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ABSTRACT

The determination of the mass of galaxy clusters from observations is subject to systematic uncertainties. Beyond the errors due
to instrumental and observational systematic effects, in this work we investigate the bias introduced by modelling assumptions.
In particular, we consider the reconstruction of the mass of galaxy clusters from convergence maps employing spherical mass density
models. We made use of The Three Hundred simulations, selecting clusters in the same redshift and mass range as the NIKA2
Sunyaev-Zel’dovich Large Programme sample: 3 ≤ M500/1014 M� ≤ 10 and 0.5 ≤ z ≤ 0.9. We studied different modelling and
intrinsic uncertainties that should be accounted for when using the single cluster mass estimates for scaling relations. We confirm that
the orientation of clusters and the radial ranges considered for the fit have an important impact on the mass bias. The effect of the
projection adds uncertainties to the order of 10–16% to the mass estimates. We also find that the scatter from cluster to cluster in the
mass bias when using spherical mass models is less than 9% of the true mass of the clusters.

Key words. dark matter – methods: numerical – galaxies: halos – galaxies: clusters: general

1. Introduction

The distribution of galaxy clusters in mass and redshift is a
key tool for estimating cosmological parameters (Vikhlinin et al.
2009; Planck Collaboration XX 2014; Costanzi et al. 2019).
Nevertheless, the mass of clusters is not an observable quan-
tity and has to be estimated under several hypotheses from
observations.

Firstly, some methods assume that galaxy clusters are
in hydrostatic equilibrium (HSE) and combine intra-cluster
medium (ICM) observables, such as the X-ray emission and/
or the Sunyaev-Zel’dovich (SZ) effect (Sunyaev & Zeldovich
1972; Planck Collaboration XI 2011), to infer the HSE mass
(Mroczkowski et al. 2009; Adam et al. 2015; Ruppin et al. 2018;
Kéruzoré et al. 2020; Eckert et al. 2022a; Muñoz-Echeverría
et al. 2023). Secondly, others relate the velocity dispersion of the
galaxies in the cluster to its total mass (Aguado-Barahona et al.
2022; Biviano & Girardi 2003). Thirdly, the lensing effect on
background sources due to the gravitational field of the clus-
ter can be used to reconstruct the mass (Merten et al. 2015;

Zitrin et al. 2013). Each method is known to bias the results dif-
ferently (Pratt et al. 2019) due to instrumental limits or depar-
tures from the assumed hypotheses, and comparison works mak-
ing use of different observational results try to understand those
issues (e.g. Sereno & Ettori 2015).

However, other biases are intrinsic to cluster physics and
geometry and need to be quantified from simulations. Simula-
tions allow one to compare the three-dimensional properties of
clusters, needed for cosmological studies, to those inferred from
projected maps.

The orientation of clusters is known to affect the mass recon-
struction. As shown in Oguri et al. (2009), Oguri & Blandford
(2009), Hennawi et al. (2007), Meneghetti et al. (2010a),
Gralla et al. (2011), and Euclid Collaboration (2024), when
clusters are elongated along the line of sight, masses are
overestimated. The contrary happens when the major axes
of clusters are on the plane of the sky. Thus, the projections
through which clusters are observed impact their mass esti-
mates. In Meneghetti et al. (2014), the authors explored the
impact of projection effects by using the MUSIC-2 simulations
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(Sembolini et al. 2013; Biffi et al. 2014), that are N-body
MultiDark simulations1 where baryons were added using
smoothed-particle hydrodynamics (SPH) techniques on the dark
matter, in the non-radiative flavour and without accounting for
the energy feedback from active galactive nuclei (AGN). The
authors estimated the mass by fitting different density models
to the spherical mass density profiles of the clusters as well
as to the projected mass maps. Overall, masses reconstructed
from projected maps are ∼13−14% more scattered than those
estimated from the fit of three-dimensional density profiles and,
according to this work, masses estimated from projected data
are on average under-estimated by 5%. They affirmed, as in
Giocoli et al. (2012a), that this bias is due to the orientation of
clusters, which would be preferably elongated on the plane of
the sky. Lensing observations give an estimate of the projected
matter density distribution; therefore, the difficulty resides in
recovering precise three-dimensional profiles.

The prolateness was also presented in Giocoli et al. (2012a)
as a source of bias. According to simulations in the cold dark
matter (CDM) framework (Shaw et al. 2006), clusters are more
frequently prolate systems than oblate-shaped. In addition, the
presence of substructures was found in Giocoli et al. (2012a) as
the second contributor to the mass bias, after halo triaxiality.

The model chosen for the mass reconstruction can also be
a source of bias. In Meneghetti et al. (2014), the authors used
the Navarro-Frenk-White (NFW, Navarro et al. 1996), gener-
alised Navarro-Frenk-White (gNFW, Nagai et al. 2007; Zhao
1996), and Einasto (Einasto 1965) profile models to fit mass
density radial profiles in ranges between 0.02Rvir and R200. We
note that Rvir is the virial radius of the cluster (Peebles 1980;
Bryan & Norman 1998) and R200 is the radius at which the mean
density of the cluster is 200 times the critical density of the
Universe2.

They concluded that, as expected, models with three param-
eters (gNFW and Einasto) fit the density profile better than
those with two (NFW). An important projection effect was
also found regarding modelling: not all clusters that have den-
sity profiles following a NFW shape in three dimensions have
a NFW-like density when projected (Meneghetti et al. 2014).
In Euclid Collaboration (2024), the authors created Euclid-like
weak lensing observables from The Three Hundred simula-
tion shear maps (see Sect. 2.2.1 for more details on the sim-
ulations). By fitting smoothly truncated NFW (tNFW) density
models (Baltz et al. 2009) to these data, they concluded that
the chosen truncation radius in the model impacts the bias of
reconstructed masses. In addition, they showed that the bias at
R200 and its relative uncertainty are smaller if the concentration
parameter is fixed, namely at c200 = 3.

Moreover, as presented in Rasia et al. (2012), another reason
to explain the bias is the approach used to select the sample. For
clusters selected according to their X-ray luminosity, the recon-
structed concentration-mass relation has a larger normalisation
and steeper slope than the genuine relation (Meneghetti et al.
2014; Rasia et al. 2013). The reason behind this is that, for a
given mass, the most luminous clusters are the most concen-
trated ones. On the contrary, if clusters are chosen for their strong
lensing signal, they are preferentially elongated along the line
of sight (Meneghetti et al. 2010a; Giocoli et al. 2014) and, as

1 www.MultiDark.org
2 The M∆ and R∆ are the mass and the radius where the mean density
of the cluster satisfies the following: M∆(<R∆)/ 4

3πR3
∆

= ∆ρcrit. We note
that ρcrit is the critical density of the Universe at the cluster redshift,
ρcrit = 3H(z)2/8πG, with H(z) being the Hubble function.

a consequence, the masses obtained from projected maps are
overestimated.

Many are the effects at the origin of the bias and the scat-
ter of the weak lensing masses of clusters. As summarised in
Lee et al. (2023) and references therein, assuming a NFW pro-
file and a concentration-mass relation can introduce uncertainties
in the mass from 10% to 50% due to non-sphericity of clusters,
structures along the line of sight, miscentring and halo concen-
tration. Regarding the concentration-mass relation, from an anal-
ysis of mock galaxy cluster lenses created with the MOKA3 code
(Giocoli et al. 2012a,b) concluded that the amplitude of the rela-
tion is lower when derived from lensing analyses, therefore, from
projected mass tracers, than from the three-dimensional studies.

In Rasia et al. (2012), 20 haloes simulated to mimic Subaru
observations (Fabjan et al. 2011) were used with three projec-
tions per cluster. By fitting a NFW model to the reduced tan-
gential shear profiles they concluded that the masses at R2

500 are
biased low by ∼7−10% with a scatter of 20%. The lensing analy-
sis based on simulations in Becker & Kravtsov (2011) also con-
cluded that, including shape noise only, these mass estimates are
biased by ∼5−10% with a 20–30% scatter. In the same line, the
weak lensing analysis in Euclid Collaboration (2024) derived an
average 5% mass bias at R200, with the bias for a given cluster
differing by up to 30% depending on the orientation of the pro-
jection of the cluster observation.

Giocoli et al. (2012a) investigated also the dependence of the
bias with redshift and found very little evolution. Quite the oppo-
site, they showed that the radial range chosen to fit the density or
mass profile model has an important impact on the bias. Accord-
ing to Euclid Collaboration (2024), the underestimation of clus-
ter masses in Euclid-like weak lensing reconstructions is more
important at higher redshift, modulated by the number density
of background sources.

Some works compared also the uncertainties of masses recon-
structed from total matter observables to those estimated from
gas observables. They showed, on the one hand, the small impact
of orientation in gas observables with simulated SZ and X-ray
data (Buote & Humphrey 2012) and, on the other hand, the irre-
ducible non-sphericity of haloes that affects the intrinsic scatter
of the weak lensing masses, tracers of the total matter distribution
(Becker & Kravtsov 2011). In the same line, Meneghetti et al.
(2010b) suggested that lensing masses are three times more scat-
tered (∼17−23% of scatter) than X-ray estimates. The error bud-
gets given in Pratt et al. (2019) indicate that the assumption of
spherical symmetry affects HSE masses at the level of a few
percent, while lensing masses are affected about 10% due to
mass modelling. According to Rasia et al. (2012), weak lensing
biases are at least twice more scattered than X-ray outcomes.

In this work, we aim at quantifying and comparing the differ-
ent contributions to the bias and its scatter. We perform the anal-
ysis in the framework of the NIKA2 Sunyaev-Zel’dovich Large
Programme (LPSZ, Sect. 2.1) with simulated clusters from The
Three Hundred project (Sect. 2.2.1, Cui et al. 2018). Given
the importance of the sample selection, we use clusters that are
twins to those from the LPSZ (Sect. 2.2.2), so that at least the
mass and redshift distribution is representative of the real sam-
ple. We focus the work on total mass observables, but we also
compare the results of gas observables of clusters. We compare
all the masses at R500 to be consistent with the LPSZ outcomes.

