
HAL Id: hal-04472507
https://hal.science/hal-04472507v1

Preprint submitted on 22 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

What could a Quantum PSO be?
Maurice Clerc

To cite this version:

Maurice Clerc. What could a Quantum PSO be?. 2024. �hal-04472507�

https://hal.science/hal-04472507v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

What could a Quantum PSO be?

Maurice Clerc*

January 25, 2024

Abstract

The �quantum� Particle Swarm Optimization algorithms that have been pub-
lished so far are not particularly convincing. There is potential to explore a
more quantum approach, albeit in a hybrid manner. The primary challenge lies
in the fact that PSO relies on an implicit probability distribution rather than
an explicit one. Therefore, it remains uncertain whether we can completely
eliminate the use of classical computations, or if at least a few of them are
indispensable.

Motivation

If you search using the keywords "quantum particle swarm optimization," you
can easily locate numerous papers (Sun, Lai, and Wu 2019;Blackwell and Branke
2004;Sun, Xu, and Feng 2004;Yang, Wang, and jiao 2004;Shuyuan, Min, and
Licheng 2004;J. Liu, Xu, and Sun 2005;S. Mikki and Kishk 2005;Oliveira et
al. 2006;S. M. Mikki and Kishk 2006;Sun, Fang, et al. 2012;G. Liu et al. 2019
;Fallahi and Taghadosi 2022; Flori, Oulhadj, and Siarry 2022) to name a few.

Upon careful examination of these papers, it becomes evident that the meth-
ods they propose do not truly incorporate concepts such as superposition of
states and entanglement, and consequently, they cannot leverage the capabili-
ties of a quantum computer.

For instance, in (Flori, Oulhadj, and Siarry 2022), the proposed QUAPSO
method mentions superposition but essentially considers, for each particle, a
small user-de�ned number of velocities to test. The method then retains the
velocity that produces the best result. In (Fallahi and Taghadosi 2022) at each
time step and for each particle, a random choice is made between two possible
next positions.

It is important to note that the critique here does not concern the e�ciency
of these methods; some of them perform reasonably well. The point is that
labeling them as "quantum" may not be entirely appropriate. These algorithms
could not, moreover, be executed on a real quantum computer, even in principle.

*Maurice.Clerc@WriteMe.com

1

Thus, the question arises: Can we de�ne a "more quantum" Particle Swarm
Optimization (PSO), particularly for discrete problems? In this context, I am
exclusively considering binary problems, as a discrete problem can always be
transformed into a binary one.

Let's embark on this exploration by following three key steps:

1. Tackling a straightforward binary problem using a quantum method, aim-
ing to grasp the manipulation of classical entities such as qubits, unitary
operators, and states. Feel free to skip this section if you are already
familiar with quantum computing.

2. Exploring a classical quantum optimizer, speci�cally the Grover Adaptive
Search, for a comprehensive comparison. Once again, if you are acquainted
with this, you can proceed to the next section.

3. Establishing the framework for a pure quantum binary PSO.

About the last part, unfortunately, I haven't had much success with this task
so far for the proposed algorithms are hybrid. I'm sharing this research in the
hope that someone might �nd a way to make it better.

Because my laptop is not powerful enough the examples given here are so small
that even the exhaustive search is sometimes better than the sophisticated
methods to solve them. They are here just to illustrate algorithms that may
become really interesting for bigger problems.

Part I

Playing with qubits, gates and

states

In this discussion, we focus solely on the pure mathematical approach to quan-
tum methods, excluding any physical interpretation. This is particularly im-
portant due to the existence of multiple interpretations, with no consensus on
determining the "correct" one.

Technically speaking, a quantum method can be delineated through manipu-
lations of qubits using operators, often referred to as gates, which are essentially
unitary matrices1. I assume you are familiar with these concepts, but you can
refer to the Appendix 6 for a more detailed explanation.

Alternatively, a quantum method can be depicted as a quantum circuit,
where a computation involves a series of quantum gates and measurements
(D. C. Marinescu and G. M. Marinescu 2012). Notably, the circuit may exhibit
dynamic behavior, with certain qubits being reset and reused (Hua et al. 2022).

1I assume you know what they are but you may have a look at the Appendix 6

2

A quantum algorithm operates by altering the components of a set of qubits
so that the �nal measurement yields a binary sequence that is most likely the
desired outcome. Generally, it is assumed that all qubits start in the state |0|.

The primary challenge lies in executing these modi�cations "blindly" since
observing or measuring a qubit results in its destruction, providing only a binary
outcome of 0 or 1.
Binary function, Boolean function
The usual de�nition of a binary function is a function that can takes only two
values: 0 and 1, no matter what are the variables.
For a Boolean function, the variables can take only two values, True and
False and the value of the function is de�ned by logical manipulations of these
variables. But for such a function, you can not de�ne something like sin(True).

So, in what follows, a binary function is simply any function de�ned on {0, 1}D.

1 A simple example

Let us promptly provide an illustration based on the W states (Wikipedia 2023).
Our objective is to construct allm×n binary matrices A that contain exactly

one '1' in each row.
There are at least three methods to achieve this:

1. A conventional approach utilizing a deterministic (potentially recursive)
algorithm. This poses a stimulating exercise that you should attempt.

2. A stochastic method involves minimizing a �tness function, such as∣∣∣∏m
i=1

(∑n
j=1A (i, j)

)
− 1

∣∣∣on {0, 1}mn
.

3. A quantum approach involves simultaneously generating all these matri-
ces.

Method 1 is deterministic, making it arguably the superior choice. Method 2, on
the other hand, may encounter signi�cant challenges in generating all possible
solutions.

Now, let's delve into the details of the latter. The diagram labeled 1.1
illustrates the corresponding quantum circuit for the parameters m = 3 and
n = 2. It's worth noting that the standard convention involves numbering the
qubits starting from 0. This circuit accurately produces the 23 = 8 solutions,
requiring the utilization of three types of unitary operators (commonly referred
to as gates when visually represented). The M box serves to signify that the
qubit is measured, leading to its destruction, and the outcome�either 0 or
1�is recorded as a classical bit.

Result

If we display the state vector (i.e. the superposition of the eight states) just
before measure, which is possible only in a simulation on a classical computer,
not on an actual quantum device, we �nd

3

Figure 1.1: Generation of 3x2 binary matrices with one 1 and only one in each
row .

√
2
4 |010101⟩+

√
2
4 |010110⟩+

√
2
4 |011001⟩+

√
2
4 |011010⟩+

√
2
4 |100101⟩+

√
2
4 |100110⟩+

√
2
4 |101001⟩+

√
2
4 |101010⟩

After measurements one of these eight tensor products will give a binary
string. For example |010101⟩ ⇒ 010101. But only one, with the probability

p =
(√

2
4

)2

= 1
8 = 0.125. So, if we want several solutions we have to launch

several runs (or shots). For example, to �nd the solutions with a probability

0.99999 you need at least
ln(10−5)
ln(1−p) ≃ 86 shots.

And in practice, of course, we do not �nd all bit strings with exactly the
same probability, as we can see on the �gure 1.2 generated after 100 shots.

Note that each bit string must be read from right to left and reformatted as
a 3× 2 matrix. So, for the second one

010110 ⇒

 0 1
1 0
1 0

2 Grover Adaptive Search

This is a classical quantum optimizer (Baritompa, Bulger, and Wood 2005;
Ortega Ballesteros 2021). We consider here only for further comparison with
our quantum PSO on a simple problem which I'll refer to as G6 and de�ned as
follows (see also Figure 2.1 for a possible 1D landscape2). There are many local
optima but it is relatively easy to escape them for they contains at most two
points and even often just one.

Find the binary position x = (x1, x2, x3, x4, x5, x6) of length n = 6 that
minimizes

2There are 26 = 64 possible strings, so 64! such landscapes

4

Figure 1.2: After measure the probability of each bit string is not exactly the
theoretical one (0.125)

5

0 10 20 30 40 50 60 70

x

-5

-4

-3

-2

-1

0

1

2

3

4

5

f

Figure 2.1: G6 problem. A possible landscape on [0, 64]. It is multimodal with
two minima at -5.

f (x) = −15 +

n−1∑
i=1

(4− xi − 2xi+1 + xixi+1) (2.1)

The problem, can be resolved using ten qubits.
It requires six qubits to represent positions, along with m qubits for the

possible values of a position (more precisely the di�erence relatively to a variable
threshold). If the maximal value is fmax theoretically mshould be so that

fmax ≤ 2m−1 − 1

Here fmax = 5, so we have

m = ⌈log2 (5) + 1⌉ = 4

Let s be the number of solutions. The optimal number of iterations for the
Grover search is given by

r =

⌊
π

4

1

arcsin
(√

s
2n+m

)⌋

6

As we are not supposed to know there are more than one solution we set
s = 1 and the formula gives r = 25. We will use this value but, actually there
are two solutions and 17 would be better, because the e�ciency (the probability
of success) follows a sin2 law: too few iterations certainly reduces it but too
many may also reduce it.

By running the Qiskit code (given in the Appendix 8.1) we indeed �nd the
two solutions, on positions x = (0, 0, 0, 0, 0, 0) and (0, 1, 1, 1, 1, 1) for which the
f value is -5 (see the �gure 2.2).

Figure 2.2: Solving a 6-bits problem by Grover's search. Two solutions.

Part II

PSO: from classical to quantum

By combining di�erent strategies it is possible to de�ne many binary PSO vari-
ants [Maurice Clerc 2005). But to illustrate the transformation classical ⇒
quantum let us consider just the oldest one [Kennedy and Eberhart 1997). Of
course more sophisticated variants do exist (see for example Lee et al. 2008).

7

3 A classical binary PSO

The problem is de�ned by a �tness function f on {0, 1}D and a position x is
said to be better than a position y i� f(x) < f(y).

