic of excursion sets, with applications to medical images[END_REF] by cos(φ lim ) = w lim . Let P ξ be the projection onto the subspace spanned by γ(ξ ) and its derivatives ∂γ ∂ξ . φ lim is given by:

cot 2 φ lim = sup ξ,ξ ∈D 2 1 -γ(ξ) T P ξ γ(ξ) 1 -γ(ξ) T γ(ξ ) 2 , sup ξ,ξ ∈D 2 h(ξ, ξ ) . ( 24 
)
The criterion [START_REF] Hayward | CFAR detection of targets with unknown Doppler shifts[END_REF] encompasses both local and non-local overlap:

φ lim = min{φ local , φ non-local } , (25) 
where φ local and φ non-local are the limit angles such that local and non-local overlaps occur. Local overlap occurs when ξ tends to ξ, and non-local overlap arises when the sup of h in ( 24) is attained for ξ = ξ . Note that [START_REF] Hayward | CFAR detection of targets with unknown Doppler shifts[END_REF] does not take into account edge effects.

It can be simplified in the case of a shift-invariant manifold:

Definition 4.1: A real manifold γ(ξ) is said to be shiftinvariant when, for any ξ, ξ , the scalar product γ(ξ) T γ(ξ ) depends only on ξξ :

γ(ξ) T γ(ξ ) = f (ξ -ξ ) ,
where f is an even function. Then, similarly to the case of a single parameter, we have the following property: Proposition 4.1: For a shift-invariant manifold γ(ξ), h as defined in ( 24) is a function of ξξ : h(ξ, ξ ) = g(ξ -ξ ). Consequently,

cot 2 φ lim = sup x∈E g(x) , ( 26 
)
where E is the image of D×D by the function (ξ, ξ ) → ξ-ξ . Proof: The proof is given in Appendix B. The implications of this result are detailed in the following sections.

1) On local overlap: In this section, we discuss the occurrence of local overlap around a M -dimensional manifold. The results of this section are particularized to our complex signal model (1) in Section IV-B1.

Local overlap is linked to the curvature of the manifold. To illustrate this, consider the case of a tube around a curve in Euclidean space drawn in Figure 5: there is local overlap whenever the tube radius is greater than the radius of curvature of the curve.

In [29, Annex A.2], a local overlap criterion is developed. Recall that it corresponds to the case where ξ tends to ξ.

We define the local overlap angle φ local in ξ similarly in the multi-dimensional case as:

Corollary 4.1.1: [29, Annex A.2] In the case of a tube around an M -dimensional manifold γ, using the same nota-Fig. 5: Illustration of local overlap in 1D in the Euclidean case. Here, the radius of the tube (in red) is greater than the radius of curvature. This causes overlap: see, for example, that the point u belongs to both cross-sections CS ξ and CS ξ . tions as before with β representing the directions of convergence from ξ to ξ, the limit local overlap angle is given by:

cot 2 φ local = sup ξ∈D sup β∈S M -1 lim →0 h(ξ, ξ + β) , = sup ξ∈D sup β∈S M -1 i,j β i β j (I -P ξ ) ∂ 2 γ ∂ξ i ∂ξ j 2   i,j β i β j ∂γ T ∂ξ i ∂γ ∂ξ j   2 .( 27 
)
Readers can refer to [START_REF] Kuriki | Tail probabilities of the maxima of multilinear forms and their applications[END_REF]Annex A.2] for an interpretation in terms of principal curvatures.

