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Abstract—Detecting targets embedded in a noisy environment is an
important topic in adaptive array processing. In the traditional statistical
framework, this problem is addressed through a binary hypothesis
test, which usually requires the estimation of side parameters from
secondary data. The latter are assumed to be homogeneous and target-
free, which is in practice questionable. Indeed, secondary data are usually
corrupted by radar clutters and/or jammers which can be non-stationary
and locally low rank. Fortunately, the latter behaviors can be well
acknowledged by a union-of-subspaces model. In this work, we propose
a modified subspace clustering model which can be solved using convex
optimization algorithms. In the context of multiple sparse target detection
and localization, a comparison is performed with various robust detection
methods exhibiting advantages and drawbacks of the proposed one.

Index Terms—Target detection, Non-stationary clutter, Subspace clus-
tering.

I. INTRODUCTION

Detecting targets enclosed in a noisy environment is a major topic
in adaptive array processing, which still drives research interest. Tra-
ditionally, this problem is addressed through the statistical framework
by expressing a binary hypothesis test to discriminate the presence
of targets or not [1,2]. The computation of decision statistics usually
requires the estimation of side parameters, such as the interference
plus noise covariance matrix. This step is crucial since it directly
impacts the performance of the detection process. Thus, this topic has
been widely investigated through various statistical models [3–7].

However, in the classical statistical adaptive detection paradigm,
the parameter learning step requires the availability of a sufficiently
large dataset, called secondary data, which are assumed to be homo-
geneous and target-free. These conditions are not necessarily met in
practice, depending on the observation environment, the measuring
system, or the acquisition mode. As examples, the secondary dataset
can be heterogeneous (i.e., non-stationary) or contaminated by targets.
This issues motivated the development of numerous robust detection
methods [6, 8].

Following [9], we propose in this paper to leverage robust
subspace clustering techniques in order to alleviate a possible non-
stationarity of the secondary dataset. This implies to reformulate the
detection problem as a structured recovery/regression rather than a
statistical hypothesis test (see e.g. [10]). Indeed, the whole dataset
(primary and secondary data) can be modeled as the sum of sparse
targets embedded locally in low rank clutter with – possibly non-
stationary – interferences. In this context, recent machine learning
techniques addressing the problem of subspace clustering and/or
sparse matrix recovery can be used. For example, the Robust Principal
Component Analysis [11] is well-suited for the recovery of “low-
rank + sparse” matrices. Here, the non-stationarity of radar clut-
ters/jammers can be better acknowledged by a union-of-subspaces
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model, which naturally points to the use of the subspace clustering
techniques [12, 13].

In this context, [9] proposed the use of Sparse Subspace Cluster-
ing (SSC) for radar detection and illustrated its feasibility on a real
dataset. Following from this work:
• We explore the modification of SSC proposed in [12] (formulating
a relaxed convex problem) to include a dictionary, needed in radar
detection.
• We illustrate the robustness of the SSC approach to non-stationary
interference on simulated data.

This paper is organized as follows. In section II, the data model
is presented for both homogeneous and heterogeneous cases. Some
limitations of the classic statistical detection are emphasized, leading
to a new approach presented in Section III. In this section, we
reformulate the detection problem as the recovery of a sparse matrix.
In section IV, we compare the different approaches for target detection
in non-stationary jamming.

In what follows, the notation ‖A‖1 is for the `1-norm of the
matrix A ∈ Cn×m, which is given by ‖A‖1 =

∑
n,m

|an,m|. The

operator diag (A) collects all the diagonal elements of the matrix A
into a vector. For a matrix A, Tr (A) denotes the trace of A.

