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Abstract—This paper addresses structured scatter matrix
estimation within the non convex set of Kronecker prod-
uct structure. The latter model usually involves two ma-
trices, which can be themselves linearly constrained, and
arises in many applications, such as MIMO communica-
tion, MEG/EEG data analysis. Taking this prior knowledge
into account generally improves estimation accuracy. In
the framework of robust estimation, the t-distribution is
particularly suited to model heavy-tailed data. In this context,
we introduce an estimator of the scatter matrix, having a
Kronecker product structure and potential linear structured
factors. In addition, we show that the proposed method
yields a consistent and efficient estimate.

Index Terms—Structured scatter matrix, Kronecker product,
t-distribution, M-estimators.

I. Introduction

Many adaptive statistical signal processing methods
require the estimation of covariance matrices [1]. In
addition to the Hermitian positive definite property, the
latter usually own a refined structure depending on
the considered application. For example, the Kronecker
Product (KP) structure can arise for separable statisti-
cal models [2], or in various scenarios such as MIMO
communication [3] and analysis of MEG/EEG data [4].
Furthermore, the Kronecker factors may also have their
own structure, e.g. a Toeplitz structure in MIMO com-
munications with uniform linear array at the receiver or
the transmitter side [5]. Exploiting this prior knowledge
in the estimation scheme leads to a better accuracy
since the degree of freedom in the estimation problem
decreases. The problem of covariance estimation with
KP structure and potential linearly constrained factors
has been investigated in the Gaussian framework [5]–
[7], notably by using the Extended Invariance Principle
(EXIP) [8]. However, the Gaussian case is not suited
under heavy tailed observations, nor in the presence
of outliers. A convenient extension occurs with the t-
distribution, which offers an attractive flexibility thanks
to its extra-parameter, referred to as the degree of free-
dom [9].
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In the context of robust and structured covariance
estimation, several methods have been recently proposed
[7], [10]–[12]. In [10], efficient robust estimators of con-
vexly structured scatter matrices are studied. However,
the latter are inadequate for the considered case, since
the KP does not constitute a convex structure. In [7], the
Maximum Likelihood (ML) estimator of KP structured
matrices, from normalized data, is studied and can be
easily obtained thanks to the geodesic convexity of the
likelihood function [13]. Nevertheless, this result is not
extendable for linear structured Kronecker factors. In
[11], [12], estimators have been proposed minimizing
Tyler’s cost function under structure constraints with
iterative Majorization-Minimization algorithms. For a
KP of linearly constrained factors, it yields an imbri-
cation of several convex problems, which can become
computationally costly. Therefore in this paper, we pro-
pose a consistent and efficient estimator of the scatter
matrix of t-distributed observations with a KP struc-
ture and possibly linear constrained Kronecker factors.
The proposed method involves three steps, namely an
unstructured ML-estimation of the scatter matrix, then
an unweighted least squares problem and finally an
appropriate weighted least squares regression. The last
two stages have a closed-form solution. In addition, an
extension of the proposed method empirically leads to
better performance at low sample support.

In the following, convergence in distribution and in
probability are, respectively, denoted by L

→ and P
→. For

a matrix X, the operator X† denotes the Moore-Penrose
inverse. XT (respectively XH and X∗) stands for the trans-
pose (respectively conjugate transpose and conjugate)
matrix. The vec-operator vec(X), shortened by x, stacks
all columns of any X into a vector. The operator ⊗ refers
to Kronecker matrix product. The matrix Kk,` denotes the
commutation matrix, satisfying Kk,`vec (X) = vec

(
XT

)
for

X ∈ Ck×` [14]. We introduce the matrix WX defined by
WX = XT

⊗ X for any matrix X.
This paper is organized as follows. In section (II), a

brief review on t-distribution and the Fisher Information
Matrix is presented. Section (III) focuses on the proposed
estimator. The performance analysis is treated in Section



(IV). Some simulations results in Section (V) illustrate
the theoretical analysis.

II. Background and Problem Setup

A. Background on the complex t-distribution

A random vector (r.v.), y ∈ Cm follows a centered
circular complex t-distribution with d ∈ R∗+ degrees
of freedom, denoted by y ∼ Ctm,d (0,R), if it has the
following probability density function (p.d.f.) [15]:

p(y; R, d) =
Γ(d + m)
πmdmΓ(d)

det (R)−1g
(
yHR−1y

)
(1)

where the function g(·), called the density generator
function, is given by g(s) = (1 + s/d)−(d+m) and R is the
scatter matrix. This distribution has heavier tail than
the Gaussian distribution, which is a limit case obtained
when d → ∞. It has finite 2nd-order moment for d > 1
and in this case the covariance matrix of the r.v. y is

given by E
[
yyH

]
=

d
d − 1

R, d , 1.

