

there.

Exploring the Relationship Between Perceived Bikeability and Gender-Inclusive Micromobility Usage A Study Across 53 French Cities

Scientific Seminar: Accessibility and Connectivity of the 15-minute-city ACUTE / UERA TWG Urban Accessibility and Connectivity

February 20, 2024

Dylan MOINSE LVMT, Université Gustave Eiffel, École des Ponts, F-77455 Marne-la-Vallée, France

Université Gustave Eiffe

Background

Gendered environmental practices and preferences in favor of women, with the exception of **mobility** [1]:

- Lower carbon footprint than men because women favor walking and transit and make shorter journeys [2];
- Less willing to reduce car use and especially to opt for cycling [1].

Observation of a **cycling gender gap** compared to other modes:

- In a myriad of studies, especially in **Western countries** [3, 4];
- Emergence of electric micromobility devices reinforcing gender inequalities [5, 6];
- Pronounced gender contrast in intermodal travel combining cycling with transit [6];
- Differs from the typically higher female participation in walking and public transportation [7].

Are the promotion of inclusive mobility and the **15-minute City compatible**?

- A paradigm shift emphasizing nodes accessible by foot and bike in X minutes [8];
- Parity achieved by a handful of Northern European countries [9];
- Gender inequalities cannot simply be ascribed to cultural differences [10];
- Impacts of disseminated social norms and the configuration and design of public spaces [11].
- [] Pech, T., & Witkowski, D. (2021). Les femmes et le changement climatique (p. 32). Terra Nova
- [2] Shaw, C. et al. (2020). Beyond the Bicycle : Seeing the Context of the Gender Gap in Cycling. Journal of Transport & Health, 18, 100871
- 3] Handy, S. L., & Xing, Y. (2011). Factors Correlated with Bicycle Commuting: A Study in Six Small U.S. Cities. International Journal of Sustainable Transportation, 5(2), 91-110
- [4] Codina, O., Maciejewska, M., Nadal, J., & Marquet, O. (2022). Built Environment Bikeability as a Predictor of Cycling Frequency: Lessons from Barcelona. Transportation Research Interdisciplinary Perspectives, 16, 100725
- [5] Laa, B., & Leth, U. (2020). Survey of e-Scooter Users in Vienna: Who They Are and How They Ride. Journal of Transport Geography, 89, 102874.
- [6] Moinse, D., Goudeau, M., L'Hostis, A., & Leysens, T. (2022). Intermodal Use of (e-)Scooters with Train in the Provence-Alpes-Côte d'Azur Region : Towards Extended Train Stations Areas? Environmental Economics and Policy Studies, 34.
- [7] Pollard, T. M., & Wagnild, J. M. (2017). Gender Differences in Walking (for Leisure, Transport and in Total) across Adult Life : A Systematic Review. BMC Public Health, 17(1), 341.
- [8] Allam, Z., Bibri, S. E., Chabaud, D., & Moreno, C. (2022). The '15-Minute City' concept can shape a net-zero urban future. Humanities and Social Sciences Communications, 9(1).
- [9] Nelson, A. C., & Allen, D. (1997). If You Build Them, Commuters Will Use Them: Association Between Bicycle Facilities and Bicycle Commuting. Transportation Research Record, 1578(1), 79-83.
- [10] Héran, F. (2015). Le retour de la bicyclette. Une histoire des déplacements urbains en Europe, de 1817 à 2050 (La Découverte).
- [11] Sayagh, D. (2018). Les adolescentes font-elles moins de vélo en raison de moindres possibilités réelles d'investir l'espace public? Enfances Familles Générations. Revue interdisciplinaire sur la famille contemporaine, 30.

Université

Research Aim

Discrepancies in the research:

- Positive association between gender-neutral cycling usage and the level of cycling across cities and countries [12];
- An increase in cycling modal share does **not systematically** diversify the user profile in terms of gender distribution [13, 14];
- A mismatch between objective and perceived built environment regarding bikeability and safety experienced by cyclists [15, 16].

Reseach problem:

- Can we observe a relationship between the gender distribution of cycling and the **objective and perceived built environment**?
- Does urban planning for proximity serve as a catalyst for enhancing a more inclusive mobility system?
- Are there differences based on the type of micromobility and trip pattern?

