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Abstract Helmholtz decompositions break down any vector field into a sum
of a gradient field and a divergence-free vector field. Such a result is extended
to finite irreducible and reversible Markov processes, where vector fields cor-
respond to anti-symmetric functions on the oriented edges of the underlying
graph.
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1 Introduction

The Helmholtz decomposition on a compact Riemannian manifold writes any
vector field as a sum of a gradient field and a vector field whose divergence
vanishes. In some sense, this decomposition corresponds to the Riemannian
probability distribution ` and can be extended to any other probability mea-
sure admitting a positive and smooth density with respect to `, with its
corresponding skewed divergence, see Theorem 1 below. An interest of this
extension is to explain why in the variational formulation of Benamou and
Brenier [4] of the Wasserstein distance, only gradient fields are needed.

Our main goal here is to transpose this decomposition to the finite Markov
process setting, see Theorem 2 in Section 3, via some geometric definitions
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inspired by Kenyon [8], interpreting 1-forms as anti-symmetric functions on
the oriented edges of the underlying graph. The main difference with the
continuous situation turns out to be that the two-sided flow of diffeomor-
phisms generated by a vector field has to be replaced by a one-sided flow on
probability measures generated by some non-linear Markov generators. It will
enable us to revisit the works of Maas [9] and Erbar and Maas [6] on optimal
transport for finite Markov processes. Denote P`pV q the set of all probability
measures on the finite state space V giving a positive weight to all its points.
We will see furthermore that any smooth mapping P`pV q Q ρ ÞÑ Lρ, where
Lρ is an irreducible Markov generator admitting ρ as reversible measure, leads
to a Riemannian structure on P`pV q which is natural in the context of finite
optimal transport. But we will check that not all Riemannian structures on
P`pV q are of this Markovian form, except when V has only two points.

The plan of this note is as follows. In the next section we recall in details
the Helmholtz decompositions relative to “nice” probability measures on com-
pact Riemannian manifolds, since we did not find a pedagogical exposition
in the literature. This point of view is transferred to finite irreducible and
reversible Markov processes in Section 3, which leads to the introduction of
Markov-Riemannian metrics. The paper finishes with two appendices. One
dealing, on finite state spaces, with a continuity property of the solutions to
Poisson equations, which are at the heart of the Helmholtz decompositions.
The second appendix computes a Metropolis-Riemann distance on the two
point state space.

2 The compact Riemannian manifold setting

A reminder of the Helmholtz decomposition of vector fields is presented here,
which will serve as a guide for the extension to the finite state space frame-
work.

Consider M a compact and connected Riemannian manifold. Denote
TM “

Ů

xPM TxM the corresponding tangent space, where TxM is the tan-
gent space above x P M . Let ΣpTMq be the set of tangent vector fields on
M , namely the smooth sections from M to TM .

Denote P`pMq the set of probability measures ρ onM admitting a smooth
and positive density, still denoted ρ, with respect to the Riemannian prob-
ability measure `. For any ρ P P`pMq, we see ΣpTMq as a tangent space
above ρ and we endow it with the scalar product xx¨, ¨yyρ given by

@ b, b1 P ΣpTMq,
@@

b, b1
DD

ρ
B

ż

M

@

b, b1
D

x
ρpdxq

(where x¨, ¨yx in the scalar product in the tangent space TxM). This introduces
a notion of ρ-orthogonality on ΣpTMq.
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Given a smooth function U : M Ñ R, the Riemannian gradient ∇U of
U is an example of vector field. We denote G their set as U runs through
all smooth functions. It appears that G is a linear sub-space of the space of
sections ΣpTMq.

A vector field b P ΣpTMq is said to leave ρ P P`pMq invariant, if

@ t ě 0, ϕtpρq “ ρ

where pϕtqtPR is the flow generated by b and where for any t ě 0, ϕtpρq is
the push-forward of ρ by ϕt. Denote by Ipρq the set of b P ΣpTMq leaving ρ
invariant.

Here is the statement of the Helmholtz ρ-decomposition of ΣpTMq:

Theorem 1 For any ρ P P`pMq, we have

ΣpTMq “ G ‘ Ipρq

where the terms of the r.h.s. are ρ-orthogonal.

