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ABSTRACT

In this paper, we tackle the problem of off-grid radar target
detection based on the Normalized Matched Filter. State-of-
the-art solutions to this problem include the use of the Gener-
alized Likelihood Ratio test (GLRT), whose implementation
can be costly, subspace detectors, or oversampling. In this pa-
per, we introduce a new solution for improving detection of
an off-grid target. It is inspired by monopulse angle estima-
tion methods. Using simulations, we show that our solution
is comparable to the GLRT under Gaussian noise hypothesis
with a known covariance matrix in terms of detection proba-
bility. As such, its detection performance appears to be often
better than those of detectors in the same computational cost
range, and significantly better in some cases.

Index Terms— Radar, Detection, Off-grid, Monopulse,
Normalized Matched Filter

1. INTRODUCTION

The goal of radar systems is to detect the presence of targets
with unknown parameters in unknown environment. Clas-
sically, in presence of unknown parameters, the commonly
used detection strategy is the Generalized Likelihood Ratio
test (GLRT) that replaces the unknown parameters by their
Maximum Likelihood estimators (MLE) in the detection test.
Unfortunately, analytical MLE solutions are not available for
some target parameters of interest (Doppler shift, distance,
and direction for example).

Therefore, for ease of implementation, most detection
strategies assume that target parameters lie over a discrete
set, called the grid. However, target parameters have no rea-
son to fall exactly on the grid, since they are distributed over a
continuous range. This mismatch between the tested param-
eters and the real target parameters deteriorates the response
of most state-of-the-art tests. For example, in homogeneous
Gaussian environment, it is well known that the Matched
Filter (MF) test can approximately suffer from a maximum
of 3dB loss for common grid sampling strategies (e.g. at
the resolution cell). This tends to deteriorate the detection
probability. The off-grid impact has also been shown to be

particularly dramatic for other detection schemes like the
Normalized Matched Filter (NMF) test. In some cases, the
detection probability may vanish to 0 even for high Signal to
Noise ratio (SNR) [1], especially for common low probability
of false alarm (PFA).

To overcome this problem, the most obvious solution is to
approximate the GLRT on a refined parameter grid, but this
can be costly in terms of computations. Other works have ad-
dressed this issue in adaptive context with a steering vector
mismatch (bounded angle mismatch) [2], but they are not yet
suited for low PFA radar contexts [3]. The authors in [4] pro-
posed a two-stage detector to reduce the loss in performance.
Those solutions do not cure the asymptotic SNR loss under
grid mismatch [5]. Some authors have proposed to model the
mismatch through relevant subspaces [6] using subspace de-
tection framework.

In this paper, we propose a new method that solves the
off-grid problem. It enables to achieve a detection probability
of 1 at high SNR, even for arbitrary low PFA. Moreover, this
is achieved at a low computational cost.

Section 2 presents the signal model and the off-grid detec-
tion problem. We present our method in Section 3. Finally,
its performance is evaluated in Section 4 through simulations.

Notations: Matrices are in bold and capital, vectors in
bold. For any matrix A or vector, AT is the transpose of
A and AH is the Hermitian transpose of A. I is the N × N
identity matrix and CN (µ,Γ) is the circular complex Normal
distribution of mean µ and covariance matrix Γ.

2. THE OFF-GRID RADAR DETECTION PROBLEM

In radar detection, the main problem consists in detecting a
complex signal s ∈ CN corrupted by an additive noise n
(clutter, thermal noise, etc.). This problem can be stated as
the following binary hypothesis test:{

H0 : r = n ,
H1 : r = α s(θ) + n ,

(1)

where r is the complex N -vector of the received signal, α
is an unknown complex target amplitude and s(θ) stands for
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Fig. 1. Comparison of the NMF response with various thresh-
olds η = 1− P 1/(N−1)

FA when Γ = I, N = 10.

a generally known steering vector characterized by unknown
target parameters θ (time-delay, Doppler or angle). In the se-
quel, we will assume n is a zero-mean complex circular Gaus-
sian noise vector with known covariance matrix Γ but with
unknown variance σ2 i.e. n ∼ CN (0, σ2 Γ). This context
is known as a partially homogeneous Gaussian environment.
Without loss of generality, we will here assume θ to be the
scalar Doppler shift of the target and we here investigate only
the normalized Doppler steering vector s(θ):

s(θ) =
1√
N

[
1, e2iπθ, . . . , e2iπ(N−1)θ

]T
. (2)

This model of steering vector is often encountered in radar
Range-Doppler detection schemes where the problem con-
sists in estimating a complex sinusoid embedded in noise after
range Matched Filter processing.