II. PROBLEM SETUP

A. Data model

Let be a radar receiver, composed by M antenna elements,
collecting K snapshots, zk ∈ CM , k = 1, . . . ,K. Theses samples
are a combination of different contributions, modeled as below [14]:

zk = vk + ck + nk k = 1, . . . ,K (1)

where
• vk is related to the target responses. Due to physical considerations
and the geometry of the receiver, the structure of the related steering
vector d, is known. Then a dictionary D mapping the whole angle-
of-view can be constructed as D = [d1, . . . , dT ], with T the size of
the dictionary. Thus, the vector vk can be expressed as

vk = Dαk (2)

where αk is the vector of power/phase shifts coefficients. In practice,
only a small number of targets is active compared to the size of the
dictionary. Therefore, αk is a sparse vector.
• ck refers to the interferences, such as ground clutter and/or jammers.
From physical consideration on the system [15], we know that the
clutter contribution belongs to a low-rank subspace of size R�M .
For a sufficient number of samples, i.e. K > R, we can then consider
that a vector ck can be expressed as a linear combination of the other
samples, cp, p ∈ [[1,K]] \ {k}:

Ch , [c1, . . . , cK ] = ChWh, such that
[
Wh
]
i,i

= 0 (3)



where Wh sparse. The relation in (3) is also called the self-
representation property of the data [12].
• nk denotes a dense noise, e.g., the thermal noise, which is assumed
to be white centered Gaussian distributed: nk ∼ CN

(
0, σ2IM

)
.

By concatenating column-wise for all the samples, the model in (1)
can be rewritten in a matrix form by

Zh = Vh + Ch + Nh = DAh + Ch + Nh (4)

where the matrix Ah = [α1, . . . ,αK ] is sparse.

In the case where the whole received samples are not nec-
essarily homogeneous, e.g., the low-rank subspace describing the
interference changes during the acquisition process, the model (4)
still holds. Indeed, we can consider that the heterogeneity in the
samples can be modeled as an union of J unknown homogeneous
subpartitions. For each homogeneous subpartition of Kj snapshots,

such that
J∑
j=1

Kj = K, the model in (4) still remains valid. Then by

concatenating column-wise each subpartition, we finally obtain

Z = V + C + N with

{
V = DA
C = CW, diag (W) = 0

(5)

where W is a block diagonal (up to a sorting permutation) composed
by the matrices Wh

1 , . . . ,Wh
J . We recall that the sparse matrix A,

which is related to the present targets, is the center of interest in our
detection application. However, it is worth mentioning that the sparse
matrix W, which is block-diagonal up to a sorting permutation, is
useful from a clustering perspective.

B. Limitations of the classic statistical detection

Traditionally in statistical signal processing, the target detection
problem can be formalized by the following binary hypothesis test:{

H0 : z0 = c0 + n0 ; zk = ck + nk, ∀ k ∈ [[1,K]]

H1 : z0 = Dα0 + c0 + n0 ; zk = ck + nk, ∀ k ∈ [[1,K]]

where z0 is the primary sample, which is the tested sample and
zk’s are the secondary data, which are assumed to be independant,
identically distributed (i.i.d.), and target-free. Under H0, the received
signal only contains the clutter response, i.e. interference and noise.
Under H1, the tested signal additionally contains a target response.
Several approaches have been proposed in the literature to design
a detector [1–8, 14]. Among them, the most powerful tests are
usually based on likelihood-ratio, namely the Neyman-Pearson test. In
practice, the latter involve some unknown parameters of the chosen
interference-plus-noise model such as the covariance matrix of the
clutter. Therefore, a first step of estimation should be achieved, giving
an adaptive nature to the obtained detector. To that end, the secondary
data are used for the clutter’s covariance estimation. The estimate
plays a central role in the performance of the resulting detector, which
is why this step is still driving scientific research [5, 16–18].

However, this 2-step scheme is based on two important assump-
tions, which can be inaccurate in practice. The first one is about the
homogeneity of the secondary data, i.e. these samples are assumed to
be i.i.d.. This means that either the potential non-stationarity of the
clutter is not taken into account or we know a priori the partition of
the secondary data in which each cluster contains i.i.d. samples. The
second hypothesis concerns the target-free nature of the secondary
data, which can be invalidated in the case of the presence of several
targets in the observation area. From these two mentioned limitations,
we propose a novel approach of the problem in order to perform

a simultaneous estimation/detection process without assuming the
availability of such secondary data.

