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Abstract

Wearable devices have facilitated the remote measurement of heart rate variability
(HRV), a promising indicator of various physiological and psychological states such as
stress, sleep and other conditions. However, errors during the transmission or acquisi-
tion can lead to missing data, which can affect HRV features and cause false medical
diagnosis. Interpolation is a useful technique for handling missing data, but the choice
of interpolation method must be carefully considered. Therefore, the objective of this
study is to investigate the impact of four interpolation methods (Nearest Neighbour,
Linear, Shape-preserving piecewise cubic Hermite, and cubic spline) on HRV features
when data is deliberately deleted. It is an expansion of a previously published work on
HRYV data imputation. The study utilizes a real-time approach to data interpolation and
HRYV analysis. The results indicate that the choice of interpolation method significantly
affects HRYV features, with varying effects depending on the percentage of missing data.
Additionally, the study proposes to adapt the interpolation method based on both the
percentage of missing values and the targeted HRV feature for maximum performance.

Keywords— Heart Rate Variability, HRV analysis, real time, Inter beat intervals, IBI, RR intervals,
wearables, e-health.

1 Introduction signal is the Heart rate variability (HRV), now

used as an indicator of different physiological states
With the rise of telemedicine and healthcare wear- and pathologies [1]. Its time and frequency do-
ables, scientists are eager to collect every track- mMmain analysis can give insights into autonomic ner-
able parameter from the human body throughout Vvous function. They provide information about the
different physiological signals. One widely used Sympathetic-parasympathetic balance and cardio-



vascular health [2].

HRV measures the variation in the time inter-
val between two consecutive heartbeats, known as
inter beat intervals (IBI) or RR intervals. They
correspond to the time elapsed between two suc-
cessive R-waves of the QRS complex, characteriz-
ing ventricular depolarization, on an ECG signal.

In an ideal situation, HRV analysis is per-
formed with RR interval time series including only
pure sinus beats, normally recorded by a 12 lead
ECG. However, RR intervals are now usually mea-
sured thanks to wearable ECGs or photoplethys-
mographs (PPG) as a substitute of the gold stan-
dard ECG used in hospitals.

Thanks to such wearables, it is now possible to
passively record heart activity continuously, open-
ing the way to easier remote health monitoring dur-
ing user’s daily life.

However, for a reliable HRV analysis, these RR
time-series should be carefully edited to identify
gaps and abnormal heart beats beforehand.

In this paper, we investigate the impacts of data
imputation using different interpolation methods
on HRV features. We remove an increasing amount
of data from an originally perfect HRV signal.
The deleted values are then handled by four in-
terpolation methods (Nearest Neighbour, Linear,
Shape-preserving piece-wise cubic Hermite and cu-
bic spline). Finally, an estimation error was com-
puted to compare HRV features from reconstructed
signals against those computed from the original
signal. The goal is to identify the best interpolation
method, that yields the lowest error in both time
and frequency domains, based on the signal’s qual-
ity and percentage of missing values. Ultimately,
the best approach may be to choose the interpola-
tion method according to the percentage of missing
data in each HRV window analysis independently.

2 Context

The main downside to HRV assessment through
wearables is the data quality that is often cor-

rupted. Errors occur during the acquisition, the
transmission or the storage, thus leading to an im-
portant data loss and unintended changes to the
original HRV signal. Ectopic beats also introduce a
bias into HRV features. When they are not caused
by a physiological phenomenon such as premature
ventricular contractions (PVC) or premature atrial
contractions (PAC), they can occur due to a false
QRS detection on the ECG signal or a missed beat.

Such artifacts represent a significant problem in
the interpretation of HRV features making it some-
times even impossible. Therefore, they need to be
addressed beforehand for a reliable HRV analysis
3].

Previous studies on the subject suggested differ-
ent pre-processing methods for RR time series in-
cluding filtering, deletion and interpolation. Fach
of these solutions however has its own disadvan-
tages.