Proof: The proof is given in [START_REF] Kuriki | Tail probabilities of the maxima of multilinear forms and their applications[END_REF]Annex A.2]. Formula ( 27) can be simplified in the case of a shiftinvariant manifold: [START_REF] Johnstone | On Hotelling's formula for the volume of tubes and Naiman's inequality[END_REF] shows that the maximization on ξ can be dropped in [START_REF] Develter | On the false alarm probability of the Normalized Matched Filter for off-grid target detection[END_REF]. Indeed, h(ξ, ξ ) only depends on the difference ξξ . The following developments allow us to go further: Corollary 4.1.2: Let γ(ξ) be a M -dimensional shiftinvariant manifold, and let G be its first fundamental form:

G = ∂γ ∂ξ T ∂γ ∂ξ . ( 28 
)
Then G does not depend on ξ. Besides, let

G = G T /2 G 1/2 , ( 29 
)
and µ be a reparametrization of γ defined by

µ = G 1/2 ξ , (30) 
Then ∂γ T ∂µ i ∂γ ∂µ j = δ ij , (31) 
and ( 27) reduces to:

cot φ 2 local = sup β∈S M -1 i,j β i β j ∂ 2 γ ∂µ i ∂µ j 2 -1 . ( 32 
)
Proof: The proof is given in the appendix C.

2) On non-local overlap: Non-local overlap arises when the tube draws back into itself, as shown in blue in Figure 4 for a tube spanned by a curve. In [START_REF] Johansen | Hotelling's theorem on the volume of tubes: some illustrations in simultaneous inference and data analysis[END_REF], it is shown in the case M = 1 that the limit angle around a closed manifold γ(ξ) linked to this type of overlap can be characterized entirely by looking at the pairs of points (ξ, ξ ) that minimize locally the distance γ(ξ) -γ(ξ ) , with ξ = ξ . In such case, [START_REF] Hayward | CFAR detection of targets with unknown Doppler shifts[END_REF] reduces to an intuitive geodesic distance criteria when ξ = ξ . In the general case, M is arbitrary, and the following holds: Proposition 4.2: Consider a tube around the M -dimensional manifold γ lying on the sphere. The set of pairs ξ, ξ that characterizes non-local overlap is:

Ξ = ξ, ξ , ξ = ξ , γ(ξ) -γ(ξ ) T ∂γ ∂ξ k = 0 and γ(ξ) -γ(ξ ) T ∂γ ∂ξ k = 0, ∀k ∈ [1, M ] . ( 33 
)
Then, if the manifold is closed:

φ non-local = min (ξ,ξ )∈Ξ 1 2 cos -1 γ(ξ) T γ(ξ ) . ( 34 
)
For a non-closed manifold, a term accounting for the boundaries must be taken into account:

φ non-local = min min (ξ,ξ )∈Ξ 1 2 cos -1 γ(ξ) T γ(ξ ) , E , (35) 
where

E = inf (ξ,ξ )∈B×D cot -1 h (ξ, ξ ) . ( 36 
)
Proof: It is possible to adapt the proof of proposition 4.2 of [START_REF] Johansen | Hotelling's theorem on the volume of tubes: some illustrations in simultaneous inference and data analysis[END_REF] for an M-dimensional manifold using the principal curvature interpretation of [START_REF] Develter | On the false alarm probability of the Normalized Matched Filter for off-grid target detection[END_REF] and by considering frontiers around the local minima. The extension to the case of a nonclosed manifold is then straightforward. In the non-closed case, the limit angle φ non-local also encompasses instances of local overlap when ξ tends to ξ ∈ B. Plugging it in (25) still yields the right exact limit angle φ lim .

As noted in [START_REF] Johansen | Hotelling's theorem on the volume of tubes: some illustrations in simultaneous inference and data analysis[END_REF], this formulation is not necessarily simpler to use than [START_REF] Hayward | CFAR detection of targets with unknown Doppler shifts[END_REF] since it can be more involved to find the set of pairs Ξ than to compute [START_REF] Hayward | CFAR detection of targets with unknown Doppler shifts[END_REF]. However, in Section IV-B2, we show that in our specific case, it enables us to dramatically reduce the computational complexity of the search.