In a recent analysis in Euclid Collaboration (2024), the
same The Three Hundred simulated data were used to study

3 https://cgiocoli.wordpress.com/research-interests/
moka/
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the bias of weak lensing mass reconstructions as part of the
preparation work for the Euclid mission (Laureijs et al. 2011).
Given the observational framework they wanted to mimic, in
Euclid Collaboration (2024) the simulated data were converted
into a Euclid-like weakly lensed galaxy distribution. With these
galaxies, and accounting for the dispersion of the shapes of
galaxies, they built the excess surface mass density profiles.
The latter were fitted with the aforementioned tNFW model
to reconstruct the three-dimensional mass density profiles of
clusters. This paper does not aim to reproduce such observa-
tional effects and comparisons to Euclid Collaboration (2024)
are valuable to elucidate the origin of some of the observed
effects in that work. In addition, this paper differs from the work
in Euclid Collaboration (2024) regarding the considered cluster
sample and the overdensity of the reconstructed masses. While
we restrict our analysis to a subsample of The ThreeHundred
clusters in the redshift range covered by the LPSZ programme
and evaluate the masses at R500, in Euclid Collaboration (2024)
the authors studied the bias at R200 for all The ThreeHundred
clusters at 9 different redshifts between z = 0.12 and z =
0.98. That being so, the complementarity to the analysis in
Euclid Collaboration (2024) is clear.

This paper is organised as follows. In Sect. 2 we present
the framework of this work: the NIKA2 LPSZ, The Three
Hundred project and the clusters selection. The different data
used are presented in Sect. 3. In Sect. 4 we describe the method
followed to reconstruct the mass from convergence maps and
the related bias. The different contributions to the scatter of the
bias are discussed in Sect. 5. Finally, in Sect. 6 we compare the
properties of mass biases obtained from total mass observables
to gas observables used to reconstruct masses under hydrostatic
equilibrium hypothesis. Conclusions are given in Sect. 7 together
with the summary of our main results.

2. The Three Hundred-NIKA2 LPSZ samples

2.1. The NIKA2 Sunyaev-Zel’dovich Large Programme

The NIKA2 Sunyaev-Zel’dovich Large Programme or LPSZ
(Perotto et al. 2022; Mayet et al. 2020) is a high angular res-
olution follow-up of ∼45 clusters of galaxies. These clusters
were detected with Planck (Planck Collaboration XVIII 2015)
or the Atacama Cosmology Telescope (ACT, Hasselfield et al.
2013) and were chosen to cover a wide range of masses (3 ≤
M500/1014 M� ≤ 10) at intermediate to high redshift (0.5 ≤
z ≤ 0.9). The LPSZ benefits from high angular SZ observa-
tions with the NIKA2 camera (Adam et al. 2018; Bourrion et al.
2016; Calvo et al. 2016) and X-ray data obtained with the XMM-
Newton and Chandra satellites.

By combining SZ and X-ray data, one of the objectives of
the LPSZ is to re-estimate precisely the HSE M500 mass of the
galaxy clusters in the sample by reconstructing resolved hydro-
static mass profiles. This will allow us to build the relation
between M500 and the SZ signal for clusters at redshifts above
0.5 and to compare it to the relations measured at lower redshifts
(Arnaud et al. 2010, hereafter A10).

However, the HSE hypothesis used to derive mass profiles
is known to bias low the estimates (Pratt et al. 2019). This
bias is currently being investigated with different approaches
(Gianfagna et al. 2021; Salvati et al. 2019; de Andres et al.
2022), since increasing the value of the HSE mass bias
is considered as a possible solution to release the tension
between the cosmological results obtained from cluster counts
and CMB measurements (Planck Collaboration XXI 2013;

Planck Collaboration XXIV 2015; Salvati et al. 2018). To cor-
rect for such bias, mass measurements that do not rely on
the hydrostatic equilibrium assumption are needed and lensing
masses can be used for this purpose.

To tackle this issue for the NIKA2 LPSZ hydrostatic
masses, we compared the HSE masses to lensing ones using
the Cluster Lensing And Supernova survey with Hubble
(CLASH, Postman et al. 2012) data for several clusters
(Muñoz-Echeverría et al. 2022, 2023; Ferragamo et al. 2022).
Our analyses were based on the publicly available conver-
gence maps reconstructed from weak and strong lensing data
(Zitrin et al. 2015). As described in Sect. 4.1, we fitted density
models to those convergence maps, being able to get, from the
best-fit density profiles, the lensing masses of clusters. In this
work, we follow the same method on simulated clusters and we
mainly focus our study on the biases that arise in the reconstruc-
tion of lensing masses from convergence maps.

2.2. Twin samples

2.2.1. The Three Hundred project

This work is based on The Three Hundred project4 galaxy
cluster simulations. The Three Hundred project consists of
hydrodynamical re-simulations of the 324 Lagrangian regions
centred on the most massive galaxy clusters identified in
the MultiDarkPlanck2 box of side length 1 h−1 Gpc of the
MultiDark5 dark-matter-only simulation. The regions, of radius
15 h−1 Mpc and identified at z = 0, contain clusters with virial
masses above 1.2 × 1015 M� and dark-matter particles of mass
1.5 × 109 h−1 M�. The simulation assumes a cosmology based
on the Planck Collaboration XIII (2016) results: h = 0.6777,
n = 0.96, σ8 = 0.8228, ΩΛ = 0.692885, Ωm = 0.30711, and
Ωb = 0.048206. This is also the cosmological model assumed in
the rest of this paper.

The selected dark-matter-only volumes were mapped back to
the initial conditions, dark matter particles were split into dark
matter and gas particles and the regions were re-simulated with
three hydrodynamical codes: GADGET-MUSIC (Sembolini et al.
2013), GIZMO-SIMBA (Davé et al. 2019; Cui et al. 2022), and
GADGET-X (Rasia et al. 2015). We use the outputs coming from
the latter, which contains very complete baryonic physics mod-
els (Table 2 in Cui et al. 2018) with dark matter, gas, stellar,
and black hole particles. Previous works based on this code
have shown the agreement between simulations and observations
regarding: gas density and entropy profiles (Rasia et al. 2015),
pressure profiles (Planelles et al. 2017), and gas density and tem-
perature at around R500 (Truong et al. 2018).

2.2.2. Twin samples definitions

For our analysis, we used the clusters from The Three
Hundred project simulations selected to constitute the twin
samples of the LPSZ. As described in Paliwal et al. (2022), the
clusters were chosen to cover the same redshift range as the
LPSZ, that is, 0.5 . z . 0.9. Amongst all the clusters in The
Three Hundred satisfying this condition, we chose the snap-
shots 101 at z = 0.817, 104 at z = 0.700, 107 at z = 0.592,
and 110 at z = 0.490. Three different samples were generated
by matching properties of the clusters in the simulation to those
known for the clusters in the LPSZ. The three twin samples are:

4 https://the300-project.org
5 Publicly available at the https://www.cosmosim.org database.
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Table 1. Range of masses covered by the clusters in each twin sample
and the median value in brackets.

Twin sample M200 [1014 M�] M500 [1014 M�]

TSTot−M 4.19–16.38 (8.43) 2.99–11.08 (5.68)
TSHSE−M 4.40–16.95 (8.39) 3.23–11.73 (6.03)
TSY 5.43–17.48 (9.06) 3.94–12.64 (6.62)

Notes. We give the masses at overdensities of ∆ = 200 and 500.

(1) TSTot−M, the total mass twin sample, in which the clusters in
the simulation are selected so that the total M500 from the simula-
tion matches with the M500 mass of the LPSZ clusters according
to Planck or ACT catalogues (Planck Collaboration XVIII 2015;
Hilton et al. 2021), (2) TSHSE−M, the hydrostatic mass twin sam-
ple, in which the hydrostatic mass of simulated clusters, MHSE

500 ,
is matched with the Planck or ACT masses and (3) TSY , the twin
sample based on the Y500 parameter, the integrated SZ signal
within R500.

This selection gives three twin samples with 45 clusters
(Fig. 2 in Paliwal et al. 2022). We present in Table 1 the range of
masses covered by the clusters in each twin sample. Some of the
clusters being repeated, we have altogether 122 different objects.
In this work, we use all the clusters from the three twin samples
simultaneously. The effects studied in the following do not vary
from one twin sample to another and, on the contrary, accounting
for the 122 clusters improves significantly our statistics.

3. The synthetic datasets

In this section we present the data generated from the simula-
tions and exploited in our analyses.

3.1. Spherical thermodynamical profiles

For comparison sake, we make use of the spherical three-
dimensional profiles of thermodynamical properties extracted
from the simulations. In particular, we use the ICM pressure
and total mass profiles. The profiles were computed accounting
for particles in concentric shells and spheres (two-dimensional
and three-dimensional profiles, respectively) centred at the max-
imum density peak, with radial bins starting at 10 kpc from the
centre and increasing radii by 10% (as in Gianfagna et al. 2022).

The gas pressure profiles were extracted considering hot gas
particles (i.e. only particles with temperature above 0.3 keV)
and following Eq. (1) in Planelles et al. (2017), with the cor-
rection for SPH simulations proposed in Planelles et al. (2017)
and Battaglia et al. (2015). The total mass profiles account for
the mass of all the particles (dark matter, hot and cold gas, stars
and black holes) and are used to define the true R500 and M500
of clusters. Profiles at r . 0.025 × R500 are not reliable since
less than 100 particles are used to measure the thermodynamical
quantities at these radial ranges.