B. Fisher Information Matrix

The Fisher Information Matrix (FIM) plays a funda-
mental role in the analysis of statistical estimators. In
[16], a closed-form of the FIM has been obtained for
complex elliptical distributions. Notably for a centered
circular complex t-distribution with scatter matrix R
parameterized by µ, it yields:

F
(
µ
)

=
∂r(µ)
∂µ

H

Y
∂r(µ)
∂µ

(2)

where Y = σ−1
1 W−1

R + (σ−1
1 − 1)vec

(
R−1

)
vec

(
R−1

)H
in

which σ1 =
d + m + 1

d + m
and

∂r(µ)
∂µ

refers to the Jacobian

matrix of r(µ) = vec
(
R(µ)

)
. We retrieve the Slepian-

Bang’s formula in the Gaussian case for d → ∞. For
regular and identifiable model, the FIM is not singular.
Thus, the Mean Square Error (MSE) of any unbiased
estimator can be lower bounded by the inverse of the
FIM, which is then referred to as the Cramér-Rao bound
(CRB).

C. Problem setup

Let us consider K i.i.d. zero mean t-distributed ob-
servations, yk ∼ Ctm,d (0,Re) , k = 1, . . . ,K, where d is
assumed to be known. The invertible scatter matrix is
assumed to be structured as a KP, i.e.,

Re = Ae ⊗ Be (3)

where Ae ∈ Cn×n and Be ∈ Cp×p, also called Kronecker
factors, are at least positive definite Hermitian matrices.
We assume that the latter are linearly parameterized by
θA ∈ RnA and θB ∈ RnB respectively, such that

vec (A) , a = PAθA and vec (B) , b = PBθB

with nA ≤ n2, nB ≤ p2 and where PA and PB are
known full column rank matrices. This parameterization
allows a potential refined structure on the Kronecker
factors, such as Toeplitz, banded, etc. We denote the
concatenated parameter vector by θ =

[
θT

A , θ
T
B

]T
, with

exact value θe and Re = R (θe) , A
(
θAe

)
⊗ B

(
θBe

)
. The

dependance on θ will be omitted in the following, if
there is no ambiguity. It is worth noting that the KP
structure is by nature scale ambiguous, since(

γA
)
⊗

(
γ−1B

)
= A ⊗ B for any γ , 0

Since we aim to study estimators of the structured scatter
matrix and not of the parameter vector, this ambiguity
is irrelevant. However in the following analysis, a con-
straint ensuring the model identifiability w.r.t. θ will be
added when required.

III. Proposed Algorithm

In this section, we propose a three-step procedure to
obtain an estimator of Re, taking into account the un-
derlying KP structure and the potential refined structure
of the Kronecker factors. For notational convenience, we
omit the dependence on K for the estimators based on
K observations when there is no ambiguity.

A. Step 1: unstructured ML-estimation of Re

From a set of K i.i.d. yk ∼ Ctm,d (0,Re) , k = 1, . . . ,K
with K > m , np, the unstructured ML estimator of the
scatter matrix is given by the solution of the following
fixed-point equation [15]:

R̂ =
d + m

K

K∑
k=1

ykyH
k

d + yH
k R̂
−1

yk

, HK(R̂) (4)

Existence and uniqueness of the solution of (4) have
been studied in [15]. In addition, the latter can be easily
computed with the iterative algorithm Ri+1 = HK(Ri)
which converges to R̂ whatever the initialization point
[15]. Furthermore, the asymptotic behavior of R̂ is well-
known [15], specifically:

R̂ P
→ Re and

√

Kvec
(
R̂ − Re

)
L
→ GCN

(
0,Σ,ΣKm,m

)
(5)

with Σ = σ1WRe + σ2re rH
e where σ2 =

d + m + 1
d(d + m)

[17].

Remark 1. In the case of unknown degree of freedom of
the t-distribution, step 1 could be replaced by a joint
estimation of the unstructured scatter matrix and the
degree of freedom [17].