3) On edge effects: The formula [START_REF] Hayward | CFAR detection of targets with unknown Doppler shifts[END_REF] does not take into account edge effects that can arise when dealing with nonclosed manifolds. Indeed, noting B the boundaries of D, [START_REF] Hayward | CFAR detection of targets with unknown Doppler shifts[END_REF] is defined for ξ ∈ D, ξ ∈ D \ B. Edge effects appear when a point u is such that there exist two distinct points ξ 1 , ξ 2 in B such that u T γ(ξ 1 ) > w and u T γ(ξ 2 ) > w. It is illustrated in Figure 4 in the case M = 1. One has to check that the limit angle φ lim is big enough so that edge effects do not appear.

B. Application to the complex signal model (1)

We apply here the general results of the previous section to our case of interest where γ is given by ( 9), defined on D × [0, 2π]. This first result gives the limit global overlap threshold for our application: Corollary 4.1.3: With γ defined as in ( 9), the limit angle for no global overlap is:

cot 2 φ lim = sup θ, α ∈ D × [0, 2π] θ , α ∈ D × [0, 2π] 1 -γ(θ, α) T P θ ,α γ(θ, α) (1 -γ(θ, α) T γ(θ , α )) 2 ,
(37) where P θ ,α = I -P ⊥ θ ,α with P ⊥ θ ,α defined later in (40). Proof: We simply inject (9) in [START_REF] Hayward | CFAR detection of targets with unknown Doppler shifts[END_REF]. Under white noise, for one cell D k , one can check numerically that the corresponding limit P F A is equal to:

P F Alim ≈ 10 -2.52 , (38) 
Fortunately, this P F A is well above the common P F A encountered in radar applications.

In the following sections, we discuss how to find the limit angles φ local and φ non-local . Indeed, the search domain in (37) is 4-dimensional and so the criterion can be heavy to evaluate. We can accelerate the search of the global limit angle by first finding the local and non-local overlap angle φ local and φ non-local through ( 27) and (34) then combining them using [START_REF] Hotelling | Tubes and spheres in n-spaces, and a class of statistical problems[END_REF].

1) On local overlap: The following corollary gives φ local in our case: Corollary 4.1.4: For our manifold γ defined in (9), we have:

cot 2 φ local = sup θ,α∈D×[0,2π] sup ϕ∈[0,2π] J(θ, α, ϕ) , (39) 
where and

J(θ, α, ϕ) = P ⊥ θ,α cos 2 ϕ ∂ 2 γ ∂θ 2 + sin 2ϕ ∂ 2 γ ∂θ∂α + sin 2 ϕ ∂ 2 γ
P ⊥ θ,α = I -M θ,α M T θ,α M θ,α -1 M T θ,α , (40) 
with M θ,α = γ(θ, α),

. This expression can be easily evaluated setting β = [cos(ϕ), sin(ϕ)] and then maximizing on ϕ.

Proof: We simply inject ( 9) in ( 27), with M = 2. The derivatives of γ are found from a straightforward derivation using ( 17) and [START_REF] Besson | Matched direction detectors and estimators for array processing with subspace steering vector uncertainties[END_REF]:

∂γ ∂θ = I -γ(θ, α)γ(θ, α) H (cos α γ 2 (θ) -sin α γ 1 (θ)) x x , ∂γ ∂α = -sin α γ 1 (θ) + cos α γ 2 (θ) .
It is possible to find the analytical limit threshold for local overlap under white noise.

Corollary 4.1.5: Under white noise with the signal model as in (1), the limit local angle (39) is:

φ local = tan -1 √ 5 -C 2 ,
and the limit local threshold is

w 2 local = cos 2 tan -1 √ 5 -C 2 , (41) 
where

C = 3 5 3N 2 -7 (N -1) 2 . ( 42 
)
Proof: The proof is given in Appendix D.

Note that lim

N →∞ C = 9 5
: for N large enough,

w 2 local ≈ cos 2 tan -1 2 √ 5 . (43) 
For N = 10, according to (15) this corresponds to the limit:

P F Alocal ≈ 10 -2.52 = P F Alim .
thus local overlap is the limiting factor for this noise setting.