In Fig. 1 we present the normalised pressure and mass den-
sity profiles for all the clusters in our sample. The pressure pro-
files have been normalised with respect to the P500 obtained from
Eq. (5) in A10. Following Fig. 3 in Gianfagna et al. (2021), we
plot in Fig. 1 the “universal” pressure profile from A10 as well
as the profile obtained from the combination of XMM-Newton
and Planck data in Planck Collaboration Int. V (2013), hereafter
P13. The density profiles were obtained by dividing the mass in
each spherical shell by the volume of the shell and normalised
with the critical density of the Universe at the corresponding

redshift of each cluster2. The panels in Fig. 1 show the self-
similarity of the clusters regarding the gas pressure distribution,
as well as the total matter density distribution. Clusters appear
consistent with the self-similar hypothesis.

3.2. Projected observable maps

3.2.1. Projected total mass: κ-maps

To study the projected total mass of galaxy clusters, we use
the convergence maps or κ-maps produced as described in
Herbonnet et al. (2022) and Euclid Collaboration (2024). These
convergence maps were generated together with shear maps to
mimic the lensing effect due to the simulated clusters on back-
ground sources. The convergence of a lens at a position θ is
defined as

κ(θ) =
Σ(θ)
Σcrit

, (1)

where Σ(θ) is the projected mass density of the cluster at θ and
Σcrit the so-called critical surface density:

Σcrit =
c2

4πG
DS

DLDLS
· (2)

Here DS , DL, and DLS are the angular diameter distances
between the observer and the background source, the observer
and the lens (the cluster), and the source and the lens,
respectively.

To create the convergence maps, first the Σ-maps were
obtained by projecting, within a volume of depth 10 Mpc, the
masses of all the particles of the clusters along different axes.
Then, these Σ-maps were divided by Σcrit, assuming all back-
ground sources to be at z = 3. For each cluster, maps of
6× 6 Mpc2 were produced, centred on the minimums of the grav-
itational potential wells. To avoid boundary errors, final maps are
5× 5 Mpc2 with 2048× 2048 pixels, which gives different angu-
lar resolution pixels for different redshift clusters.

Six different maps are available for each cluster, correspond-
ing to different projection axes. Three maps (hereafter 0, 1,
and 2) are obtained from the projection along the x, y, and z
orthogonal axes of the simulation. In principle, they correspond
to random directions with respect to the morphology of the clus-
ters. The other three (0_pr_axes, 1_pr_axes, and 2_pr_axes) are
aligned with the principal axes of the clusters regarding their
moments of inertia (Knebe et al. 2020).

3.2.2. Sunyaev-Zel’dovich effect: y-maps

The gas in the ICM of galaxy clusters is investigated starting
from the y-maps. The thermal SZ effect due to galaxy clusters
is characterised by the Compton parameter, proportional to the
integral along the line of sight of the thermal pressure Pe in
the ICM,

y =
σT

mec2

∫ +∞

0
Pedl =

σTkB

mec2

∫ +∞

0
neTedl, (3)

with σT, kB, me, and c the Thomson cross section, the Boltzmann
constant, the electron rest mass, and the speed of light, respec-
tively. Assuming the ICM behaves as an ideal gas, the Compton
parameter is also directly proportional to the integral of the elec-
tron number density ne and the electron temperature Te.

As described in Cui et al. (2018) and previously done in
Sembolini et al. (2013) and Le Brun et al. (2015), in The Three
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Fig. 1. Normalised gas pressure (left) and total matter mass density (right) spherical profiles for all the clusters in The Three Hundred-NIKA2
LPSZ twin samples. We also plot the “universal” pressure profile from the X-ray analysis in A10 and the X-ray and SZ analysis in P13. All
profiles are drawn with respect to the radii normalised by the R500 corresponding to each cluster. The grey shaded areas indicate the regions below
0.025 × R500 that are not numerically robust.

Hundred project this integration is converted into a summa-
tion6 over the gas particles in the line of sight and within a
2 × R200 depth volume,

y =
σTkB

mec2dA

Ngas part.∑
i=0

Te,iNe,iW(r, hi). (4)

Here the electron number density ne is represented as the number
of electrons in a given gas particle, Ne, divided by its spatial
volume dV (dV = dldA): ne = Ne/dV = Ne/dA/dl. In Eq. (4)
W(r, hi) corresponds to the SPH smoothing kernel used to smear
the signal of each particle to the projected pixels, with smoothing
length hi (Cui et al. 2018).

For each cluster, there are 29 y-maps available, projected
along the x, y, and z main axes of the simulation, plus along other
26 random axes. We analysed only the projections in common
with the κ-maps, hence the three main axes projections. Centred
on the projected maximum density peak of the clusters, maps
have 1920 × 1920 pixels of 5′′ angular resolution, going up to
14−30 × R200.

3.2.3. Projected gas mass: Gas mass maps

A different way to characterise the distribution of the gas in the
ICM is to use projected gas mass maps. They were generated as
the Σ-maps (Sect. 3.2.1), but accounting only for the gas parti-
cles along the line of sight. Final maps are also 5 × 5 Mpc2 with
2048 × 2048 pixels and projected along the three main axes of
the simulation.

4. Total mass reconstruction from κ-maps

Just as in Meneghetti et al. (2014), in this work we do not
consider any systematic effect, such as the accuracy of galaxy
shape measurements or photometric redshifts, that may affect

6 Using the publicly available Python package: https://github.
com/weiguangcui/pymsz

lensing analyses. Those effects can introduce additional uncer-
tainties that require separate investigations (Bahé et al. 2012;
Euclid Collaboration 2024). We restrict our work to the effects
that arise from the reconstruction of three-dimensional quantities
from projected data.

4.1. Mass reconstruction procedure

As aforementioned, to estimate the total mass of the clus-
ters from projected maps we followed the procedure used
in Ferragamo et al. (2022) and Muñoz-Echeverría et al. (2022,
2023). In these works convergence maps from the CLASH
dataset are used to reconstruct the lensing mass of galaxy clus-
ters: κ-maps are converted into projected mass density maps, Σ,
and mass density models are fitted to the radial profile of Σ,
which allows one to reconstruct the lensing mass.

From the convergence maps described in Sect. 3.2.1, we
obtain projected Σ-profiles by radially averaging the values in
the map, starting from their central pixel. Uncertainties are com-
puted from the dispersion in each radial bin to account for non-
circular features in the map. In a previous work Giocoli et al.
(2012a) showed the important impact of the chosen radial range
to perform the fit. To build the excess surface mass density pro-
files in Euclid Collaboration (2024) the authors used 22 logarith-
mically spaced bins, spanning from 0.02 to 1.7 h−1 Mpc from the
cluster centre.

We decided to consider instead a radial range in which the
fractional errors of the Σ-profiles are comparable to the uncer-
tainties obtained from data-based convergence maps. In the
left panel in Fig. 2, we show the variance of binned profiles
obtained from convergence maps. In grey we present the pro-
files obtained from the simulated convergence maps. We aim
to assess the lensing mass reconstruction of the NIKA2 LPSZ
clusters (Ferragamo et al. 2022; Muñoz-Echeverría et al. 2022,
2023) based on the CLASH convergence maps (Zitrin et al.
2015) obtained with the highest quality lensing data. Thus, we
show in red, green, blue, and yellow in Fig. 2 the variance of
the convergence profiles obtained from CLASH convergence
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Fig. 2. Variance of the convergence profiles (left) and fractional error of the Σ-profiles (right) calculated from convergence maps. In grey we show
the profiles for the simulated clusters in The Three Hundred-NIKA2 LPSZ samples. Red, green, blue, and yellow profiles correspond to CL
J1226.9+3332, PSZ2 G144.83+25.11, PSZ2 G228.16+75.20, and MACS J1423.8+2404 clusters, respectively, with data from the CLASH conver-
gence maps (Zitrin et al. 2015) and uncertainties computed following Muñoz-Echeverría et al. (2023; sample defined in Muñoz-Echeverría et al.
2022). Solid and dashed lines differentiate the profiles for the CLASH convergence maps reconstructed assuming the Light-Traces-Mass (LTM)
and the Pseudo-Isothermal Elliptical Mass Distribution with an elliptical NFW (PIEMD+eNFW) models, respectively. Vertical dotted lines in the
right panel indicate the minimum and maximum of the used radial range.

maps for the four clusters (with two convergence map models
for three of them) analysed in Muñoz-Echeverría et al. (2022,
2023) and Ferragamo et al. (2022; for more details on the uncer-
tainties of the profiles see Muñoz-Echeverría et al. 2023). We
observe an overall agreement, with possible differences in the
variance trends in regions <0.02 arcmin, where all simulation
profiles tend to rapidly decrease.

In the right panel in Fig. 2 we compare the fractional errors
of the Σ-profiles from the simulation and from CLASH maps.
The agreement is again very good, but in the region between
∼0.02 and ∼0.05 arcmin the observed errors tend to be larger
than the average simulated errors. For this reason, we restricted
the fit of the Σ-profiles to the radii above 0.1′, removing the radial
ranges where the fractional uncertainties of simulated Σ-profiles
are systematically smaller than data-based error bars and, there-
fore, unrealistic. Regarding the upper limit, we restricted the fit
of the profiles to 2′, which is the maximum radial extent of con-
vergence maps from Zitrin et al. (2015).

To model the Σ-profile we used the two-parameter NFW
mass density model:

ρNFW(r) =
ρs

(r/rs)(1 + r/rs)2 =
c3

∆
∆ρcrit/3I(c∆)

(rc∆/R∆)(1 + rc∆/R∆)2 , (5)

and the three-parameter Einasto model,

ρEin(r) = ρs exp
{
−

2
α

[(
r
rs

)α
− 1

]}
, (6)

and fitted their projected mass density profiles to the Σ-profiles
from the convergence maps:

Σmodel(R) = 2
∫ +∞

0
ρmodel

(√
r2 + R2

)
dr. (7)

Here r is the radius of three-dimensional spherical profiles while
R is used for the projected profiles. In Eq. (5), c∆ is the concen-
tration parameter that corresponds to R∆, c∆ = R∆/rs, and I(c∆)

is a function that depends only on c∆ and the shape of the den-
sity profile (Eq. (15) in Aguena et al. 2021), which for the NFW
model gives

I(c∆) = ln(1 + c∆) −
c∆

1 + c∆

· (8)

The parameters for the Einasto density model (Eq. (6)) are rs, ρs,
and α: the scale radius, the characteristic density, and the shape
parameter, respectively.