III. SPARSE SUBSPACE CLUSTERING

A. Robust Subspace Recovery via bi-sparsity

In order to perform a simultaneous estimation and detection from
collected observations, which are a noisy version of DA+C, we aim
to recover a sparse matrix, containing the information of the targets
and an union of low-rank subspaces, corresponding to non-stationary
interferences. This approach, while novel for radar detection, is under
a lot of ongoing investigations in machine learning or computer vision
problems [12, 19]. The following minimization problem

min
W,A,C

‖W‖1 + λ ‖A‖1 s.t.


(i) Z = DA + C,
(ii) C = CW,

(iii) diag (W) = 0
(6)

initially introduced in [13] without dictionary, and then applied with
a dictionary in [9], is relevant to solve this task. Indeed, the `1-
norm promotes sparsity of the matrices W and A and the parameter
λ balance the two terms in the objective function. Therefore, the
recovered sparse matrix Â allows us to build a detection map and
then to compare with a threshold the non-zero elements in order to
decide the presence of the targets or not and to localize the activated
atoms in the dictionary D. Due to the bilinear constraint (ii), the
problem (6) is non-convex. The optimization can be achieved by the
linearized version of the Alternating Direction Method of Multipliers
(ADMM) [20, 21].

B. Relaxation of the initial problem

Based on a rewriting of the problem (6) introduced in [12], we
also propose to study a convexified modification of this problem.
Indeed, starting from Z = DA + C + N and C = CW, we obtain

ZW = DAW + CW + NW = DAW + Z− DA− N + NW
⇒ Z = ZW + DA (I−W) + N (I−W)

Z = ZW + DÃ + Ñ (7)

Then, we propose to solve the following problem

min
W,Ã
‖W‖1 + λ

∥∥∥Ã
∥∥∥
1

s.t.

{
Z = DÃ + ZW
diag (W) = 0

(8)

where the `1-norm promotes the sparsity of the matrices W and Ã
and the parameter λ balances the two terms in the criterion.

The problem (8) being convex, it can be efficiently solved using
convex programming tools [22]. On one hand, the class of Accelerated
Proximal Gradient algorithms, which are first-order methods, theoret-
ically offers a convergence rate guarantee of O

(
1/k2

)
[23] but needs,

for this aim, an appropriate continuation technique. In practice, it can
lead to variations in the convergence rate. On the other hand, the class
of ADMM algorithms, which is well-suited for parallel processing,
exhibits theoretically a convergence rate guarantee of O (1/k) [24],
but offering more stability in practice. In the simulations, we chose
the ADMM approach for the resolution of (8).

IV. APPLICATION TO DETECTION IN NON-STATIONARY JAMMING

In this section, we consider the problem of target detection
where the interferences are due to either stationary or non-stationary
jammers.
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Fig. 1: Scenario with stationary jammer

A. Case 1: stationary jammers

Let consider an uniform linear array with M = 8 sensors, half
wavelength spaced, collecting K = 50 snapshots. The related steering
vector is given by:

d (θ) =
[
1, eiπ sin θ, . . . , eiπ(m−1) sin θ

]T
The dictionary D is built from d (θ), for all θ ∈ [[−90, 90[[. The targets
of interest, which are located at θt = 40o, 10o,−10o and −60o at
different sample times, are marked as a white cross in Fig. 1. We
consider in addition the presence of two jammers, through a stochastic
model, in the observation scenario, which are similar as fake targets
d (θj), with θj = 20o and−20o. Thus, the covariance of the jammers,
which is low-rank, is given by:

Rjam =

2∑
j=1

d (θj) d (θj)
H = UΛUH (9)

where U and Λ are the eigen-decomposition of Rjam. We construct
the covariance matrix of the total noise by:

R =
JNR

Tr (Γ)
UΓUH + σ2IM (10)

with JNR is the Jammer to Noise Ratio and Γ is a diagonal matrix,
such that γ1 = γ2 = 3. Analogously, we define the Signal to Noise

Ratio (SNR) by SNR =
‖V‖2
σ2

, where σ2 is fixed to 1. Finally, the
total noise is sampled from a centered circular complex Gaussian
distribution CN (0,R). In Fig. 1, a realization of the background
response is plotted for all θ in the considered grid.