B. Step 2: unweighted covariance fitting
For the second step, a KP structured estimate of Re,

denoted R̂KP, is obtained by solving the standard un-
weighted covariance fitting:(

Â1, B̂1

)
= arg min

A,B

∥∥∥R̂ −A ⊗ B
∥∥∥2

F ⇒ R̂KP = Â1 ⊗ B̂1 (6)



By introducing the following rearrangement of the ma-
trix R [18]:

R (R) =
[
vec

(
R11

)
. . . vec

(
Rn1

)
vec

(
R12

)
. . . vec (Rnn)

]T

where Rk` is (k, `)th block of size p × p of R and which
satisfies the following properties

R (A ⊗ B) = a bT and vec (R) = PRvec (R (R))

with PR a permutation matrix, the problem (6) can be
rewritten as(

Â1, B̂1

)
= arg min

A,B

∥∥∥∥R (
R̂
)
− vec (A) vec (B)T

∥∥∥∥2

F
. (7)

Note that (7) is a rank-one approximation problem,
which can be efficiently solved using the Singular Value
Decomposition (SVD) [18].

C. Step 3: adequate weighted covariance fitting

From the KP structured estimate R̂KP given by (6),
we introduce the weighted matrix Q̂ = R̂

−T
KP ⊗ R̂

−1
KP and

we consider the minimization of the following weighted
covariance fitting problem:

V (θ) =
∥∥∥∥Q̂

1/2
vec

(
R̂ −A (θA) ⊗ B (θB)

)∥∥∥∥2

2
(8)

As detailed in [6], the function (8) can be reformulated
as a rank-one approximation problem

V1 (θ) =
∥∥∥∥QH

AR
(
Ř
)

Q∗B − TAθAθ
T
BTT

B

∥∥∥∥2

F
(9)

where Ř =
(
Â
−1/2
1 ⊗ B̂

−1/2
1

)
R̂

(
Â
−1/2
1 ⊗ B̂

−1/2
1

)
,

QATA =
(
Â
−T/2
1 ⊗ Â

−1/2
1

)
PA, QBTB =

(
B̂
−T/2
1 ⊗ B̂

−1/2
1

)
PB

in which QA ∈ C
n2
×nA and QB ∈ C

p2
×nB have orthogonal

columns and TA and TB are invertible matrices. Again,
(9) can be easily solved using a SVD. This yields the final
structured estimate R̂KPr = R

(
θ̂
)
, A

(
θ̂A

)
⊗B

(
θ̂B

)
, where

θ̂ =
[
θ̂

T
A , θ̂

T
B

]T
is a minimizer of (8) or (9) equivalently.

Remark 2. It is worth noting that the minimized function
(9) does not coincide with the EXIP approach, since the
weighted matrix Q̂ is not the inverse of the (asymptotic)
covariance matrix of vec

(
R̂ − Re

)
given by (5). Similarly,

it is not a particular case of [10], since the KP is not a
convex structure.

Remark 3. The double KP structure of Q̂ is needed
to have the equivalence between equations (8) and (9),
having a closed-form solution. This weighted matrix Q̂
is also necessary to yield the efficiency of the estimate
after Step 3. In this context, Step 2 offers one possibility
to easily obtain Q̂ with the desired properties.

Remark 4. Step 3 can be iteratively repeated Nit times,
by substituting in Q̂ the estimate R̂KP by R̂KPr obtained
at the previous iteration. We will see, in the next section,
that the asymptotic behavior is identical but the perfor-
mance at low sample support is empirically improved.

IV. Asymptotic Analysis
This section provides a statistical analysis of the pro-

posed estimator R̂KPr. We show that the latter is a
consistent, asymptotic efficient and Gaussian distributed
estimator of Re.

Theorem 1. Under the considered data model, the esti-
mator R̂KPr is consistent for Re.

Proof. First, the consistency of R̂ leads straightforwardly
to the one of R̂KP for Re and thus Q̂ P

→ R−T
e ⊗R−1

e , which is
a full-rank matrix. Then, in a similar manner, we obtain
R̂KPr

P
→ Re. �

Remark 5. Note that the consistency of a minimizer of
(9), denoted by θ̂, w.r.t. θe is not ensured if no constraint,
certifying the model identifiability, is imposed.