The fits were performed via a Markov chain Monte
Carlo (MCMC) analysis using the emcee Python package
(Foreman-Mackey et al. 2019; Goodman & Weare 2010). In
addition, we made use of the profiley Python package7, which
contains already tested (Madhavacheril et al. 2020) functions
that describe NFW and Einasto spherical density profiles, as well
as the corresponding line of sight projected profiles. Regarding
the prior ranges of the model parameters, we considered uni-
form priors (as in Ettori et al. 2019) wide enough to cover all
possible results found in the literature. For the NFW model we
took c200 = U(0.1, 15) and rs = U(0.1, 6) Mpc, which are safe
ranges in view of the concentration and mass values obtained
for observational results in Ettori et al. (2019) and Umetsu et al.
(2020). For Einasto we considered rs = U(0.05, 3) Mpc, ρs =
U(1010, 1018) M�Mpc−3, and α = U(0, 5) to make sure to
cover broadly the variety of possible results (Ettori et al. 2019;
Eckert et al. 2022b). Once the fit was performed, we verified that
the modelled Σ-profile is a good representation of the data fol-
lowing a goodness of fit criterion defined as

Fit quality = median(|Σdata − Σmodel|/σΣdata ), (9)

where the median is estimated over all the radial bins and
posterior distributions of the model. Bad fits were rejected if
Fit quality > 1. This means that if the median of the absolute

7 https://profiley.readthedocs.io/en/latest/index.html
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Fig. 3. Projected mass density profiles (empty markers) for the six convergence maps for the 0306 cluster in the snapshot 101 (z = 0.817).
The orange and purple profiles show the fit with NFW and Einasto models, respectively. We give the mean profiles with 1σ contours. From left
to right and top to bottom we present the 0, 1, and 2 random projections and 0_pr_axes, 1_pr_axes, and 2_pr_axes principal moment of intertia
projections. The vertical cyan line shows the true R500 of the cluster.

difference between the Σ-profile data bins and the model with
respect to the uncertainties is larger than unity, the fit is not
satisfactory.

After the fit, mass profiles were obtained by computing for
each sample of parameters the corresponding profile. For NFW
model, the spherical mass profile is described by,

MNFW(<r) = 4πρsr3
s

[
1

1 + r/rs
+ ln(1 + r/rs) − 1

]
= 4πc3

200200ρcrit/3I(c200)(R200/c200)3[
1

1 + rc200/R200
+ ln(1 + rc200/R200) − 1

]
. (10)

And for Einasto,

MEin(<r) =
4πρsr3

s

α
e2/α

(
α

2

)3/α
γ

[
3
α
,

2
α

(
r
rs

)α]
, (11)

where γ is the incomplete lower gamma function:

γ(a, x) =

∫ x

0
ta−1e−tdt. (12)

Finally, from the reconstructed mass profiles we computed
the Mκ

500 mass of the cluster at its corresponding Rκ
500 (Fig. A.2).

This procedure was repeated for each κ-map, therefore, sev-
eral times for each cluster, which gave different Mκ

500 estimates
affected by the projection effect and the choice of the density

model. As an example, in Fig. 3 we present the Σ-profiles for
the six projections of one cluster (number 0306) at z = 0.817.
The orange and purple lines show the mean profiles (solid lines)
and 1σ error bars (shaded areas) obtained from the posterior dis-
tributions of NFW and Einasto fit parameters. In the 2_pr_axes
projection the cluster is observed along its most elongated axis.
For this reason, the centre appears very massive and the den-
sity in the outskirts drops fast. We verified that the sizes of the
uncertainties for these Σ-profiles are compatible with the ones
obtained from the convergence maps built by combining weak
and strong lensing data. Nevertheless, they do not necessarily
correspond to what we would expect from other observations.
For instance, in weak lensing mass density reconstructions error
bars tend to be larger in the centre and smaller in the outskirts of
clusters.

We repeated the analysis for all the clusters in our sample
and for the following we take, amongst all the Σ-profile fits,
the results that pass the quality criteria in Eq. (9) for both the
NFW and Einasto fits. As explained in Sect. 5.2, in the rest of
the study we only consider the three projections along the x, y,
and z orthogonal axes of the simulation.

We study the correlations between the best-fit values of
the posterior distributions of model parameters for all the clus-
ters (shown in Fig. A.1). An anticorrelation between Einasto’s
ρs and rs parameters is clearly noticeable, with a Pearson
correlation coefficient of −0.56. Contrary to some studies
(López-Cano et al. 2022, and references therein) showing a
decreasing tendency of the concentration, c200, with the mass,
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Fig. 4. Mass bias for masses inferred from fitted κ-maps with respect to M500 per cluster. Each data point corresponds to the mean bias of a cluster
for a given random projection (0, 1 or 2) with error bars showing the 1σ uncertainty. Results for the Einasto model have been artificially shifted in
mass for visualisation purposes. The horizontal orange and purple dashed lines show the mean for all the results for NFW and Einasto, respectively.
The black line indicates the zero.

M200, we do not find any significant correlation. In Cui et al.
(2018) the concentration-mass relation of z = 0 clusters from
The Three Hundred simulation is presented, showing that the
relation is flatter for GADGET-X clusters than for GADGET-MUSIC.
Some works (e.g. Oguri et al. 2009) also show a dependence of
the concentration parameter with redshift, but our results do not
present any clear evolution along cosmic time (the Pearson cor-
relation coefficient between the redshift and the concentration is
of r = −0.09). According to Meneghetti et al. (2014), the red-
shift evolution of the concentration-mass relation is weak for the
MUSIC-2 simulation.

4.2. Mass bias from convergence maps

We define the mass bias as the relative distance of each recon-
structed mass, Mκ

500 (as above-mentioned, evaluated at the Rκ
500

obtained from the reconstructed mass profile), to the true mass
of the cluster, M500:

bκ = (M500 − Mκ
500)/M500. (13)

We present in Fig. 4 the bias estimated from all the analysed
maps with respect to the true M500 for each cluster. Orange and
purple markers show the bias and uncertainties measured for the
NFW and Einasto mass density models, respectively, with the
uncertainties from the fits. The horizontal orange line shows the
mean bias for NFW, while the purple corresponds to Einasto.
Einasto gives, on average, a less biased estimate of the mass of
the clusters. The median biases for NFW and Einasto reconstruc-
tions are med(bκ) = 0.097 and 0.086, respectively. We identify
the origin of the bias from a thorough examination of the Σ-
profiles presented in Sect. 4.1.

We present in Fig. 5 the relative difference between the fit
of the Σ-profile with NFW and Einasto models and the profiles
measured from the convergence maps. We observe that for both
models the mass density profiles are systematically underesti-
mated for the radial ranges close to R500. This is then trans-
lated into biased mass profiles and, consequently, biased M500
estimates.

One could think of improving the fits either by adapting the
radial range ad hoc to get a less biased result or by choosing
a more flexible density model. As aforementioned, this type of
studies have already been done in the literature (Meneghetti et al.
2014; Giocoli et al. 2012a) and we do not go through those
refinements in this work. In Cui et al. (2018), the authors con-
cluded that the NFW model is a good representation of the
spherical mass density profile of the clusters in The Three
Hundred simulation, even considering different inner radii. But
in Euclid Collaboration (2024), the authors showed that The
Three Hundred clusters do not follow perfect NFW density
profiles.

In the left panel in Fig. 6 we present the mean bias per cluster
obtained from the NFW density fits with respect to the mean bias
from the Einasto fits. There is a strong correlation between the
NFW and Einasto biases, with a Pearson correlation coefficient
of 0.86. This confirms that the impact of the model choice is not
enough to blur the information in the convergence maps.

We present in Fig. 7 the bias measured from the maps
projected along the three axes of inertia and verify that the
orientation of the cluster affects directly the bias: when the clus-
ter is elongated along the line of sight (2_pr_axes) the recon-
structed mass is on average overestimated and when the major
axes are on the plane of the sky (0_pr_axes), underestimated.
In Herbonnet et al. (2022), the authors investigated the relation
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Fig. 5. Relative differences of Σ-profiles between the fits with NFW
(top) and Einasto (bottom) models and the profiles measured from the
convergence maps. Solid lines show the median.

Fig. 6. Mean bias of the three projections (left) and σ2
b,3 projections (right)

per cluster for Einasto against NFW reconstructions. Each dot corre-
sponds to one cluster. We give the Pearson correlation coefficient for
the values given in each panel.

between the orientation of haloes and their brightest cluster
galaxy (BCG). They found that the major axes of haloes and
BCGs are aligned with an average separation of ∼20◦. For this
reason, having access to the orientation of the BCG would pro-

Fig. 7. Mass bias for NFW (orange) and Einasto (purple) fits of the Σ-
profiles when aligned with the principal axes of the clusters regarding
their moments of inertia. Solid lines correspond to 0_pr_axes, dashed
lines to 1_pr_axes, and dotted lines to 2_pr_axes. We give the value of
the median and the 16th and 84th percentiles. Shaded areas represent
the 1σ regions of the bias obtained for all the clusters with the three
random projections (Fig. 4).

vide a way to improve the knowledge of the orientation of the
cluster, and therefore, of its mass reconstruction.

Given all the mentioned differences between our work and
the analysis in Euclid Collaboration (2024), comparisons to the
latter have to be done with extraordinary care. By fixing the trun-
cation parameter of the tNFW model to t = 3, they obtained that
the weak lensing masses reconstructed for the clusters at redshift
z = 0.22 are on average biased low by ∼7%, with a standard
deviation of 0.24 over the full sample (using the full The Three
Hundred sample of clusters). Assuming also a fixed concentra-
tion parameter c200 = 3 and considering the clusters at redshifts
below z = 0.7, according to Euclid Collaboration (2024), weak
lensing M200 masses are on average underestimated by less than
5%. We observe in Fig. 14 in Euclid Collaboration (2024) that,
for the redshift range considered in our work (0.5 < z < 0.9),
the mean biases on M200 vary from 0% to 20% depending on
the chosen value for the c200 parameter. These results match our
findings at R500. Regarding the impact of the orientation of clus-
ters on the mass bias, in Euclid Collaboration (2024) the authors
concluded that when clusters are oriented along the major and
minor axes, the mass biases are ∼25% larger and smaller, respec-
tively, with respect to the biases for random orientations. There-
fore, their results are completely in line with Fig. 7.