The velocity update formula is

vi,(t+1),d = wvi,t,d + c̃i,t,d (pi,t,d − xi,t,d) + c̃i,t,d (gi,t,d − xi,t,d) (3.1)

and the position update formula3{
xi,(t+1),d = 1− xi,t,d if

(
U (0, 1) < S

(
vi,(t+1),d

))
0 else

(3.2)

where
w is the inertia weight
i is the rank of the particle in the swarm of size N .
t is the time step.
d is the current dimension.
Note that terms like p− x and g− x can take only three values: -1, 0 and 1.
c̃i,t,d is a random positive number generated for each (i, d, t), whose upper

limit is an unde�ned parameter. Usually drawn from the uniform distribution.
xi,t = (xi,t,1, . . . , xi,t,D) the �position� of the particle i at time t, an element

of {0, 1}D.
vi,t = (vi,t,1, . . . , vi,t,D) the �velocity� of the particle i at time t, here a value

in]−Vmax, Vmax[
D
. Note that at in 1997 the velocity in PSO, including this

binary version, was limited by an user-de�ned parameter

vi,(t+1),d → max
(
min

(
vi,(t+1),d, Vmax

)
,−Vmax

)
(3.3)

Only later the constriction coe�cient made it possible to avoid this arbitrary
parameter (M. Clerc and Kennedy 2002). In Kennedy and Eberhart 1997 Vmax

is set to 6.
pi,t = (pi,t,1, . . . , pi,t,D) the best �position� found so far at time t by the

particle i, usually called �previous best�.
gi,t = (gi,t,1, . . . , gi,t,D) the best of the best positions found so far at time t

by the neighbors of the particle i.
U (0, 1) a random value drawn from the uniform distribution on [0, 1].
S a logistic transformation that maps]−∞,+∞[to]0, 1[:

S (u) =
1

1 + e−λu
(3.4)

for which λ = 2 seems to be a good choice.

3In the original paper the formula is wrongly noted{
xi,(t+1),d = 1 if

(
U (0, 1) < S

(
vi,(t+1),d

))
0 else

8

Note that if you consider bits as logical values you can replace 1− xi,t,d by
¬xi,t,d (i.e. switching the bit).

The idea is that if for a dimension d the velocity is �high� then the d-th bit
of the position should probably be switched.

The mapping function S can easily be modi�ed. Not clear whether there
exists a �best� one or not, though.

The neighborhood Ni of the particle i is de�ned by what is called �topology�
and there are many possible ones, either constant, variable or adaptive.

At each time step and for each particle i we apply the velocity update and the
position update formulae and then we take the �tness function f into account
to possibly update the previous best{

pi,(t+1) = xi,(t+1) if f
(
xi,(t+1)

)
< f (pi,t)

= pi,t else
(3.5)

and the best previous best in the neighborhood

gi,(t+1) = arg

(
min
j∈Ni

(
f
(
pj,(t+1)

)))
(3.6)

In what follows, for simplicity I use �rst the so called global topology: for
each particle the neighborhood is the whole swarm so there is just one g.

4 Quantum Imitation

We can try to mimic classical PSO with quantum operations. Actually this is a
hybrid approach. The main idea is �Replace bits by qubits�, but some classical
computations are still needed. There are two di�culties:

� we can not precisely know a position;

� apparently we can not write something as simple as pi = xi for cloning an
unknown quantum state is impossible.

To cope with the �rst one, we estimate the probability density by launching
many shots with measure. The second one is due to an easy to prove theorem
(Wootters and Zurek 1982). However we do not really care here for several
reasons:

� It is not valid if you know the state, particularly after a forced (re)initialization.

� Similarly to the No Free Lunch theorem, which is valid only on sets of
problems that are closed under permutations, a situation that never occurs
in practice, this one is valid only for pure quantum states, not mixed ones
(see the Appendix for de�nitions) that usually have to be used if you
want to take advantage of the main quantum properties (superposition,
entanglement).

9

� An imperfect cloning (quasi-copy) is always possible (Buºek and Hillery
1996, Mastriani 2022).

� Finally, the no-cloning theorem holds true only when all applicable op-
erators are unitary. When, for instance, a qubit is reset, not only is its
state revealed, but the associated operator is no longer unitary. In such
instances, it becomes feasible to e�ectively �copy� a qubit, a process we
will apply in the subsequent discussion. Note that, though, it implies that
the quantum device can perform qubit resets.

4.1 Velocity and position updates

For each i in {1, . . . , N} we de�ne two lists of qubits that can be called q-
particles:

xi = (xi,1, . . . , xi,D) for the positions, i.e. the explorer swarm;
pi = (pi,1, . . . , pi,D) for the previous best positions, i.e. the memory swarm.

In the formula 3.1 a term like pi,t,d − xi,d can be interpreted as �how much�
the qubits pi,d and xi,d are di�erent, and depending on its sign it will implies
attraction or repulsion.

The �closeness� between them can be evaluated by the �delity in [0, 1] (see
the Appendix 6) and therefore the �distance� by 1-�delity which is in [0, 1].
But as we want a value that can be either positive or negative we use in fact
1− 2× fidelity, which is in [−1, 1].

The formula 3.1 becomes

vi,d ⇐ wvi,d + c̃i,d

(
1− 2 ||pi,dxi,d||2

)
+ c̃i,d

(
1− 2 ||gdxi,d||2

)
(4.1)

Then we apply a modi�ed mapping so that the result is in [-1,1]:

S (u) =
2

1 + e−λu
− 1 (4.2)

From a quantum point of view the formula 3.2 has to be transformed

xi,(t+1),d = Ry (πS (vi,d) , xi,d) (4.3)

Why this rotation? Let's consider the extreme case xi,d = 1×|0 > +0×|1 >
and S (vi,d) (almost) equal to 1. Then the Ry rotation switches the qubit, as in
the non-quantum approach (formula 3.2). But here the process is smoother for
smaller S values: only the probabilities of |0 > and |1 > are modi�ed.

Example
We have xi,d =

√
0.2×|0 > +

√
0.8×|1 > and a better position has been found

for which the qubit d is
√
0.9× |0 > +

√
0.1× |1 >. So the qubit xi,d should go

�towards� this one. Assuming there is no more improvement for eight iterations,
a possible evolution of xi,dis given in Table 1. As expected the probability of
state |0> (and, of course also the one of |1>) �rst tends to the �good� one (0.9)
and then oscillates.

10

Table 1: How a qubit goes �towards� another thanks to Ry rotations. Note the
oscillation.

xi,d Probability |0> Probability |1>

0.447 0.894 0.2 0.8
0.269 0.963 0.072 0.928
-0.035 0.999 0.001 0.999
-0.506 0.862 0.256 0.744
-0.871 0.491 0.759 0.241
-0.947 -0.322 0.896 0.104
-0.560 -0.829 0.313 0.687
0.033 -0.999 0.001 0.999
0.713 -0.701 0.509 0.491

We can estimate what could be the maximum value for vi,d. The worst-case
scenario occurs repeatedly when the �delities are zero and the random c̃i,d
equal to c. At the limit, as w < 1 we �nd

vmax =
c

1− w
(4.4)

4.2 Global best version

For simplicity we use here the global best topology (although it is bad for
classical multimodal problems).

The formula 4.3 becomes

vi,d ⇐ wvi,d + c̃i,d

(
1− ||gdxi,d||2

)
(4.5)

We consider the qubits independently. Remember that each xi,d can be
written

xi,d = α|0 > +β|1 >

Note that we do not even need to use complex numbers.
A pseudo-code is given in the box 1. To be sure you can reproduce the ex-

periments a Qiskit code for simulation (version 0.44.1) is given in the Appendix
8.3.

On a simulation we could have access to the state vector. However it would
be a sort of cheating for it is not possible on a real quantum device. So , instead,
I run many times the circuit (�shots�) to build a quasi-distribution, which can
be seen as an estimation of the unknowable state vector. Of course, it means
that the accuracy of this estimation is depending on the number of shots. In
the code of the �Tools� there is a function that estimate the number of shots
for a desired accuracy (say 0.95), but it can not work as soon as the number of
qubit is too big.

11

0 1 2 3 4 5 6 7

-4

-3

-2

-1

0

1

2

3

4

Figure 4.1: A simple bimodal function

Note that in this code the qubits de�ning the global best position g are
destroyed at each iteration, but quickly rebuilt thanks to the other positions
that do are rebuilt.

We can test this algorithm with two or three q-particles on a few simple
functions.

4.2.1 Sin3 problem

The continuous form of the �tness function is de�ned on [0, 7] by

f (x) = sin (x) (1− x) (4.6)

It is bimodal as we can see on the �gure 4.1.
We convert it into a binary one de�ned on {0, 1}3 thanks to the binarization

technique (see the Appendix 7)

f (b0, b1, b2) = sin (b0 + 2b1 + 4b2) (1− b0 − 2b1 − 4b2) (4.7)

The solution is f (1, 1, 1) = −3.942. Let's try our code with 100 runs and 4
iterations/run. The parameter values are w=0.721 and c=1.193. They are not
�nely tuned4 and we keep the same values for the other examples. The results
on the table 2 show that, as expected, the success rate increases with the swarm
size. And also with the number of shots, but not that much.

4These values comes from the classical Standard PSO but nothing proves this is a good
choice here.

12

Algorithm 1 Hybrid Quantum PSO for global best topology

Hybrid Quantum PSO (HQPSO) - Global best topology - Pseudo-
code for one run
The circuit is recreated at each loop thanks to values classically saved in the
previous one. So the method is hybrid.

Swarm size N

Dimension D (i.e. number of bits)

For the N particles i set fp,i = ∞
Loop while no stop criterion is met

Create a quantum circuit qc:

N*D qubits for the current positions x0, ..., xN−1

D qubits for the global best g

N*D bits for measure

If first loop

Initialize the velocities v at random (they can set to zero)

Initialize the positions x at random

else

Update velocities (see formula 4.5)

⇒ v and S

Update positions (formula 4.3).

It uses v and S (not a pure quantum approach)

Can be done thanks to reset and Ry gates

Measure the positions and

execute the circuits nshots times

⇒ nshots binary strings

Keep s, the one with the highest probability

For each position i

extract from s the corresponding bit string si
evaluate the fitness f (si)
if f (si) < fp,i

xbest = si
fp,i = f (si)
copy xi to g

13

Table 2: Global best HQPSO - Sin3 problem - 100 runs. The success rate of
random search would be 12.5 %.