The main issue with the deletion approach is
the signal depletion since the ectopic beats are re-
moved without being replaced. The remaining RR-
intervals are just merged together which increases
the abrupt changes in the beat to beat variability
and the disruptions in the natural fluctuation [4].

Deletion may be enough for HRV analysis in the
time domain but is not sufficient for frequency do-
main analysis. Re-sampling, which is essential for
analyzing HRV in the frequency domain, may pro-
duce outliers if the RRI time series contain missing
values. [5]

Interpolation on the other hand roughly pre-
serves the overall recording duration and the num-
ber of beats, but the beat manipulation does in-
troduce changes that affect HRV analysis. The
most used methods are Spline and Linear inter-
polation. Although they do not significantly affect
the power spectral density (PSD), they may pro-
duce RRI outliers due to oscillation of the inter-
polation function, especially when using the spline
function [5].

Besides, authors in [6], as well as many others,
found that interpolation introduces low frequency
components (LF) and reduces high-frequency com-
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Figure 1: Processing approach for HRV analysis

ponents (HF) power, thus altering frequency do-
main HRV features.

Conventional HRV analysis is usually performed
in four steps [1], including both deletion of ectopic
beats and interpolation of missing values. If HRV
is derived from an ECG sensor, the first step is
R wave extraction from ECG signal and RR inter-
val computation. Secondly, RR interval evaluation.
The purpose of this step is to exclude RR intervals
that do not meet some physiological criteria. The
deleted RRIs are then replaced by interpolation.
Time domain features can be computed from the
output of the first two steps, whereas frequency
domain features require data re-sampling for spec-
trum analysis. Another commonly used method is
to compute time domain features without interpo-
lation as done in [5].

There are other studies that propose more ad-
vanced methods for imputing missing HRV data
[7, 8, 9], however, these methods tend to be quite
complex and computationally expensive. They
could include sophisticated mathematical algo-
rithms, machine learning models, and other com-
plex techniques that require significant computa-
tional resources and expertise to implement. De-
spite their added complexity, these methods have
the potential to provide more accurate and reliable
results in comparison to simpler methods. Nev-
ertheless, the use of these methods may not be
practical in certain real-world scenarios, such as
in resource-limited settings or real-time analysis.

Paper contribution. The particularity of the
present paper is the real-time approach to data
deletion and interpolation. Both steps are per-
formed iteratively in order to simulate a real-time
HRV data acquisition and processing scenario.

This study is one of the first to investigate the
effects of missing data on real-time HRV analysis.
Data acquisition with missing values is simulated,
and the missing values are replaced in real-time
using various interpolation techniques before HRV
analysis. The HRV features derived from the re-
constructed signal are then compared to those from
the original RR time-series.

The main purpose is to identify the best ap-
proach for processing the RR time-series in real
time, based on the percentage of missing data in
each HRV window. The real-time aspect is actu-
ally vital for continuous health monitoring.

Besides, to the best of our knowledge, this would
be one of the first papers to investigate the effect
of a very large amount of missing data (up to 70%)
on HRV analysis. Recent developments in wearable
devices have heightened the need for such studies
since wearables produce a huge number of abnor-
mal beats due to motion artifacts as well as missing
data due to connectivity problems.

3 Methods

HRYV signals used in this study are considered ideal
thanks to the automatic R peak detection, on ECG



signals, which was manually corrected by a spe-
cialist. These signals did not contain missing nor
ectopic peaks. The first step was to delete val-
ues from these signals in order to simulate a real-
life, ambulatory low quality data acquisition. Since
HRYV features are usually computed from windows
of the signal, data was deleted independently and
iteratively from each HRV analysis window. The
exact procedure is explained below and depicted in
figure 3.

Next, the deleted values are replaced using differ-
ent interpolation methods. In the same way as for
data deletion, interpolation is also done iteratively
for each window analysis.

After the signal has been degraded and recon-
structed, time and frequency domain features are
computed from both original and reconstructed
signals; and compared using the Mean Absolute
Percentage Error (MAPE). All the steps were im-
plemented on PYTHON. Figure 2 summarizes the
overall process of the study and each step is further
detailed in the following sections.