5. Scatter of the mass bias

In the previous section we have been looking at the mean biases
estimated with each model for our full sample. The dispersion
from cluster to cluster and for the different projections of the
same cluster appear to be very important (Fig. 4). In this section
we try to identify and quantify the different effects that contribute
to the scatter of the biases in the reconstruction. For this, we use
an statistical approach and we consider the full sample.

We first define the total variance per model from the scat-
ter of the bias values obtained with the same model for all the
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clusters and all their projections (see Fig. 4):

σ2
b,tot =

1
NchainsNprojectionsNclusters

Nchains,Nprojections,Nclusters∑
i, j,k=1,1,1

(bκi, j,k − 〈b
κ〉)2,

(14)

where Nchains is the amount of chains kept after each fit, Nprojections
is the number of different projections per cluster and Nclusters
the amount of clusters considered. Here 〈bκ〉 is the mean bias
for all the clusters, accounting for all the projections and chains.

We separate this total variance in two main contributions: (1)
the variance from cluster to cluster, σ2

b,cluster−to−cluster, showing
how different are the bias values depending on the cluster, and
(2) the variance of the results for each cluster, due to the different
values depending on the projection,σ2

b,3 projections. So we write (as
in Bartalucci et al. 2023):

σ2
b,tot ∼ σ

2
b,cluster−to−cluster + σ2

b,3 projections. (15)

Here σ2
b,3 projections is the dispersion of the results of three pro-

jections, that for each cluster c is obtained as,

(σ2
b,3 projections)c =

1
NchainsNprojections

Nchains,Nprojections∑
i, j=1,1

(bκi, j,c − 〈b
κ〉c)2,

(16)

where 〈bκ〉c is the mean bias per cluster c, considering the differ-
ent projections and all the chains.

At the same time, in each σ2
b,3 projections per cluster there are

two sources of dispersion that we name: (1) σ2
b,intrinsic proj, which

accounts for the fact that the results obtained from three projec-
tions differ, and, (2) σ2

b,fit that quantifies the uncertainties of the
fits. Therefore, we can write

σ2
b,3 projections ∼ σ

2
b,intrinsic proj + σ2

b,fit. (17)

In the following subsections we study each contribution to the
total scatter.

5.1. Fit uncertainties: σ2
b,fit

The most evident source of scatter is the one related to the model
fitting uncertainties, that is, the scatter propagated from the pos-
terior distributions of the parameters in the fit of the conver-
gence map at one specific projection of one cluster. We define
(σ2

b,fit)proj,c as the variance of the bias values of each map fit
(“proj”) for each cluster (c):

(σ2
b,fit)proj,c =

1
Nchains

Nchains∑
i=1

(bκi,proj,c − 〈b
κ〉proj,c)2. (18)

We give the mean and median values in Table 2 (see Fig. B.1
for their distribution). On average 8% (σ2

b,fit ∼ 0.007) and 9%
(σ2

b,fit ∼ 0.008) error in the mass reconstruction comes only
from the uncertainty in the fit for the NFW and Einasto mod-
els, respectively.

5.2. Scatter from three projections: σ2
b,3 projections

For each cluster three different projections are available and the
variance of the results from the three is the σ2

b,3 projections defined
in Eq. (16). As for the fit uncertainties, we give the mean and

median values in Table 2 (the histograms of the variance for each
cluster, accounting for the posterior distributions of the three
projections together are shown in Fig. B.1). In the right plot
of Fig. 6 we present the σ2

b,3 projections obtained with NFW and
Einasto for each cluster in our sample, showing the correlation
between the variances measured with the different models.

We study this scatter to quantify the uncertainty that should
be added to observational mass reconstructions for which clus-
ters are only observed in one projection. To truly estimate the
projection effect, the dispersion of the masses obtained from
the infinite projections of each cluster would be needed. In
Appendix C we instead compared the scatter obtained from 100
projections with the scatter obtained from the 3 simulation axes
and from the 3 inertial axes and found that using the projections
along x, y, and z (i.e. 0, 1, and 2) returns a more similar scat-
ter level to the 100 projections. The projections along the inertia
axes instead exhibit a significant larger scatter. For this reason,
in the scatter calculations we did not make use of the maps pro-
jected along the inertia axes.

5.3. Intrinsic projection effect: σ2
b,intrinsic proj

For both NFW and Einasto models, there is a contribution to
σ2

b,3 projections that is not explained by the uncertainties on the
fits. We consider that this is due to the real “intrinsic projec-
tion effect” presented in Eq. (17). From the difference between
the mean (and also between the median) values of σ2

b,3 projections

and σ2
b,fit, the intrinsic projection effect is of the order of

∼0.020−0.025. This corresponds to about 14−16% error on the
mass bias and then on M500. We stress that this is true for both
NFW and Einasto, which is comforting, since we are looking
for an intrinsic effect that should depend only on the clusters
themselves.

Model independent intrinsic projection effect. We are also
interested in quantifying the contribution of σ2

b,intrinsic proj without
being affected by modelling effects. For this purpose, we take a
different approach and infer masses directly from the projected
convergence maps. By integrating the Σ-maps up to the true θ500,
we compute directly the total mass of clusters from cylindrical
integration, Mκ,cyl

500 , where tan(θ500) = R500/DA, with R500 the true
radius of the cluster andDA the angular diameter distance at the
cluster redshift. For each cluster we have three different Mκ,cyl

500 ,
one per projected map. The grey histogram in Fig. 8 shows the
variance of the three mass biases per cluster c for all the clusters
in our sample obtained from

(σκ−map
b,intrinsic proj)

2
c =

1
Nprojections

Nprojections∑
j=1

(bκ−map
j,c − 〈bκ−map〉c)2. (19)

On average, the projection effect when integrating the total mass
at a fixed aperture is of the order of (σκ−map

b,intrinsic proj)
2 ∼ 0.01,

therefore, an error of 10% on the mass. The projection effect
computed in this way is close, but not enough, to fully explain
the ∼15% uncertainties obtained from the σ2

b,3 projections − σ
2
b,fit

difference.
An additional term could explain the extra dispersion: while

the masses used to compute σ2
b,3 projections are estimated at

different radii (each Mκ
500 measured at the corresponding Rκ

500),
here all the Mκ,cyl

500 for (σκ−map
b,intrinsic proj)

2 are measured at fixed θ500

per cluster. Therefore (σκ−map
b,intrinsic proj)

2 needs a corrective term to
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Table 2. Mass bias scatters studied in this work.

Name Definition NFW Einasto

σ2
b,fit Eq. (18) 〈σ2

b,fit〉 = 0.0070 〈σ2
b,fit〉 = 0.0080

med(σ2
b,fit) = 0.0056 med(σ2

b,fit) = 0.0055

σ2
b,3 projections Eq. (16) 〈σ2

b,3 projections〉 = 0.0326 〈σ2
b,3 projections〉 = 0.0356

med(σ2
b,3 projections) = 0.0251 med(σ2

b,3 projections) = 0.0253

σ2
b,intrinsic proj Eq. (17) 〈σ2

b,3 projections〉 − 〈σ
2
b,fit〉 = 0.0256 〈σ2

b,3 projections〉 − 〈σ
2
b,fit〉 = 0.0276

med(σ2
b,3 projections) −med(σ2

b,fit) = 0.0195 med(σ2
b,3 projections) −med(σ2

b,fit) = 0.0198

σ2
b,tot Eq. (14) 0.0413 0.0428

σ2
b,cluster−to−cluster Eq. (15) σ2

b,tot − 〈σ
2
b,3 projections〉 = 0.0087 σ2

b,tot − 〈σ
2
b,3 projections〉 = 0.0072

σ2
b,tot −med(σ2

b,3 projections) = 0.0162 σ2
b,tot −med(σ2

b,3 projections) = 0.0175

σ2
b,mean Eq. (20) 0.0087 0.0071

(σκ−map
b,intrinsic proj)

2 Eq. (19) From maps ∼ 0.01

Notes. We present the name given to each scatter term, the reference to the definition in the text and the obtained values for masses reconstructed
using NFW and Einasto models. For some cases we give the mean, 〈. . .〉, and median, med(. . .), values.

Fig. 8. Variance of the mass bias estimated from maps. The grey his-
togram is obtained from the integration of convergence maps, i.e. Mκ,cyl

500 .
The magenta histogram corresponds to the variance for gas masses
(MGas,cyl

500 ) estimated from gas mass maps. The empty green histogram
shows the dispersion of the Mcyl

500 after conversion from the Ycyl
500 mea-

sured from y-maps, using the scaling relation in Fig. E.1.

be fully comparable to σ2
b,intrinsic proj. To quantify this effect, we

produced mock mass density profiles of galaxy clusters with a
large variety of shapes and masses. We compared the scatter
when estimating the M500 spherically and up to the R500 cor-
responding to each profile and the scatter when measuring the
mass cylindrically integrated at a fixed aperture. All the details
are given in Appendix D. In conclusion, this additional vari-
ance can be estimated of the order of ∼0.001−0.003, so ∼3−5%,
depending on the shape, redshift, and mass of the density profile
of the cluster. We note that additional differences could appear
when integrating spherically against cylindrically, related, for
example, to the presence of structures.

Therefore, both from a model dependent and a model inde-
pendent approach we obtain compatible values for σ2

b,intrinsic proj.
We conclude that when deriving cluster masses from observ-
ables tracing the total mass (for instance, the lensing effect), the
intrinsic effect of the projection creates an error in the M500 esti-
mates between 10% and 16%. These values could vary with the
depth of the considered κ-maps.