Swarm size 1 1 2 2 3
Qubits 6 6 9 9 12
Shots 500 500 1024 1024 1024

Iterations/run 4 10 4 10 4
Evaluations 396 1089 382 804 327
Success rate 66 % 92 % 88 % 99 % 98 %

Table 3: Global best HQPSO - G6 problem - 100 runs. The success rate of
random search would be 3.125 %.

Swarm size 1 1 2 2 3
Qubits 12 12 18 18 24
Shots 2048 2048 2048 2048 2048

Iterations/run 4 10 4 10 4
Evaluations 493 2131 468 904 597
Success rate 31 % 81 % 84 % 100 % 91 %

During a run a sequence of improvement can be for example [0.0, 0.0, 1.3970,−3.9419].
A circuit (with just two q-particles) is given on the �gure 4.2. Note the three

CX gates that copy the best position (the �rst one) to the global best.

4.2.2 G6

4.2.3 Binary Rastrigin

We de�ne the continuous function on [0, 7]2 by

f (x1, x2) = 20 + (x1 − 3)
2 − 10 cos (2πx1) + (x2 − 5)

2 − 10 cos (2πx2) (4.8)

This function is highly multimodal as we can see on Figure 4.3a. The mini-
mum is zero on (3, 5).

When considering only integer 2D points it is unimodal (�gure 4.3b) but the
algorithm doesn't �know� that. Actually it is not really aware of any landscape
but we can better understand why the problem is far more di�cult5 than G6 �
although the dimension is the same (6) � by looking at a possible 1D landscape
(�gure 4.3c) whose local optima contain seven points, instead one or two for G6.

The algorithm proposes as a solution the binary string (101011) = 43. As
Qiskit uses the little-endian notation we can reverse the string and if we split it
we indeed get (110, 101) = (3, 5).

5Inversely, it's a good example of a problem that becomes simpler when coded in higher
dimension.

14

Figure 4.2: A typical circuit. The �rst q-particle (three qubits) is an improve-
ment and copied to save it.

Table 4: Global best HQPSO - Binary Rastrigin problem on [0, 7]2 - 100 runs.
The success rate of random search would be 1.56 %.

Swarm size 1 1 2 2 2 3 3
Qubits 12 12 18 18 18 24 24
Shots 1024 1024 1024 2048 2048 1024 2048

Iterations/run 4 10 4 4 10 4 4
Evaluations 555 3959 1138 1096 7950 1617 1611
Success rate 10 % 16 % 11 % 13 % 14 % 16 % 15 %

15

(a) Continuous. Highly multimodal.

(b) On integer 2D points it is unimodal but our HQPSO doesn't �see� that.

0 10 20 30 40 50 60 70

x

0

5

10

15

20

25

30

35

40

45

f

(c) In 1D representation on integer points it is multimodal. Each local
valley contains seven points so it is di�cult to escape.

Figure 4.3: Rastrigin landscapes.

16

Figure 4.4: A typical circuit (N = 2, , K=1,D = 2). At this time step explorer
1 (qubits 0 and 1) �moves� and �nds a better position. After, thanks to the
saved S values, it is rebuilt and copied to its memory (qubits 4 and 5).

Table 5: Local best HQPSO - Some results

Sin3 Sin3 G6 G6 G6 Rastrigin Rastrigin
Swarm size 2 2 2 2 3 2 2

Neighborhood size 1 1 1 1 2 1 1
Qubits 24 24 24 24 36 24 24
Shots 1024 1024 1024 1024 2048 2048 2048

Iterations/run 4 10 4 10 4 4 10
Evaluations 594 2440 1046 6936 5904 1112 7798
Success rate 70 % 89 % 21 % 28 % 24 % 10 % 15 %

4.3 Local best topology

We can try with a local best topology, a random variable one with at most K
neighbors (like say in SPSO 2007, available on the Particle Swarm Central PSC
2024). The velocity update formula is now the complete one 4.1.

The algorithm is still hybrid and needs more qubits than for the global best
topology, (2ND vs (N + 1)D) .

The Qiskit code is given in the appendix 8.4. It is a of course longer than
the one for the global best approach.

5 Discussion

The above results are not particularly good, even if better than with random
search. They are far worse than with exhaustive search, that would need 2D

evaluations, i.e. 64 for D = 6. Of course the hope is that it would be di�erent
for higher D values.

17

Although only very simple examples has been treated it seems that, contrar-
ily to the continuous case, the local best topology is not more e�cient than the
global best one. As it needs less qubits the global best topology seems prefer-
able but, of course, more and bigger examples are needed to conclude. But is it
worth?

These two approaches do use qubits and quantum gates (H, CX and Ry)
but are not satisfying for at least three reasons:

� Not elegant, for they are hybrid methods.

� They need a lot of qubits. The Grover search needs less qubits. However
its Qiskit code used here works well only for Quadratic unconstrained
binary optimization (QUBO) but not, for example, on the Rastrigin prob-
lem6.

� They don't truly leverage speci�c quantum features such as entanglement
and superposition. Therefore, in reality, both of them are essentially just
another instance of "fake quantum PSO."

For the classical iterative approach let's temporarily call state a position in the
search space.

The �philosophy� of this approach is then �Progressively �nd a state better
than the previous one�.

But for the quantum approach it is �Progressively increase the probability
of desirable states�.

They appear similar, but they di�er, as evident in this study when comparing
Grover's approach with our "quantum" PSO ones.

When we assert that a position is represented by a set of qubits, a q-
particle, it implies that this q-particle essentially represents all potential po-
sitions. Therefore, what we must do is manipulate a probability distribution
over the quantum state's space. This implies two observations if we intend to
convert a classical iterative algorithm A into a quantum one, qA:

� If A does not explicitly use a probability distribution to sample the next
position, it appears extremely di�cult to avoid classical computation in
qA. Therefore, it is considered hybrid.

� On the contrary, if A is an Estimation of Distribution Algorithm (EDA),
de�ning a purely quantum version might be easier. However, today7, the
published attempts are not very convincing. This is either due to their
results not being particularly good or because they, in fact, utilize Grover
search. See for example Soloviev, Bielza, and Larrañaga 2021; Morimoto
et al. 2023.

6For fair comparison I had to transform the function into a quadratic one, in which cos(x)
is replaced by 1 − x2/2. The results are bad (wrong solutions) with Grover search as with
global best HQPSO (two q-particles, 2048 shots and 4 iterations/run) the success rate is about
11 %.

7January 2024

18

So there is still this open question:�Is it worth trying to turn a classic iterative
optimization algorithm into a quantum version, or is it not better to directly
design a new quantum algorithm? �.

Part III

Appendix

6 Aide-memoire

A qubit is a vector with two complex components

q =

(
α
β

)
(6.1)

so that
|α|2 + |β|2 = 1 (6.2)

When we measure it we �nd 0 with the probability |α|2 or 1 with the prob-

ability |β|2.

To simplify calculations the qubit

(
1
0

)
is noted |0 > and the qubit

(
0
1

)
is noted |1 >. This is the so called bra notation.

A notation like |010 > means we consider the tensor product |0 > ⊗|1 >
⊗|0 > and is a state. This is then a column vector of size 23. A notation
like |ψ > is a concise way to say that ψ is a complex column vector (of any
dimension) as the ket notation < φ| is a complex row vector, a linear form,
actually.

Inner product

Applying a ket to a bra is the inner product < φ||ψ > noted < φψ > and the
result is a complex number. In particular we assume < ψψ >= 1, which is a
generalisation of the formula 6.2.

Outer product

Applying a bra to a ket is the outer product |ψ >< φ| noted |ψφ| and the result
is a matrix (product of a column vector by a row vector).

Qubits are manipulated thanks to unitary matrices, usually called operators
or gates.

H gate

The name comes from Hadamard. This gate places the qubit in the �intermedi-
ate� state, which would give 0 or 1 with probabilities equal to 1/2, if measured.

19

Such a gate therefore induces the transformation

|0 >→ |0 > +|1 >√
2

=
1√
2

(
1
1

)
In matrix representation, we have

H =
1√
2

[
1 1
1 −1

]
(6.3)

It also induces the transformation

|1 >→ |0 > −|1 >√
2

=
1√
2

(
1
−1

)
It is often used as the analogue of the classic uniform random initialization

in population-based algorithms, when all qubits at the very beginning are in
state |0 >.

X gate

X for exchange. Sometimes called Pauli-X or NOT gate or bit-�ip.
When a qubit `passes' through such a gate, it becomes, as it were, its op-

posite: |0 > becomes |1 >and |1 > becomes |0 > . More generally α and β
components are exchanged.

Its matrix is

X =

[
0 1
1 0

]
(6.4)

and to apply this gate is to perform the product

X ×
(
α
β

)
=

(
β
α

)
This is the analogy of Not in classical computing.

CX gate

CX for controlled exchange.
It is also called CNOT because it is indeed a controlled 'negation'. This

gate concerns two qubits. When the �rst one is |1 > an X gate is applied to the
second one. But if it is |0 > the X gate on the second one is ignored.

So the matrix is now 4× 4 :

CX =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (6.5)

20

From an algebraic point of view, applying this gate consists of forming a
four-element ψ vector by concatenating 'vertically' those of the two qubits, then
performing the product

CX × ψ =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

α1

β1
α2

β2

 =

α1

β1
β2
α2

In a circuit, this gate is often represented as

Ry gate

This operator needs a parameter θ called rotation angle. Its matrix is

Ry (θ) =

[
cos

(
θ
2

)
− sin

(
θ
2

)
sin

(
θ
2

)
cos

(
θ
2

)]
(6.6)

In the so-called Poincaré-Bloch sphere visualization it rotates around the y
axis the vector representing the qubit to which it is applied, hence the name.
Let's apply it to |0 >:

Ry (θ)

(
1
0

)
=

(
cos

(
θ
2

)
sin

(
θ
2

))

So if we want to initialize a qubit in the

(
α
β

)
state we just have to reset it

to |0 > and then apply Ry (2 arccos (α)). The β value is set to sin (arccos (α)).

