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Introduction

Détecter des signaux bruités est un problème rencontré dans de nombreux domaines [START_REF] Kay | Fundamentals of statistical processing[END_REF]. Classiquement, quand les signaux dépendent de paramètres inconnus, le détecteur du Test du Rapport de Vraisemblance Généralisé (GLRT) est utilisé : il consiste à remplacer les paramètres inconnus dans le test du rapport de vraisemblance par leur Estimateur du Maximum de Vraisemblance (MLE). Cependant, certains paramètres non-linéaires n'admettent pas de MLE sous forme analytique. En pratique, pour palier ce problème, l'espace de paramètre est discrétisé en une grille fixe, et des tests sont réalisés pour les valeurs de paramètres sur la grille, de manière à obtenir des tests indépendants. Cependant, en réalité les vrais paramètres de cibles ne correspondront pas exactement aux paramètres sur grille, créant là une désadaptation entre les signaux reçus et les signaux de référence. Cette désadaptation peut dégrader les performances de détection des tests. Quand le GLRT correspond au filtre adapté, cette perte peut atteindre 3dB par paramètre inconnu.

La détection en présence d'erreurs de modèle sur le signal a été considérée dans plusieurs contextes généraux, comme dans le cas d'une désadaptation dans un cône au-tour du signal de référence [START_REF] Besson | Detection of a signal in linear subspace with bounded mismatch[END_REF] ou d'une désadaptation contrainte quadratiquement [START_REF] De Maio | Fractional QCQP with applications in ML steering direction estimation for radar detection[END_REF], parmi d'autres contextes [START_REF] Bandiera | Advanced Radar Detection Schemes Under Mismatched Signal Models[END_REF][START_REF] Liu | Robust detection in mimo radar with steering vector mismatches[END_REF][START_REF] Besson | Adaptive detection of a signal known only to lie on a line in a known subspace, when primary and secondary data are partially homogeneous[END_REF]. Alors que le problème de désadaptation lié à une grille est couramment examiné en reconstruction parcimonieuse [START_REF] Tang | Compressed sensing off the grid[END_REF][START_REF] Lasserre | Bayesian sparse Fourier representation of off-grid targets with application to experimental radar data[END_REF] ou en estimation (en radar, estimation de la direction d'arrivée [START_REF] Dai | Root sparse Bayesian learning for off-grid DOA estimation[END_REF]), il reste relativement peu étudié en détection [START_REF] Bosse | Adaptive subspace detectors for off-grid mismatched targets[END_REF].

La façon la plus directe de lutter contre cette désadaptation est de se passer de la grille en utilisant le "vrai" GLRT qui consiste à calculer le maximum du rapport de vraisemblance sur tout l'espace continu où les paramètres peuvent se situer. Cependant, ses propriétés statistiques dépendent du maximum d'un continuum de variables non-indépendantes et leur étude peut être délicate, et sa relation P F A -seuil n'est pas connue. Dans [START_REF] Develter | Sur la probabilité de fausse alarme du filtre adapté normalisé pour la détection de cibles hors-grille[END_REF], nous avons calculé la relation P F A -seuil du Filtre Adapté Normalisé (NMF). De manière analogue, dans cet article nous nous proposons de calculer une nouvelle relation P F A -seuil asymptotique pour le filtre adapté (MF) avec deux (distance et Doppler) paramètres inconnus, en présence de bruit blanc gaussien complexe. Pour cela, nous allons utiliser l'espérance de caractéristiques d'Euler [START_REF] Adler | On excursion sets, tube formulas and maxima of random fields[END_REF].

La section 2 formalise le problème ainsi que le détecteur GLRT hors-grille étudié dans cet article. Dans la section 3, nous calculons la relation P F A -seuil asymptotique de ce détecteur, qui est validée numériquement en section 4.

Notations : Les matrices sont en gras et en majuscules, les vecteurs en gras. Pour toute matrice A ou vecteur, A T est la transposée de A et A H est la transposée Hermitienne de A. I est la matrice identité et CN (µ, Γ) est la distribution normale complexe circulaire de moyenne µ et de matrice de covariance Γ. ⊗ est le produit de Kronecker. a r et a i sont les parties complexes et imaginaires du vecteur complexe a.

Formulation du problème

Notre problème consiste à détecter un signal connu s(ξ) ∈ C N M d'amplitude inconnue, dépendant d'un paramètre inconnu ξ et plongé dans du bruit. Formellement, cela correspond au test d'hypothèses binaire suivant :

H 0 : r = n , H 1 : r = a s(ξ) + n , (1) 
où n ∈ C N M est un vecteur de bruit distribué selon une loi gaussienne complexe circulaire n ∼ CN (0, Γ) de matrice de covariance connue Γ et a ∈ C est l'amplitude complexe de la cible. Dans la suite de cet article, le nombre de paramètres inconnus est fixé à deux : la distance de la cible et son décalage Doppler. La distance de la cible au radar se déduit du délai τ avant le retour du signal émis. Dans le reste de cet article, nous considérons que le signal reçu échantillonné sur une impulsion pour un certain retard τ est modélisé par le chirp linéaire suivant :

b j (τ ) = 1 √ K Π T P (t j -τ ) e iπk(tj -τ ) 2 , 1 ≤ j ≤ M
où les t j = jT s sont les instants d'échantillonnage avec 