Objectives:

2/11

- 1. **Quantifying** gender-based disparities in the use of micromobility, focusing on commuting patterns;
- 2. Assessing the impact of perceived bikeability on the gender-influenced micromobility use;
- 3. Employing a **comparative approach** to identify and categorize the examined areas;
- 4. Formulating an **indicator** that captures the key interactions among the analyzed variables and gender-specific use of micromobility.

[12] Goel, R., Goodman, A., Aldred, R., Nakamura, R., Tatah, L., Garcia, L. M. T., Zapata-Diomedi, B., de Sa, T. H., Tiwari, G., de Nazelle, A., Tainio, M., Buehler, R., Götschi, T., & Woodcock, J. (2022). Cycling Behaviour in 17 Countries Across 6 Continents: Levels of Cycling, who Cycles, for What Purpose, and How Far? *Transport Reviews*, 42(1), 58-81.

^[13] Avila-Palencia, I., de Nazelle, A., Cole-Hunter, T., Donaire-Gonzalez, D., Jerrett, M., Rodriguez, D. A., & Nieuwenhuijsen, M. J. (2017). The Relationship between Bicycle Commuting and Perceived Stress: A Cross-Sectional Study. BMJ Open, 7(6), e013542.

^[14] Aldred, R., Woodcock, J., & Goodman, A. (2016). Does More Cycling Mean More Diversity in Cycling? Transport Reviews, 36(1), 28-44.

^[15] Ma, L., & Dill, J. (2017). Do People's Perceptions of Neighborhood Bikeability Match "Reality"? The Journal of Transport and Land Use, 10(1), 291-308.

^[16] Garrard, J., Rose, G., & Lo, S. K. (2008). Promoting Transportation Cycling for Women : The Role of Bicycle Infrastructure. Preventive Medicine, 46(1), 55-59.

Mixed Methods

Geographical scope: French context;

Case study: Hauts-de-France Region.

Secondary analysis of public surveys:

- Characterizing French cities in terms of cycling modal share, gender distribution and the bike-friendliness ratings;
- 2019 Population Census, derived from the Professional Mobilities (MOBPro) by • the National Institute of Statistics and Economic Studies (Insee) [17];
- 2021 Bicycle-Friendly Cities Barometer (third edition), by the *Bicycle Users* • Federation (FUB) [18].

Application of "quantitative observations":

- Capturing the **demographic profiles** of intermodal passengers by micromobility in the Hauts-de-France region;
- Systematic collection of field data, based on a categorization and enchanced by videographic recordings [19];
- Carried out at **nine train stations**, including "major regional hubs", "stations ٠ oriented towards Paris" and "feeder stations" [20];
- During peak hours on Tuesdays and Thursdays, between March and June 2022. •

Fig.1: Quantitative Observation Session on One of the Platforms at Lille Flandres Station

FUB, (2021). Baromètre des Villes Cyclables, Résultats 2021. Parlons Vélo ! Fédération française des usagers de la bicyclette. https://palmares.parlons-velo.fr/

Filion, N. (2011). Compter le réel. Terrains travaux, 19(2), 37-55.

[20] CETE Nord Picardie & DREAL Picardie. (2011). Les profils des gares de Picardie (72; Les bulletins de la DREAL Picardie, p. 6). https://www.hauts-de-france.developpement-durable.gouv.fr/?no-72-Dec-2011-Les-profils-des-gares-de-Picardie

^[17] Insee. (2023, juin 27). Documentation fichier détail: Mobilités professionnelles. Insee.fr. https://www.insee.fr/fr/information/2383243

Laboratoire Ville Mobilité Transport

Sampling

Secondary analysis of public surveys

n_{FUB} = **65,850** n_{Insee} = **94,788**

MOBPro Census

(Insee, 2019)

N = 7,932,895 responses

Inclusion criteria 1: '*TRANS=3*' = 409,326 cyclists

Inclusion criteria 2: ≥200 cyclists per municipality = 128,492 cyclists in 144 cities:

- 51,719 female cyclists;
- 76,773 male cyclists.