Pauli Z gate

This is a single-qubit rotation through π radians around the z-axis. Sometimes
also noted σz. Its matrix is

Z =

[
1 0
0 −1

]
CZ gate

The controlled Z gate, applied to two qubits. Although it is called �controled�
one can not really say that a qubit �controls� another one so its graphical rep-
resentation in a circuit is symmetrical:

21

Its matrix is

CZ =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 (6.7)

In fact, of the four possible input states, namely |00 >, |10 >, |01 > and
|11 >, only the last one is modi�ed, transformed into −|11 >.

Pure state, mixed state

A pure state can be represented by a vector. Qubits are pure states. However,
most of the time, after some manipulations the current state is a linear com-
bination of pure states, and is de�ned by a matrix, as we have seen for the H
gate. However, in practice, it is easier to explicitely give the linear combination,
something like

S = α1|01...10 > +α2|10...00 > +...αn|001...0 > (6.8)

in which each �bit string� has the same length and with
∑n

i=1 |αi|2 = 1 for

each |αi|2 is a probability. It means that if we measure the state we will �nd one
(and just one) of the �bit string� sequences and with the associated probability.
On a simulation we can e�ectively display the state, but not on a real quantum
device.

Any quantum algorithm has to change the probabilities without being able
to see them, in order to favour the desirable states before measure.

Density operator

Let us consider an ensemble of pure states ψj prepared with probabilities pj (of
sum 1). Then the density operator is de�ned by

ρ =
∑

j pj |ψj⟩ ⟨ψj |

Note this is a matrix.

Fidelity

If you consider states as probabilistic distributions, a classical estimation of the
�closeness� of two states φ and ψ is the �delity based on the density operator.
If the states are pure the formula is simply

F (φ,ψ) =

(
tr

(√√
ρσ

√
ρ

))2

) = (tr (|√ρσ|))2

where
tr is the trace of a matrix
ρ is the density operator of φ

22

σ is the density operator of ψ
Although not obvious the �delity is symmetrical. However it is not really a

distance (no triangle inequality).
For pure states the formula is simply

F (φ,ψ) = |< φ|ψ >|2

Let's consider the particular case of two qubits q1 =

(
α1

β1

)
and q2 =(

α2

β2

)
.

The �delity is simply

F (q1, q2) = |α∗
1α2 + β∗

1β2|
2

(6.9)

where * means �conjugate�. Its value in [0, 1] tell us how �similar� are these
two qubits. For example if a qubit is set to |0> and the other initialized thanks
to a H gate, the �delity is 0.5. But if they are both initialized by H the �delity
is 1.

7 Binarization

Let's consider a real function f de�ned on S = [xmin, xmax] whose minimum is
on x∗. If it is an arti�cial problem of a benchmark for optimization it is alway
possible to modify it so that xmin = 0 and x∗ is an integer. So if xmax ≤ 2n the
number of bits to represent in base 2 all integers of the search space S is n− 1.

Now each integer x of S can written

x =

n−1∑
i=0

bi2
i (7.1)

For example the continuous function

f (x) = (1− x)
2

on [0, 7]

becomes (we keep the same name for simplicity)

f (b0, b1, b2) = (1− b0 − 2b1 − 4b2)
2

on {0, 1}3

and its minimum is 0 on (0, 0, 1).
Of course this transformation can be extended to more than one dimension.

If we have f (x, y) and if x needs nx bits and y needs ny bits then the resulting
binary function will be

f
(
b0, . . . , bnx−1, bnx

, . . . , bnx+ny−1

)
(7.2)

23

8 Source codes

I had to learn Python and Qiskit (0.44.1 version) to write these codes. I didn't
become an expert, but someone skilled could surely make the codes shorter and
better.

I did tests on a Linux laptop using Anaconda/Jupyter, and the operating
system was Ubuntu 22.04.

8.1 Grover adaptive search

import numpy as np

import math

import time

from qiskit_algorithms.minimum_eigensolvers \

import NumPyMinimumEigensolver

from qiskit_optimization.algorithms \

import GroverOptimizer, MinimumEigenOptimizer

Works well only for Quadratic unconstrained binary optimization

from qiskit_optimization.translators \

import from_docplex_mp

from docplex.mp.model import Model

model = Model()

G6

x0 = model.binary_var(name="x0")

x1 = model.binary_var(name="x1")

x2 = model.binary_var(name="x2")

x3 = model.binary_var(name="x3")

x4 = model.binary_var(name="x4")

x5 = model.binary_var(name="x5")

n=6

def c(xa,xb):

cv=4-xa -2*xb +xa*xb

return cv

def fit(x0,x1,x2,x3,x4,x5):

f=-(15-c(x0,x1)-c(x1,x2)-c(x2,x3)-c(x3,x4)-c(x4,x5))

return f

#---------------- Exhaustive search, to check

start=time.process_time()

t=0

v=np.array(range(2**n))

fmax=-1000

fmin=1000

for x0_ in range(2):

for x1_ in range(2):

for x2_ in range(2):

24

for x3_ in range(2):

for x4_ in range(2):

for x5_ in range(2):

f_=fit(x0_,x1_,x2_,x3_,x4_,x5_)

v[t]=f_

t=t+1

if f_<fmin:

fmin=f_

solutionMin=[x0_,x1_,x2_,x3_,x4_,x5_]

if f_>fmax:

fmax=f_

solutionMax=[x0_,x1_,x2_,x3_,x4_,x5_]

print("Minimum ",fmin," on ", solutionMin,sep="")

print("Maximum ",fmax," on ", solutionMax,sep="")

vu=np.unique(v)

print("Possible values")

print(vu)

print("There are ",len(vu)," possible values",sep = "")

end=time.process_time()

print("Exhaustive search time = ",end-start,sep="")

#--------------------- Grover

start=time.process_time()

model.minimize(fit(x0,x1,x2,x3,x4,x5))

qp = from_docplex_mp(model)

print(qp.prettyprint())

m will allow us to store integer values

on the interval [=2^(m=1),2^(m=1)-1] that includes [fmin,fmax]

w1=fmin # lower bound of the fitness function

w2=fmax # upper bound

m1=math.ceil(math.log(abs(w1),2)+1)

m2=math.ceil(math.log(abs(w2)+1,2)+1)

m=max(m1,m2)

nbqubits=n+m

s= 2 # number of solutions

nbIter=math.floor((math.pi/4)*(1/math.sqrt(s/2**nbqubits)))

print("n = ", n, ", m = ", m,", nbqubits = ", nbqubits,sep = "")

print("nbIter = ",nbIter)

------------------------Grover's adaptive search

if nbqubits<10: # Can run locally on a small laptop

from qiskit.primitives import Sampler

grover_optimizer = \

GroverOptimizer(nbqubits, num_iterations=nbIter, \

sampler=Sampler())

else: # IBM quantum cloud.

25

The needed API token has been saved once on the local computer

from qiskit_ibm_runtime import Sampler

from qiskit_ibm_runtime import QiskitRuntimeService

service = QiskitRuntimeService(channel="ibm_quantum")

backend = service.backend("ibmq_qasm_simulator")

grover_optimizer =

GroverOptimizer(nbqubits, num_iterations=nbIter, \

sampler=Sampler(backend=backend))

results = grover_optimizer.solve(qp)

end=time.process_time()

print("Exhaustive search time = ",end-start,sep="")

print(results.prettyprint())

------------------------ Post-processing

res=results.samples

lres=len(res)

x=list(range(lres))

pr=list(range(lres))

for i in range(lres):

pr[i]=res[i].probability

s = [str(element) for element in np.int_(res[i].x)]

x[i] =�.join(s)

import matplotlib.pyplot as plt

fig = plt.figure()

ax = fig.add_axes([0,0,1,1])

ax.bar(x,pr)

ax.set_ylabel('Probability')

ax.set_xlabel('Position')

plt.xticks(fontsize=7,rotation = 90)

plt.show()

8.2 Common codes

8.2.1 Functions

#!/usr /bin /env python
coding : utf=8

In [] :
import math
Pi = math . p i

de f quadCos (x) :
cos=1=x*x/2
return cos

26

de f fCodeDmin (fCode) :
minimum = 0 # Defau l t va lue . I f you know i t
I f not you may use iterMax=In f
but there i s a r i s k o f i n f i n i t e loop

match fCode :
case =1:

D = 1
case 0 :

D = 2
case 1 :

D = 2
case 2 :

D = 2
case 3 : # Unimodal

D = 2
case 4 :

D = 3
case 5 :

D = 4
minimum = =5

case 51 :
D = 6
minimum = =5

case 6 : # Unimodal
D = 5
minimum = 0

case 7 : # Unimodal
D = 6

case 8 : # s i n (u)*(1=u)
D = 3
minimum = =3.94

case 9 : # 2D Ras t r i g i n on [0 , 7]^2
D = 6

case 91 : # 2D Ras t r i g i n as quadrat i c func t i on
D = 6

case 10 : # 2D Ras t r i g i n on [0 , 15]^2
D = 8

A se t o f s imple funct i ons , j u s t to t e s t
a po s s i b l e b i a s
case 11 : # Minimum 0 on 010

D=3
case 12 : # Minimum on 100

D=3

27

case 13 : # Minimum on 111
D=3

case 14 : # Minimum on 000
D=3

case 15 :
D=6

return D,minimum

def f i t (x , fCode) : # F i tne s s func t i on
b0 = x [0]

match fCode :
case =1: # Just to t e s t

f=b0
case 0 : # So lu t i on 10

b1 = x [1]
f = (b0=1)**2 + b1

case 1 :
b1 = x [1]
f = (b0+2*b1=1)**2 * (3=b0=2*b1) + (3=b0=2*b1)/4

case 2 :
b1 = x [1]
f = (1=2*b0=4*b1)**2 * (3=b0=2*b1)

case 3 : # Unimodal
b1 = x [1]
f = (2*b0+4*b1=2)**2

case 4 : # So lu t i on s 110 101
b1 = x [1]
b2 = x [2]
f = (1=2*b0=4*b1+b2)**2 * (3=b0=2*b1+b2)

case 5 : # G4
b1 = x [1]
b2 = x [2]
b3 = x [3]
f = =11+(4=b0=2*b1+b0*b1) + (4=b1=2*b2+b1*b2)+(4=b2=2*b3+b2*b3)

case 51 : # G6 . So lu t i on s 111111 011111. D i f f i c u l t
b1 = x [1]
b2 = x [2]
b3 = x [3]
b4 = x [4]
b5 = x [5]