Theorem 2. Under the considered data model, the
asymptotic distribution of R̂KPr is given by
√

Kvec
(
R̂KPr − Re

)
L
→ GCN

(
0,Ξ,ΞKnp,np

)
with

Ξ = PR

(
σ1

p

(
bebH

e

)
⊗ PAF−1

A PH
A +

σ1

n
PBF−1

B PH
B ⊗

(
aeaH

e

)
+

(
σ2 −

σ1

np

) (
bebH

e

)
⊗

(
aeaH

e

))
PR

H

where FA = PH
AW−1

Ae
PA and FB = PH

B W−1
Be

PB.

Proof. Theorem 2 can be proved following the same
methodology as in [6, Theorem 4]. Here, we describe
the main steps and subtleties for the considered case. In
order to apply the Delta method [19], by performing a
Taylor expansion of the cost function in (8) around θe,
a constraint has to be considered, to get rid off the scale
ambiguity of the model, e.g. [θ]1 = 1. Hence, Theorem
1 and the continuous mapping yield the consistency on
θ̂K w.r.t. θe, with θ̂K a minimizer of (8). Then, we obtain
similarly as in [6, Section VII] or [10, Section 4.2]

√

KPΓe

(
θ̂K − θe

)
= PΓeH† (ξK)

√

KgK (θe)

with P = PR (PB ⊗ PA), Γe = Γ (θe) =
[
θBe ⊗ InA InB ⊗ θAe

]
and

ξK such that
∣∣∣ξK − θe

∣∣∣ ≤ ∣∣∣∣̂θK − θe

∣∣∣∣ , i.e., ξK
P
→ θe

H (ξK) =
∂2V (θ)

∂θ∂θT

∣∣∣∣∣∣
ξK

P
→ 2ΓH

e PH
(
R−T

e ⊗ R−1
e

)
PΓe , H∞

√
KgK (θe) =

√
K
∂V (θ)
∂θ

∣∣∣∣∣
θe

L
→N (0,R∞)

R∞ = 4ΓH
e PH

[
σ1W−1

Re
+ σ2vec

(
R−1

e

)
vec

(
R−1

e

)H
]

PΓe



The proof is concluded by the Delta-method derived for
complex-valued parameters [20], which leads to

√

Kvec
(
R̂KPr − Re

)
L
→ GCN

(
0,Ξ,ΞKnp,np

)
where Ξ = PΓeH†∞R∞H†∞ΓH

e PH, can be simplified as
requested, by using Lemma 1 in Appendix with α1 = 1
and α2 = 0. �

Remark 6. The exhibited multivariate non-circular
complex Gaussian distribution is degenerate w.r.t the
Lebesgue measure, since the matrix Ξ is not full rank.

Theorem 3. The estimator R̂KPr is asymptotically effi-
cient.

Proof. From (2), the FIM w.r.t. θ is given by

F (θe) = ΓH
e PH

(
σ−1

1 W−1
Re

+ (σ−1
1 − 1)vec

(
R−1

e

)
vec

(
R−1

e

)H
)

PΓe

The latter is singular since the mapping between θ and
R is many-to-one due to the scale ambiguity. In order
to obtain the CRB for estimators of vec (R), we use the
results of [21], which yields

CRBr = PΓeF† (θe) ΓH
e PH = Ξ (10)

where the last equality is obtained by using Lemma 1 in
Appendix with α1 = σ−1

1 and α2 = σ−1
1 −1. The parameter

vector vec (R) being complex-valued, the intended result
is easily achievable by working on the vector concatenat-
ing the real and imaginary parts of vec (R) and noting
that ΞT = Knp,npΞKnp,np. �

Remark 7. In order to obtain the CRB for estimators
of vec (R), we could have used the framework of con-
strained CRB [22], yielding the same result of (10).

Corollary 1. The estimator R̂KPr obtained after Nit < ∞
iterations of step 3, is consistent, asymptotically efficient
and Gaussian distributed.