Baromètre des Villes Cyclables (FUB, 2021)

N = 277,384 responses

Inclusion criteria 3: Attribute join between 144 cities (*Insee*) and the municipalities with at least 100 cyclists' responses = 64 cities

Inclusion criteria 4: Central cities of agglomerations = 53 municipalities **Empirical approach**

Quantitative observation (2022)

N = 15,435 passengers

Nine railway stations:

- 'National and regional interest stations' (4);
- 'Parisian regional influence hub' (1);
- 'Feeder stations' (4).

Inclusion criteria: Intermodal passengers by micromobility modes

n_{oo} = **1,035**

Ride-along interviews (2022)

Two participants:

• *RI_ES_1* (F):

From Lille to Maubeuge by regional train and private e-scooter.

• *RI_ES_2* (H):

From Lille to Villeneuve d'Ascq by metro and private e-scooter.

n_{RI} = **2**

Gender Imbalance

5/11

Female users account for only **38.08%** of cycling commuters in the country, whereas they constitute 51.60% of the population;

Contrast that intensifies in the context of intermodal mobility, with a decline to **28.21%**, although they represent 52% of the transit passengers [21].

Substantial **variations** when considering micromobility modes:

- **Personal bicycles** and **escooters** showing the most distinct gender inequalities;
- More balanced gender distribution in the case of folding bicycles and kick standing scooters.

N=409,326

2019 *MOBPro* Database on Commuting Unimodal Bicycle Use

Legend

F Folding Bike O O

O Other Micromobility Devices

S Human-Powered (Kick) Scooter

Laboratoire Ville Mobilité Transport

Fig.2: Distribution of Cyclists by Gender and Type of Micromobility in France

N=1,035

Université Gustave Eiffel

Ouantitative Observation of Intermodal

Passengers Using Micromobility

"Safety in Numbers"

Linear regression model underscores the relative **strong and positive correlation** between female participation and the **cycling modal share** across 53 French cities:

- $\rho_{Pearson} = 0.73$
- As the number of cyclists increases in public spaces, motorists are more likely to view them as a legitimate group of road users [22, 23].

In line with research articles based on an **international comparison** [24]:

• Within countries where cycling rates fall below 7%, women exhibit an average 56% lower likelihood of cycling compared to men [25].

Fig.3: Cross-Mapping of Modal and Gendered Share of Cycling in France

- [22] Oosteren, S. V., & Schneider, O. (2021). Pourquoi pas le vélo?: Envie d'une France cyclable (Illustrated édition). Editions Ecosociété.
- [23] Jacobsen, P. L. (2003). Safety in Numbers : More Walkers and Bicyclists, Safer Walking and Bicycling. Injury Prevention, 9(3), 205-209.
- [24] Garrard, J., Crawford, S., & Hakman, N. (2006). Revolutions for Women: Increasing Women's Participation in Cycling for Recreation and Transport. Final Report (p. 78). Deakin University.
- [25] Goel, R., Goodman, A., Aldred, R., Nakamura, R., Tatah, L., Garcia, L. M. T., Zapata-Diomedi, B., de Sa, T. H., Tiwari, G., de Nazelle, A., Tainio, M., Buehler, R., Götschi, T., & Woodcock, J. (2022). Cycling Behaviour in 17 Countries Across 6 Continents: Levels of Cycling, who Cycles, for What Purpose, and How Far? *Transport Reviews*, 42(1), 58-81.

Bikeability Score

No causal relationships between these two variables: Is it the critical mass that fosters greater gender diversity among cyclists, the higher involvement of women in cycling that arises the modal share, or a combination of both factors?

Identification of a positive association between the **perceived bikeability score** among cyclists and the gender-specific cycling rate:

- Both within Metropolises, Urban Communities and Agglomeration Communities;
- Parity could be attainable when a city's bikeability score surpasses 4.3/6;
- Quantitative observation for the e-scooter align to a lesser extent with the regression model.

Bikeability Indicators

8/11

Main subfactors exerting substantial influence pertain to:

- Widespread adoption of bicycles (Q19);
- Sense of safety experienced during cycling (Q20);
- Safety on **residential** streets (Q22);
- **Promotion** of cycling (Q32);
- Playful and enjoyable aspect (Q14);
- Capacity to navigate swiftly and directly (Q15);
- Safety on intersections (Q24);
- Engaging cyclists in mobility and urban planning **projects** (Q33);
- Municipal efforts (Q31);
- **Quality** of the network (Q26);
- Safety on main roads (Q21).

