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2 SONDRA, CentraleSupélec, Université Paris-Saclay, F-91192 Gif-sur-Yvette, France
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ABSTRACT

Off-grid targets are known to induce a mismatch that dra-
matically impacts the detection probability of the popular
Normalized Matched Filter. To overcome this problem, the
unknown target parameter is usually estimated through a
Maximum Likelihood strategy resulting in a GLRT detection
scheme. While the test statistic for the null hypothesis is well
known in the on-grid case, the off-grid scenario is more in-
volved and, to the best of our knowledge, no such theoretical
result is available. This paper fills this gap by proposing such
an expression under circular compound Gaussian noise with
known covariance matrix thanks to a geometrical approach.

Index Terms— Radar detection, Off-Grid, GLRT, PFA-
threshold relationship, Theory of Tubes

1. INTRODUCTION

Classically, detection of signals with unknown parameters are
addressed with a Generalized Likelihood Ratio test (GLRT)
that replaces the unknown parameters with their Maximum
Likelihood estimators (MLE) in the Likelihood Ratio detec-
tion test [1]. When analytical MLE solutions are not avail-
able for signal parameters of interest, most detection strate-
gies assume for ease of implementation that those parameters
lie over a discrete set, called the grid. However, parameters
have no reason to fall precisely on the grid, since they are dis-
tributed over a continuous range. This induces a mismatch
between the tested parameters and the true target parameters
that deteriorates the detection performance of most state-of-
the-art tests made under the on-grid assumption. In this paper,
we illustrate this problem in the radar context where unknown
parameters can include Doppler shift, distance, or direction.

The off-grid impact is particularly dramatic for detection
schemes like the Normalized Matched Filter (NMF) test [2].
This test is used under Gaussian noise of unknown level. It is
also widely used for adaptive radar in non-Gaussian contexts
[3] for example, when the noise is distributed according to
a Complex Elliptically Symmetric (CES) distribution [4]. In
some cases, the detection probability may vanish to 0 even
for high Signal to Noise ratio (SNR) [2], especially for low

PFA, familiar to Radar context. To overcome this problem,
the most obvious solution consists in testing over the whole
continuous parameter support, not just the grid: this is the
true off-grid GLRT. However, to the best of our knowledge,
the analytical expression of the null hypothesis statistic and
the related PFA is unknown in the literature for this GLRT.

Some works provide optimal analytical solutions for other
particular mismatches [5–7], as such they are not optimal for
our specific mismatch. Other approaches include approximat-
ing the off-grid GLRT, either with a subspace approach [2] or
a Monopulse-inspired method [8]. Those solutions are sub-
optimal: they are designed for practical conditions where the
use of a refined, precise approximation of the GLRT is unre-
alistic because its lack of closed-form can lead to high com-
putational cost. In this paper, we present a derivation of a
PFA-threshold relationship for the off-grid NMF. It allows an
insightful geometrical analysis of the problem. It is valid for
low PFA of interest in common applications.

Section 2 presents the signal model, the off-grid problem
and the true GLRT formulation. Section 3 gives the derivation
of the PFA-threshold relationship. In Section 4 we check the
validity of our derivation by comparing the theoretical thresh-
olds to Monte-Carlo simulations.

Notations: Matrices are in bold and capital, vectors in
bold. For any matrix A or vector, AT is the transpose of
A and AH is the Hermitian transpose of A. I is the N × N
identity matrix and CN (µ,Γ) is the circular complex Normal
distribution of mean µ and covariance matrix Γ. Sn−1 is the
unit sphere in Rn. The real part operator of a complex number
is denoted by Re(.). The operator u is the angle of a complex
number u.

2. PROBLEM FORMULATION

In radar detection, the main problem consists in detecting a
complex signal d ∈ CN corrupted by an additive noise n
(clutter, thermal noise, etc.). This problem can be stated as
the following binary hypothesis test:{

H0 : r = n ,
H1 : r = αd(θ) + n ,

(1)



where r is the complex N -vector of the sampled received
signal, α is an unknown complex target amplitude and d(θ)
stands for a generally known steering vector characterized by
unknown target parameters θ (time-delay, Doppler or angle).
In the sequel, we will assume n is a zero-mean complex cir-
cular Gaussian noise vector with unknown variance σ2 i.e.
n ∼ CN (0, σ2 Γ). This context is known as a partially ho-
mogeneous Gaussian environment. Without loss of general-
ity, we will here assume θ to be the scalar Doppler shift of the
target and we here investigate only the normalized Doppler
steering vector d(θ):

d(θ) =
1√
N

[
1, e2iπθ, . . . , e2iπ(N−1)θ

]T
. (2)

This model of steering vector is often encountered in radar
Range-Doppler detection schemes where the problem con-
sists in estimating a complex sinusoid embedded in noise after
range Matched Filter processing.