28

f = =15+(4=b0=2*b1+b0*b1) + (4=b1=2*b2+b1*b2)+(4=b2=2*b3+b2*b3) +\
(4=b3=2*b4+b3*b4) + (4=b4=2*b5+b4*b5)

case 6 : # Unimodal . So lu t i on 10000
b1 = x [1]
b2 = x [2]
b3 = x [3]
b4 = x [4]
f = (1=b0=2*b1=4*b2=8*b3=16*b4)**2

case 7 : # Unimodal . So lu t i on 100000
b1 = x [1]
b2 = x [2]
b3 = x [3]
b4 = x [4]
b5 = x [5]
f = (1=b0=2*b1=4*b2=8*b3=16*b4=32*b5)**2

case 8 : # So lu t i on 111
b1 = x [1]
b2 = x [2]
u = b0+2*b1+4*b2
f = math . s i n (u)*(1=u)

case 9 : # 2D Ras t r i g i n on [0 , 7]^2
Minimum 0 on [3 , 5]
So lu t i on 110 101
b1 = x [1]
b2 = x [2]
second coord inate
b3 = x [3]
b4 = x [4]
b5 = x [5]

u1 = b0+2*b1+4*b2 = 3
u2 = b3+2*b4+4*b5 = 5
f = 20 + u1*u1=10*math . cos (2*Pi*u1) \

+ u2*u2=10*math . cos (2*Pi*u2)

case 91 : # 2D Ras t r i g i n as quadrat i c func t i on
b1 = x [1]
b2 = x [2]
b3 = x [3]
b4 = x [4]
b5 = x [5]
u1 = b0+2*b1+4*b2 = 3

29

u2 = b3+2*b4+4*b5 = 5
c1=quadCos (2*Pi*u1)
c2=quadCos (2*Pi*u2)
f =20 + u1*u1=10*c1 + u2*u2=10*c2

case 10 : # 2D Ras t r i g i n on [0 , 15]^2
Centered on [3 , 5]
b1 = x [1]
b2 = x [2]
b3 = x [3]
second coord inate
b4 = x [4]
b5 = x [5]
b6 = x [6]
b7 = x [7]
u1 = b0+2*b1+4*b2+8*b3 = 3
u2 = b4+2*b5+4*b6+8*b7 = 5
f = 20 + u1*u1=10*math . cos (2*Pi*u1) \

+ u2*u2=10*math . cos (2*Pi*u2)

Just to de t e c t p o s s i b l e b i a s e s
case 11 : # So lu t i on 010

f=b0+1=x [1]+x [2]
case 12 : # So lu t i on 100

f=1=b0+x [1]+x [2]
case 13 : # So lu t i on 111

f=3=b0=x [1]=x [2]
case 14 : # So lu t i on 000

f=b0+x [1]+x [2]

r e turn f

8.2.2 Tools

#!/usr/bin/env python

coding: utf -8

In[]:

import numpy as np

import math

Pi = math.pi

Inf = math.inf

from statistics import mean

30

from qiskit import *

from random import random , uniform , sample , randrange , randint , choice

from qiskit.quantum_info import DensityMatrix

from qiskit import Aer

from qiskit.extensions import Initialize

def IBM_backends_list ():

List of available backends

from qiskit_ibm_runtime import QiskitRuntimeService

backends = QiskitRuntimeService (). backends ()

for i in range(len(backends)):

print(backends[i])

#--

def initPos(rank1 ,rank2 ,qc): # Init explorer swarm

qc.h(range(rank1 ,rank2))

def initPos2(rank1 ,rank2 ,qc):

for i in range(rank1 ,rank2):

theta=uniform (0,2*Pi)

qc.ry(theta ,i)

def mostProbable(counts ,tolerance):

values = list(counts.values ())

keys = list(counts.keys ())

With "local" run , the length of the keys

is exactly the number of measured qubits

proba=np.array(values)/sum(values)

probaMax=max(proba)

Find more or less equivalent ones

sList =[]

for i in range(len(values)):

if values[i]>= tolerance*probaMax:

sList.append(keys[i])

Random choice

string=choice(sList)

return string ,probaMax

def mostProbableIBM(qd0 ,tolerance , measured):

Extract from a quasi -distribution

(coming from the IBM cloud , for example)

proba=list(qd0.values ()) # Probabilities

keys=list(qd0.keys ()) # Bit string (coded as integer)

'''

31

On the IBM cloud the length of the key

as bit string may need leading zeros

so that the string has the right length

(i.e.) the number of measured qubits.

'''

probaMax=max(proba)

Find more or less equivalent ones

sList =[]

for i in range(len(proba)):

if proba[i] >= tolerance*probaMax:

sList.append(keys[i])

key=choice(sList) # Random choice

string = format(key ,'b') # integer => binary string

ls=len(string)

if ls <measured:

string=string.zfill(measured)

return string ,probaMax

def qubitDensityIBM(qd0 ,measured ,i):

keys=list(qd0.keys ())

values=list(qd0.values ())

For qubit i, probability to be 0

proba0 =0

for k in range(len(keys)):

string = format(keys[k],'b')

ls=len(string)

if ls<measured: # Complete with leading zeros

string=string.zfill(measured)

ind=len(string)-i-1 # Because litte -endian notation

if string[ind]=='0':

proba0=proba0+values[k]

qDensity=DensityMatrix ([[proba0 ,0],[0,1- proba0]])

return qDensity

def qubitDensity(counts ,i):

keys=list(counts.keys ())

values=np.array(list(counts.values ()))

values=values/sum(values)

For qubit i, probability to be 0

32

proba0 =0

for k in range(len(keys)):

string = keys[k]

ind=len(string)-i-1 # Because litte -endian notation

if string[ind]=='0':

proba0=proba0+values[k]

qDensity=DensityMatrix ([[proba0 ,0],[0,1- proba0]])

return qDensity

def diagSquare(M):

diag=np.sqrt(np.diagonal(M))

return diag

def assignProba0(qc,i,dm,p):

dm = density matrix of a qubit

p = desired probability for |0>

Just a bit of algebra

p0=np.array(dm)[0][0] # Initial probability

A=math.sqrt(p0*p)

B=math.sqrt(max(p0*p -p-p0+1,0)) # It may be slightly <0

Because numerical instability

x1= max(min(A+B,1),-1)

x2= max(min(A-B,1),-1)

theta1 =2* math.acos(x1)

theta2 =2* math.acos(x2)

theta= min(theta1 ,theta2)

Then you have to apply Ry(theta ,i)

qc.ry(theta ,i)

return qc

def numberDraws(pr,m):

'''

Number of draws with replacement.

m = number of objects

pr = desired probability to draw each one

'''

pt=0

n=100

while pt<pr:

n=n+100 # Should be +1, but faster

pt=probaEach(m,n)

To cope with the numerical instability

Warning: may induce infinite loop

or incorrect results if m is too big

if pt <0 or pt >1:

33

pt=0

return n

def probaEach(m,nd):

'''

Probability to draw each object at least once.

m = number of objects

nd = number of draws

'''

p=0

for i in range(m+1):

comb=combin(m,i)

#print ("comb",comb)

p=p+((-1)**i) * comb * ((i/m)**nd)

#print ("p",p)

return p

def combin(m, k):

"Combine m objects k by k"

" m <= 410 "

if k > m // 2:

k = m - k

result = 1

for i in range(1, k + 1):

result *= m

result //= i

m -= 1

return result

def dispCircuit(qc):

qcDec = qc.decompose (). decompose (). decompose (). decompose ()

print(qcDec)

qcDec.draw()

def init01(qc ,bitstring):

D=len(bitstring)

for d in range(D):

bit=bitstring[D-1-d]

if bit =="1":

vector =[0,1]

else:

vector =[1,0]

qc.initialize(vector ,d)

#!/usr /bin /env python

34

coding : utf=8

In [] :
import numpy as np
import math
Pi = math . p i

from random import random , uniform , sample , randrange , randint , cho i c e
from q i s k i t . quantum_info import s t a t e_ f i d e l i t y

de f i n i tV e l (N, D, vMax) : # (N,D, vMax) : # ' Veloc i ty ' i n i t i a l i s a t i o n
v = []
f o r _ in range (N*D) :

v . append (uniform(=vMax , vMax))
re turn v

de f updateVelNoSv (N,D, nqbits , v , counts ,w, c2 , vMax) : # Ve loc i ty update
S = []
f o r i in range (N) :

f o r d in range (D) :
i 1 = D* i+d # current qubit o f the po s i t i o n
i 2 = nqbits=D + d # current qubit o f g
i f i d 2 = inf idNoSv (i1 , i2 , counts)
v [i 1] = w*v [i 1] + uniform (0 , c2)* i f i d 2
i f abs (v [i 1]) > vMax :

p r i n t (" Warning , v" , v [i 1])

S . append (mapping (v [i 1]))
v = np . array (v)
S = np . array (S)
re turn v , S

de f updateVelNoSvIBM(N,D, nqbits , v , qd ,w, c2 , vMax , measured) :
Ve loc i ty update

S = []
f o r i in range (N) :

f o r d in range (D) :
i 1 = D* i+d # current qubit o f the po s i t i o n
i 2 = nqbits=D + d # current qubit o f g
i f i d 2=infidNoSvIBM (i1 , i2 , qd , measured)
v [i 1] = w*v [i 1] + uniform (0 , c2)* i f i d 2
i f abs (v [i 1]) > vMax :

p r i n t (" Warning , v" , v [i 1])

S . append (mapping (v [i 1]))
v = np . array (v)