Fig.5: Linear Regression Model between the Gendered Distribution of Cycling and the Questions used to Aggregate the Perceived Bikeability Score by Municipality 9/11

Objective and Perceived Bikeability

Independent Variables	ρ _{Pearson}	P _{Pearson}	ρ _{Spearman}	P _{Spearman}	SD
Bicycle Modal Share	0.729	<0.001	0.807	<0.001	0.037
Proportion of Cycling Infrastructure	0.647	<0.001	0.670	<0.001	0.071
Bikeability Score	0.619	<0.001	0.618	<0.001	0.499
City's Efforts (Theme 4)	0.618	<0.001	0.619	<0.001	0.645
General Perception (Theme 1)	0.603	<0.001	0.613	<0.001	0.523
Comfort (Theme 3)	0.598	<0.001	0.609	<0.001	0.545
Safety (Theme 2)	0.596	<0.001	0.604	<0.001	0.539
Services and Parking (Theme 5)	0.490	<0.001	0.438	<0.001	0.379
Proportion of Cycling and 30km/h Areas	0.347	<0.05	0.398	<0.001	0.218
Population Density	0.281	<0.05	0.396	<0.01	3,020.555

Aggregate outcomes of independent variables associated with the characteristics of the urban setting, evaluated by **objective geographical data** and **individual perception**.

Université Gustave Eiffel

Laboratoire Ville Mobilité Transport

Table 1: Descriptive Statistics of the Linear Regression Model

Realization: Moinse, 2023

Laboratoire Vile Vile Transport

École des Ponts Parisfinch

Classification

Classification of the 53 French cities based on their bikeability scores and the degree of feminization in cycling:

• **Bivariate** geostatistical analysis;

Four categories:

10/11

- 1. Gender-balanced and bicyclesupportive;
- Gender-balanced yet unfavorable to cycling;
- 3. Gender-disparate yet bicycle supportive;
- 4. Gender disparate and unfavorable to cycling.

 I_{gcb} encompassing gendered use of bicycle (I_{a}) , its modal share (I_{c}) and bikeability (I_{b}) :

- Average score of **0.098** and a median of **0.067**;
- Top ranking: **Strasbourg** (0.47), **Grenoble** (0.44), **La Rochelle** (0.34), and **Bordeaux** (0.32).

Fig.6: Bivariate Map of the 53 French Cities according to Gender Distribution, Cycling Use and Perceived Bikeability

11/11

Highlights

Statistically **significant association** among the modal share of cycling, perceived bikeability, and the proportion of female cyclists within the 53 French cities under examination:

- Consistent for both conventional **bicycle** and emerging **micromobility** alternatives;
- As well as both **unimodal** and **intermodal** journeys when integrated with train.

Achieving gender parity in cycling goes beyond mere considerations of "safety in numbers" or the presence of cycling infrastructure from an urban planning perspective:

- Key driver lies in the **perceived bike-friendliness** experienced by cyclists;
- Factors encompassing the normalization of cycling, the establishment of a secure environment facilitated by continuous, high-quality, and direct cycling infrastructure and the reduction of automobile traffic in residential streets and boulevards, the promotion of comfort and enjoyment in cycling, and proactive engagement by public authorities;
- Involves enhancing the "bicycle system" [26].

Female participation in cycling emerges as a noteworthy **indicator of a bicycle-friendly culture and environment**, with these elements mutually reinforcing each other [27]:

• These dimensions integrating social inclusivity resonate with the concept of the **15-Minute City** that advocates for an urban planning approach that fully embraces proximity, with feminist urbanism [28, 29].

