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Introduction

Classiquement, la détection de signaux à paramètres inconnus est réalisée grâce à un test du Rapport de Vraisemblance Généralisé (GLRT) : les paramètres inconnus sont remplacés par leurs estimateurs au sens du maximum de vraisemblance (MV) dans le test du rapport de vraisemblance. Quand des expressions analytiques du MV ne sont pas disponibles pour les paramètres d'intérêt du signal, la plupart des stratégies de détection simplifient le problème en discrétisant l'espace des paramètres en une grille. Cependant, les vrais paramètres n'ont aucune raison de se trouver précisément sur la grille, puisqu'ils sont distribués continûment. Cela crée une désadaptation entre les paramètres sous test et les vrais paramètres de la cible, et détériore les performances en détection de la plupart des tests de l'état de l'art supposant les cibles sur-grille. Dans cet article, nous illustrons ce problème en contexte radar où les paramètres inconnus peuvent inclure le Doppler, le retard ou la direction d'arrivée.

L'impact du hors-grille est particulièrement spectaculaire pour des détecteurs comme le Filtre Adapté Normalisé (NMF) [START_REF] Scharf | Signal detection in Gaussian noise of unknown level : an invariance application[END_REF]. Ce test est utilisé sous hypothèse bruit Gaussien de niveau inconnu. Il est aussi beaucoup utilisé en contexte radar adaptatif sur signaux non Gaussiens, par exemple quand le bruit est distribué selon une distribution symétrique elliptique complexe (CES) [START_REF] Pascal | On a SIRV-CFAR detector with radar experimentations in impulsive noise[END_REF]. Dans certains cas, la probabilité de détection peut descendre à 0 même pour des hauts Rapports Signal sur Bruit (RSB) [START_REF] Rabaste | Off-grid target detection with Normalized Matched Subspace Filter[END_REF], en particulier à basses P F A , usuelles en contexte radar.

Pour résoudre ce problème, la solution la plus évidente consiste à tester tout le support des paramètres continus, et pas juste la grille : c'est le vrai GLRT hors-grille. Cependant, à notre connaissance, l'expression analytique de la statistique de l'hypothèse nulle et sa P F A est inconnue dans la littérature pour ce GLRT : puisqu'il s'agit du maximum d'un ensemble infini de v.a. non indépendantes, le résultat n'est pas trivial.

Quelques travaux proposent des solutions analytiques optimales pour d'autres types de désadaptation comme [START_REF] Besson | Detection of a signal in linear subspace with bounded mismatch[END_REF][START_REF] De Maio | Fractional QCQP with applications in ML steering direction estimation for radar detection[END_REF], mais ils ne sont pas optimaux pour la désadaptation que nous considérons. D'autres approches incluent l'approximation du GLRT hors-grille, avec une approche par sous-espace [START_REF] Rabaste | Off-grid target detection with Normalized Matched Subspace Filter[END_REF] ou une méthode inspirée par l'écartométrie [START_REF] Develter | Off-grid radar target detection with the normalized matched filter : A monopulse-based detection scheme[END_REF] 

H 0 : r = n , H 1 : r = α d(θ) + n , (1) 
d(θ) = 1 √ N 1, e 2iπθ , . . . , e 2iπ(N -1)θ T . (2) 
Ce modèle de vecteur cible est souvent rencontré en radar en problème de détection d'une cible après intégration du retard où plus généralement quand le problème consiste en l'estimation d'une sinusoïde complexe noyée dans du bruit.