2) On non-local overlap: First, consider the case where the target is searched over the whole spectral domain i.e. D = [0, 1]. This corresponds to the operational context where a single target is searched in the scene. In this case, the manifold γ in ( 9) is closed. In order to compute the non-local limit angle φ non-local , one should evaluate criterion (34). The following corollary simplifies the criteria.

Corollary 4.1.6: Consider a tube lying on the sphere around the manifold γ defined in [START_REF] Bandiera | Advanced Radar Detection Schemes Under Mismatched Signal Models[END_REF]. Define Ξ as:

Ξ = (θ, θ ) , θ = θ , ∂ s(θ) H s(θ ) ∂θ = 0 . (44) 
Then when D = [0, 1], φ non-local in (34) reduces to:

φ non-local = min (θ,θ )∈Ξ 1 2 cos -1 s(θ) H s(θ ) . (45) 
and otherwise, when

D = [θ 1 , θ 2 ] [0, 1], φ non-local in (35) reduces to φ non-local = min min (θ,θ )∈Ξ 1 2 cos -1 s(θ) H s(θ ) , E . (46) 
where E has been defined in (36), with B = {θ 1 , θ 2 } × [0, 2π] and ξ = (θ, α), ξ = (θ , α ). Proof: The proof is provided in the appendix. This simplification allows us to simply investigate the critical points with (θ = θ ) of ambiguity maps s(θ) H s(θ ) such as the one drawn on Figure 6. In the case of a closed manifold i.e. D = [0, 1], the search (45) becomes two-dimensional. When D = [θ 1 , θ 2 ] [0, 1], one has to evaluate (36) in order to compute (46). The search (46) is thus three-dimensional.

Under white noise, γ is shift-invariant. The search space can be further simplified and is of dimension 1: indeed, in this case, the product s(θ) H s(θ ) depends only on the difference δ = θ -θ. Finding the local maxima of s(θ) H s(θ ) simply reduces in finding the local maxima of s(θ) H s(θ + δ) for any fixed θ. s(θ) H s(θ + δ) represents the autocorrelation of s, and it is well known that:

s(θ) H s(θ + δ) = 1 N sin(πδN ) sin(πδ) . (47) 
The autocorrelation of s is represented in Figure 7. In this case, in a single cell D k the set Ξ is empty since the derivative of s(θ) H s(θ + δ) only vanishes for δ = 0. If D = [0, 1], φ non-local can be readily obtained from the first secondary lobe. C. On edge effects

If D = [θ 1 , θ 2 ] [0, 1], then B = {θ 1 , θ 2 } × [0, 2π
] and one has to take into account edge effects. The result in appendix A shows that the tubes around the sub-manifolds {γ(θ 1 , α), α ∈ [0, 2π]} and {γ(θ 2 , α), α ∈ [0, 2π]} do not self-overlap. We simply check that those tubes do not overlap with each other: Proposition 4.3: Consider the tube around the manifold γ defined in [START_REF] Bandiera | Advanced Radar Detection Schemes Under Mismatched Signal Models[END_REF] 

on a cell D = [θ 1 , θ 2 ] [0, 1].
Barring the unlikely case where the length of the manifold for fixed α is smaller than φ, no edge effects appear if

φ < φ edge 1 2 cos -1 s(θ 1 ) H s(θ 2 ) . (48) 
In particular, under white noise, if [θ 1 , θ 2 ] is a cell D k as defined in [START_REF] Maio | Robust adaptive radar detection in the presence of steering vector mismatches[END_REF], s(θ 1 ) H s(θ 2 ) = 0, so that φ edge = π/4. Proof: No edge effect occurs if:

φ < min α1,α2 1 2 cos -1 γ(θ 1 , α 1 ) T γ(θ 2 , α 2 ) . (49) 
With (58), the minimum (49) is reached for α 1α 2 = s(θ 1 )s(θ 2 ). In this case, γ(θ 1 , α 1 ) T γ(θ 2 , α 2 ) = s(θ 1 ) H s(θ 2 ) , and the rightmost term of (49) reduces to φ edge in (48).