- [27] Garrard, J., Crawford, S., & Hakman, N. (2006). Revolutions for Women: Increasing Women's Participation in Cycling for Recreation and Transport. Final Report (p. 78). Deakin University.
- [28] Bruntlett, M. (2022). The 15-Minute City: A Feminist Utopia? Transformative Urban Mobility Initiative (TUMI). https://womenmobilize.org/pubs/the-15-minute-city-a-feminist-utopia/
- [29] Lanza, G., & Carboni, L. (2023, avril 12). Un Indice Per Progettare la Città dei 15 Minuti: Inclusive Accessibility by Proximity Index IAPI. DiTe Dinamiche territoriali. https://www.dite-aisre.it/un-indice-per-progettare-la-citta-dei-15-minuti-inclusiveaccessibility-by-proximity-index-iapi/

^[26] Héran, F. (2015). Le retour de la bicyclette. Une histoire des déplacements urbains en Europe, de 1817 à 2050 (La Découverte (20 août 2015)).

Contact

Contact

Dylan MOINSE

Laboratoire Ville Mobilité Transport Université Gustave Eiffel **dylan.moinse@univ-eiffel.fr**

Preprint:

HAL: Dylan Moinse. *Exploring the Relationship Between Perceived Bikeability and Gender-Inclusive Micromobility Usage: A Study Across 53 French Cities.* 2023.

https://shs.hal.science/halshs-04266904

ResearchGate: Dylan Moinse. Exploring the Relationship Between Perceived Bikeability and Gender-Inclusive Micromobility Usage: A Study Across 53 French Cities. 2023.

- https://www.researchgate.net/publication/375462
 771_Exploring_the_Relationship_Between_Perceiv ed_Bikeability_and_Gender_Inclusive_Micromobili ty_Usage_A_Study_Across_53_French_Cities
- DOI: 10.13140/RG.2.2.22099.96801

FUB's Baromètre des Villes Cyclables

ID	Questions	ρ _{Pearson} / ρ _{Spearman}				
General Perception (Theme 1)						
Q14	Pleasantness of cycling	0.59 / 0.59				
Q15	Seamlessness of the cycling network	0.58 / 0.57				
Q16	Potential conflicts between cyclists and pedestrians	0.03 / 0.04				
Q17	Interactions with motorized vehicles	0.46 / 0.43				
Q18	Density and speed of traffic	0.44 / 0.39				
Q19	Democratization of cycling usage	0.66 / 0.67				
Safety (Theme 2)						
Q20	Safety by cycling	0.59 / 0.60				
Q21	Safety on major roads	0.56 / 0.57				
Q22	Safety on residential streets	0.56 / 0.60				
Q23	Safety by joining the neighboring cities	0.47 / 0.47				
Q24	Safety by crossing intersections	0.57 / 0.58				
Q25	Inclusivity for children and the elderly	0.53 / 0.52				

ID	Questions	ρ _{Pearson} / ρ _{Spearman}				
Comfort (Theme 3)						
Q26	Quality levels associated with cycling routes	0.56 / 0.57				
Q27	Maintenance of cycling routes	0.53 / 0.51				
Q28	Presence of road signage	0.47 / 0.46				
Q29	Provision of temporary roads during construction	0.51 / 0.52				
Q30	Availability of dedicated one-way cycling lanes	0.51 / 0.55				
Municipal Efforts (Theme 4)						
Q31	Initiatives undertaken by the city to promote cycling	0.57 / 0.59				
Q32	City's communication efforts	0.60 / 0.62				
Q33	Integration of cyclists into discussions on projects	0.57 / 0.57				
Q34	Obstructive car parking	0.29 / 0.25				
Services and Parking (Theme 5)						
Q35	Bicycle parking facilities in general	0.44 / 0.42				
Q36	Bicycle parking at public transport stations	0.25 / 0.23				
Q37	Accessibility of bicycle short/long-term rental services	0.47 / 0.45				
Q38	Availability of bicycle stores and repair shops	0.50 / 0.55				
Q39	Prevalence of bicycle theft incidents	-0.27 / -0.28				