On montre que pour σ supposé inconnu sous H 0 et α, σ supposés inconnus sous H 1 , avec θ supposé connu, le test GLRT correspondant est le filtre adapté normalisé (NMF) suivant [START_REF] Scharf | Signal detection in Gaussian noise of unknown level : an invariance application[END_REF] :

d(θ) H Γ -1 r 2 d(θ) H Γ -1 d(θ) r H Γ -1 r H1 ≷ H0 w 2 .
(

) 3 
Ce test est aussi utilisé en radar adaptatif en contexte non Gaussien [START_REF] Pascal | On a SIRV-CFAR detector with radar experimentations in impulsive noise[END_REF][START_REF] Conte | Asymptotically optimum radar detection in compound-Gaussian clutter[END_REF], par exemple quand le bruit est distribué selon une distribution symétrique elliptique complexe (CES) . Sa statistique, dans ce cas, est la même que dans le cas Gaussien. De manière équivalente, l'équation (3) peut être réécrite avec les vecteurs blanchis normalisés :

s(θ) H u Γ -1/2 d(θ) et u = Γ -1/2 r Γ -1/2 r .
La relation P F A -seuil correspondante est connue :

P F A = 1 -w 2 N -1 . (5) 
Quand le NMF est testé en un point θ différent du vrai paramètre θ 0 de la cible, on dit que la cible est hors-grille. Cela induit une désadaptation (θ ̸ = θ 0 ) entre le vrai vecteur cible de la cible s(θ) et le vecteur cible s(θ 0 ) sous test. Malheureusement, il a été montré dans [START_REF] Rabaste | Geometrical design of radar detectors in moderately impulsive noise[END_REF] que le NMF est très sensible à une désadaptation du vecteur testé, ce qui peut potentiellement amener à une grave détérioration de la performance en détection : en particulier, pour une désadaptation plus grande que le seuil de détection, la probabilité de détection asymptotique tend vers 0 pour des RSB élevés : ce phénomène apparaît pour des P F A aussi élevées que 10 -3 dans la cellule de résolution de largeur 1/N , car la réponse du NMF tombe en dessous du seuil en bord de cellule [START_REF] Rabaste | Off-grid target detection with Normalized Matched Subspace Filter[END_REF]. Pour corriger ce problème, on doit donc estimer θ.

Avec θ inconnu, la procédure naturelle du GLRT mène à 

GLRT (u, D) = max θ∈D s(θ) H u 2 H1 ≷ H0 w 2 , (6) 

Une relation P F A -seuil analytique avec une interprétation géométrique

Hotelling [START_REF] Hotelling | Tubes and spheres in n-spaces, and a class of statistical problems[END_REF] a établi une méthodologie pour l'étude de tests statistiques sur la sphère réelle. Elle peut être utilisée pour évaluer la P F A du GLRT dans le cas réel : cette approche est présentée en section 3.1. Cette approche ne peut pas être transposée directement dans le cas complexe de (4), et nous étudions une extension dans la section 3.2.

L'approche géométrique de Hotelling dans le cas réel

Dans cette section, nous étudions tout d'abord le cas réel. Notons que l'expression du NMF (4) a une interprétation géométrique simple. C'est en effet le cosinus carré de l'angle entre le vecteur cible s (θ) et le signal reçu u. Le seuil peut être vu comme le cosinus carré de l'angle cos -1 w. Quand l'angle entre les vecteurs est sous cet angle limite, une cible est détectée. Par ailleurs, puisque u a été blanchi, il est uniformément θ comme l'union des deux calottes précédentes. On a une fausse alarme dès que u ∈ SC θ . En conséquence, la P F A est le rapport de la surface des calottes sphériques sur la surface de la sphère unité.

Considérons le GLRT dans l'équation [START_REF] Develter | Off-grid radar target detection with the normalized matched filter : A monopulse-based detection scheme[END_REF]. Une fausse alarme survient quand u ∈ T = θ∈D SC θ . Alors la P F A est le rapport entre la surface de T et la surface de la sphère unité. Un exemple dans R 3 est représenté en figure 1 sur S 2 . T est l'union de deux tubes symétriques plongés dans la sphère, de rayon géodésique cos -1 w autour des deux courbes s(θ) et -s(θ) avec des demi-calottes sphériques ajoutées aux extrémités.