Before giving proof of this decomposition, let us recall a computational
characterization of Ipρq. For any ρ P P`pMq, denote divρ the ρ-skewed
divergence defined by

@ b P ΣpTMq, divρpbq B
1

ρ
divpρbq

where divp¨q is the usual Riemannian divergence. The corresponding ρ-skewed
Laplacian 4ρ is defined similarly

@ f P C8pMq, 4ρpfq B divρp∇fq
“ 4pfq ` x∇ lnpρq,∇fy

where 4 is the Laplace-Beltrami operator. The second order operator 4ρ

has several names, depending in the context in which it is used: the general-
ized Ornstein-Uhlenbeck diffusion generator in probability theory, the over-
damped Langevin operator in analysis and the Witten Laplacian in geometry
(especially concerning its extensions to differential forms).

The interest of ρ-skewed divergence is the well-known:

Lemma 1 For any fixed ρ P P`pMq, we have for any b P ΣpTMq,

b P Ipρq ô divρpbq “ 0

Proof This is a simple consequence of Stokes’ theorem. Indeed, ρ P P`pMq
and b P ΣpTMq being fixed, denote ρt B ϕtpρq for any t ě 0. We have that
ρ P Ipρq if and only if for any test function f P C8pMq,

@ t ě 0, ρtrf s “ ρrf s
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or equivalently

@ t ě 0, Btρtrf s “ 0

It leads us to compute Bt|t“0ρtrf s, since Btρtrf s can be computed similarly
at any time t ě 0, replacing ρ by ρt (which is well-known to belong to P`pMq
too).

We have by definition of the flow,

Bt|t“0ρtrf s “ Bt|t“0

ż

fpϕtpxqq ρpdxq

“

ż

xb,∇fy dρ

“

ż

xρb,∇fy d`

“ ´

ż

divpρbqf d`

“ ´

ż

divρpbqf dρ ˝

Since the density ρ is positive, this expression vanishes for all f P C8pMq
if and only divρpbq “ 0, as desired.

We can now come to the

Proof (of Theorem 1) The elements ρ P P`pMq and b P ΣpTMq being
fixed, we consider the Poisson equation in U :

"

4ρpUq “ divρpbq
`rU s “ 0

(1)

This equation is well-known to admit a unique solution if and only if
ρrdivρpbqs “ 0. We compute

ρrdivρpbqs “

ż

divρpbq dρ

“

ż

divpρbq d`

“ 0

where Stokes’ theorem has been invoked again.
Consider U the unique solution of (1) and define β B b´∇U . We have

divρpβq “ divρpb´∇Uq
“ divρpbq ´4ρpUq

“ 0



On the Helmholtz decomposition for finite Markov processes 5

by construction of U .
It remains to check that for any∇U P G and any β P Ipρq are ρ-orthogonal.

We compute

xx∇U, βyyρ “
ż

x∇U, βy dρ

“

ż

x∇U, ρβy d`

“ ´

ż

divpρβqU d`

“ ´

ż

divρpβqU dρ

“ 0 ˝

Remark 1 (a) Endow C8pMq with the Fréchet structure of uniform conver-
gence of functions and their derivatives. Corresponding semi-norms NL, for
L P Z`, are constructed as follow. Let pxpnqqnPJNK be a finite family of points
from M and ε ą 0 be such that M is covered by the open balls Bpxpnq, εq,
n P JNK, and each of the balls Bpxpnq, 2εq is the basis of a system of coordi-
nates pxpnqk qkPJmK, where m is the dimension of M . For L P Z`, we define for
any f P C8pMq,

NLpfq B
ÿ

nPJNK

ÿ

lPJ0,LK

max

#

sup
xPBpxpnq,εq

|Bk1,k2,...,klfpxq| : k1, k2, ..., kl P JmK

+

where Bk1,k2,...,kl stands for the derivation with respect to xpnqk1 , x
pnq
k2
, ..., x

pnq
kl

in Bpxpnq, εq (and when l “ 0, it is just the identity operator).
This structure and Gateaux differentiability enable us to define the notion
of a smooth curve r0, 1s Q t ÞÑ ft P C8pMq, when the curve and all its t-
derivatives are continuous. A mapping U : C8pMq Ñ C8pMq is said to be
regular if it transforms smooth curves into smooth curves, i.e. if r0, 1s Q t ÞÑ
Upftq P C8pMq is a smooth curve when r0, 1s Q t ÞÑ ft P C8pMq is a smooth
curve.