B. Case 2: non-stationary jammers

For the case of non-stationary jammers, we consider that in the set
of K = 50 snapshots, there exists J = 3 homogeneous subpartitions,
bounded by the white dotted line in Fig. 2. In the first subpartition, the
jammers are in θj = 20o and −20o with γ1 = γ2 = 3. In the second
one, we have θj = 20o,−45o and −25o with γ1 = γ3 = 2 = γ2/2.
In the last one, we set θj = 60o and 20o with γ1 = γ3 = 3.

C. Compared methods

In the considered application, we compare the following methods:
• the Adaptive Normalized Matched Filter (ANMF), where the covari-
ance learning is based on the Sample Covariance Matrix, computed
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Fig. 2: Scenario with non-stationary jammer
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Fig. 3: Normalized detection map for case 1

from the 2M samples surrounding the tested sample, which will serve
as secondary data.
• the ANMF, where the covariance learning is using the Tyler’s
estimator [25] on the 2M samples surrounding the tested sample.
• the RoSuRe-detector [9, 13], which solves the problem (6) by
returning A, from the given observations Z and the considered
dictionary D.
• the modification of RoSuRe-detector, denoted by m-RoSuRe and
which is obtained by solving the problem (8) and returning Ã, from
Z and D. We recall the following relation Ã = A (I−W).

In order to compare the different methods, the obtained detection
map are insightful but not quantitative. Thus, we compute the empiri-
cal Probability of Detection (PD) for all the targets and the empirical
Probability of False Alarm (PFA) (summed for all the other grid
locations) with respect to a threshold. From these quantities, we can
compare the Receiver Operating Characteristic (ROC) curve of each
detector.
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Fig. 4: Normalized detection map for case 2

In Fig. 3, the normalized detection map is plotted for SNR =
9 dB and JNR = 15 dB, obtained with the different methods with
a correct choice of λ for the sparse based methods. The choice of
λ will be discussed later. All the methods are able to retrieve the
locations and the instants of present targets. Nevertheless, the ANMF
based methods introduce non negligible sidelodes, which can increase
the PFA, unlike the methods using subspace clustering. In addition,
we can notice that the latter remove more prominently the jammers
impact. It is worth noting that the positions of the estimated and
detected targets given by the modification of RoSure are slightly
shifted since the target sparse matrix is different from the initial
model.

In Fig. 4, we can draw the same conclusions as for Fig. 3. How-
ever, the performance of ANMF-based procedure are degraded since
the assumptions on secondary data (homogeneity and target-free) are
not satisfied. Furthermore, we can see that the clutter cancelation
obtained by the clustering methods impacts all the samples, whereas
the jammers direction changes over the time.

In Fig. 5, we can see the loss of performance for the ANMF-based
methods when the jamming is non-stationary, whereas the RoSuRe-
based ones seem to be less sensitive and still perform better. While
having the best visual detection map, m-RoSuRe seems to reach
more slowly a PD close to 1. Indeed, working with Ã instead of
A may introduce some bias in the estimated target positions (recall
that Ã = A (I−W)) . This phenomenon impacts the displayed
detection performance as we strictly measure the PD/PFA on the
actual positions.

In Fig. 6, we analyse, for the case 2, the influence of the
regularization parameter λ, which balance the two `1-norms. We can
see that the performance obtained by RoSuRe seems to be quite
impervious to λ, unlike the one of m-RoSuRe. Again, it can be
explained by the relation Ã = A (I−W): the dependence of the
estimate on both A and W suggest that a careful selection of λ is
required to mitigate the performance loss due to the introduced bias.
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V. CONCLUSION

In this paper, we explored a new formulation for the target
detection problem by means of subspace clustering approach. We
proposed a convex modification of SSC that includes a dictionary.
This method exhibits similar performance compared to the standard
SSC but uncovers a small performance drop for a PD close to 1 due to
a bias introduced on the position estimates by Ã. A correction of this
bias is left as prospect for a forthcoming study. Interestingly, theses
approaches deal with all the samples at once without assumption on
the interferences statistical properties. Hence, they can outperform
the classic statistical detection scheme in the case of non-stationary
clutter/corrupted samples.
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