3.1 Dataset

The dataset used is from the MIT-BIH Normal Si-
nus Rhythm RR Interval Database (nsr2db) avail-
able on PhysioNet [10].

The database includes beat annotation files for
long-term ECG recordings of 54 subjects in nor-
mal sinus rhythm (30 men, aged 28.5 to 76, and 24
women, aged 58 to 73). The original ECG record-
ings were digitized at 128Hz, and the beat anno-
tations were obtained by automated analysis with
manual review and correction [10]. In this paper,
RR segments including only normal beats between
0.3s and 1.3s were used (45-200bpm).

3.2 Missing values simulation

The objective was to delete the same percentage of
data from all analysis windows. By doing so, we
can directly evaluate the effect of each percentage
of missing data on HRV features.

As depicted in figure 3, all windows had the same
percentage of missing values but the distribution
of deleted RRIs is completely randomised. Details
are provided on the analysis window as well as the
deletion procedure below.

HRV window

In order to compute time domain and frequency
domain HRV features, the RR timeseries were split
into bmin segments, with a 1min sliding window
(4min overlap). The choice of a sliding window is
to address the discontinuities observed at the edges
of each window. It also means a new set of HRV
features is available every minute, which is closer
to a real-time HRV analysis for continuous health
monitoring.

Deletion procedure

Since the goal is to evaluate the effect of inter-
polation on HRV features, the same percentage of
missing data was removed from each window used
to compute HRV features. The steps for the dele-
tion procedure are explained in the pseudo code
below.

Algorithm 1 RR deletion procedure

1: Randomly delete P% of the data in the first
5min window

2: for Each new window 7 do

Compute N, total number of values to be

deleted N = W’mdowllagngthxp

4: Determine Noyyeriqp number of deleted data
in the 4min overlap.

5: Compute the number of values still to be
deleted from the sliding window : Ngiging =
N — Noverlap

6: Randomly remove Ngjging from the last
minute of the window

7: end for

In the first iteration, N values are randomly
deleted from the first window of the signal.
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Figure 2: General flowchart of the study including the three major steps of data deletion, interpolation,
followed by feature extraction and comparison using the MAPE.

Window length x P (1)
100

For each window after the first one, the ini-
tial step is to compute the total number (N) of
data that should be deleted in order to reach the
deletion percentage (P). The number of missing
values in the 4 min overlap, deleted in the pre-
vious iteration, is then computed (Noyeriap), and
serves to determine the number of data to ran-
domly remove from the last minute of the window
Nsliding =N — Noverlap-

At the end of the loop, all the analysis windows
had the same percentage of randomly deleted val-
ues.

The beats were removed away from the window’s
edges in order to avoid extrapolation problems.
Other than this, there was no condition on the
number of consecutive beats to be deleted, nor on
their positions. The deletion procedure is com-
pletely random. It is however obvious that the
higher the percentage of deleted data, the larger
(and more numerous) the gaps with successive
missing beats.

N =

3.3 Interpolation methods

The missing RR intervals deleted in the last step
were then replaced using four different interpola-
tion methods. Interpolation was also performed
independently and iteratively for each HRV win-
dow. In each iteration, only the values in the last

minute of the window are interpolated since the
values in the first 4 minutes (overlap) were filled
in the previous iteration. This is in order to sim-
ulate a real-time data acquisition and processing.
Interpolation methods used in this study are listed
below:

e Nearest Neighbour (NN): Zero-order in-
terpolation method that assigns the value of
the nearest existing RR interval to the miss-
ing beat.

e Linear: First order interpolation method.
Derives a straight line connecting the adjacent
RR intervals and calculates the missing beats
based on the line.

e Shape-preserving piecewise cubic Her-
mite interpolating polynomial (PCHIP):
A piecewise cubic polynomial determined by
the given data and their specified derivatives
at the interpolation points [11].