35

S = np . array (S)
re turn v , S

de f copyPos (i1 , i2 , qc ,D) :
rank1 = D* i 1
rank2 = D* i 2
f o r d in range (D) :

qc . r e s e t (rank2+d)
qc . cx (rank1+d , rank2+d)

de f updatePos (S ,N,D, qc) : # ' Pos i t ion ' update
f o r i in range (N) :

f o r d in range (D) :
j = D* i+d
qc . ry (Pi*S [j] , j)

de f d i s pC i r cu i t (qc) :
qcDec = qc . decompose () . decompose () . decompose () . decompose ()
#qcDec . draw ()
p r i n t (qcDec)

de f inf idNoSv (i1 , i2 , counts) :
sv1=qubitStateCounts (counts , i 1)
sv2=qubitStateCounts (counts , i 2)
i f i d = 1 = s t a t e_ f i d e l i t y (sv1 , sv2) # in [0 , 1]
i f i d = 2* i f i d =1 # in [=1 ,1]
i f i d = round (i f i d) # in {=1 ,0 ,1}
re turn i f i d

de f infidNoSvIBM (i1 , i2 , qd , measured) :
sv1=qubitStateCountsIBM (qd , i1 , measured)
sv2=qubitStateCountsIBM (qd , i2 , measured)
i f i d = 1 = s t a t e_ f i d e l i t y (sv1 , sv2) # in [0 , 1]
i f i d = 2* i f i d =1 # in [=1 ,1]
#i f i d = round (i f i d) # in {=1 ,0 ,1}
re turn i f i d

de f qubitStateCountsIBM (qd0 , i , measured) :
keys=l i s t (qd0 . keys ())
va lue s=l i s t (qd0 . va lue s ())

For qubit i , p r obab i l i t y to be 0
proba0=0
f o r k in range (l en (keys)) :

s t r i n g = format (keys [k] , ' b ')
l s=len (s t r i n g)

36

i f l s <measured : # Complete with l ead ing z e ro s
s t r i n g=s t r i n g . z f i l l (measured)

ind=len (s t r i n g)= i=1 # Because l i t t e =endian notat ion
i f s t r i n g [ind]== '0 ' :

proba0=proba0+va lue s [k]

p=[math . s q r t (proba0) ,math . s q r t (1=proba0)]
r e turn p

de f qubitStateCounts (counts , i) :
keys=l i s t (counts . keys ())
va lue s=np . array (l i s t (counts . va lue s ()))
va lue s=va lue s /sum(va lues)

For qubit i , p r obab i l i t y to be 0
proba0=0
f o r k in range (l en (keys)) :

s t r i n g = keys [k]
ind=len (s t r i n g)= i=1 # Because l i t t e =endian notat ion
#ind=i
i f s t r i n g [ind]== '0 ' :

proba0=proba0+va lue s [k]

p=[math . s q r t (proba0) ,math . s q r t (1=proba0)]
r e turn p

de f mapping (u) :
a=2

s i g = 2 / (1 + math . exp(=a*u)) =1
return s i g

8.3 Global best

#!/usr /bin /env python
coding : utf=8

In [] :

' ' '
Hybrid Quantum PSO f o r binary problems
by Maurice . Clerc@>WriteMe . com
Last update : 2024=01=13
This v e r s i on does not use the s t a t e vector ,
so i t i s more s u i t a b l e f o r a r e a l quantum dev i ce

37

Just f o r a proo f o f concept :
= g l oba l bes t topo logy
= mimicking the c l a s s i c a l b inary PSO

May need (Linux)
echo 1 | sudo tee /proc / sys /vm/overcommit_memory

' ' '
from Tools2 import *

from Tools1 import *

from Functions import *

np . s e t_pr in topt i ons (p r e c i s i o n=3)
from q i s k i t . quantum_info import s t a t e_ f i d e l i t y

==

max_qubits = 17 # The max f o r my computer
IBM = False # Note : i t w i l l be f o r c ed to True

i f more qub i t s than max_qubits

fCode = 8 # *** Here choose the func t i on

runMax = 100
tMax = 4 # Number o f i t e r a t i o n s f o r each run
You may s e t i t to I n f but
WARNING: p o s s i b l e i n f i n i t e loop
verbose=False
p l o tC i r c u i t=Fal se
r e s t o r e=False # Just f o r t e s t
===============================

Parameters
N = 2 # swarm s i z e
w = 0.721 # In e r t i a weight
c2 = 1.193 # Cogni t ive / s o c i a l c o e f f i c i e n t
vMax=c2/(1=w)
to l e r an c e = 0.95 # To de f i n e " equ iva l en t " p r o b a b i l i t i e s

==============================

D, minimum = fCodeDmin (fCode)
nqb i t s = N*D +D
i f nqb i t s <= 8 :

nshots = numberDraws (0 . 9 , 2** nqb i t s)
e l s e : # User=de f ined

nshots =2048 # 2**12
p r in t (nshots , " nshots ")

38

nb i t s = nqb i t s # To save the f i t n e s s va lue
p r i n t (" nqb i t s " , nqb i t s)
a l l q b i t s = l i s t (range (nqb i t s))
measured = N*D #nqb i t s
measuredQbits=l i s t (range (N*D))

i f verbose :
p r i n t (" Function " , fCode)
p r i n t (" Dimension " , D)
p r in t (nqbits , " qub i t s ")

IBM = nqb i t s > max_qubits or IBM
i f IBM:

pr in t ("IBM cloud ")
from qiskit_ibm_runtime import Sampler , Sess ion , Qisk i tRunt imeServ ice

from qiskit_ibm_runtime import Estimator
s e r v i c e = Qisk i tRunt imeServ ice (channel="ibm_quantum")
backend = s e r v i c e . backend (" ibmq_qasm_simulator ")

e l s e :
backend = Aer . get_backend (' s ta tevector_s imulator ')

=== Runs
fMinBest = In f # Fina l bes t va lue over a l l runs
FEtot = 0 # Total number o f eva lua t i on s
su c c e s s = 0
FEsuccess = []

f o r run in range (runMax) :
p r i n t("======================= Run " , run+1)
FEs = 0 # Number o f eva luat i ons , f o r in fo rmat ion
fMin = In f
iBes t = N # Gobal bes t
t = 0
#plusMinus = [1 , =1]
f L i s t = [] # Just f o r in fo rmat ion
stop=False

whi l e not stop :
t=t+1
i f verbose :

p r i n t("==========================", " I t e r a t i o n " , t)
q = QuantumRegister (nqb i t s)
c = C l a s s i c a lR e g i s t e r (measured)
qc = QuantumCircuit (q , c)
i f t == 1 :

i n i tPo s (0 , N*D, qc)
v = i n i tV e l (N, D, vMax) # Random ve l o c i t y

e l s e :

39

i f r e s t o r e :
i n i t 0 1 (qc , b i t s t r i n g)

i f IBM:
v , S=updateVelNoSvIBM(N,D, nqbits , v , qd ,w, c2 , vMax , measured)

e l s e :
v , S=updateVelNoSv (N,D, nqbits , v , counts ,w, c2 , vMax)

updatePos (S , N, D, qc)

qc . measure (measuredQbits , measuredQbits)
i f p l o tC i r c u i t :

qc . b a r r i e r (range (nqb i t s)) # Just to be t t e r s ee the c i r c u i t
d i s pC i r cu i t (qc)

===========

i f IBM:
with Se s s i on (backend=backend) :

sampler = Sampler ()
r e s u l t = sampler . run (qc , shot s=nshots) . r e s u l t ()
qd = r e s u l t . quas i_d i s t s [0]
b i t s t r i n g , proba = mostProbableIBM(qd , to l e rance , measured)

e l s e :
job = execute (qc , backend , shot s=nshots)
r e s u l t = job . r e s u l t ()
counts = r e s u l t . get_counts (qc)
b i t s t r i n g , proba = mostProbable (counts , t o l e r an c e)

i f verbose :
p r i n t ("Most probable " , b i t s t r i n g , "proba : " , proba)

For each q=p a r t i c l e
eva luate i t s f i t n e s s and compare
f o r n in range (N) : # range (N) ?? N=1 ??

x = np . z e ro s (D, dtype=in t)
l s = l en (b i t s t r i n g)
f o r d in range (D) :

(l i t t l e =endian notat ion)
x [d] = in t (b i t s t r i n g [l s=d=1 = n*D])

f = f i t (x , fCode)
FEs = FEs+1
f L i s t . append (f) # For in fo rmat ion
#pr in t (" f " , f)
I f improvement
i f f < fMin :

xBest = x # Global bes t p o s i t i o n
i f verbose :

40

pr in t (" Improvement . xBest=", xBest , fMin , "=>", f)
fMin = f
copyPos (n , iBest , qc , D) # To g l oba l bes t q=p a r t i c l e g
i f fMin < fMinBest :

fMinBest = fMin
xBestBest = xBest

stop = t >= tMax or fMin <= minimum
i f t >= tMax :

p r i n t ("STOP t>=", tMax)
i f fMin <= minimum :

p r in t ("STOP fBest <=", minimum)
suc c e s s=suc c e s s+1
FEsuccess . append (FEs)

i f p l o tC i r c u i t :
d i s pC i r cu i t (qc)

i f not stop :
FEtot = FEtot+FEs
i f verbose :

p r i n t (" After " , t , " i t e r a t i o n s : ")
p r i n t (" and" , FEs , " eva lua t i on s ")
p r i n t (xBest , " =>", fMin)

p r i n t("============================= Fina l r e s u l t ")
p r i n t (" Function " , fCode)
p r i n t (" Dimension " , D)
p r in t ("Swarm s i z e " ,N)
p r in t ("Number o f qub i t s " , nqb i t s)
p r i n t ("Runs" , runMax)
p r in t (" I t e r a t i o n s /run " , tMax)
p r in t (nshots , " shot s ")
p r i n t (" r e s t o r e " , r e s t o r e)
p r i n t (" Total number o f eva lua t i on s " , FEtot)
p r i n t ("w, c " ,w, c2)
p r i n t (" Best r e s u l t : ")
p r i n t (xBestBest , " =>", fMinBest)
p r i n t (" Success ra t e " , s u c c e s s /runMax)
p r in t (" Success ra t e with random search " , 1/2**D)

i f succes s >0:
mFE=round (mean(FEsuccess))

p r i n t ("Mean number o f eva lua t i on s f o r s u c c e s s f u l runs : " ,mFE)