Calculer la P F A revient à trouver la surface de l'ensemble des points dans S N -1 qui sont à la distance Euclidienne donnée par 2(1 -w) des courbes.

Dans [START_REF] Hotelling | Tubes and spheres in n-spaces, and a class of statistical problems[END_REF], Hotelling établit une formule pour la surface des tubes sur la sphère réelle à n dimensions S n-1 .

Extension de l'approche d'Hotelling au cas complexe

Malheureusement le résultat d'Hotelling n'est pas directement applicable au GLRT considéré. Comme nous allons le voir, quand on transpose notre problème complexe dans R 2N la variété résultante est alors à deux dimensions, car la valeur absolue dans le terme droit du GLRT donné en équation (6) implique alors une recherche du maximum de la phase.

En effet, pour n'importe quel scalaire réel α ∈ [0, 2π], remarquons que Re(s (θ)

H ue -iα ) ≤ s (θ) H u , ces deux quan-tités étant égales pour α = s (θ) H u. On trouve alors, en décomposant s (θ) = s r (θ) + is i (θ) et u = u r + iu i en parties réelles et complexes :

Re(s (θ) H ue -iα ) = s r (θ) T u r + s i (θ) T u i cos α = γ 1 (θ) T u cos α + γ 2 (θ) T u sin α , où γ 1 (θ) = s r (θ) s i (θ) , γ 2 (θ) = -s i (θ) s r (θ) et u = u r u i est un
vecteur de bruit réel de dimension 2N tiré uniformément sur S 2N -1 sous H 0 . Le GLRT (6) peut alors être écrit comme :

max α,θ γ 1 (θ) T u cos α + γ 2 (θ) T u sin α H1 ≷ H0 w . ( 7 
)
La nature bi-dimensionnelle de la variété réelle à inspecter est directement apparente avec cette formulation : en notant γ(α, θ) = γ 1 (θ) cos α + γ 2 (θ) sin α, la région d'acceptation dans le cas complexe est un nouveau tube T autour de la variété à deux dimensions γ(θ, α).

Le résultat d'Hotelling ne couvre pas ce type de variété puisqu'il ne donne la surface d'un tube qu'autour d'une courbe. Cependant, dans [START_REF] Johnstone | On Hotelling's formula for the volume of tubes and Naiman's inequality[END_REF], ce résultat est étendu au cas spécial de variété bi-dimensionnelles d'intérêt pour nous.

Théorème 3.1 [10] Pour i ∈ [1, 2], soit γ i : [0, t 0 ] → S n-1 des courbes régulières. Supposons γ 1 (t) T γ 2 (t) = 0 pour tout t. Soit Z(t) = γ 1 (t) T u 2 + γ 2 (t) T u 2 1/2
où u est distribué uniformément sur S n-1 . Alors pour 0 < w < 1 :

P max 0≤t≤t0 Z (t) > w ≤ (1 -w 2 ) (n-2)/2 + Γ n 2 w (1 -w 2 ) (n-3)/2 2π 3/2 Γ n -1 2 × t0 0 2π 0 ∥ γ1 (t) cos ω + γ2 (t) sin ω∥ 2 - γ1 (t) T γ 2 (t) 2 1/2 dω dt , (8) 
où γi (t) est la dérivée de γ i (t) par rapport à t. Quand il n'y a pas de recouvrement, cette inégalité devient une égalité (par recouvrement, on entend une intersection non nulle des sections droites de la variété dans les régions de décisions de l'hypothèse H 1 sur S n-1 ).

Il apparaît que nous pouvons reformuler le problème de manière à remplir les conditions du théorème. Avec nos notations, on peut vérifier que

s (θ) H u 2 = γ 1 (θ) T u 2 + γ 2 (θ) T u 2 , (9) 
de sorte que le théorème nous donne la P F A désirée (quand il y a égalité). On obtient alors notre résultat principal : -Sous l'hypothèse d'un bruit blanc (Γ = σ 2 I), cette équation se simplifie en :

P F A = (1 -w 2 ) N -1 + (10) π 3 Γ(N ) w (1 -w 2 ) N -3 2 Γ N -1 2 N 2 -1 1 2 (θ 2 -θ 1 ) .
-Sous l'hypothèse d'un bruit coloré (Γ ̸ = σ 2 I), (8) peut être évaluée numériquement.