These notions can be extended to P`pMq (since it can be seen as a convex
subset of C8pMq) and to ΣpTMq (e.g. by seeing it as a product of copies of
C8pMq, via Whitney’s embedding theorem).

(b) Let us come back to the solution U of the Poisson equation (1), for
given ρ P P`pMq and b P ΣpTMq. For x PM , consider pXρ

xpsqqsě0 a diffusion
of generator Lρ starting from x. We have the probabilistic representation

Upxq “ ´

ż `8

0

ErdivρpbqpXρ
xqpsqs ds (2)
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where the integrant converges exponentially fast to 0 with respect to s, as the
spectral gap of4ρ can be bounded below uniformly in terms of the supremum
norm of lnpρq (see also Appendix 3, where this property will be developed in
the finite state space setting). In the sequel, a curve taking values in P`pMq
or ΣpTMq will always implicitly assumed to be smooth.

Girsanov formula relates explicitly the law of Xρ
xr0, ss B pX

ρ
xpuqquPr0,ss to

that of the Riemannian Brownian motion X1
x r0, ss, for any s ě 0, by stating

that for any measurable bounded function F on the M -valued trajectories
over the time interval r0, ss,

ErF pXρ
xr0, ssqs

“ E
”

F pX1
x r0, ssq exp

´

ż s

0

@

∇ lnpρqpX1
x pvqq, dX

1
x pvq

D

´
1

2

ż s

0

|∇ lnpρqpX1
x pvqq|

2 dv
¯ı

“ E
”

F pX1
x r0, ssq exp

´

lnpρqpX1
x psqq ´ lnpρqpxq

´
1

2

ż s

0

4 lnpρqpX1
Xpvqq ` |∇ lnpρqpX1

x pvqq|
2 dv

¯ı

(where the scalar product and the norms are taken above X1
Xpvq).

In conjunction with (2), it can be deduced that the mapping P`pMq ˆ
ΣpTMq Q pρ, bq ÞÑ U P C8pMq is regular in the sense described above in (a).

Let us give a classical consequence of the Helmholtz decomposition of The-
orem 1 concerning the introduction of a (infinite-dimensional) Riemannian-
like structure on P`pMq as in Ambrosio, Gigli and Savaré [1].

A curve r0, 1s Q t ÞÑ ρt P P`pMq (recall it is assumed to be smooth
according to Remark 1a) is said to be generated by a curve r0, 1s Q t ÞÑ
bt P ΣpTMq of vector fields when

@ t P r0, 1s, ρt “ ϕtpρ0q (3)

where the time-inhomogenous flow pϕtqtPr0,1s is defined through

@ t P r0, 1s, @ x PM,
d

dt
ϕtpxq “ btpϕtpxqq

(starting with ϕ0 being the identity mapping).
When there is a curve r0, 1s Q t ÞÑ Ut P C8pMq of functions such that

furthermore

@ t P r0, 1s, bt “ ∇Ut

we say pρtqtPr0,1s is generated by a curve of gradient fields.
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Generation by vector fields is in fact equivalent to generation by gradient
fields:

Proposition 1 Assume that pρtqtPr0,1s is generated by the vector field curve
pbtqtPr0,1s. Then it is also generated by the gradient field curve p∇UtqtPr0,1s,
where for any t P r0, 1s, ∇Ut comes from the Helmholtz decomposition of bt
above ρt:

bt “ ∇Ut ` βt

with βt P Ipρtq. Furthermore p∇UtqtPr0,1s is the only gradient field curve
generating pρtqtPr0,1s.

Proof Taking into account Remark 1, we get r0, 1s Q t ÞÑ ∇Ut is as smooth
as r0, 1s Q t ÞÑ bt.