For unknown parameters {λi}i∈[0,1] depending on each
hypothesis {Hi}i∈[0,1] (either parameters of interest and/or
nuisance parameters), the usual procedure relies on the Gen-
eralized Likelihood Ratio (GLR) statistic, namely the ratio
Λ(r) between the Probability Density Function (PDF) fH1(.)
of the data under H1 and the PDF fH0

(.) under H0 where the
unknown parameters are replaced by their ML estimate and
where w2 is the detection threshold:

Λ(r) =
max
λ1

fH1
(r)

max
λ0

fH0
(r)

H1

≷
H0

w2. (3)
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Fig. 1. Comparison of the NMF response with various thresh-
olds w2 = 1 − P

1/(N−1)
FA when N = 10, in cell D =

[−0.5/N, 0.5/N ].

When λ1 = {α, σ} and λ0 = {σ} with θ known, the
corresponding GLRT is known as the NMF (Normalized
Matched Filter) [9, 10]:∣∣d(θ)HΓ−1 r

∣∣2(
d(θ)HΓ−1 d(θ)

) (
rHΓ−1 r

) H1

≷
H0

w2. (4)

This test is also widely used for adaptive radar in non-
Gaussian contexts [3, 11] for example when the noise is
distributed according to a Complex Elliptically Symmetric
(CES) distribution [4]. Its statistic in this case is the same as
in the Gaussian case.

Equivalently, Eq. (4) can be rewritten with normalized
whitened vectors: ∣∣s(θ)H u

∣∣2 H1

≷
H0

w2 , (5)

where s(θ) =
Γ−1/2d(θ)∥∥∥Γ−1/2d(θ)

∥∥∥ and u =
Γ−1/2r∥∥∥Γ−1/2r∥∥∥ .

The corresponding PFA-threshold relationship is well
known:

PFA =
(
1− w2

)N−1
. (6)

When the point θ where the NMF is tested is different
from the true parameter θ0 of the target, the target is said to
be off-grid. This induces a mismatch (θ 6= θ0) between the
real target steering vector s(θ) and the steering vector s(θ0)
under test. Unfortunately, it was shown in [12] that the NMF
detector is very sensitive to steering vector mismatch, poten-
tially leading to a dramatic deterioration of the detection per-
formance: in particular for a mismatch larger than the detec-
tion threshold, the asymptotic detection probability tends to
0 at high SNR: this phenomenon occurs [2] for PFA as high
as 10−3 in the chosen resolution cell of width 1/N . This can
be seen in Figure 1 which displays the NMF response with-
out any noise as a function of the mismatch: this response
falls below the detection thresholds at the edge of the cell. To
correct this issue, θ must be estimated.

When θ is unknown, the natural GLRT procedure leads to

GLRT (u,D) = max
θ∈D

∣∣s(θ)H u
∣∣2 H1

≷
H0

w2 , (7)

where D is the search domain relative to the unknown pa-
rameter θ. This detector corrects the off-grid issue of test (5)
pointed out in Figure 1. Unfortunately, as of now, no an-
alytical PFA-threshold relationship is known, the difficulty
consisting here to evaluate the statistics of the maximum of a
continuum of non-independent random variables.

In the next section, we propose to fill this gap.

3. AN ANALYTICAL PFA-THRESHOLD
RELATIONSHIP WITH A GEOMETRICAL

INTERPRETATION

Through geometrical considerations, Hotelling [13] derived
a methodology to study statistical tests over the real sphere.
Remarkably, it can be used to evaluate the PFA of the GLRT
in the real case: his insightful approach is presented in Section
3.1. Unfortunately, as will be explained in Section 3.2, his
derivation cannot be directly transposed to the complex case
expressed in (5).



3.1. Hotelling’s geometrical approach in the real case

Following Hotelling, let us see how finding a threshold guar-
anteeing a certain PFA reduces to a simple geometrical prob-
lem in the real case, that is, when replacing C with R in the
previous section.