Laboratoire Ville Mobilité Transport

Detailed Results

ID	City	I _{gcb} _	PMV	Density	AC	AC30
1	Strasbourg	0.47	17%	3,713	26%	37%
2	Grenoble	0.44	17%	8,728	36%	85%
3	La Rochelle	0.34	12%	2,716	18%	26%
4	Bordeaux	0.32	14%	5,264	23%	41%
5	Rennes	0.22	10%	4,415	33%	60%
6	Nantes	0.21	10%	4,920	27%	86%
7	Angers	0.17	8%	3,650	20%	53%
8	Lyon	0.17	9%	10,909	26%	47%
9	Chambéry	0.16	8%	2,819	19%	35%
10	Annecy	0.15	7%	1,919	15%	34%
11	Tours	0.15	7%	3,976	22%	71%
12	Toulouse	0.14	9%	4,210	21%	44%
13	Avignon	0.14	7%	1,396	22%	26%
14	Montpellier	0.13	8%	5,285	19%	84%
15	Valence	0.11	6%	1,736	18%	34%
16	Caen	0.11	6%	4,173	21%	29%
17	Dijon	0.10	6%	3,937	14%	21%
18	Lorient	0.10	6%	3,284	18%	79%

ID	City	l _{gcb}	PMV	Density	AC	AC30
19	Lille	0.10	6%	6,783	23%	73%
20	Paris	0.10	5%	20,360	28%	91%
21	Orléans	0.09	5%	4,259	22%	38%
22	Poitiers	0.09	5%	2,138	14%	18%
23	Le Mans	0.08	5%	2,749	13%	22%
24	Bensançon	0.08	5%	1,818	21%	41%
25	Troyes	0.07	5%	4,742	16%	25%
26	Nancy	0.07	4%	6,956	19%	46%
27	Amiens	0.07	5%	2,696	14%	21%
28	Dunkerque	0.06	3%	1,972	17%	34%
29	Saint-Nazaire	0.06	4%	1,536	11%	13%
30	Rouen	0.06	4%	5,341	22%	53%
31	Mulhouse	0.06	4%	4,871	15%	42%
32	Nîmes	0.05	4%	911	5%	8%
33	Bayonne	0.05	3%	2,399	19%	47%
34	Clermont-Ferrand	0.05	4%	3,452	9%	29%
35	Reims	0.04	3%	3,845	12%	27%
36	Le Havre	0.04	3%	3,532	13%	21%

Cuniversité Gustave Eiffel

Detailed Results

ID	City	I _{gcb}	PMV	Density	AC	AC30
37	Valenciennes	0.04	3%	3,093	13%	32%
38	Brest	0.03	3%	2,817	10%	39%
39	Metz	0.03	2%	2,866	16%	30%
40	Perpignan	0.03	3%	1,734	9%	37%
41	Douai	0.03	2%	2,360	22%	40%
42	Aix-en-Provence	0.03	3%	791	8%	16%
43	Nice	0.03	2%	4,776	5%	16%
44	Toulon	0.02	4%	4,194	6%	10%
45	Saint-Paul (La Réunion)	0.02	3%	432	ND	ND
46	Beauvais	0.02	2%	1,708	12%	22%
47	Limoges	0.02	2%	1,674	6%	10%
48	Marseille	0.02	2%	3,617	6%	13%
49	Saint-Etienne	0.02	2%	2,177	8%	12%
50	Saint-Denis (La Réunion)	0.01	2%	1,072	ND	ND
51	Angoulême	0.01	1%	1,895	8%	12%
52	Arras	0.01	1%	3,640	14%	59%
53	Saint-Pierre (La Réunion)	0.01	2%	874	ND	ND

Université Gustave Eiffel

Laboratoire Ville Mobilité Transport

Quantitative Observation

Université Gustave Eiffel

Laboratoire Ville Mobilité Transport

Gender-based Bicycle Equity Index

$$I_g = \frac{Min(G_{fc}, 50\%)}{50\%}$$
$$I_c = \frac{Min(C_{ms}, 25\%)}{25\%}$$

$$I_b = \frac{B_s}{6}$$

$$I_{gcb} = I_g * I_c * I_b$$

where:

 I_g is the gendered share of cycling;

 I_c is the cycling modal share;

 I_b is the bikeability score of the municipality;

 I_{gcb} is gender equity in connection with cycling and bikeability.

École des Ponts ParisTirch

Ride-along Interviews

Laboratoire Ville Mobilité Transport

Legend

Intermodal trip	Distance (km)	Time (min)
Micromobility + Train	97.3	84
Walk + Subway + Train + Bus	98.1	95 to 125

Laboratoire Ville Mobilité Transport

École des Ponts

Laboratoire Ville Mobilité Transport

Laboratoire Ville Mobilité Transport

Laboratoire Ville Mobilité Transport