V. NUMERICAL RESULTS

Let us check the validity of Eq. ( 15). Figure 8-(a) presents the P F A -threshold relationship given by Eq. ( 15) and empirically computed thresholds using 10 8 complex circular white Gaussian noise samples for a steering vector size of N = 10. The continuous research over the domain D is replaced by a discrete search using 30 tests in the cell, where D = D 0 .

The formula seems to fit very well when the P F A is low enough (or, equivalently, if the threshold w is high enough). It is not valid for P F A close to 1 because of overlap (it even exceeds 1). However, such high P F A have no practical interest for standard applications.

It is not trivial to verify the limit overlap value (43) simply by looking at Figure 8-(a): overlap stops having a significant impact on the relationship well before attaining w lim . Let us check our value of w lim by exhibiting a well-chosen point u of the tube belonging to more than one cross-section for a threshold w very close to w lim , with w < w lim , under white noise. Indeed, consider (for any θ, α ∈ D × [0, 2π] since γ is shift invariant), the point of the tube

u = cos(φ) γ(θ, α) + sin(φ) n , (50) 
with cos φ = w and n is the unit norm vector such that:

n ∝ γ(θ, α) + i,j∈[1,2] β i β j ∂ 2 γ ∂µ i ∂µ j ,
where µ is the parametrization defined in [START_REF] Conte | Asymptotically optimum radar detection in compound-Gaussian clutter[END_REF], and

(β 1 , β 2 ) = arg max (β1,β2)∈S 1 i,j β i β j ∂ 2 γ ∂µ i ∂µ j 2 ,
where the right quantity is maximized numerically with β 1 = sin(ϕ), β 2 = cos(ϕ). Note that, using (53), n is orthogonal to γ(θ, α) so that u is indeed a point of the tube since u T γ(θ, α) = cos φ = w and u = 1. Figure 9 shows that u belongs to only one cross-section when φ < φ lim and to three cross-sections when φ > φ lim . Indeed, defining the complex vector u by u = Re(u) Im(u) , see that the derivative of the product u H s(θ + δ) 2 vanishes to 0 above the threshold once in the first case, and three times in the second. Using [START_REF] Bandiera | An ABORT-like detector with improved mismatched signals rejection capabilities[END_REF], this means that u T ∂γ ∂θ = u T ∂γ ∂α = 0 for 3 values

ξ i = θ + δ i , ∠u H s(θ + δ i
) so that u belongs to 3 crosssections CS ξi according to the definition [START_REF] Adler | On excursion sets, tube formulas and maxima of random fields[END_REF]. Even though it is hard to detect visually in Figure 8-(a), overlap occurs right before the limit threshold value w lim found in (41): the limit threshold is very conservative and formula [START_REF] Chen | Off-grid DOA estimation using sparse Bayesian learning in MIMO radar with unknown mutual coupling[END_REF] can be used as a good approximate of the true P F A threshold relationship for thresholds well below that.

We have also compared the formula with empirical thresholds for colored noise (Γ = I). For this purpose, we used the following well-known model of covariance matrices:

Γ(ρ) = T o 1 ρ . . . ρ N -1 , (51) 
where T o(.) is the Toeplitz matrix operator, and ρ is a scalar that defines the level of correlation of the noise. Results can be observed in Figures 8-(b) for the edge cell D 0 where detection performance is lower on average. Zooming on the leftmost part of the curves, it can be seen that the overlapping phenomenon for low P F A values tends to increase slightly with ρ: the gap between the curves widens slightly and lasts a bit longer as noise becomes more correlated. This is not surprising, as correlated noise bends the manifold, increasing the likeliness of both local and non-local global overlap. The formula is still a good approximation of the P F A -threshold relationship well before the limit threshold for no overlap w lim .

To verify this behavior, we plot the relationship between ρ and the minimum threshold for which there is no overlap w lim computed thanks to (25) on Figure 10. The components w local and w non-local are obtained thanks to (39), (35). As we suspected, w lim tends to increase with ρ. The arising of nonlocal overlap can be explained by looking at Figure 6: when ρ increases, a side-lobe enters cell D 0 as Γ then modelizes noise centered around θ = 0.