For unknown parameters {λ}i∈[0,1] depending on each
hypothesis {Hi}i∈[0,1] (either parameters of interest and/or
nuisance parameters), the usual procedure to derive the best
strategy relies on the Generalized Likelihood Ratio (GLR)
statistic, namely the ratio Λ(r) between the Probability Den-
sity Function (PDF) fH1

(.) of the data under H1 and the PDF
fH0

(.) under H0 where the unknown parameters are replaced
by their MLE estimate:

Λ(r) =
max
λ1

fH1
(r)

max
λ0

fH0(r)

H1

≷
H0

η. (3)

When λ1 = {α, σ} and λ0 = {σ} with θ = θ0 known,
the corresponding GLRT is known as the NMF (Normalized
Matched Filter) [7, 8]:

tΓ(r, θ0) =

∣∣s(θ0)H Γ−1 r
∣∣2(

s(θ0)H Γ−1 s(θ0)
) (

rH Γ−1 r
) H1

≷
H0

η. (4)

This test is also widely used for adaptive radar in non-
Gaussian contexts [9, 10] for example when the noise is

distributed according to a Complex Elliptically Symmetric
(CES) distribution [11].

When θ is unknown, what is done in practice is to run a
variety of tests. The set of the parameters Θ used for testing
is called the grid. For a parameter θ0 on the grid, we will
define the cell of width ∆ associated with this parameter as

νθ0 = [θ0 −∆/2, θ0 + ∆/2] . (5)

The grid step size ∆ is classically taken such that s(θ0) and

s(θ0 + ∆) are orthogonal. In our case, ∆ =
1

N
i.e. the grid

samples are separated by the Doppler resolution.
Each test is run with the assumption that the target param-

eters are equal to those under test. If a target is detected for
any of those tests, it will be considered as detected. However,
target parameters θ are never exactly equal to the parameters
under test, as target parameters are continuous.

If the point θ0 where the NMF is tested is different from
the parameter θ of the target, the target is said to be off-grid.
This induces a mismatch (θ 6= θ0) between the real target
steering vector s(θ) and the steering vector s(θ0) under test.
Unfortunately, it was shown in [5] that the NMF detector is
very sensitive to steering vector mismatch, potentially lead-
ing to a dramatic deterioration of the detection performance:
in particular for a mismatch larger than the detection thresh-
old, it was shown that the asymptotic detection probability
tends to 0 at high SNR: this phenomenon occurs [1] for PFA
as high as 10−3. Indeed, the NMF value can be interpreted
as a squared cosine between Γ−1/2s(θ0) and Γ−1/2r [5]. As
soon as the mismatch causes this angle to lie outside the de-
tection cone defined by the detection threshold η in (4), no
detection occurs even without any noise. This can be seen in
Figure 1, which displays the NMF response without any noise
as a function of the mismatch: this response falls below the
detection thresholds at the edge of the cell. This pathological
behavior motivates the search for robust detection schemes.

The most natural solution is to consider the GLRT with
unknown θ ∈ νθ0 :

GLRT (r, θ0) = max
θ∈νθ0

tΓ(r, θ)
H1

≷
H0

η. (6)

Unfortunately, a closed-form expression of this test is un-
known, it has to be approximated using possibly computatio-
nally-heavy methods.

3. PROPOSED MONOPULSE-INSPIRED SCHEME

In this section, we introduce a new method for coping with
the mismatch. We took inspiration from monopulse methods
[12], and consider the following function:

hΓ,θ0(r) =

tΓ

(
r, θ0 −

∆

2

)
− tΓ

(
r, θ0 +

∆

2

)
tΓ
(
r, θ0 − ∆

2

)
+ tΓ

(
r, θ0 +

∆

2

) . (7)
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The principle is the following: without noise, knowing

two test points of the NMF, namely θ0 +
∆

2
and θ0 −

∆

2
, in

the main lobe (here, the resolution cell) is enough to provide
an estimate of θ, as the distribution of energy between those
points is directly linked to the mismatch:

δ = θ − θ0. (8)

The quantity (7) known as the monopulse ratio can be
seen as an approximation of the MLE [12]. The link between
δ and hΓ,θ0(r) is made thanks to the noiseless gΓ,θ0 function
defined as follows:

gΓ,θ0(δ) = hΓ,θ0(s(θ0 + δ)) (9)

Our goal is to find an estimate θ̂ = δ̂ + θ0 of θ, to plug it
in the NMF in order to approximate the GLRT in (6). For that
purpose, δ̂ is obtained by computing δ̂ = g−1

Γ,θ0
(hI,θ0(r)). Of

course, this only makes sense if gΓ,θ0 is invertible. As can be
seen in Figure 2, this is not always the case, depending on Γ
and θ0. For the particular case Γ = I, the functions gΓ,θ0 are
invertible. This is why we will use these functions, even in
colored noise. Moreover, they do not depend on θ0 and will
be simply denoted by:

g(δ) = gI,θ0(δ)

=

(
sin (πN(δ + ∆))

sin (π(δ + ∆))

)2

−
(

sin(πN(δ −∆))
sin(π(δ −∆))

)2

(
sin(πN(δ + ∆))
sin(π(δ + ∆))

)2

+

(
sin(πN(δ −∆))
sin(π(δ −∆))

)2 .

The function g takes its values between −1 (at the right
edge of the cell) and 1 (at the left edge of the cell).

To summarize, our proposed method is as follows: for
every θ0 on the grid:

1. compute tI

(
r, θ0 −

∆

2

)
and tI

(
r, θ0 +

∆

2

)
;
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Fig. 3. PD of the detectors in white Gaussian noise, for a PFA
of 10−6, N = 10.