In [] :

41

8.4 Local best

#!/usr /bin /env python
coding : utf=8

In [2] :

' ' '
Hybrid Quantum PSO f o r binary problems
by Maurice . Clerc@>WriteMe . com
Last update : 2024=01=15

Just f o r a proo f o f concept :
= l o c a l bes t topology
= mimicking the c l a s s i c a l b inary PSO

May need (Linux)
echo 1 | sudo tee /proc / sys /vm/overcommit_memory

' ' '
from q i s k i t . quantum_info import s t a t e_ f i d e l i t y
from Functions import *

from Tools1 import *

from Tools2 import *

de f neighbour (N, K, n) : # Neighbours o f n . Random topology
OK = False
l i s t n = l i s t (range (0 , N))
pr in t (" l i s t n " , l i s t n)
l i s t n . remove (n) # Not n i t s e l f
#pr in t ("N,K, n , l i s t n , n" ,N,K, n , l i s t n)
neigh = []
f o r _ in range (K) :

i f l i s t n : # As long as not empty
n i = cho i c e (l i s t n) # random cho i c e
neigh . append (n i)
l i s t n . remove (n i) # To avoid dup l i c a t e s
pr in t (' ni ' , n i)

r e turn neigh

de f updateVel (N, K, D, nqbits , v , counts , w, c1 , c2 , vMax , fPrev) :
Ve loc i ty update

S = []

42

f o r i in range (N) :
Find the l o c a l bes t
neigh = neighbour (N, K, i)
fPrev_n = [fPrev [i] f o r i in neigh]
p_rank = neigh [np . array (fPrev_n) . argmax ()]

f o r d in range (D) :
i 1 = D* i+d # current qubit o f the po s i t i o n
i 2 = p_rank*D+d # l o c a l bes t
i 3 = N*D+i *D+d # prev ious bes t
i f i d 1 = inf idNoSv (i1 , i3 , counts)
i f i d 2 = inf idNoSv (i1 , i2 , counts)
v [i 1] = w*v [i 1] + uniform (0 , c2)* i f i d 2 \

+ uniform (0 , c1)* i f i d 1
i f abs (v [i 1]) > vMax :

p r i n t (" Warning , v" , v [i 1])

S . append (mapping (v [i 1]))
v = np . array (v)
S = np . array (S)
re turn v , S

de f updateVelIBM(N, K, D, nqbits , v , qd , w, c1 , c2 , vMax , fPrev , measure) :
Ve loc i ty update

S = []
f o r i in range (N) :

Find the l o c a l bes t
neigh = neighbour (N, K, i)
fPrev_n = [fPrev [i] f o r i in neigh]
p_rank = neigh [np . array (fPrev_n) . argmax ()]

f o r d in range (D) :
i 1 = D* i+d # current qubit o f the po s i t i o n
i 2 = p_rank*D+d # l o c a l bes t
i 3 = N*D+i *D+d # prev ious bes t
i f i d 1 = infidNoSvIBM (i1 , i3 , qd , measured)
i f i d 2 = infidNoSvIBM (i1 , i2 , qd , measured)
v [i 1] = w*v [i 1] + uniform (0 , c2)* i f i d 2 \

+ uniform (0 , c1)* i f i d 1
i f abs (v [i 1]) > vMax :

p r i n t (" Warning , v" , v [i 1])

S . append (mapping (v [i 1]))
v = np . array (v)
S = np . array (S)

43

re turn v , S

===

np . s e t_pr in topt i ons (p r e c i s i o n=3)
==

max_qubits = 17 # The max f o r my computer
IBM = False # Note : i t w i l l be f o r c ed to True
i f more qub i t s than max_qubits

fCode = 9 # *** Here choose the func t i on

runMax = 100
tMax = 10 # Number o f i t e r a t i o n s f o r each run
You may s e t i t to I n f but
WARNING: p o s s i b l e i n f i n i t e loop
verbose = False
p l o tC i r c u i t = False
===============================

Parameters
N = 2 # swarm s i z e
K = 1
w = 0.721 # In e r t i a weight
c1 = 1.193 # Cogni t ive c o e f f i c i e n t
c2 = 1.193 # Soc i a l c o e f f i c i e n t
vMax = (c1+c2)/(1=w)
to l e r an c e = 0.95 # To de f i n e " equ iva l en t " p r o b a b i l i t i e s

==============================

D, minimum = fCodeDmin (fCode)
' ' '
N*D qubi t s exp l o r e r swarm
N*D qubi t s memory swarm
' ' '
nqb i t s = 2*N*D
i f nqb i t s <= 8 :

nshots = numberDraws (0 . 9 , 2** nqb i t s)
e l s e : # User=de f ined

nshots = 2048 # 2**12
p r in t (nshots , " nshots ")

nb i t s = nqb i t s # To save the f i t n e s s va lue
p r i n t (" nqb i t s " , nqb i t s)
a l l q b i t s = l i s t (range (nqb i t s))
measured = N*D # nqb i t s
measuredQbits = l i s t (range (N*D))

44

i f verbose :
p r i n t (" Function " , fCode)
p r i n t (" Dimension " , D)
p r in t (nqbits , " qub i t s ")

IBM = nqb i t s > max_qubits or IBM
i f IBM:

pr in t ("IBM cloud ")
from qiskit_ibm_runtime import Sampler , Sess ion , Qisk itRuntimeService , Estimator

from qiskit_ibm_runtime import Estimator
s e r v i c e = Qisk i tRunt imeServ ice (channel="ibm_quantum")
backend = s e r v i c e . backend (" ibmq_qasm_simulator ")

e l s e :
backend = Aer . get_backend (' s ta tevector_s imulator ')

=== Runs
fMinBest = In f # Fina l bes t va lue over a l l runs
FEtot = 0 # Total number o f eva lua t i on s
su c c e s s = 0
FEsuccess = []

f o r run in range (runMax) :
p r i n t("======================= Run " , run+1)
FEs = 0 # Number o f eva luat i ons , f o r in fo rmat ion
fMin = In f
iBes t = N # Gobal bes t
t = 0
fPrev = In f *np . ones (N)
#plusMinus = [1 , =1]
f L i s t = [] # Just f o r in fo rmat ion
stop = False

whi l e not stop :
t = t+1
i f verbose :

p r i n t("==========================", " I t e r a t i o n " , t)
q = QuantumRegister (nqb i t s)
c = C l a s s i c a lR e g i s t e r (measured)
qc = QuantumCircuit (q , c)
i f t == 1 :

i n i tPo s (0 , N*D, qc)
v = i n i tV e l (N, D, vMax) # Random ve l o c i t y

e l s e :
Restore l a s t most probable s t a t e
i n i t 0 1 (qc , b i t s t r i n g)
Update
i f IBM:

45

v , S = updateVelIBM(N, K, D, nqbits , v , qd ,
w, c1 , c2 , vMax , fPrev , measured)

e l s e :
v , S = updateVel (N, K, D, nqbits , v , counts ,

w, c1 , c2 , vMax , fPrev)

updatePos (S , N, D, qc)

qc . measure (measuredQbits , measuredQbits)
i f p l o tC i r c u i t :

qc . b a r r i e r (range (nqb i t s)) # Just to be t t e r s ee the c i r c u i t
d i s pC i r cu i t (qc)

===========

i f IBM:
with Se s s i on (backend=backend) :

sampler = Sampler ()
r e s u l t = sampler . run (qc , shot s=nshots) . r e s u l t ()
qd = r e s u l t . quas i_d i s t s [0]
b i t s t r i n g , proba = mostProbableIBM(qd , to l e rance , measured)

e l s e :
job = execute (qc , backend , shot s=nshots)
r e s u l t = job . r e s u l t ()
counts = r e s u l t . get_counts (qc)
b i t s t r i n g , proba = mostProbable (counts , t o l e r an c e)

i f verbose :
p r i n t ("Most probable " , b i t s t r i n g , "proba : " , proba)

For each q=p a r t i c l e
eva luate i t s f i t n e s s and compare
f o r n in range (N) :

x = np . z e ro s (D, dtype=in t)
#l s = len (b i t s t r i n g)
f o r d in range (D) :

(l i t t l e =endian notat ion)
x [d] = in t (b i t s t r i n g [D=d=1 = n*D])

f = f i t (x , fCode)
FEs = FEs+1
f L i s t . append (f) # For in fo rmat ion

I f l o c a l improvement update the prev ious bes t
i f f < fPrev [n] :

fPrev [n] = f
copyPos (n , N+n , qc , D)

46

I f g l oba l improvement
i f f < fMin :

xBest = x # Global bes t p o s i t i o n
i f verbose :

p r i n t (" Improvement . xBest=", xBest , fMin , "=>", f)
fMin = f
copyPos (n , iBest , qc , D) # To g l oba l bes t q=p a r t i c l e g
i f fMin < fMinBest :

fMinBest = fMin
xBestBest = xBest

stop = t >= tMax or fMin <= minimum
i f t >= tMax :

p r i n t ("STOP t>=", tMax)
i f fMin <= minimum :

p r in t ("STOP fBest <=", minimum)
suc c e s s = suc c e s s+1
FEsuccess . append (FEs)

i f p l o tC i r c u i t :
d i s pC i r cu i t (qc)

i f not stop :
FEtot = FEtot+FEs
i f verbose :

p r i n t (" After " , t , " i t e r a t i o n s : ")
p r i n t (" and" , FEs , " eva lua t i on s ")
p r i n t (xBest , " =>", fMin)

p r i n t("============================= Fina l r e s u l t ")
p r i n t (" Function " , fCode)
p r i n t (" Dimension " , D)
p r in t ("Swarm s i z e " , N)
p r in t (" Neighborhood s i z e " , K)
p r in t ("Number o f qub i t s " , nqb i t s)
p r i n t ("Runs" , runMax)
p r in t (" I t e r a t i o n s /run " , tMax)
p r in t (nshots , " shot s ")
p r i n t (" Total number o f eva lua t i on s " , FEtot)
p r i n t ("w, c1 , c2 " , w, c1 , c2)
p r i n t (" Best r e s u l t : ")
p r i n t (xBestBest , " =>", fMinBest)
p r i n t (" Success ra t e " , s u c c e s s /runMax)
p r in t (" Success ra t e with random search " , 1/2**D)

i f succes s >0:
mFE=round (mean(FEsuccess))

47

Figure 8.1: Copying qubits. 2 ⇒ 2 example

p r i n t ("Mean number o f eva lua t i on s f o r s u c c e s s f u l runs : " ,mFE)

8.5 Copying a state

Below is a Qiskit code to temporarily copy the state of a set of qubits (here
two) to another one. It is possible only if the system accepts reset. This feature
can be used to apply rules like

if f (x) ≤ f (best) then best = x

2 qubits => 2 qubits example

from qiskit import *

from qiskit.quantum_info import Statevector

Define a circuit

q = QuantumRegister(4)

qc = QuantumCircuit(q)

qc.h(0)

qc.h(1)

qc.barrier(q) # For clarity

qc.reset([2, 3])

qc.cx(0, 2)

qc.cx(1, 3)

print(qc)

Note:This visualization is possible

only in a simulation

sv = Statevector.from_instruction(qc)

sv.draw('latex')

By running this code we generate the circuit of the �gure 8.1, and the state
vector (visible only in a simulation, not on a real quantum device) is

1

2
|0000 > +

1

2
|0101 > +

1

2
|1010 > +

1

2
|1111 >

Instead of 16 states we have only 4, because qubits 2 and 3 are always equal
to qubits 0 and 1.