First, note that the NMF expression (5) has a simple geo-
metrical interpretation. It is indeed the squared cosine of the
angle between the normalized steering vector under test s (θ)
and the normalized whitened received signal u. The threshold
can be seen as the squared cosine of the angle cos−1 w. When
the vectors angle is below this limit angle, a target is detected.
Since u has been whitened, it is uniformly distributed over the
unit N -sphere under the null hypothesis.

Thanks to this distribution, we can compute the PFA of
the NMF test given in Eq. (5). Let us consider the spheri-
cal cap SC+θ defined by all vectors u on the sphere verify-
ing uT s (θ) < w and its symmetric version SC−θ satisfying
−uT s (θ) < w. Let us define SCθ = SC+θ

⋃
SC−θ as the union

of the two previous spherical caps. A false alarm occurs as
soon as u ∈ SCθ. Therefore, the PFA is the ratio between the
spherical caps surface and the surface of the unit sphere.

Let us now consider the GLRT in Eq. (7). A false alarm
occurs when u ∈ T =

⋃
θ∈D SCθ. Therefore the PFA is the

ratio of the surface of T and the surface of the unit sphere. An
example in R3 is represented in Figure 2 on S2. Note that T
is the union of two symmetric tubes embedded in the sphere,
with geodesic radius cos−1 w around the two curves s(θ) and
−s(θ) with added semi-spherical caps at the ends. T can thus
be written into two equivalent forms [14]:

T =

{
u ∈ SN−1 : max

θ∈D

∣∣s(θ)Tu
∣∣ > w

}
=
⋃
β=±1

{
u ∈ SN−1 : min

θ∈D
‖βs(θ)− u‖ <

√
2(1− w)

}
.

With this form, computing the PFA amounts to finding
the surface of the set of points in SN−1 that lie at a Euclidean
distance

√
2(1− w) of the curves.

In [13], Hotelling derives an analytical formula for the
surface of tubes on the real n-dimensional sphere Sn−1.

Theorem 3.1 [13] The surface enclosed by a tube of geodesic
radius ψ around a curve on the real unit sphere Sn−1 is the
product of the length of the axial curve by

π(n− 2)

2 Γ
(n

2

) sinn−2(ψ) . (8)

It can be noted that this formula only holds when the con-
sidered tubes do not overlap [13]. Overlap phenomenons can
happen when the tubes draw back into themselves, or when
their curvature becomes too high relative to their radius (lo-
cal overlap). Non-overlap is locally guaranteed when ψ =

Fig. 2. T embedded on the unit sphere S2 in R3 com-
posed of a tube (in violet) around a one dimensional manifold⋃
θ∈D s(θ), two end semi-spherical caps (in green) and their

opposite whose outline is dashed. SCθ is drawn in blue. [15]

cos−1 w becomes low enough. In case of overlap, Eq. (8) be-
comes an upper bound. By adding the surface of the end caps
to (8), one can find the surface of T in the real case.

3.2. Extending Hotelling’s approach to the complex case

Unfortunately Hotelling’s result is not immediately applica-
ble to the considered GLRT. As we will see, when transpos-
ing our complex problem in R2N the resulting manifold be-
comes now two-dimensional since the absolute value in the
right hand term of the GLRT given in Eq. (7) then implies a
search of the maximum on the phase as well.

Indeed, for any real scalar α ∈ [0, 2π], let us remark
that Re(s (θ)

H
ue−iα) ≤

∣∣∣s (θ)
H

u
∣∣∣, those two quantities be-

ing equal for α = s (θ)
H

u. We then have, decomposing
s (θ) = sr (θ) + isi (θ) and u = ur + iui into real and com-
plex parts:

Re(s (θ)
H

ue−iα) =
(
sr (θ)

T
ur + si (θ)

T
ui

)
cosα

+
(
sr (θ)

T
ui − si (θ)

T
ur

)
sinα

=
(
γ1(θ)Tu

)
cosα+

(
γ2(θ)Tu

)
sinα ,

where γ1(θ) =

[
sr (θ)
si (θ)

]
, γ2(θ) =

[
−si (θ)
sr (θ)

]
and u =

[
ur
ui

]
is a 2N -real valued noise vector drawn uniformly on S2N−1

under H0. The GLRT (7) can then be written as:

max
α,θ

[(
γ1(θ)T u

)
cosα+

(
γ2(θ)T u

)
sinα

] H1

≷
H0

w . (9)

The two-dimensional nature of the so-defined real mani-
fold to inspect is directly apparent with this formulation. In-
deed, by denoting γ(α, θ) = γ1 (θ) cosα+γ2 (θ) sinα, the
acceptance region in the complex case is a new tube T around
the two-dimensional manifold γ(θ, α):



T =

{
u ∈ S2N−1 : max

θ∈D,α
γ(θ, α)Tu > w

}
=

{
u ∈ S2N−1 : min

θ∈D,α
‖γ(θ, α)− u‖ <

√
2(1− w)

}
.