(2)
(3)

P(zy) = yp, P(Tr11) = Y
P'(ay) = dy, P'(vg41) = di

The main idea is to determine the slopes dj so
that the function values do not overshoot the
data values [11]. One of the potential ways
to determine dj, used in this paper, is briefly
explained below.

If 0 and 6r_, have opposite signs or if ei-
ther of them is zero, then z, is a discrete
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Figure 3: Example of the deletion procedure on an HRV signal (green signal). We used 5 minutes
windows with 4 minutes overlap, which is the recommended and mostly used window size in literature
[2]. In the first iteration, a percentage of RRIs is deleted from the first red window, depicted as red and
black asterisks. In the next iteration, RRIs already deleted in the 4min overlap (black asterisks) are
maintained and only RRIs located in the last minute of the blue window are deleted in order to reach
the same percentage of missing data in all windows. Deleted RRI in the second iteration are depicted
as blue asterisks. Since both windows have the same deleted data in the 4min overlap segment. The
first minute (red arrow) of the i window and the last minute (blue arrow) of the i + 1 window have the
same percentage of missing data.

local minimum or maximum, so dj is set
to be equal to zero. In (figure 4a), the
green curved line is the shape-preserving in-
terpolant, formed from two different cubics.
The two cubics interpolate the center value
and their derivatives are both zero there [11].
On the other hand, if §, and d,_; have the
same sign, then d is a weighted harmonic
mean, with weights determined by the lengths
of the two intervals around x.

Wy + Wo .

dk
where wy, = Qhk + hk—l; Wy = hk + Qhk_l.

(hy, denotes the length of the k' subinterval:
hi = xpy1 — xx) and hy_; the length of the
(k — 1)" interval.

At the breakpoint, the reciprocal slope of the
Hermite interpolant is the weighted average
of the reciprocal slopes of the piecewise lin-
ear interpolant on either side (figure 4b). The
shape-preserving interpolant is formed from
the 2 cubics that interpolate the center value
and that have slope equal to dj there [11].

Cubic Spline: One popular third degree in-
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Figure 4: Slopes for PCHIP. ¢, and d,_; are the
two slopes of the piecewise linear interpolant on
either side of the breakpoint

terpolation method is the cubic spline inter-
polation, where data points are estimated by
fitting a third degree polynomial. A spline
is also a piecewise cubic Hermite that is ex-
ceptionally smooth, in the sense that the first
and second derivatives of consecutive polyno-
mials are equal and thus continuous, ensuring
smoothness of the resulting curve. This avoids
the problem of the straight polynomial inter-
polation that tends to induce distortions on
the edges of the polynomials [11].

The Pchip and the spline methods both per-
form piecewise cubic Hermite interpolation.
They only differ in how the slopes of the inter-
polant are computed, thus leading to different
behaviors when the underlying data has flat
areas or undulations.

After the interpolation step, HRV features were es-
timated on the reconstructed data and compared
to the original HRV set from the original signal.
The error was then estimated through the mean
absolute percentage error (MAPE) in order to iden-
tify the best interpolation approach.

3.4 HRV analysis

To choose the best imputation approach for HRV
signals, the impact of interpolation on multiple
HRV features was evaluated through an estima-
tion error to compare features from reconstructed

signals to those from the original signal. Features
mostly used in literature were selected, they can
be separated into two categories, time domain and
frequency domain features.

Time domain

Two of the most known indices were chosen,

which are SDNN and RMSSD, for the time do-
main analysis.
SDNN stands for Standard Deviation of Normal to
Normal beats. Normal to normal means that ec-
topic and other abnormal beats have to be removed
beforehand. Variations of SDNN such as Standard
deviation of RR intervals (SDRR) are sometimes
used. The formula is the same, the only difference
is that RR time series- for SDRR- include abnor-
mal or false beats.

(In this study, ectopic beats created by interpo-
lation are not filtered before HRV analysis. SDRR
will be referred to as SDNN since the formula is
the same.)