Denote by prρtqtPr0,1s the flow generated by the gradient fields p∇UtqtPr0,1s.
Consider a test function f P C8pMq, we have for any t P r0, 1s,

Btρtrf s “ Bt

ż

fpϕtpxqq ρpdxq

“

ż

xbt,∇fyϕtpxq ρpdxq

“

ż

xbt,∇fyx ρtpdxq

“ ´

ż

fdivρtpbtq dρt

“ ´

ż

fdivρtp∇Utq dρt (4)

“ Btrρtrf s

By integration, it follows that pρtqtPr0,1s coincides with prρtqtPr0,1s.
Assume there is another gradient field curve p∇rUtqtPr0,1s generating pρtqtPr0,1s.

According to (4), we have for any t P r0, 1s and any test function f P C8pMq,
ż

fdivρtp∇Utq dρt “
ż

fdivρtp∇rUtq dρt

It follows that for any given t P r0, 1s,
ż

A

∇f,∇pUt ´ rUtq
E

dρt “ 0

so that taking f “ Ut ´ rUt, we get ∇pUt ´ rUtq “ 0. Since this is true for any
t P r0, 1s, it means the two gradient field curves p∇UtqtPr0,1s and pr∇UtqtPr0,1s
coincide. ˝
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Remark 2 To make evolve the boundary BA of a smooth domain A inM , one
usually resorts to a T pMq-valued vector field on BA and “pushes the boundary
points” according to this vector field. It is well-known, see e.g. Mantegazza
[10], that it is sufficient to consider vector fields that are normal to BA,
because their tangential components leave BA invariant (and just act as an
infinitesimal reparametrization). Proposition 1 is a result analogous to this
orthogonal decomposition of vector fields on BA into normal and tangential
components. In fact we believe that both the Helmholtz decomposition and
the normal and tangential decomposition are two instances of a more general
result for measures on M (where BA would be identified with the Hausdorff
trace of ` on BA) that is outside the scope of the present note.

To go in the direction of a Riemannian-type distance on P`pMq, we have
to define the length of a curve. We start by associating to ρ0 P P`pMq and
to a curve of vector fields pbtqtPr0,1s the quantity

Lpρ0, pbtqtPr0,1sq B

d

ż 1

0

}bt}
2
ρt
dt (5)

where pρtqtPr0,1s is deduced from ρ0 and pbtqtPr0,1s via (3).
Next, if pρtqtPr0,1s is a curve in P`pMq, we define

LppρtqtPr0,1sq B inf
 

Lpρ0, pbtqtPr0,1sq : pbtqtPr0,1s P BppρtqtPr0,1sq
(

(6)

where BppρtqtPr0,1sq stands for the set of vector field curves generating
pρtqtPr0,1s.

Lemma 2 Let pρtqtPr0,1s be a curve in P`pMq generated by a vector field
curve. Consider p∇UtqtPr0,1s the unique gradient field curve generating pρtqtPr0,1s
according to Proposition 1. We have

LppρtqtPr0,1sq “ Lpρ0, p∇UtqtPr0,1sq

Proof Consider any vector field curve pbtqtPr0,1s generating pρtqtPr0,1s and
decompose it as in Proposition 1. The orthogonality property of Theorem 1
then shows that

@ t P r0, 1s, }bt}
2
ρt
“ }∇Ut}2ρt ` }βt}

2
ρt

implying that

Lpρ0, pbtqtPr0,1sq ě Lpρ0, p∇UtqtPr0,1sq

This shows that the infimum of (6) is attained at the unique gradient field
generating pρtqtPr0,1s. ˝

The last step in constructing a Riemannian-like distance D on P`pMq is
to define, for any ρ0, ρ1 P P`pMq,
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Dpρ0, ρ1q B inftLppρtqtPr0,1sq : pρtqtPr0,1s P Rpρ0, ρ1qu

whereRpρ0, ρ1q is the set of curves in P`pMq, starting at ρ0 and ending at ρ1,
and generated by vector field curves. Lemma 2 shows that in this definition,
it is sufficient to consider gradient field curves, thus enabling us to recover
the variational formulation of Benamou and Brenier [4] in terms of gradient
field curves. It turns out that D is a Wasserstein distance, but we will not go
further in this direction.