5.4. Total scatter: σ2
b,tot

Finally, we quantify the total variance of the bias along the sam-
ple and the scatter from cluster to cluster. We compute, follow-
ing the Eq. (14), the total variance of the bias in our sample by
accounting for all the clusters, with all the projections and their
fit uncertainties. Following Eq. (15), we obtain the excess with
respect to the projection and fit effects. All the values are given
in Table 2.

The total dispersion appears to be larger than the average
projection effect. This could be due to some clusters with a very
important projection effect (right panel in Fig. 6) that might be
affecting significantly σ2

b,tot. But it could also originate from the
scatter of the mean bias values per cluster. We compute the mean
bias per cluster c accounting for the masses reconstructed from
all the chains of the three convergence maps (〈bκ〉c = <(M500 −

Mκ
500)/M500>) and quantify how different are the mean biases for

all the clusters in the sample. We define the variance of the mean
biases, σ2

b,mean, as:

σ2
b,mean =

1
Nclusters

Nclusters∑
k=1

(〈bκ〉k − 〈〈b
κ〉c〉)

2, (20)

where 〈〈bκ〉c〉 is the mean over the mean biases of all the clus-
ters. Results are shown in Table 2. The missing dispersion in
σ2

b,tot seems to be explained by the different mean bias values
of different clusters, σ2

b,cluster−to−cluster ∼ σ2
b,mean. We notice that

it is a model dependent effect, NFW results being slightly more
scattered with respect to 〈〈bκ〉c〉. This difference could mean that
NFW reconstructions fail more often in the description of the
mass of clusters and, compared to Einasto, NFW fit uncertain-
ties are not large enough to account for it.

5.5. Intrinsic scatter: σ2
b,cluster−to−cluster

The dispersion of the bias from cluster to cluster can be caused
by multiple effects. We investigate here the impact of data
limitations and of the mass, redshift, and dynamical state of the
clusters.

Data limitations. We only consider 3 projections per clus-
ter and the mean bias obtained from these 3 may not be a good
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Fig. 9. Mean bias per cluster. The vertical lines show the mean bias when using 100 projections to reconstruct the mass. The histograms are
obtained from the mean bias computed by taking randomly 3 projections out of the 100 available 100 times.

Fig. 10. Bias for clusters in different redshift (left) and mass (right) bins. We give the mean value and the σb,mean scatter for the mean bias of
clusters in each bin. Results for NFW and Einasto models are shown in orange and purple, respectively, with a line as a guide to the eye.

representation of the true mean bias. We test the impact of this
effect using four clusters for which we have 100 projections
(see Appendix C). For each cluster we calculate the mean bias
accounting for the 100 projections. Values are shown as vertical
dashed lines in Fig. 9. At the same time, we take randomly three
projections out of the 100 and compute the mean for those trios.
The histograms in Fig. 9 show the results for 100 realisations.
They illustrate that the mean bias 〈bκ〉c estimated from 3 random
projections can in some cases be significantly different from the
true one. Although histograms are centred in the mean bias of
100 projections, their variance is of the order of ∼0.005–0.010,
which also contribute to σ2

b,cluster−to−cluster or σ2
b,mean.

Impact of mass and redshift. There could be also a cor-
relation between intrinsic properties of clusters (mass, redshift,
etc.) and the measured biases, meaning different responses to
the model fitting depending on cluster properties. To investigate
these effects, we separate our sample in subsamples. We choose
a binning close to the one used for the NIKA2 LPSZ (Sect. 2.1):
four bins in redshift (one per snapshot) and five bins in mass
(in the NIKA2 LPSZ only two bins in redshift are considered,
but with the objective of observing any evolution, we choose to
distinguish four). The five bins in mass are: M500/1014 M� <
4, 4 ≤ M500/1014 M� < 6, 6 ≤ M500/1014 M� < 8, 8 ≤
M500/1014 M� < 10, and 10 ≤ M500/1014 M�.

We show in Fig. 10 the evolution of the mean bias with red-
shift and mass for NFW and Einasto mass reconstructions. A
slight evolution of the bias with redshift is observed for NFW
results, but not for Einasto. We note, in any case, that our
results are compatible with no evolution. In Euclid Collaboration
(2024), the authors observe an evolution of the bias of M200

masses with redshift and claim that such evolution is due to the
low weak lensing signal-to-noise at high redshift. In the right
panel in Fig. 10, we observe no evolution of the bias with the
true M500 either.

Impact of the dynamical state. The dynamical state of clus-
ters can also be an indicator of the bias of masses reconstructed
from projected maps and their dispersion. To classify the clus-
ters in our sample according to their dynamical state, we use the
fs and ∆r indicators at R200 (and R500) that correspond respec-
tively to the ratio between the sub-halo masses and the clus-
ter mass within R200 (R500) aperture and the offset between the
centre of mass of the cluster and the maximum density peak
position, normalised by R200 (R500). Following the definitions in
De Luca et al. (2021), clusters are relaxed (disturbed) if fs < 0.1
and ∆r < 0.1 ( fs > 0.1 and ∆r > 0.1). Otherwise, we consider
them in an intermediate dynamical state.

In the top panels in Fig. 11 we present the distribution of the
mean bias per cluster independently for relaxed (green), interme-
diate (blue), and disturbed (red) clusters, classified with the indi-
cators at R200. The variance of these mean biases from cluster to
cluster is larger for the disturbed sample (σ2

b, mean = 0.0176 and
0.0070 for NFW and Einasto, respectively) than for the relaxed
one (σ2

b, mean = 0.0048 for NFW and 0.0055 for Einasto), but, on
average, relaxed clusters are not less biased than disturbed ones.

In the bottom panels in Fig. 11 we show the variance of
the bias per cluster as computed from the three projections.
Although we would expect to detect the departure from spheric-
ity in the measurement of σ2

b,3 projections, from these results we
only observe such effect for the Einasto model. The three
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Fig. 11. Bias properties depending on the dynamical state of clusters
within R200. Top: distributions of the mean bias per cluster for relaxed
(green), intermediate (blue), and disturbed (red) clusters. We show the
bias from NFW (left) and Einasto (right) reconstructions. Bottom: dis-
tributions of the variance of the bias per cluster accounting for three
projections. Clusters are classified according to their dynamical state
and results for NFW (left) and Einasto (right) are shown. The vertical
lines show the mean values of the distributions.

subsamples give scatter values that are compatible with those
of the full sample.

The classification of clusters changes if we use the indicators
at R500. In Fig. 12 we summarise the mean and median values
obtained from the distributions in Fig. 11 for dynamical states of
clusters defined within R500 and R200. From this figure, the bias
of masses reconstructed with our method seems vaguely related
to the relaxation status of the galaxy clusters.

In Euclid Collaboration (2024), the authors used a stronger
constraint to classify clusters as relaxed: they considered relaxed
systems if fs < 0.1 and ∆r < 0.05 (xoff in Euclid Collaboration
2024) or if fs < 0.1, ∆r < 0.04, and 0.85 < η < 1.15 (with η
the virial ratio, as in Cui et al. 2018), all within R200, and unre-
laxed otherwise. Following this classification, they concluded
that unrelaxed clusters are slightly worse modelled than relaxed
ones, but that the mean bias of both types of clusters is com-
pletely consistent with that of the full sample.

5.6. Summary

In this section we have quantified the different contributions
to the dispersion of mass estimates of clusters reconstructed
from convergence maps. We find that M500 cluster masses recon-

Fig. 12. Summarised bias properties depending on the dynamical state
of clusters within R200 (empty) and R500 (filled). Left: mean (circle) and
median (star) of the mean biases of each type of cluster. Right: mean and
median of the σ2

b, 3 projections for all the clusters of each type. We show in
green, blue, and red the results for relaxed, intermediate, and disturbed
clusters, respectively.

structed from convergence maps have an uncertainty of the order
of 9% that corresponds to the uncertainty in the fit and varies
with the chosen model. In addition, a 10–16% uncertainty should
be added to account for intrinsic projection effects. Regarding
the variation of the bias along the cluster sample, which is of
the order of 9% (σ2

b,cluster−to−cluster = 0.009 for NFW and 0.007
for Einasto), we conclude that it is probably overestimated due
to the limited projections per cluster available. When we try to
correlate the bias and its dispersion to intrinsic characteristics of
clusters, we find that redshift, mass, and dynamical state appear
vaguely correlated to the bias. Additional effects that we have
not considered in this work, such as the presence of substruc-
tures along the line of sight, could also be at the origin of the
cluster-to-cluster scatter in observations.

The average bias of the mass estimates reconstructed with
the method presented in this paper, as well as the fit uncertainty,
are directly impacted by the radial range that is considered in
the fit. Depending on the size of the error bars of the Σ-profile
at each radius and the ability of the density model to describe
the mass at the desired radii, mass estimates can be more or less
biased. On the contrary, the intrinsic projection effect (quanti-
fied by σ2

b,intrinsic proj, as well as by the comparison of the biases
obtained for the 0_pr_axes, 1_pr_axes, and 2_pr_axes projec-
tions) remains of the same order, even for the extreme case where
we consider all the radial ranges available for the fit of the mass
density model.

6. Comparison to gas observables

As investigated in several works (e.g. Meneghetti et al. 2010b;
Rasia et al. 2012), the spatial distribution of the gas in the ICM
does not follow necessarily the same distribution as the rest of
the matter. This implies that the aforementioned conclusions
may not apply to masses reconstructed from gas observables. In
this section, we compare the projection effect obtained for total
matter observables to the effect for gas observables.

To measure the impact of the projection when estimating
masses from gas maps we take two approaches. The most direct
option consists in measuring the mass of the gas from the gas
mass maps (Sect. 3.2.3). We compute MGas,cyl

500 by integrating the
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maps up to θ500. The distribution of dispersions for the three
masses calculated from the different projections is shown for all
the clusters in the magenta histogram in Fig. 8. These results
reflect the impact of the orientation as regards the arrangement
of the gas in the cluster, but we note that MGas is not an estimate
of its total mass.