T s = 1 B où B est la bande du chirp, relié avec le scalaire k ∈ R par k = B T p . K
d(θ) = 1 √ N 1, e 2iπθ , .
. . , e 2iπ(N -1)θ T , avec ξ = {τ, θ}. Le modèle de signal distance-Doppler que nous utilisons est défini de manière classique comme le produit de Kronecker des composantes Doppler et distance :

s(ξ) = b(τ ) ⊗ d(θ). (2) 
Quand ξ est connu et l'amplitude complexe a est inconnue, le GLRT de ce problème, appelé GLRT "oracle", devient le test du Filtre Adapté [START_REF] Scharf | Signal detection in Gaussian noise of unknown level: an invariance application[END_REF][START_REF] Scharf | Matched subspace detectors[END_REF] :

s(ξ) H Γ -1 r 2 s(ξ) H Γ -1 s(ξ) H1 ≷ H0 w 2 .
( Dans ce cas, la relation P F A -seuil est donnée par l'équation suivante :

P F A = e -w 2 . ( 4 
)
Puisque les vrais paramètres de cible sont inconnus, les tests sont généralement évalués pour des valeurs de paramètres ξ sur une grille discrète. Cependant, dans la réalité les paramètres de cible ne correspondent jamais exactement aux paramètres de la grille. Pour une résolution de Fourier usuelle, la perte en SNR du filtre adapté peut atteindre 3 dB par paramètre inconnu en bord de case de résolution (donc 6 dB en détection distance-Doppler), ce qui dégrade les performances de détection, comme illustré en Figure 1.

Le "vrai" GLRT, nommé GLRT hors-grille ou MF horsgrille, consiste à évaluer (3) pour tous les ξ de manière continue dans le domaine de recherche D, que l'on appellera une cellule (par exemple, un intervalle

h N , h + 1 N × h ′ B , h ′ + 1 B
) dans la suite :

max ξ∈D s(ξ) H Γ -1 r 2 s(ξ) H Γ -1 s(ξ) H1 ≷ H0 w 2 . ( 5 
)
Les performances de détection empiriques de ce détecteur sont montrées en Figure 1. Elles sont proches du GLRT oracle (qui connaît parfaitement la position des cibles), alors que le Filtre Adapté montre une perte en performance de détection liée à la présence de cibles horsgrille. Pour garantir une P F A donnée, on doit fixer un seuil adéquat w 2 dans (5). Pour cela, on doit évaluer la statistique du maximum d'un continuum de variables nonindépendantes. A notre connaissance, il n'y a pas de solution connue à ce problème dans notre contexte. La section suivante comble ce manque dans le cas bruit blanc (Γ = I).

Une relation P F A -seuil asymptotique pour le filtre adapté horsgrille distance-Doppler

Dans cette section, on démontre une nouvelle relation P F A -seuil asymptotique pour le filtre adapté hors-grille sous bruit blanc en utilisant les caractéristiques d'Euler moyennes. L'article [START_REF] Adler | On excursion sets, tube formulas and maxima of random fields[END_REF] propose un cadre théorique général pour résoudre ce type de problèmes.

La réponse du filtre adapté peut être considérée comme le champ aléatoire Y (ξ) suivant :

Y (ξ) = s(ξ) H r 2 . ( 6 
)
Pour utiliser les résultats de [START_REF] Adler | On excursion sets, tube formulas and maxima of random fields[END_REF], il est nécessaire d'introduire le champ aléatoire gaussien : X(α, ξ) = Y (ξ). Ainsi la P F A à caractériser peut s'écrire :

X(α, ξ) = (γ 1 (ξ) cos α + γ 2 (ξ) sin α ) T r, (7) 
où γ 1 (ξ) = s r (ξ) s i (ξ) , γ 2 (ξ) = -s i (ξ) s r (ξ) , r =
P F A = P max ξ∈D Y (ξ) > w 2 = P max α,ξ∈[0,2π]×D X(α, ξ) > w .
(8) On peut aisément montrer que X est stationnaire et on note Λ la matrice de covariance de son gradient ∂X ∂α , ∂X ∂ξ .

L'ensemble d'excursion A w (X) associé à X pour un seuil w est défini comme l'ensemble des paramètres tels que X(α, ξ) excède w [START_REF] Adler | On excursion sets, tube formulas and maxima of random fields[END_REF] :

A w (X) = {(α, ξ), X(α, ξ) > w} . (9) 
Dans [START_REF] Adler | Random fields and geometry[END_REF], il est montré que l'espérance de la caractéristique d'Euler de A w (X), E(φ(A w (X))), est une estimation précise de la probabilité que X(α, ξ) excède w, et donc de la P F A voulue :

|P F A -E (φ (A w (X)))| < O e -c w 2 , ( 10 
)
pour un certain c > 1. La caractéristique d'Euler φ(.) est une caractérisation topologique d'un ensemble : les lecteurs intéressés peuvent étudier les chapitres correspondants de [START_REF] Adler | Random fields and geometry[END_REF]. Notre résultat est basé sur le théorème fondamental pour les champs aléatoires définis sur R 3 suivant :