3 The finite Markov process setting

We propose here a version of Theorem 1 valid for finite Markov processes (as
a first step toward a full Markov process extension?).

The Riemannian structure of M can be entirely encapsulated into the
Laplace-Beltrami operator 4. By analogy, a finite framework consists in an
irreducible Markov generator L B pLpx, yqqx,yPV whose invariant probability
π is supposed to be reversible. Denote V the underlying finite state space. It
is endowed with a graph structure, by defining its edge set as

E B tpx, yq P V 2 : Lpx, yq ą 0u (7)

Note that the edges are directed and that by reversibility we have

@ x, y P V, px, yq P E ô py, xq P E

Thus it could be tempting to consider the corresponding set of undirected
edges. It is more convenient to choose an orientation for any undirected edge.
More precisely we consider a set E Ă E, such that for any px, yq P E, either
px, yq P E or py, xq P E, but not both px, yq and py, xq belong to E.

A function F : E Ñ R is said to be a vector field if and only if

@ px, yq P E, F px, yq “ ´F py, xq

We denote by ΣpEq the set of vector fields on the graph pV,Eq. Note
that it is in natural bijection with RE the set of mapping from E to R. This
definition is inspired by Kenyon [8] (see also Remark 5 below). The latter
paper also writes L in a form analogous to 4 “ div ˝∇ in the Riemannian
setting. More precisely, given a function f : V Ñ R (whose space is denoted
RV ), define the gradient of f as the vector field given by

@ px, yq P E, ∇fpx, yq B fpyq ´ fpxq (8)

Endow V with the probability measure π and E with the measure µ defined
by
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@ px, yq P E, µpx, yq B πpxqLpx, yq (9)

The operator ∇ can be seen as going from L2pπq to L2pµq. By definition,
the divergence div is the opposite of the adjoint operator to ∇. Then we
can write again:

L “ div ˝∇ (10)

Denote G the set of vector fields which are gradients.
Pursuing our analogies with the Riemannian case, let P`pV q stands for all

probability measures giving a positive weight to all points of V . Consider F P
ΣpEq, to make it act on elements of P`pV q, consider the Markov generator
LF associated to F via

@ x ‰ y P V, LF px, yq B F`px, yqLpx, yq (11)

where we adopt the convention

@ px, yq R E, F px, yq “ 0 (12)

and where F`px, yq stands for the non-negative part of F px, yq (the entries
of the diagonal of LF are such that the row sums all vanish).

Remark 3 The Markov processes XF generated by LF mimick, as much as
possible, dynamical systems generated by vector fields. In particular edges
can be crossed only in one direction. Note that if F is a gradient ∇f , then the
jumps of XF (strictly) increase f and it follows that XF converges in finite
but random time toward a (random) local maxima of f . Recall that x P V is
a local maxima for f (with respect to the neighborhood structure given by
E) when for any px, yq P E, we have fpyq ď fpxq.

The Markov generator LF enables to associate to F the flow pϕtqtě0 acting
on P`pV q via

@ ν P P`pV q, @ t ě 0, ϕtpνq B ν expptLF q (13)

Contrary to the Riemannian case, we cannot consider negative times if we
want to stay in P`pV q. The other major difference is that there is no underly-
ing dynamical system acting on the points of V . Instead, it must be replaced
by the Markov process generated by LF (whose time-marginal distribution
are the pϕtpνqqtě0 when the initial distribution is ν).

We say that a vector field F P ΣpEq leaves our fixed reversible probability
π invariant if and only if

@ t ě 0, ϕtpπq “ π

Denote again by Ipπq the set of F P ΣpEq leaving π invariant.
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Let us define a scalar product on ΣpEq, seen as a tangent space to P`pV q
above π P P`pV q, to get a notion of π-orthogonality. We define the scalar
product xx¨, ¨yyπ on ΣpEq through

@ F, F 1 P ΣpEq,
@@

F, F 1
DD

π
“

ÿ

xPV

@

F, F 1
D

x
πpxq

where

@ x P V, @ F, F 1 P ΣpEq,
@

F, F 1
D

x
B

ÿ

yPV ztxu

F px, yqF 1px, yqLpx, yq

Namely, we have

@ F, F 1 P ΣpEq,
@@

F, F 1
DD

π
“

ÿ

x‰yPV

F px, yqF 1px, yqπpxqLpx, yq

(this quantity can also be identified with 2 xF, F 1yL2pµq, where µ is defined in
(9)).