SDNN is mostly computed over 24H peri-
ods, however, researchers have found significantly
shorter periods of analysis to be relevant [12]. In
this case 300 seconds (5min) periods were used.
Considered as gold standard in quantification of
the cardiac risk [2], reflection of both sympathetic
nervous system (SNS) and parasympathetic ner-
vous system (PNS) activity can be measured on
SDNN which makes it one of the most useful fea-
tures of HRV analysis.

SDNN = \/ (R — RRy? (5)

N -1
Where :

N
1

RR = — RR; 6
v L (RR) (6

RMSSD is the root mean square of successive dif-

ferences between normal heartbeats. Like SDNN,

it takes only normal IBI as an input. This feature

reflects more PNS activation than SDNN does.



RMSSD = \/Zf\;l(RRz’ — kR, )?
N -1

(7)
where N is the number of RR intervals in the
signal.

Frequency domain

Several methods can be used for frequency do-
main analysis such as Fast Fourier Transform
(FFT), auto regressive modeling (AR) or wavelet
transform. In this study, we tested both FFT and
AR and compared the results to KUB10S, the refer-
ence software for HRV analysis for validation pur-
poses. Beside the simplicity of implementation, we
opted for FFT since the results from Python were
the closest to KUBIOS.

The goal of frequency domain analysis using
any of the methods cited above is always to sep-
arate HRV signal spectrum into four components
which are Ultra Low Frequency (< 0.003Hz), Very
Low Frequency (0.003 — 0.04Hz), Low Frequency
(0.04 — 0.15Hz2), and High Frequency (0.15 —
0.4Hz) [2], (respectively ULF, VLF, LF and HF).

Since ULF and VLF generally require long peri-
ods of recording not suitable for real-time analysis,
they will not be included in this study. Also, their
physiological correlates are still unknown which
makes them less relevant for e-health applications.

HF and LF on the other hand can be assessed on
1 to 2 min windows respectively [2]. Their ability
to reflect the overall cardiac health and the state
of the autonomic nervous system (ANS) has been
proven by many studies [13, 1], in different contexts
including stress [14, 15] and sleep [16].

3.5 Evaluation metrics

The difference between HRV features from the re-
constructed data and those from the original sig-
nal was assessed by the Mean Absolute Percent-
age Error (MAPE) (8). Other metrics can also be
used but the idea behind choosing the MAPE is to

avoid mutual cancellation of the positive and neg-
ative errors. Moreover, since each HRV parameter
has a wide range [17], normalization by the actual
value allows the comparison of differently scaled
time-series data.

n

1
Mape = EZ

t=1

At — Et
Ay

(8)

where :
n = number of times the summation iteration
happens, which corresponds to the number of
HRV windows.
Ay = Actual value, from the original RR time-
series.
FE; = Estimated value, from reconstructed signal.

Another interesting parameter to look at is the
number of ectopic beats created by the interpola-
tion. As explained before, non physiological beats
should be filtered and, eventually, replaced before
HRV analysis. The replacement method (ie :
terpolation) should not be creating more ectopic
beats. We assessed the percentage of abnormal
RR intervals (Pe.ctopic) in the reconstructed signals
as follows :

n-

Number of ectopic beats

(9)

Pectopic =

Signal Length

4 Results and discussion

In this paper, 24 RR time-series of 50min duration
were analysed for a total of 1104 HRV windows of
5min duration. To investigate the effect of missing
data on HRV features, the same percentage of RR-
intervals was removed from each window starting
from 10% up to 70% of missing values with a 10%
step.

The deleted beats were then replaced by four dif-
ferent interpolation methods explained in section
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Figure 5: Example of interpolation for 50% missing data. The red arrow indicates the ectopic beats

created by the Cubic Spline interpolation

3.3. An example of data interpolation is shown in
Figure 5.

The cubic spline interpolation overshoots the
data at some points as can be seen in figure 5. This
is due to the requirement for equal second order
derivatives at every point. By eliminating this con-
dition, it is possible to prevent, or at least reduce,
the overshooting as done by the Pchip method.