Théorème 3.1 [START_REF] Adler | On excursion sets, tube formulas and maxima of random fields[END_REF] Soit X un champ aléatoire centré, isotrope et stationnaire sur l'espace de paramètres T ⊂ R 3 avec pour matrice de covariance du gradient Λ = λ I. Supposons de plus que ∂T , définie comme la frontière de T , est C 2 sauf sur les arêtes, les creux de longueurs finies et les sommets. Alors

E(φ(A w (X))) = |T | ρ 3 (w) + |∂T | 2 ρ 2 (w) + H(∂T ) π ρ 1 (w) + φ(T )Ψ w σ , (11) 
où H(.) est une fonction de la courbure détaillée dans [START_REF] Worsley | Estimating the number of peaks in a random field using the Hadwiger characteristic of excursion sets, with applications to medical images[END_REF], 

σ 2 est la variance de X (constante puisque X est sta- tionnaire), ρ k (w) = e -w 2 /2σ 2 λ k/2 (2π) (k+1)/2 σ k H k-1 w σ avec H k le k-ième polynôme de Hermite et Ψ(t) = +∞ t e -u 2
P F A = πB 6 ∆τ ∆θ (N 2 -1) K + 1 K -1 2w 2 -1 + π 3 B∆τ K + 1 K -1 + ∆θ N 2 -1 w + 1 e -w 2 +O e -c w 2 pour un c > 1. (12) 
Trois termes apparaissent dans la formule : le premier rend compte de l'intérieur de la cellule. Les deuxième et troisième termes représentent respectivement les arêtes et les coins de la cellule : leur somme est égale à la somme des P F A du filtre adapté hors-grille dans les cas où un seul paramètre est inconnu (distance ou Doppler). Donnons une idée de la preuve de ce corollaire. On obtient le résultat en calculant la caractéristique d'Euler de l'ensemble d'excursion de X définie dans (9) grâce au Théorème 3.1, puis en appliquant le résultat [START_REF] Bosse | Adaptive subspace detectors for off-grid mismatched targets[END_REF] pour approximer la P F A . Tout d'abord, notons que dans notre cas σ 2 = 1/2. Puisque pour tout ξ ∈ D, X(0, ξ) = X(2π, ξ), X est périodique selon α et l'espace de paramètres T peut être vu comme un pavé droit de dimensions 2π, ∆τ, ∆θ ν : c'est ce qui compte dans l'hypothèse d'isotropie. Un des arguments qui nous a permis de trouver cette relation est que X est stationnaire sous bruit blanc. Malheureusement, la méthode employée ne peut pas être appliquée sous bruit colorée (Γ ̸ = I).

Résultats numériques

Pour vérifier [START_REF] Adler | On excursion sets, tube formulas and maxima of random fields[END_REF], nous avons évalué empiriquement la relation P F A -seuil du MF hors-grille via 5 × 10 7 tirages de Monte Carlo dans une cellule de résolution [0, 1/N ] × [0, 1/B], avec des vecteurs b et d de taille fixée à 10. Les résultats sont montrées dans la figure 3. La relation observée correspond très bien à la relation asymptotique calculée dans la section précédente, sauf pour des P F A proches de 1, de manière analogue au cas du NMF [START_REF] Develter | Sur la probabilité de fausse alarme du filtre adapté normalisé pour la détection de cibles hors-grille[END_REF].

Conclusion

Dans cet article, nous avons analysé la statistique du GLRT hors-grille, qui est plus robuste en présence de cibles hors-grille que le filtre adapté. Nous avons calculé et évalué numériquement une relation P F A -seuil asymptotique pour une utilisation en détection distance-Doppler, qui sera utile pour la communauté de détection radar. La prochaine étape serait d'obtenir une relation similaire avec une matrice de covariance quelconque (Γ ̸ = I).
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 1 Figure 1 -Performance en détection distance-Doppler avec des cibles hors-grille tirées aléatoirement et uniformément dans une cellule pour le détecteur oracle, le GLRT (5) et le Filtre Adapté (3). P F A = 10 -6 , N = 10, K = 40.

Figure 2 -

 2 Figure 2 -Espace de paramètre phase-distance-Doppler T . Il s'agit d'un pavé droit avec deux faces collées ensemble.

/ 2 √Corollaire 3 . 1 . 1

 2311 2π du désigne la queue d'une loi gaussienne centrée réduite. |T | désigne le volume de T et |∂T | la surface de ∂T . En appliquant ce résultat général à notre problème, on peut montrer le corollaire suivant : La relation P F A -seuil du GLRT horsgrille testé sur une cellule D = [τ 1 , τ 2 ] × [θ 1 , θ 2 ] est :

Figure 3 -

 3 Figure 3 -Relations théorique (12) et empirique obtenues sous bruit blanc en utilisant 5 10 7 tirages de Monte Carlo avec K = 40, et N = 10. La relation sur-grille (4) est montrée à titre de comparaison.