We have the analogue of Theorem 1, but restricted to the probability π:

Theorem 2 We have

ΣpEq “ G ‘ Ipπq

where the terms of the r.h.s. are π-orthogonal.

Let us compute the divergence, as in Kenyon [8], who used the following
explicit form to deduce (10).

Lemma 3 We have for any F P ΣpEq:

@ x P V, divpF qpxq “
ÿ

yPV

F px, yqLpx, yq (14)

Proof Consider a test function f P RV . We have

µrF∇f s “
ÿ

px,yqPE

F px, yqpfpyq ´ fpxqqπpxqLpx, yq

“
1

2

ÿ

px,yqPE

F px, yqpfpyq ´ fpxqqπpxqLpx, yq

“
1

2

ÿ

x,yPV

F px, yqpfpyq ´ fpxqqπpxqLpx, yq

“
1

2

ÿ

x,yPV

F px, yqfpyqπpxqLpx, yq ´
1

2

ÿ

x,yPV

F px, yqfpxqπpxqLpx, yq

Note that by reversibility and by definition of a vector field,
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ÿ

x,yPV

F px, yqfpyqπpxqLpx, yq “
ÿ

x,yPV

F px, yqfpyqπpyqLpy, xq

“ ´
ÿ

x,yPV

F py, xqfpyqπpyqLpy, xq

“ ´
ÿ

x,yPV

F px, yqfpxqπpxqLpx, yq

thus we get

µrF∇f s “ ´
ÿ

x,yPV

F px, yqfpxqπpxqLpx, yq

“ ´
ÿ

xPV

πpxqfpxq
ÿ

yPV

F px, yqLpx, yq ˝

The desired formula follows.

We deduce the analogue of Lemma 1, at least for ρ “ π:

Lemma 4 We have for any F P ΣpEq,

F P Ipπq ô divpF q “ 0

Proof Consider a vector field F satisfying divpF q “ 0. It is equivalent to
the fact that for any f P RV , we have πrfdivpF qs “ 0. We compute, taking
into account the convention (12), the reversibility of π for L and the anti-
symmetry of F ,

πrfdivpF qs

“
ÿ

x,yPV

πpxqLpx, yqF px, yqfpxq

“ ´
ÿ

x,yPV

πpyqLpy, xqF py, xqfpxq

“ ´
ÿ

x,yPV

πpxqLpx, yqF px, yqfpyq

“ ´
ÿ

x‰yPV

πpxqLpx, yqF px, yqfpyq

“ ´
ÿ

x‰yPV

πpxqLpx, yqF`px, yqfpyq `
ÿ

x‰yPV

πpxqLpx, yqF´px, yqfpyq

where F´px, yq B ´minpF px, yq, 0q is the non-positive part of F px, yq. By
definition of LF , the first sum is equal to

ÿ

x‰yPV

πpxqLF px, yqfpyq “ πrLF rf ss ´
ÿ

xPV

πpxqLF px, xqfpxq

We compute
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ÿ

xPV

πpxqLF px, xqfpxq “ ´
ÿ

xPV

πpxqfpxq
ÿ

y‰x

LF px, yq

“ ´
ÿ

xPV

πpxqfpxq
ÿ

y‰x

F`px, yqLpx, yq

“ ´
ÿ

x‰yPV

πpxqLpx, yqF`px, yqfpxq

“ ´
ÿ

x‰yPV

πpyqLpy, xqF`py, xqfpyq

“ ´
ÿ

x‰yPV

πpxqLpx, yqF`py, xqfpyq

Since F is a vector field, we have

@ x, y P V, F`py, xq “ F´px, yq

Putting together the above computations, we end up with

πrfdivpF qs “ ´πrLF rf ss (15)
˝

and the desired equivalence follows.