VI. CONCLUSION

This article addresses the off-grid detection problem using the NMF-GLRT by finding an analytical P F A -threshold relationship. We analyzed its domain of validity thanks to the application of results on the overlap phenomena for tubes around multi-dimensional manifolds to the off-grid signal model. Several new closed-form expressions under white noise have been expressed. This shows that our relationship is valid for most common radar applications for which the P F A is low enough.

APPENDIX

In the first section of the appendix, we prove that the tube T , defined in [START_REF] Tang | Compressed sensing off the grid[END_REF] for fixed θ, does not overlap. Then, we provide proofs for the corollaries of Section IV.

A. On the absence of overlap of the tube T (12) for fixed θ Since ∂γ(θ, α) ∂α = 1, γ(θ, .) is parameterized by arc length. The radius of first curvature is then defined as

ρ = ∂ 2 γ(θ, α) ∂α 2 -1 = 1.
Then, since sin(cos -1 w) < 1 for all w, there is no local overlap according to [START_REF] De Maio | Fractional QCQP with applications in ML steering direction estimation for radar detection[END_REF].

Let us prove there is no non-local overlap either by searching the pairs of points of interest (α, α ) in Ξ, that verify:

γ(θ, α ) T γ(θ, α) = γ(θ, α) T γ(θ, α ) = 0 .
Those conditions imply that:

(cos α γ 1 (θ)+sin α γ 2 (θ)) T (cos αγ 2 (θ)-sin αγ 1 (θ)) = 0 ,
that leads to the condition:

-cos α sin α γ 1 (θ) + sin α cos α γ 2 (θ) = 0 , and equivalently: sin(α -α ) = 0. (b) Highly correlated noise : ρ = 0.9.

Fig. 8: Comparison between the theoretical P F A -threshold given in ( 15) for (a) and ( 13) for (b) and the empirical Monte Carlo P F A -threshold relationships for N = 10 and for several values of ρ (51). The relationship is drawn for the search domain D 0 . The on-grid relation ( 4) is also drawn for comparison purposes. The limit overlap threshold w lim proposed in ( 23) is in purple.

Fig. 9: Illustration of the overlap phenomenon: squared projection of u defined in (50) on s(θ + δ) for θ + δ ∈ D 0 for two values of φ: φ = 0.95φ lim and φ = 1.05φ lim .

Thus, the set Ξ is defined as:

Ξ = {(α, α ) : α = α , sin(α -α ) = 0} , = {(α, α + π), α ∈ [0, π]} . For any α ∈ [0, π], we have γ(α, θ) T γ(α + π, θ) = -1, so that φ non-local = 1 2 arccos(-1) = π 2
according to (35): there is no non-local overlap for T . Thus, w lim = cos φ lim = 0 and the surface given by ( 12) is exact for any threshold w.

B. Proof of Proposition 4.1

Proof: Let γ(ξ) T γ(ξ ) = f (ξ-ξ ). The quantity h(ξ, ξ ) depends on ξ and ξ through γ(ξ) T γ(ξ ) = f (ξ -ξ ) in the denominator, and, by the way of P ξ in the numerator,

γ(ξ) T ∂γ(ξ ) ∂ξ k and ∂γ(ξ) T ∂ξ i ∂γ(ξ ) ∂ξ j for k ∈ [1, M ] and (i, j) ∈ [1, M ] 2
. By using the derivatives of f , it can be shown that those two terms and h depend only on the difference ξξ . In order to prove Corollary 4.1.2, we need to introduce the following lemma on the existence of the parametrization µ:

Lemma A.1: Let γ(ξ) be a M -dimensional shift-invariant manifold. The parametrization µ chosen in ( 30) is well defined, and its first fundamental form is equal to I:

∂γ T ∂µ i ∂γ ∂µ j = δ i,j . 
Proof: Consider G = (g ij ) 1≤i,j≤N defined as in [START_REF] Johansen | Hotelling's theorem on the volume of tubes: some illustrations in simultaneous inference and data analysis[END_REF]. Note that by differentiating γ T γ = 1 twice, we have:

γ T ∂ 2 γ ∂ξ i ∂ξ j = - ∂γ ∂ξ i T ∂γ ∂ξ j . ( 52 
)
Let f (ξ -ξ ) = γ(ξ) T γ(ξ ). It can be rewritten equivalently f (y) = γ(ξ) T γ(ξ + y), which gives, using (52):

g ij = ∂γ T ∂ξ i ∂γ ∂ξ j = - ∂ 2 f ∂y i ∂y j y=0 .
Thus, the coefficients g ij do not depend on ξ and so neither does G. We can define G 1/2 as in [START_REF] Kuriki | Tail probabilities of the maxima of multilinear forms and their applications[END_REF] since G is positive definite. Then, the parametrization (30) in the corollary is well defined, so that ξ = G -1/2 µ. Then: The following proves Corollary 4.1.2: Proof: Equation ( 31) has been proved in the above lemma. Let us prove [START_REF] Hohenwarter | GeoGebra -ein Softwaresystem für dynamische Geometrie und Algebra der Ebene[END_REF]. First, note that differentiating γ T γ = 1 twice yields:

γ T ∂ 2 γ ∂µ i ∂µ j = - ∂γ ∂µ i ∂γ ∂µ j = -δ ij . (53) 
Next, let us introduce Christoffel symbols of the first kind:

Γ ijk = ∂ 2 γ T ∂µ i ∂µ j ∂γ ∂µ k . (54) 
It can be easily verified that those symbols can be expressed as a function of the derivatives of the first fundamental form G = g ij 1≤i,j≤N :

Γ ijk = 1 2
∂g ik ∂µ j + ∂g jk ∂µ i -∂g ij ∂µ k , which gives, since according to (31) g ij = δ i,j :

Γ ijk = 0 . (55) 
Let us now consider Equation ( 27) with parametrization µ.

The denominator reduces to 1:

i,j

β i β j ∂γ T ∂µ i ∂γ ∂µ j = i,j β i β j δ i,j = i β 2 i = 1 .
We thus have:

cot 2 φ local = sup β∈S M -1 i,j β i β j (I -P µ ) ∂ 2 γ ∂µ i ∂µ j 2 , = sup β∈S M -1    i,j β i β j ∂ 2 γ ∂µ i ∂µ j 2 - P µ i,j β i β j ∂ 2 γ ∂µ i ∂µ j 2    , (56) 
where the maximization on µ has been omitted since the manifold γ is shift-invariant. γ, ∂γ ∂µ 1 , . . . , ∂γ ∂µ M forms an orthonormal family so that the second term of (56) is, with Pythagoras's theorem: Lemma A.2: Under white noise (Γ = I), the manifold γ as defined in ( 9) is shift invariant.

P µ i,j β i β j ∂ 2 γ ∂µ i ∂µ j 2 = i,j β i β j γ T ∂ 2 γ ∂µ i ∂µ j 2 + k i,j β i β j ∂γ T ∂µ k ∂ 2 γ ∂µ i ∂µ j
Proof: The complex manifold s(θ) can be expressed as: where f (θ -θ ) = e iπ(N -1)(θ -θ) sin(πN (θ -θ)) sin(π(θ -θ))

. Thus one finds:

γ(θ, α) T γ(θ , α ) = cos(α -α ) Re (f (θ -θ ))

+ sin(α -α ) Im (f (θ -θ )) , which shows the manifold of interest γ is shift-invariant.