A less direct option consists in estimating the mass from the
integrated Y500 signal in the y-maps by applying a Y500 − M500
scaling relation. First, the signal in the y-maps is integrated up
to the real θ500 for each cluster, which gives the cylindrically
integrated Compton-y parameter Ycyl

500. We then convert the Ycyl
500

in M500 assuming a given scaling relation.
There are several scaling relations in the literature that relate

Y500 to M500 (A10, Cui et al. 2018). However, most of them
look for a relation between the observed Ycyl

500 and the spherical
mass Msph

500. In our case, we build a Ycyl
500 − Mκ,cyl

500 scaling rela-
tion for our sample that allows us to compare cylindrically inte-
grated masses. This scaling relation, together with Ycyl

500 − Msph
500

are shown in Fig. E.1. The dispersion of the recovered masses for
different projections of a cluster allows us to quantify the intrin-
sic projection effect. The empty green histogram in Fig. 8 shows
the distribution of the dispersion of the biases estimated for all
clusters from y-maps.

We observe that both approaches suggest a σ2
b,intrinsic proj ∼

10−4 (a few percent scatter on M500) for the gas, meaning that for
the considered data and within θ500, the gas is an order of magni-
tude less disperse (i.e. more spherically distributed) than the dark
matter also within the same θ500. This is in agreement with previ-
ous works (Buote & Humphrey 2012; Becker & Kravtsov 2011;
Pratt et al. 2019; Meneghetti et al. 2010b; Rasia et al. 2012) that
also indicate that mass reconstructions from gas are less scat-
tered than those from dark matter observables due to the differ-
ence in the spatial distribution of matter.

From the comparison between the bias of cylindrically inte-
grated masses from the κ-maps and the bias of masses obtained
from y-maps (with the Ycyl

500 − Mκ,cyl
500 scaling relation), we obtain

that their correlation is weak, with a Pearson correlation coeffi-
cient of 0.26. The correlation is stronger between the bias dis-
persions (i.e. σb) measured from the three random projections in
κ- and y-maps: r = 0.48.

7. Summary and conclusions

We have studied the bias of galaxy cluster mass estimates recon-
structed by fitting three-dimensional NFW and Einasto density
models to projected mass density profiles obtained from conver-
gence maps. We have performed the analysis making use of The
Three Hundred GADGET-X hydrodynamical simulation clus-
ters, selected to be representative of the NIKA2 LPSZ sample.
All the results shown here were obtained with the 122 clusters
of the three twin samples combined (Sect. 2.2). We checked that
conclusions do not vary from twin sample to twin sample.

We decided to perform the fits of the mass density profiles
accounting only for the radial ranges with uncertainties compa-
rable to the ones of the profiles computed from CLASH con-
vergence maps. Although the flexibility of the Einasto model
permits fitting the projected density profiles by accounting for
the different slopes, the fit fails describing the mass at ∼R500,
almost in the same way as the NFW model. Some works in the
literature (Meneghetti et al. 2014) choose ad hoc the radial range
and conclude that, as expected, models with more parameters fit
better the density profile and therefore, give lower biases. The
latter is also true for our case, but the difference between Einasto

and NFW biases is not significant. Our main conclusion is that
a projected mass density fit that is overall good does not give
necessarily a good M500 estimate.

Despite the slight differences between NFW and Einasto
mass reconstructions, we have observed that both the mean bias
and the scatter of the recovered masses are strongly correlated
for the two models. This could mean that, in spite of the impact
of the model choice, the effect is not enough to blur the infor-
mation in the convergence maps. Quantitatively, the NFW and
Einasto M500 masses are biased by 8% and 7%, respectively.
Therefore, both are in the 5−10% bias range obtained in previ-
ous simulation-based works (Rasia et al. 2012; Meneghetti et al.
2014; Becker & Kravtsov 2011; Euclid Collaboration 2024).

Regarding the errors associated with the mass estimates, we
consider different contributions. With our approach, the uncer-
tainty of the density profile fit to the convergence map introduces
a mean error on the mass of 8% and 9% for NFW and Einasto
profiles, respectively. An additional contribution comes from
projection effects and we estimate that about 10–16% of disper-
sion should be considered. Such result matches the conclusions
for lensing masses in the Pratt et al. (2019) review. Accounting
for the projection effect together with the uncertainties of the fit-
ting, the scatter is of the order of ∼18%, slightly less than the
values in Becker & Kravtsov (2011) and Rasia et al. (2012), the
latter being obtained from the fit of tangential shear profiles of
simulated clusters.

When accounting for the full sample of The Three
Hundred-NIKA2 LPSZ clusters, there is an excess of disper-
sion with respect to projection effects. We investigate the origin
of such dispersion and we find, firstly, an uncertainty due to the
fact that we use only three projections per cluster. Making use of
100 random projections for four clusters, we verify that consid-
ering only 3 projections per cluster, the mean bias of the three
can be scattered about up to 7–10%.

We tried to correlate the bias to intrinsic properties of clusters
and we checked the evolution of the mass bias with the true mass
and redshift of clusters. Nevertheless, we did not find any evolu-
tionary trend of the bias with the mass nor the redshift. In addi-
tion, we investigated the relation between the dynamical state
and reconstructed masses of clusters, concluding that disturbed
clusters are not particularly more biased than relaxed ones.

Regarding the orientation of clusters, we confirm that with
our method and for clusters observed elongated along the line of
sight, the reconstructed masses are overestimated. On the con-
trary, masses are underestimated if the major axes of clusters are
on the plane of the sky. These conclusions are in agreement with
the results in Euclid Collaboration (2024), where The Three
Hundred convergence maps are used to create weak lensing
observables for the preparation of the Euclid mission.

Given the similarities and differences between both works,
it was indispensable to compare, all along this paper, our out-
comes to Euclid Collaboration (2024). Despite all the presented
nuances, both works seem to converge towards resembling
conclusions.

Finally, we also compared how spherical is the spatial dis-
tribution of total matter and gas by measuring the dispersion
from projection to projection in total mass and gas maps. Within
R500 the gas is more spherically distributed than the dark matter,
which allows one to have a mass reconstruction from projected
maps less dependent on the orientation of the cluster. This was
already known from previous studies (Meneghetti et al. 2010b),
which motivated the observations of clusters in X-rays and SZ.
For observational HSE-to-lensing mass biases estimated as for
the LPSZ clusters (Sect. 2.1), as well as for other works in
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the literature (e.g. Bartalucci et al. 2018; Sereno & Ettori 2015;
Foëx et al. 2012), this would imply that most of the projection
scatter is introduced by the lensing mass estimate.
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Appendix A: Mass reconstruction

A.1. Mass density model best-fit parameters

In Fig. A.1 we present the relation between the best-fit values
of the posteriors for the parameters of all NFW and Einasto
fits and we give the Pearson correlation coefficient for each
pair of parameters. We define the best-fit parameters from the
maximum point of multi-dimensional posterior distributions. In
the left panel, we show with big stars the mean concentration
per M200 bin for NFW and compare to the concentration-mass
relations in Cui et al. (2018). The concentration-mass relation
obtained in this work with NFW follows the flat relation of
the GADGET-X clusters results from The Three Hundred
in Cui et al. (2018). See Sect. 4.1 for details. As a refer-
ence, we also show the horizontal c200 = 3 line that corre-
sponds to the concentration value fixed in Euclid Collaboration

(2024) to obtain less biased masses when fitting tNFW density
models.

A.2. Reconstructed mass profiles

In Fig. A.2 we show the mass profiles corresponding to the pro-
jected mass density fits of Fig. 3 with NFW and Einasto models
for the 0306 cluster in the snapshot 101. We present the profiles
for the projections along the 3 main axes of the simulation on
top, and in the bottom the profiles for the main inertia moment
axes of the cluster. The dashed line shows the R500−M500 relation
given by the definition: M500/

4
3πR3

500 = 500ρcrit. The cyan profile
shows the spherical true mass profile (Sect. 3.1). The departure
of the NFW and Einasto profiles from the real spherical mass
profile at ∼ R500 will determine the difference between the true
M500 and the NFW and Einasto estimates.

Fig. A.1. Best-fit values of the posterior distributions of NFW (left) and Einasto (right) parameters. Each point corresponds to one projection
of one cluster. We give the Pearson correlation coefficients for the parameters presented in each panel. In the left panel the big stars show the
mean concentration and the standard deviation in different mass bins. Blue and red lines show the concentration-mass relations for GADGET-X and
GADGET-MUSIC simulations obtained in Cui et al. (2018) accounting for different radial ranges: with solid lines considering data above 0.05×R200
and with dashed lines the results considering data above 34h−1 kpc. The horizontal orange line at c200 = 3 in the left panel represents the best
concentration value obtained in Euclid Collaboration (2024) to reconstruct unbiased masses. For comparison, in the left panel we also plot the
M200 and c200 = R200/rs obtained for the Einasto best-fits.
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Fig. A.2. Mass profiles reconstructed from the convergence map fits for the 0306 cluster in the snapshot 101 (z = 0.817). The orange and purple
profiles correspond to NFW and Einasto models, respectively. We give the mean profiles with 1σ contours. The cyan profile is the spherical mass
profile obtained from the simulation. The black dashed line shows the R500 − M500 relation.

A124, page 17 of 21



Muñoz-Echeverría, M., et al.: A&A, 682, A124 (2024)

Appendix B: Mass bias scatter distributions

We present in Fig. B.1 the distributions of σ2
b,fit (left) and

σ2
b,3 projections (right) for all the clusters in our sample. The his-

tograms correspond to the bias variance for the NFW (orange)
and Einasto (purple) models.