Proof. Theorems 1, 2 and 3 are valid at each iteration,
which concludes the proof. �

V. Numerical Results
In this section, we illustrate the results of the previous

theoretical analysis for a KP structured scatter matrix,
whose Kronecker factors are Hermitian Toeplitz, whose
first rows are

[Ae]1,n =
[
0.6324, −0.3369 − 0.2994i, −0.152 + 0.535i

]
[Be]1,p =

[
0.6478, −0.3152 − 0.1261i, −0.2961 + 0.0034i

]
The minimal parameterization for the Toeplitz structure
consists in stacking the real and imaginary parts of the
first row of the matrix. We generate 5000 sets of K i.i.d.
t-distributed samples yk ∼ Ctm,d (0,Re) , k = 1, . . . ,K with
d = 3 degrees of freedom and n = p = 3. We compare the
performance of the proposed method with the estimator
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Figure 1. Efficiency simulation

of [6] based on the Sample Covariance Matrix (SCM)
and the estimator of [11] obtained by minimizing the
Tyler’s cost function under structure constraints. Being
also based on the SCM, the estimator derived in [5], not
drawn for comparison, would have the same asymptotic
performance as the one of [6].

From Fig. 1, we verify that the MSE of the pro-
posed method asymptotically reaches the CRB, unlike
the others estimators, which are not optimal for the t-
distribution. We can also note that the proposed estimate,
where step 3 has been iterated, converge faster than
without iterations at low sample support. In addition,
the asymptotic unbiasedness of the proposed method
as well as this of the other algorithms can be indirectly
noticed on the Fig. 1.

VI. Conclusion

In this paper, we addressed robust estimation of
KP structured scatter matrices, with potential linear
structured Kronecker factors. We proposed a consistent,
asymptotically efficient and Gaussian distributed estima-
tor for the t-distribution. Numerical results illustrate the
theoretical analysis.

VII. Appendix

This appendix introduces a lemma, which is required
for the proof of theorem 2 and 3.

Lemma 1. Let α1 and α2 be two scalars such that
α1 > 0 and α2 , −α1/(np). For any admissible θ1 such



that R1 = R (θ1) = A1 ⊗ B1, let us introduce Γ1 =[
θB1 ⊗ InA InB ⊗ θA1

]
. We have the following equality

PΓ1

(
ΓH

1 PH
[
α1W−1

R1
+ α2vec

(
R−1

1

)
vec

(
R−1

1

)H
]

PΓ1

)†
ΓH

1 PH =

PR

(
1

pα1

(
b1bH

1

)
⊗ PAF−1

A PH
A +

1
nα1

PBF−1
B PH

B ⊗
(
a1aH

1

)
−

(
α1 + 2npα2

npα1
(
α1 + npα2

) ) (b1bH
1

)
⊗

(
a1aH

1

))
PR

H

Proof. From PR
HW−1

R1
PR = W−1

B1
⊗W−1

A1
, we can obtain

ΓH
1 PH

[
α1W−1

R1
+ α2vec

(
R−1

1

)
vec

(
R−1

1

)H
]

PΓ1 = G + γBγ
H
A

where

G =

[
pα1FA + p2α2FAθA1θ

H
A1

FH
A λFAθA1θ

H
B1

FH
B

0 nα1FB + n2α2FBθB1θ
H
B1

FH
B

]
,

γB =

(
0

√
λFBθB1

)
, γA =

(√
λFAθA1

0

)
and λ =

(
α1 + npα2

)
.

The matrix G is invertible, such that

G−1 =

[
G−1

11 −G−1
11 G12G−1

22
0 G−1

22

]
in which G−1

11 and G−1
22 are given by the Sherman-

Morrison formula

G−1
11 =

1
p

(
α1FA + pα2FAθA1θ

H
A1

FH
A

)−1
=

1
pα1

F−1
A −

α2

λα1
θA1θ

H
A1

G−1
22 =

1
n

(
α1FB + nα2FBθB1θ

H
B1

FH
B

)−1
=

1
nα1

F−1
B −

α2

λα1
θB1θ

H
B1

Indeed, since α2 , −α1/(np), the matrix
G11 = pPH

AW−1/2
A1

(
α1In2 + pα2vec (In) vec (In)T

)
W−1/2

A1
PA

is full-rank as well as G22.
Furthermore, we verify that 1 + γH

AG−1γB = 0, we can
then apply [23, Theorem 6], which yields(

G + γB1
γH

A1

)†
= G−1

− kk†G−1
−G−1h†h + κkh (11)

with k =
1

n
√
λ

[
−θA1

θB1

]
, h =

1

p
√
λ

[
θA1

−θB1

]T

, κ = k†G−1h†

and where the pseudo-inverse of a vector is given by

x† =
xH

‖x‖2
[23]. The intended result is obtained after

simplification of PΓ1

(
G + γB1

γH
A1

)†
ΓH

1 PH with (11). �
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