Time domain features According to the re-
sults in table 1, SDNN seems to be less sensitive
to interpolation. It was the least affected with an

estimation error not greater than 5% even with a
huge number (70%) of missing data. The same
conclusion was found by authors in [18].

RMSSD on the other hand is much more

sensitive to interpolation. The estimation error
increases almost linearly with the percentage of
missing data in the original signal.
As can be seen in table 1, the Nearest Neighbour
interpolation yields the least error for both SDNN
and RMSSD compared to other interpolation
methods.



Mape (%)

Missing % | HRV Features NN Linear Pchip Spline

RMSSD 3.84 +1.15 |6.69 +0.96 | 6.56 £0.99 5.13 £1.03
10% SDNN 0.87 &+ 0.31 0.91 +£ 040 | 0.86 £+ 0.38 1.03 £0.44

% ectopic 0 0 0 0

RMSSD 6.98 + 2.88 12.76 £ 2.59 | 12.49 +£2.65 | 9.51 £2.38
20% SDNN 1.36 & 0.59 1.43 £+ 0.55 1.3 & 0.48 1.89 £1.01

% ectopic 0 0 0 0

RMSSD 10.17 &£ 3.94 | 19.89 + 3.23 | 19.39 £ 3.29 | 14.84 £ 3.17
30% SDNN 1.70 £+ 0.52 2.28 &+ 1.03 1.96 £ 0.87 | 2.93 £ 1.42

% ectopic 0 0 0 0.5

RMSSD 13.99 4+ 4.45 | 27.63 = 3.91 | 26.92 £4.05 | 26.11 & 26.4
40% SDNN 208 £0.52 | 3.18 = 1.04 | 2.56 & 0.83 7.42 £ 15.25

% ectopic 0 0 0 0.7

RMSSD 173 £ 6.34 | 33.66 & 7.66 | 32.54 £ 7.48 | 25.83 £ 6.94
50% SDNN 2.63 £ 091 421 £ 157 | 3.45 4+ 1.32 6.60 £ 3.01

% ectopic 0 0 0 1.3

RMSSD 20.7 £ 7.87 | 41.63 £ 8.98 | 40.87 & 9.07 | 31.9 &+ 7.37
60% SDNN 3.47 £ 1.39 531 £2.09 |4.35+1.83 | 9.59 + 6.58

% ectopic 0 0 0 1.5

RMSSD 25.57 £ 8.25 | 50.58 £ 10.6 | 494 +£ 104 | 40 = 84
70% SDNN 2.63 £ 091 421 £ 157 | 3.45 4+ 1.32 6.60 £+ 3.01

% ectopic 0 0 0 1.5

Table 1: Mean absolute percentage error of estimated time domain HRV features from 10

missing data

10

to 7T0%



Mape (%)
% | HRVyea NN No interp
50% | RMSSD | 17.3+6.34 | 17.3+7.52
60% | RMSSD | 20.7+7.87 | 15.44+6.81
70% | RMSSD | 25.57+8.25 | 12.38+6.60
Table 2: Mean absolute percentage error of esti-

mated RMSSD for 50%, 60% and 70% missing data

Since SDNN is the standard deviation of each
RR interval from the mean RR duration, it re-
flects the LF component in some way whereas the
RMSSD correlates with the HF since it uses the
difference between successive beats. This may ex-
plain why SDNN is much less sensitive to interpo-
lation than RMSSD. In fact, NN interpolation acts
as a low-pass filter since it produces flat-like shapes
[18]. In situations where the heart rate is relatively
stable and does not vary abruptly, the NN inter-
polation is most likely to preserve the heart rate
variability.

When the percentage of missing data exceeds
50% however, it has been found that the best re-
sults for RMSSD estimation are achieved without
editing the RR tachograms, i.e without replacing
the missing data by any of the interpolation meth-
ods used in the study.

[19] also concluded that RMSSD does not re-
quire any interpolation to obtain reliable estima-
tions, but they found the threshold to be at 30%
instead.