Fig. B.1. Variance of mass bias for all clusters. Left: scatter induced by uncertainties on the fit, for all the projections of all the clusters in our
sample. Right: variance of the bias in the mass reconstruction of each cluster.
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Appendix C: Validation of the projection effect

As we are interested in checking the real scatter due to the
projection effects, we produced for 4 different clusters 100 κ-
maps along random projections. We chose one cluster per snap-
shot, with diverse dynamical states, mostly unrelaxed (Table C.1,
dynamical state indicators defined following the definitions in
De Luca et al. 2021).

For each map we followed the NFW and Einasto mass recon-
struction procedure described in Sect. 4.1. Therefore, for the
considered four clusters, we measured the κ-bias of each projec-
tion. The mean bias and variance for the 100 projections, for the

3 main axes and for the 3 inertia moment axes are summarised in
Table C.2. Although considering the principal axes of the clus-
ters regarding their moments of inertia is a way to account for the
whole dispersion due to projection, it gives overestimated scatter
values with respect to the dispersion obtained from 100 projec-
tions. The dispersion, when estimated with only 3 data points,
can be very unreliable, but for the 3 inertia moment axes it tends
to be overestimated, while for the 3 main (that is, random) axes
it can be both over and underestimated. Hence, for the analy-
sis with the full sample of clusters we decided to remove the
0_pr_axes, 1_pr_axes, and 2_pr_axes projections.

Table C.1. Dynamical state indicators at R200 and R500 for the clusters analysed from 100 projections.

Snapshot z Cluster fs(R200) ∆r(R200) Dynamical state within R200 fs(R500) ∆r(R500) Dynamical state within R500

101 0.817 0306 0.19 0.11 Disturbed 0.09 0.10 Intermediate
104 0.700 0206 0.18 0.08 Intermediate 0.16 0.16 Disturbed
107 0.592 0046 0.12 0.03 Intermediate 0.07 0.00 Relaxed
110 0.490 0198 0.18 0.14 Disturbed 0.19 0.15 Disturbed

Table C.2. Mean bias and variance due to projection effect for the 4 clusters studied with 100 maps.

Density model Snapshot z Cluster < bκ > σ2
b,100 projections < bκ > σ2

b,3 projections < bκ > σ2
b,3 projections

100 random 100 random 3 main 3 main 3 inertia 3 inertia

NFW
101 0.817 0306 0.1155 0.0229 0.1490 0.0219 0.1314 0.0426
104 0.700 0206 0.1233 0.0453 0.2036 0.0151 0.0671 0.1442
107 0.592 0046 -0.0450 0.0212 -0.0317 0.0176 -0.0344 0.0350
110 0.490 0198 0.0484 0.0355 0.0231 0.0495 0.1161 0.0281

Einasto
101 0.817 0306 0.1047 0.0359 0.1712 0.0266 0.1259 0.0613
104 0.700 0206 0.1312 0.0500 0.2162 0.0158 0.0735 0.1527
107 0.592 0046 -0.0618 0.0212 -0.0545 0.0184 -0.0447 0.0301
110 0.490 0198 0.0716 0.0387 0.0771 0.0378 0.1393 0.0373

Notes. The three main projections are the so-called 0, 1, and 2 or x, y, and z projections. The 3 intertia projections are: 0_pr_axes, 1_pr_axes, and
2_pr_axes.
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Appendix D: Scatter from spherical mass estimates
and from projected masses within a fixed
aperture

In this section we demonstrate that masses cylindrically inte-
grated within a fixed aperture are less scattered than spherically
integrated masses. We use simulated mass density profiles of dif-
ferent shapes following the NFW (Eq. 5), gNFW, tNFW, and
Hernquist (Hernquist 1990) models.

We define the gNFW profile as

ρgNFW(r) =
ρs(

r
rs

)γ (
1 +

(
r
rs

)α) β−γα , (D.1)

with α = 3, rs = R∆/c∆ and:

ρs =
c3

∆
∆ρcrit(−3 + γ)

−3(c3
∆

)1−γ/3
2F1((β − γ)/3, 1 − γ/3, 2 − γ/3,−c3

∆
)
. (D.2)

Here 2F1 is a Gaussian hypergeometric function. The tNFW is
given by

ρtNFW(r) =
ρs

r/rs(1 + r/rs)2

(
τ2

τ2 + (r/rs)2

)η
, (D.3)

with η = 1, rs = R∆/c∆ and:

ρs =
c3

∆
∆ρcrit

3I(c∆)
, (D.4)

where,

I(c∆) = τ2
−1

[
2(1 + τ2) − (−1 + τ2) ln(τ2)

]
2(1 + τ2)2 +

τ2
2(1+τ2)
(1+c∆) + 4τarctan(c∆/τ)

2(1 + τ2)2 + (D.5)

τ2
(−1 + τ2)

[
2 ln(1 + c∆) − ln(c2

∆
+ τ2)

]
2(1 + τ2)2 .

The Hernquist mass density profile is defined as

ρHernquist(r) =
ρs

r
rs

(
1 + r

rs

)3 , (D.6)

with rs = R∆/c∆ and:

ρs =
c∆∆ρcrit2(1 + c∆)2

3
. (D.7)

We produce profiles with a wide variety of parameters for
5 different initial M500 values between 3 × 1014 M� and 11 ×
1014 M� and for the four different redshifts in our twin sam-
ples (z = [0.490, 0.592, 0.700, 0.817]). For NFW and Hernquist
models we vary c500 from 1 to 6. For gNFW and tNFW we fix
c500 = 4 and vary β = 3 − 6 and γ = 0.4 − 1 for gNFW and
τ = 0.2− 4 for tNFW. All the considered projected mass density
profiles are shown in the left panel in Fig. D.1 to demonstrate the
variety of the analysed density shapes.

To mimic a departure from the true mass, for each profile
with M500 we estimate a distribution of new profiles for masses
that vary from −18% to 18% from the true M500, Mnew sph

500 (based
on an average σ2

b,3 projections that we measured from data). For
each of the new profiles we can integrate the projected density
up to the original θ500, Mnew cyl

500 . Comparing the new Mnew sph
500 and

Mnew cyl
500 to the original M500 we get the spherical and cylindrical

biases. From the distribution of biased masses, we take randomly
trios to simulate the 3 random projections and estimate their vari-
ance: σ2

bsph is the variance of three biased spherical masses and
with their corresponding cylindrically integrated masses we get
σ2

bcyl .
In the right panel in Fig. D.1 we present the relation between

the mean σ2
bsph and σ2

bcyl for each mass, redshift, and profile
shape considered. Same colours as in Fig. D.1 are used to make
reference to each density profile type. As expected, the figure
shows that the dispersion of cylindrically integrated masses at
a given aperture tends to be smaller (σ2

bsph − σ2
bcyl ∼ 0.001

to 0.003) than spherical integrations up to the correspond-
ing radius in each case. The blue points close to the one-to-
one line correspond to NFW models with a concentration of
c500 = 1.

Fig. D.1. Projected mass density profiles used to quantify the difference in scatter for spherically and cylindrically integrated masses (left). The
variance of cylindrically integrated masses with respect to spherically integrated masses (right). The black dashed line corresponds to σ2

bsph = σ2
bcyl .

In blue NFW, in red gNFW, in green tNFW, and in orange Hernquist models.
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Appendix E: Building the Y500 − M500 scaling
relation

We construct our own scaling relation following the parametri-
sation in Eq. 16 in Arnaud et al. (2010):

h(z)−2/3 Y500 = β

 M500

3 × 1014 h−1
70 M�

α h−1
70 , (E.1)

where Y500 is in Mpc2 and M500 in M�. Here h(z) is the ratio of
the Hubble constant at redshift z to its present value, and, h70 the
Hubble constant in units of 70 km/s/Mpc.

We compare two scaling relations that relate the cylindrical
or projected Y500 to the spherical and cylindrical M500 mass,
respectively. The spherical quantities are computed from the
ICM profiles: Msph

500 is the mass profile evaluated at R500, that is,
the true M500 throughout this paper. The cylindrical quantities
Mcyl

500 and Ycyl
500 are obtained by integrating the signal within θ500

in the κ- and y-maps.
In each case, we perform a fit of Eq. E.1 using the orthog-

onal BCES method (Akritas & Bershady 1996). Uncertainties
on fit parameters are estimated from 100000 bootstrap resam-
ples of the data. We show the scaling relations in Fig. E.1, as
well as the best-fit parameters (top legend in the figure). The

slopes of both relations are consistent, but since the cylindrically
integrated masses are larger than spherically integrated ones, the
intercepts are not compatible.

We compare, as in Fig. 10 in Cui et al. (2018), the Ycyl
500 −

Msph
500 relation to results in the literature. In Cui et al. (2018),

the authors computed the scaling relation using all The
Three Hundred clusters at z = 0, for both GADGET-X and
GADGET-MUSIC flavours. The scaling relation obtained with our
sample has a lower normalisation and slightly steeper slope than
the results obtained with GADGET-X simulations in Cui et al.
(2018). The differences may be due to both the considered clus-
ter sample and the redshift range. The GADGET-MUSIC scal-
ing relation from Cui et al. (2018) has an even smaller inter-
cept value, showing the impact of the hydrodynamical model
on the simulation. In the same figure we also compare the
results to the scaling relations obtained from observations in
Planck Collaboration XX (2014) and Nagarajan et al. (2018).
Our scaling relation lies between both observational results, with
a flatter slope than Planck Collaboration XX (2014) and steeper
than Nagarajan et al. (2018). Given the offset between spheri-
cal Msph

500 and cylindrical Mcyl
500 masses, the observational results

shown in the right panel in Fig. E.1 are shifted with respect to
the scaling relation in the left panel and are not comparable.

Fig. E.1. Scaling relations between Y500 and M500 for cylindrically integrated SZ signal with respect to spherically (right) and cylindrically (left)
integrated masses. Black dots correspond to the values per cluster in our sample, while the blue line shows the best-fit relation. The solid brown
line shows the result in Planck Collaboration XX (2014), the black dash-dotted is from Nagarajan et al. (2018). The pink dotted and green dashed
relations are the results in Cui et al. (2018) for the GADGET-MUSIC and GADGET-X simulations.
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