48

References

Baritompa, W. P., D. W. Bulger, and G. R. Wood (Jan. 2005). �Grover's Quan-
tum Algorithm Applied to Global Optimization.� In: SIAM Journal on Op-
timization 15.4, pp. 1170�1184. issn: 1052-6234. doi: 10.1137/040605072.
url: https://epubs.siam.org/doi/abs/10.1137/040605072 (visited on
01/04/2020).

Blackwell, Tim and J. Branke (2004). �Multi-Swarm Optimization in Dynamic
Environments.� In: Applications of Evolutionary Computing. Ed. by G. R.
Raidl. Vol. 3005 LNCS. Springer, pp. 488�599.

Buºek, V. and M. Hillery (Sept. 1996). �Quantum copying: Beyond the no-
cloning theorem.� In: Physical Review A 54.3. Publisher: American Physical
Society, pp. 1844�1852. doi: 10.1103/PhysRevA.54.1844. url: https://
link.aps.org/doi/10.1103/PhysRevA.54.1844 (visited on 08/29/2023).

Clerc, M. and J. Kennedy (Feb. 2002). �The particle swarm - explosion, stability,
and convergence in a multidimensional complex space.� In: IEEE Transac-
tions on Evolutionary Computation 6.1, pp. 58�73.

Clerc, Maurice (2005). Binary Particle Swarm Optimisers: toolbox, derivations,
and mathematical insights. Tech. rep. url: http://hal.archives-ouvertes.
fr/hal-00122809/en/.

Fallahi, Saeed and Mohamadreza Taghadosi (Aug. 2022). �Quantum-behaved
particle swarm optimization based on solitons.� en. In: Scienti�c Reports
12.1. Number: 1 Publisher: Nature Publishing Group, p. 13977. issn: 2045-
2322. doi: 10.1038/s41598-022-18351-0. url: https://www.nature.
com/articles/s41598-022-18351-0 (visited on 08/04/2023).

Flori, Arnaud, Hamouche Oulhadj, and Patrick Siarry (June 2022). �QUAntum
Particle Swarm Optimization: an auto-adaptive PSO for local and global
optimization.� en. In: Computational Optimization and Applications 82.2,
pp. 525�559. issn: 1573-2894. doi: 10.1007/s10589-022-00362-2. url:
https://doi.org/10.1007/s10589-022-00362-2 (visited on 05/21/2022).

Hua, Fei et al. (Nov. 2022). Exploiting Qubit Reuse through Mid-circuit Measure-
ment and Reset. arXiv:2211.01925 [quant-ph]. doi: 10.48550/arXiv.2211.
01925. url: http://arxiv.org/abs/2211.01925 (visited on 01/19/2023).

Kennedy, J. and R. C. Eberhart (1997). �A discrete binary version of the parti-
cle swarm algorithm.� In: 1997 IEEE International Conference on Systems,
Man, and Cybernetics, 1997. 'Computational Cybernetics and Simulation'.
4104�4108 vol.5.

Lee, Sangwook et al. (Sept. 2008). �Modi�ed binary particle swarm optimiza-
tion.� en. In: Progress in Natural Science 18.9, pp. 1161�1166. issn: 1002-
0071. doi: 10.1016/j.pnsc.2008.03.018. url: https://www.sciencedirect.
com/science/article/pii/S1002007108002189 (visited on 08/10/2023).

Liu, Guoqiang et al. (Apr. 2019). �A Quantum Particle Swarm Optimization Al-
gorithm with Teamwork Evolutionary Strategy.� en. In: Mathematical Prob-
lems in Engineering 2019. Publisher: Hindawi, e1805198. issn: 1024-123X.
doi: 10.1155/2019/1805198. url: https://www.hindawi.com/journals/
mpe/2019/1805198/ (visited on 11/14/2023).

49

Liu, Jing, Wenbo Xu, and Jun Sun (2005). �Quantum-behaved particle swarm
optimization with mutation operator.� In: 2005. ICTAI 05. 17th IEEE In-
ternational Conference on Tools with Arti�cial Intelligence, 4 pp.

Marinescu, Dan C. and Gabriela M. Marinescu (Jan. 2012). �Classical and
Quantum Information.� en. In: Classical and Quantum Information. Ed. by
Dan C. Marinescu and Gabriela M. Marinescu. Boston: Academic Press,
pp. 1�131. isbn: 978-0-12-383874-2. doi: 10.1016/B978-0-12-383874-
2.00001-1. url: https://www.sciencedirect.com/science/article/
pii/B9780123838742000011 (visited on 08/01/2023).

Mastriani, Mario (2022). �Quantum Stretching: a quasi-copy technique of arbi-
trary qubits for quantum internet.� en. In: url: https://www.academia.
edu/39888107/Quantum_Stretching_a_quasi_copy_technique_of_

arbitrary_qubits_for_quantum_internet (visited on 11/03/2023).
Mikki, S. and A. A. Kishk (2005). �Investigation of the quantum particle swarm

optimization technique for electromagnetic applications.� In: Antennas and
Propagation Society International Symposium, 2005 IEEE, 45�48 vol. 2A.

Mikki, S. M. and A. A. Kishk (Oct. 2006). �Quantum Particle Swarm Opti-
mization for Electromagnetics.� In: IEEE Transactions on Antennas and
Propagation 54.10, pp. 2764�2775.

Morimoto, Kohei et al. (Nov. 2023). Continuous optimization by quantum adap-
tive distribution search. arXiv:2311.17353 [quant-ph]. doi: 10.48550/arXiv.
2311 . 17353. url: http : / / arxiv . org / abs / 2311 . 17353 (visited on
12/11/2023).

Oliveira, L. D. de et al. (2006). �Particle Swarm and Quantum Particle Swarm
Optimization Applied to DS/CDMA Multiuser Detection in Flat Rayleigh
Channels.� In: 2006 IEEE Ninth International Symposium on Spread Spec-
trum Techniques and Applications, pp. 133�137.

Ortega Ballesteros, Gerard (Jan. 2021). �Quantum algorithms for function opti-
mization.� eng. In: Accepted: 2021-11-23T12:28:16Z. url: https://diposit.
ub.edu/dspace/handle/2445/181432 (visited on 10/26/2023).

PSC (2024). Particle Swarm Central. url: http://particleswarm.info (vis-
ited on 01/13/2024).

Shuyuan, Yang, Wang Min, and Jiao Licheng (June 2004). �A Quantum Particle
Swarm Optimization.� In: IEEE Congress on Evolutionary Computation.
Portland, Oregon, USA: IEEE Press, pp. 320�324.

Soloviev, Vicente P., Concha Bielza, and Pedro Larrañaga (June 2021). �Quantum-
Inspired Estimation Of Distribution Algorithm To Solve The Travelling
Salesman Problem.� In: 2021 IEEE Congress on Evolutionary Computation
(CEC), pp. 416�425. doi: 10.1109/CEC45853.2021.9504821. url: https:
//ieeexplore.ieee.org/document/9504821 (visited on 12/11/2023).

Sun, Jun, Wei Fang, et al. (2012). �Quantum-behaved particle swarm opti-
mization: analysis of individual particle behavior and parameter selection.�
eng. In: Evolutionary Computation 20.3, pp. 349�393. issn: 1530-9304. doi:
10.1162/EVCO_a_00049.

Sun, Jun, Choi-Hong Lai, and Xiao-Jun Wu (2019). Particle Swarm Optimisa-
tion: Classical and Quantum Perspectives. en. url: https://www.crcpress.

50

com/Particle-Swarm-Optimisation-Classical-and-Quantum-Perspectives/

Sun-Lai-Wu/p/book/9780367381936 (visited on 12/14/2019).
Sun, Jun, Wenbo Xu, and Bin Feng (2004). �A global search strategy of quantum-

behaved particle swarm optimization.� In: 2004 IEEE Conference on Cyber-
netics and Intelligent Systems. Volume 1, 1-3 Dec. 2004, 111�116 vol.1.

Wikipedia (July 2023). W state. en. Page Version ID: 1166599331. url: https:
//en.wikipedia.org/w/index.php?title=W_state&oldid=1166599331

(visited on 08/12/2023).
Wootters, W. K. and W. H. Zurek (Oct. 1982). �A single quantum cannot be

cloned.� en. In: Nature 299.5886. Number: 5886 Publisher: Nature Publishing
Group, pp. 802�803. issn: 1476-4687. doi: 10.1038/299802a0. url: https:
//www.nature.com/articles/299802a0 (visited on 08/29/2023).

Yang, Shuyuan, Min Wang, and Licheng jiao (2004). �A quantum particle swarm
optimization.� In: Congress on Evolutionary Computation, 2004. CEC2004.
320�324 Vol.1.

51