Table 2 summarises RMSSD estimation errors
by nearest neighbour approach against no inter-
polation. Not editing RR time-series yields better
RMSSD estimation than editing more than half the
data. This however should be verified when the ac-
quisition includes different contexts that may cause
the heart rate to vary a lot.

The decrease of the MAPE when the percentage
of missing data increases may be due to the lower

11

number of compared windows. When the missing
values are not replaced by any interpolation, re-
maining RR intervals are just merged. This makes
the RR signal much shorter and thus reduces the
number of HRV windows.

Frequency domain features are clearly much
more sensitive to interpolation as can be seen from
table 3. Linear and Pchip interpolation perform
almost equally and yield the least estimation error
for LF, HF and LF/HF. They are thus considered
to be the best interpolation methods for frequency
domain features.

Generally speaking, physiological variables such
as the Autonomic cardiovascular regulation oper-
ates at sufficiently low frequencies [20] that nothing
would be lost using a linear or a Pchip approach.
Unless there is a physiological reason to suppose a
non-linear trend, linear seems to assume less than
the other methods.

Contrary to the time domain analysis, the cubic
spline interpolation gives the worst results with
an error almost two times greater than all the
other interpolation methods for frequency domain
features.  This can be explained by the fact
that cubic splines are prone to severe oscillation
and they overshoot at intermediate points. The
overshooting introduces many ectopic beats thus
increasing the HF components. It has been found
in [21] that the presence of only one ectopic beat
in a 2 min ECG recording introduces an increase
in the HF power of around 10%.

[22] however compared linear, spline backward
and forward interpolation. They opted for spline as
the best interpolation method. One potential ex-
planation for this is the small percentage of missing
data (10%) simulated in the signal and the dele-
tion approach that was not completely random. A
maximum of four successive missing values was set.

Table 4 summarises the best interpolation ap-
proach for some HRV feature at a specific range
of missing data. At exactly 50% of missing beats,
NN and no interpolation approach perform equally



Mape (%)

Missing % | HRV Features NN Linear Pchip Spline
LF 5.86 £ 2.59 | 4.69 £2.00 | 4.82 £ 2.26 7.77 £ 5.01
10% HF 5.9 £ 2.49 5.07 £2.04 | 5.09 £ 2.10 6.1 £ 2.43
LF/HF 958 £ 3.56 | 7.45 4+ 249 | 7.57 £ 2.7 11.22 £ 5.2
LF 8.46 +£4.39 | 7.07 +£4.39 | 7.15 + 3.78 13.45 + 9.40
20% HF 7.53 £2.69 | 6.8+ 2.82 6.89 £+ 2.72 8.94 + 3.61
LF/HF 12.64 +4.93 | 10.67 4+ 3.87 | 10.89 £+ 3.99 | 18.70 £ 9.85
LF 11.19 £ 5.74 | 9.47 £ 4.09 | 9.61 £ 4.7 20.21 4+ 13.44
30% HF 11.30 £ 548 | 11.22 & 5.34 | 11.35 &£ 5.34 | 14.38 £ 7.51
LF/HF 16.63 £ 5.93 | 14.96 + 4.67 | 15.12 £ 4.70 | 27.02 £+ 11.67
LF 14.14 £ 6.16 | 12.50 &= 4.14 | 12.09 &+ 4.65 | 26.18 £ 19.33
40% HF 13.39 £5.24 | 14.36 & 7.17 | 13.72 &+ 6.63 | 21.45 + 21.8
LF/HF 20.70 £ 6.73 | 19.32 £ 5.34 | 1851 £ 5.20 | 30.84 £ 15.56
LF 16.55 £ 8.00 | 16.31 £5.02 | 15.24 £ 5.6 | 36.43 £+ 26.65
50% HF 171 £ 7.73 | 1856 &£ 9.17 | 18.67 &= 9.4 | 26.99 + 14.15
LF/HF 23.95 &£ 7.4 | 24.15 £6.08 | 23.44 £ 6.63 | 40.51 £+ 17.08
LF 1942 £ 7.16 | 2224 £ 5.6 | 21.0 £ 819 | 35.29 £ 27.10
60% HF 21.7 £ 10.79 | 23.57 £ 11.7 | 254 £ 13.7 | 39.0 & 21.45
LF/HF 2728 +74 |31.26+79 |29.8+7.79 |40.76 + 12.1
LF 2529 £ 7.6 | 31.24 £7.61 | 27.6 &£ 6.88 | 39.15 £+ 29.9
70% HF 31.0 £11.52 | 32.57 £12.8 | 33.0 &£ 12.1 | 52.4 + 21.63
LF/HF 33.7 £9.42 | 40.47 £ 10.0 | 37.7 & 9.56 | 40.58 4+ 10.7