Now we have at our disposal all the ingredients necessary to the

Proof (of Theorem 2) The arguments are exactly the same as those of the
proof of Theorem 1. The vector field F P ΣpEq being fixed, we consider the
Poisson equation in U :

"

LpUq “ divpF q
πrU s “ 0

(16)

This equation is well-known to admit a unique solution if and only if
πrdivpF qs “ 0. From (15) and writing 1 for the constant function taking the
value 1, we get

πrdivpF qs “ ´πrLF r1ss

“ 0

Consider U the unique solution of (16) and define G B b´∇U . We have

divpGq “ divpF ´∇Uq
“ divpF q ´ LpUq

“ 0

by construction of U .
It remains to check that for any ∇U P G and any G P Ipπq are π-

orthogonal. By definition we have
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xx∇U,Gyyπ “
ÿ

x,yPV

pUpyq ´ UpxqqGpx, yqπpxqLpx, yq

By symmetry, we have
ÿ

x,yPV

UpyqGpx, yqπpxqLpx, yq “ ´
ÿ

x,yPV

UpxqGpx, yqπpxqLpx, yq

so that

xx∇U,Gyyπ “ ´2
ÿ

x,yPV

UpxqGpx, yqπpxqLpx, yq

“ ´2πrUdivpGqs

“ 0 ˝

Of course, Theorem 2 can be extended to any ρ P P`pV q, it is sufficient to
be given a corresponding irreducible generator Lρ admitting ρ as reversible
probability measure and to consider all the above related notions. Let us
assume that the corresponding graph pV,Eq remains the same, which amounts
to assuming there is a function ρ : E Ñ p0,`8q such that

@ px, yq P V 2, x ‰ y, Lρpx, yq “ ρpx, yqLpx, yq

(when px, yq R E, x ‰ y, the values of ρpx, yq are irrelevant since Lpx, yq “ 0,
we can take for instance ρpx, yq “ 0). The reversibility of ρ is equivalent to

@ px, yq P E, δρpxqρpx, yq “ δρpyqρpy, xq (17)

where δρ is the density of ρ with respect to π:

@ x P V, δρpxq B
ρpxq

πpxq

Remark 4 Maas in [9] also “extends” the probability ρ into a function ρ of
two variables of the state space (rather corresponding to the sides of (17)).
He makes further assumptions, in particular that there exists a function
θ : p0,`8q2 Ñ p0,`8q such that ρpx, yq “ θpρpxq, ρpyqq, which are not
necessary for our purposes.

The definition of the gradient remains the same, but in (9) we have to
consider

@ px, yq P E, µρpx, yq B ρpxqLρpx, yq

with the corresponding notion of divergence divρ, so that Lρ “ divρ ˝∇.
Definition (11) has to be replaced by

@ x ‰ y P V, Lρ,F px, yq B pF px, yqq`Lρpx, yq (18)
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“ pF px, yqq`ρpx, yqLpx, yq

The set Ipρq can be seen as the set of vector fields F leaving ρ invariant,
with respect to the linear flow pϕρ,tqtě0 defined, as in (13), by

@ ν P P`pV q, @ t ě 0, ϕtpνq B ν expptLρ,F q

but it seems more natural (cf. (24) below) to see Ipρq as the set of vector fields
F leaving ρ invariant, with respect to the non-linear flow pψtqtě0 described
by its evolution:

@ ν P P`pV q, @ t ě 0, Btψtpνq “ ψtpνqLψtpνq,F (19)

(and starting with ψ0pνq “ ν). This non-linearity is a true discrepancy with
respect to the Riemannian situation.