2. compute δ̂ = g−1 (hI,θ0(r));

3. run the final tests tΓ
(
r, δ̂ + θ0

) H1

≷
H0

ηg .

Finding ηg analytically is much more involved than for

the NMF, because the true statistic of tΓ
(
r, δ̂ + θ0

)
is re-

lated to the non-independent random variables r and δ̂ =
g−1
Γ,θ0

(hI,θ0(r)). This is why ηg was computed offline resort-
ing to Monte Carlo methods.

Let us evaluate the computational load of this scheme.
The method has to be applied in each of the N resolution
cells. In total, tΓ needs to be computed 2N times. Conse-
quently, the overall computational load is equivalent to that
of approximating GLRT using 2 points per cell, neglecting
the cost of inverting g, which is minimal since g can be tab-
ulated offline. Finding δ̂ by computing g−1 then reduces to a
simple lookup table operation. It turns out that our approach
outperforms existing methods with equivalent computational
cost.

Finally, let us describe some properties of this approach.
Firstly, when the SNR tends to infinity, r is equivalent to
αs(θ) and our procedure yields the true parameter value i.e.
θ̂ = θ. This ensures that the probability of detection tends to
1. Secondly, when Γ = I, θ̂ is an approximate MLE [12] and
our test is an approximate GLRT. Thirdly, simulations show
that our procedure is still close to the GLRT even when Γ 6= I.

4. NUMERICAL RESULTS

In this section, the performance of our detection scheme is il-
lustrated using Monte Carlo simulations. In each simulation,
target parameter θ is drawn at random, uniformly in a given
cell. For a given cell under test, we compared the performance
of different detectors as a function of SNR. The detectors we
evaluated are the DPSS NSMF with subspaces of dimension
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2 introduced in [1], our scheme under the name ”Proposed” in
the figures, an approximation of the GLRT done computing
50 tests per cell, the classical and mismatched NMF under
the name ”NMF” and a crude approximation of the GLRT
exploiting the maximum of two tests per cell under the name
”Oversampling x2”. Performance for known θ is also pro-
vided as ”Oracle”. Oracle and the GLRT are given as bench-
marks. Other detectors (”DPSS NSMF”,”Oversampling x2”)
are in the same computational range as our proposed method.
Thresholds are computed for each detector, using 20P−1

FA

Monte Carlo simulations. For each SNR, 20000 Monte Carlo
simulations are run, considering steering vectors of length
N = 10 and setting PFA = 10−6.

Figure 3 first compares the performance of our method
with the other detection schemes under additive white noise
(Γ = I). Note that in this case, all the cells are equivalent in
terms of detection probability. It can be seen that our detec-
tor is very close to the GLRT even though its computational
cost is lower. As such, it does better than the detectors it is
compared to, at a similar cost.

Our proposed detection scheme was also tested against
colored Gaussian noise. Its covariance matrix was generated
according to the following well-known model:

Γ(ρ) = T
([

1 ρ . . . ρN−1
])
, (10)

where T (.) is the Toeplitz operator. We here tested all the
schemes against colored noise of covariance matrice Γ(0.9).
It should be noted that when Γ 6= I, tests behave differently
for each resolution cell. In Figure 4, the target is located in the
cell centered around θ0 = 0/N , and in Figure 5, θ0 = 5/N .
The relationship between |α|2 and the SNR in dB is :

SNR = 10 log10

(
|α|2

σ2

)
. (11)
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Note that for the oracle detector, the detection probability de-
pends only on the parameter |α|

2

σ2 s(θ)HΓ−1s(θ) that is the
non-centrality parameter characterizing the ratio between the
target power and the noise power in the cell under test. It
partly explains why the performance depends on the choice
of the cell under test.

In cell ν0, the shape of the whitened steering vectors va-
riety makes it so that both DPSS NSMF and oversampling
by a factor of two do not approach a detection rate of 1 as
SNR becomes very high. However our scheme performs only
a bit worse than GLRT, and as expected its detection rate in-
creases towards 1 when the SNR is high. In cell ν5/N , all
detectors perform much better than in cell ν0/N and than in
white noise, which was to be expected because of the non-
centrality parameter. In this case, the shape of the whitened
steering vectors variety also makes it possible for the detec-
tors to detect targets asymptotically. As a result, the probabil-
ity of detection of DPSS NSMF and oversampling by a fac-
tor of two tends toward 1 as SNR increases. In this context,
our scheme does approximately as well as the DPSS NSMF
detector asymptotically, which makes it slightly worse than
GLRT, as it was before.

5. CONCLUSION

This paper is motivated by detector performance degradation
in the case of off-grid targets. The proposed solution is based
on monopulse technique and can be considered as an approx-
imate GLRT for off-grid targets in Gaussian noise. It also
overcomes the problem of the off-grid NMF not reaching a
probability of detection equal to 1 when SNR tends to infin-
ity. It outperforms existing detectors of the same computa-
tional cost order and provides detection performance close to
the true GLRT, whatever the noise covariance matrix.

Future works will investigate the derivation of the PFA-
threshold relationships, and the adaptive case as well as non-
Gaussian additive noise environments.
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