Le premier terme dans [START_REF] Johnstone | On Hotelling's formula for the volume of tubes and Naiman's inequality[END_REF] représente la surface des deux calottes sphériques aux extrémités du tube. Ainsi, il est égal à la P F A connue du NMF exprimée en équation [START_REF] De Maio | Fractional QCQP with applications in ML steering direction estimation for radar detection[END_REF]. Le second terme montre l'influence de la variété induite par la nature horsgrille du problème.

Résultats numériques

Vérifions la validité de la formule [START_REF] Johnstone | On Hotelling's formula for the volume of tubes and Naiman's inequality[END_REF]. La figure 2 présente la relation P F A -seuil donnée dans l'équation [START_REF] Johnstone | On Hotelling's formula for the volume of tubes and Naiman's inequality[END_REF] et les seuils calculés numériquement en utilisant 10 8 échantillons de bruit blanc Gaussien pour un vecteur cible de taille N = 10. La recherche continue sur le domaine D est remplacée par une recherche discrète en suréchantillonnant la case d'un facteur 30, où D = [0, 1/N ] est une des cellules de résolution usuelle de Fourier.

La formule correspond parfaitement quand la P F A est assez faible (c'est à dire quand le seuil est assez haut). La formule n'est pas valide quand la P F A est proche de 1 à cause de phénomènes de recouvrement de surface (sa valeur dépasse même 1). Cependant, des P F A aussi élevées n'ont pas d'intérêt pratiques pour les applications les plus communes en radar. Une analyse du phénomène de recouvrement sera donnée dans un prochain article.

Conclusion

Dans cet article, nous avons répondu au problème de la détection hors-grille en utilisant le NMF-GLRT en élaborant une relation P F A -seuil analytique, valide pour la plupart des applications usuelles notamment en radar. Dans de futurs travaux, nous chercherons mathématiquement les conditions garantissant qu'il n'y a pas de recouvrement pour une P F A donnée pour fournir un domaine et des conditions de validité précises.
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 1 FIGURE 1 -T plongé sur la sphère unité S 2 dans R 3 composé d'un tube (en violet) autour d'une variété à une dimension θ∈D s(θ), deux calottes demi-sphériques (en vert) et leurs opposés dont le contour est en pointillés. SC θ est dessiné en bleu.
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 311 En l'absence de recouvrement (régimes à faibles P F A ), la P F A du GLRT (6) pour un domaine de recherche D = [θ 1 , θ 2 ] avec le vecteur cible d (θ) défini par (2) est donnée par l'équation[START_REF] Rabaste | Geometrical design of radar detectors in moderately impulsive noise[END_REF].
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 32 FIGURE 2 -Comparaison entre la relation P F A -seuil théorique de l'équation (10) et la relation P F A -seuil empirique pour N = 10. La relation hors-grille (5) est aussi tracée à des fins de comparaison. Tests pour θ ∈ [0, 1/N ].

  Notations : Les matrices sont en gras et en majuscules, les vecteurs en gras. Pour toute matrice A ou vecteur, A T est la transposée de A et A H est la transposée Hermitienne de A. I est la matrice identité et CN (µ, Γ) est la distribution normale complexe circulaire de moyenne µ et de matrice de covariance Γ. S n-1 est la sphère unité dans R n . L'opérateur partie réelle d'un nombre complexe est dénoté par Re(.). L'opérateur u est l'angle du nombre complexe u. La mission principale d'un radar consiste à détecter la présence d'une cible d'amplitude complexe d ∈ C N perturbée par du bruit additif n. Ce problème peut être formalisé par un test d'hypothèse binaire :
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