Table 3: Mean absolute percentage error of estimated frequency domain HRV features from 10% to

70% missing data
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Missing % | HRV feat Best interp
RMSSD NN
o ~ | SDNN NN / Pchip
1 O;ategor;- LF Lin / Pchip
10%=50% | gp Lin / Pchip
LF/HF Lin / Pchip
RMSSD No interpolation
— SDNN | NN
category: | L NN /Pchi
50% —170% | g NN ; Lin
LF/HF | NN/ Pchip

Table 4: Best interpolation approach for HRV fea-
tures based on the percentage of missing data.

with regards to RMSSD estimation (Table 2). The
latter method outperforms the first one when the
percentage crosses the 50% threshold.

Generally speaking, the Pchip interpolation
seems to do well in most cases. It preserves the
linear trend of the data while adding very light
waves. As explained in [1], the structure generat-
ing the RR signal is not only simply linear, but
also involves nonlinear contributions. The Pchip
interpolation thus seems to better mimic the RR
timeseries trend.

5 Conclusion

In the time domain, nearest neighbour interpo-
lation gives the best results for up to 50% of
edited data. Beyond 50%, the best estimation was
achieved when the deleted data was not replaced.
It seems better not to use any interpolation for
RMSSD beyond this threshold. In the frequency
domain however, the lowest errors of HRV feature
estimation are obtained using linear or Pchip in-
terpolation.

If only one approach had to be chosen for a
good overall estimation, the Pchip would be privi-

leged because it preserves the linear trend and the
slightly non linear contributions in the RR time-
series.

Since HRV features are used for preventive
health and users’ well-being, it is fundamental to
know the effect of missing data on these param-
eters. The findings of this study, namely the
best interpolation methods based on the percent-
age of missing beats could be used for a data-driven
decision-making strategy to decide whether reliable
conclusions can be drawn from the signal.

This preprocessing step, including filtering and
interpolation, is fundamental before any HRV anal-
ysis can be performed. It enables continuous pas-
sive monitoring of users’ cardiovascular activity in
a non-obtrusive way despite a relatively poor data
quality.

6 Limits and Perspectives

It is worth bearing in mind that interpolation re-
mains at a mathematical level. Physiological im-
plications and interpretations could further be ex-
plored but are outside the scope of this paper. The
need and efficacy of interpolation in general should
be assessed against the end-goal of HRV analysis.
Moreover, in real-life acquisitions, the exact num-
ber of missing data in a time gap is unknown.

On the other hand, many additional aspects
could be investigated in a future work. Based on
the findings described above and table 4, a poten-
tial good approach may be using a combination
of different interpolation methods chosen based on
the HRV feature and the percentage of missing
data in each HRV segment. It would be inter-
esting to measure the estimation error of such an
approach including different interpolation methods
based on the percentage of missing data in each
window. The effect of interpolation on other HRV
features such as the total spectral power, and Non
linear features could also be investigated.

Additionally, it would be very interesting to
identify an upper limit for missing beats, in each
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HRV window, beyond which any interpolation
would be pointless. This upper limit would de-
pend once again on the context and the purpose
of HRV analysis in the first place. It would help
decide whether an HRV segment can be used for a
reliable diagnosis or should be discarded.
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