Hotelling’s result does not cover this multi-dimensional
manifold case as it gives the surface of a tube around a curve.
However, in [14] and [16], this result is extended to a special
case of two-dimensional manifolds which is of interest to us:

Theorem 3.2 [14] For i ∈ [1, 2], let γi : [0, t0] → Sn−1

be regular curves. Assume γ1(t)Tγ2(t) = 0 for all t. Let

Z(t) =
[(
γ1(t)Tu

)2
+
(
γ2(t)Tu

)2]1/2
where u is uni-

formly distributed on Sn−1. Then for 0 < w < 1, we have:

P
(

max
0≤t≤t0

Z (t) > w

)
≤ (1− w2)(n−2)/2 +

Γ
(n

2

)
w (1− w2)(n−3)/2

2π3/2 Γ

(
n− 1

2

) ×

∫ t0

0

∫ 2π

0

[
‖γ̇1(t) cosω + γ̇2(t) sinω‖2−

(
γ̇1(t)Tγ2(t)

)2]1/2
dω dt , (10)

where γ̇i(t) is the derivative of γi(t) with respect to t. When
there is no overlap, this inequality becomes an equality.

It turns out that we can reformulate our problem in order to
fulfill the assumptions of the above theorem. With our nota-
tions, it is easy to check that∣∣∣s (θ)

H
u
∣∣∣2 =

∣∣γ1(θ)Tu
∣∣2 +

∣∣γ2(θ)Tu
∣∣2 , (11)

so that Theorem 3.2 gives us the desired PFA (when the
equality holds). Follows our main result:

Corollary 3.2.1 In the absence of overlap (lowPFA regimes),
the PFA for the GLRT (7) for a search interval D = [θ1, θ2]
with the steering vector d (θ) defined in (2) is given by:

• Under white noise (Γ = σ2 I):

PFA = (1− w2)N−1 + (12)√
π

3

Γ(N)w (1− w2)N−
3
2

Γ
(
N − 1

2

) (
N2 − 1

) 1
2 (θ2 − θ1) .

• Under colored noise (Γ 6= σ2 I), the integral in (10)
can be evaluated numerically.

The first term in (12) represents the surface of the two
semi-spherical caps at the extremities of the tube. As such, it
is equal to the known PFA of the NMF expressed in Eq. (6).
The second term shows the influence of the manifold induced

Fig. 3. Comparison between the theoretical PFA-threshold
given in (12) and the empirical Monte Carlo PFA-threshold
relationships for N = 10. The on-grid relation (6) is also
drawn for comparison purposes. Tests in the cell [0/N , 1/N].

by the off-grid nature of the problem. It is analogous to the
one-dimensional case of Theorem 3.1, where the surface of
the cross-section is multiplied by the length of the manifold.
Here, θ2 − θ1 plays the role of the manifold length, and the
rest of the rightmost term is the surface of the cross-section.

4. NUMERICAL RESULTS

Let us check the validity of the formula (12). Figure 3
presents the PFA-threshold relationship given by Eq. (12)
and empirically computed thresholds using 108 complex cir-
cular white Gaussian noise samples for a steering vector
size of N = 10. The continuous research over the domain
D is replaced by a discrete search using 30 tests, where
D = [0, 1/N ] is one of the usual Fourier resolution cells.

The formula fits perfectly when the PFA is low enough
(or, equivalently, if the threshold is high enough). The for-
mula is not valid for PFA close to 1 because of overlap (it
even exceeds 1). However, such high PFA have no practi-
cal interest for common applications. A detailed analysis of
overlap phenomena will be given in a subsequent paper.

5. CONCLUSION

In this paper, we addressed the off-grid detection problem us-
ing the NMF-GLRT by finding an analytical PFA-threshold
relationship, valid for most common applications. In future
works, we will mathematically investigate the conditions
guaranteeing that no overlap is present for a given PFA
value. This will enable us to provide the precise domain and
the conditions under which our relationship is valid.
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