We are now able to prove Corollary 4.1.5: Proof: In order to find a parametrization µ of γ satisfying the condition [START_REF] Rabaste | Geometrical design of radar detectors in moderately impulsive noise[END_REF], one can use the following vector d (v) instead of d(θ) in the derivations, changing the origin of time (d and d model the same problem):

(d (v)) n = 1 √ N exp 2iπ n - N -1 2 l -1 v ,
for 0 ≤ n ≤ N -1 and where

l = π N 2 -1 3 , v = l θ .
The parametrization µ = (v, α) for γ written with d verifies condition [START_REF] Rabaste | Geometrical design of radar detectors in moderately impulsive noise[END_REF]. Let us compute (32):

∂ 2 γ T ∂ 2 v ∂ 2 γ ∂ 2 v = C , ∂ 2 γ T ∂v ∂α ∂ 2 γ ∂ 2 v = ∂ 2 γ T ∂v ∂α ∂ 2 γ ∂ 2 α = 0 , ∂ 2 γ T ∂ 2 v ∂ 2 γ ∂ 2 α = ∂ 2 γ T ∂v ∂α ∂ 2 γ ∂v ∂α = ∂ 2 γ T ∂ 2 α ∂ 2 γ ∂ 2 α = 1 ,
where C has been defined in (42). Injecting in [START_REF] Hohenwarter | GeoGebra -ein Softwaresystem für dynamische Geometrie und Algebra der Ebene[END_REF], with β 1 = cos ϕ, β 2 = sin ϕ and maximizing on ϕ, we get: = Re e -i (α-α ) s(θ) H s(θ ) ,

≤ s(θ) H s(θ ) , (58) 
with the equality attained for α -α = s(θ) H s(θ ). This implies that the only points of Ξ worth investigating are the pairs of points (θ, α), (θ , α ) with (α, α ) chosen arbitrarily so that α -α = s(θ) H s(θ ) and (θ, θ ) being a critical point of the quantity s(θ) H s(θ ) which define the set Ξ in (44).

Fig. 1 :

 1 Fig.1: Mean P D of the NMF (3) (red), its oracle counterpart that knows the positions of the targets (yellow) and the GLRT (6) (blue) as a function of the SNR in the presence of off-grid targets under white noise. P F A = 10 -6 and N = 10.

Fig. 2 :

 2 Fig. 2: Example of a tube T on S 2 around a curve γ(ξ). Since the curve is non-closed, semi-spherical caps (in green) are present at the ends of T .

∂α 2 cos 2 ϕ ∂γ ∂θ 2 + sin 2ϕ ∂γ T ∂θ ∂γ ∂α + sin 2 ϕ ∂γ ∂α 2 ,

 222 

Fig. 6 :Fig. 7 :

 67 Fig. 6: Ambiguity map s(θ) H s(θ ) drawn for θ, θ ∈ D 0 for highly correlated noise (ρ = 0.95, see Eq. (51)), with N = 10. Crosses represent local maxima.

  (a) Uncorrelated noise : ρ = 0.

Fig. 10 :

 10 Fig. 10: Comparison of the limit global overlap thresholds w lim (purple), w local (blue) and w non-local (red) versus ρ obtained with (25), (39) and (35) with N = 10, in the cell D 0 .

β i β j Γ ijk 2 , = 1 ,

 21 using (53), (54) and (55). D. Proof of Corollary 4.1.5 In order to prove Corollary 4.1.5 we need to introduce the following Lemma to use Corollary 4.1.2.

e

  2iπk(θ -θ) , = f (θ -θ ) , = Re (f (θ -θ )) + i Im (f (θ -θ )) .

cot 2 φ 1 cot 2

 212 local = max ϕ C cos 4 ϕ + 6 cos 2 ϕ sin 2 ϕ + sin 4 ϕ -1 , = max ϕ (C -5) cos 4 ϕ + 4 cos 2 ϕ . (57)The maximum is obtained for cos 2 ϕ = 2 5 -C. Then, injecting this value in (57) and simplifying, we obtain:cot 2 φ local = 4 5 -C . Since w 2 local = cos 2 tan -1 φ local , result(41) holds.E. Proof of Corollary 4.1.6Proof: First, see that:γ(θ, α) T γ(θ , α ) = cos(α -α ) Re s(θ) H s(θ )+ sin(α -α ) Im s(θ) H s(θ ) ,
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