Remark 5 The fact that (8) does not depend on L nor ρ, suggests, as in
Section 3.3 of Kenyon [8] (see the definition of dfpeq there, with φye “ φxe “
1), that this definition corresponds more to an 1-form than to a (gradient)
vector field, in analogy with differential geometry, where the differential of
a function does not depend on the Riemannian structure, contrary to the
gradient. Thus maybe we should have changed our terminology, replacing
vector fields by 1-forms (and replace Helmholtz decompositions by Hodge
decompositions, which is more traditional term for differential form fields, see
for instance Section 3.44 of Aris [2]). In the Riemannian setting, vector fields
are important to describe corresponding dynamical systems, reason why we
preferred to work with them. Nevertheless, in the finite Markov setting this
link is distorted by the mapping F ÞÑ Lρ,F , so it could be harmless to adopt
the 1-form terminology.

Finally the scalar product xx¨, ¨yyρ on ΣpEq should be defined through

@ F, F 1 P ΣpEq,
@@

F, F 1
DD

ρ
“

ÿ

x‰yPV

F px, yqF 1px, yqρpxqLρpx, yq(20)

leading to the notion of ρ-orthogonality on ΣpEq.
With these definitions, Theorem 2 extends immediately into

Theorem 3 For any ρ P P`pV q, we have

ΣpEq “ G ‘ Ipρq

where the terms of the r.h.s. are ρ-orthogonal.

Another difference with the Riemannian case is the choice of the Lρ for ρ P
P`pV q, role which previously were “naturally” played the 4ρ for ρ P P`pMq.
A classical choice is to consider the Metropolis generators, which corresponds
to
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@ ρ P P`pV q, @ px, yq P E, ρpx, yq “ min

ˆ

1,
ρpyqπpxq

πpyqρpxq

˙

(21)

“ min

ˆ

1,
δρpyq

δρpxq

˙

which satisfies (17), since

@ px, yq P E, δρpxqρpx, yq “ minpδρpxq, δρpyqq (22)

(there is a relation between this construction of Lρ from L and ρ and that of
4ρ from 4 and ρ, since they both correspond to the minimization of some
trajectorial entropy, see [5]).

The favorite choice of Erbar and Maas [6], to extend the notions of Ricci
lower bounds and their consequences for functional inequalities of finite
Markov processes, is

@ ρ P P`pV q, @ px, yq P E, δρpxqρpx, yq “
δρpyq ´ δρpxq

lnpδρpyqq ´ lnpδρpxqq
(23)

Whatever the choice, some regularity of the mapping P`pV q Q ρ ÞÑ Lρ P
RVˆV must be assumed for the considerations of Remark 1 to hold (for more
details in this respect see the following appendix). For instance let us assume
this mapping is locally Lipschitzian (seeing P`pV q as a subset of p0, 1qV ),
condition which also insures the needed local existence and uniqueness of
the solution to (19). Note that both (22) and (23) satisfy this condition.
Proposition 1 and Lemma 2 are then also valid in the finite setting, via
the same proofs. Indeed, it is sufficient to extend the notion of generation by
vector or gradient field curves via: a continuous curve r0, 1s Q t ÞÑ ρt P P`pV q
is said to be generated by a continuous curve r0, 1s Q t ÞÑ Ft P ΣpEq of
vector fields when

@ t P r0, 1s, 9ρt “ ρtLρt,Ft (24)

We say furthermore that r0, 1s Q t ÞÑ ρt P P`pV q is generated by a con-
tinuous gradient field curve, when Ft belongs to G for all t P r0, 1s. Then
Proposition 1 and Lemma 2 extend literally to the finite Markov setting.

More precisely, we are led to introduce as in (5), for any ρ0 P P`pV q and
any continuous curve r0, 1s Q t ÞÑ Ft P ΣpEq of vector fields,

Lpρ0, pFtqtPr0,1sq B

d

ż 1

0

}Ft}
2
ρt
dt

where pρtqtPr0,1s is the solution of (24). Next, as in (6), when pρtqtPr0,1s is a
continuous curve in P`pMq, we define

LppρtqtPr0,1sq B inf
 

Lpρ0, pFtqtPr0,1sq : pFtqtPr0,1s P BppρtqtPr0,1sq
(
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where BppρtqtPr0,1sq stands for the set of continuous vector field curves gen-
erating pρtqtPr0,1s.

We get then that if BppρtqtPr0,1sq ‰ H, then

LppρtqtPr0,1sq “ Lpρ0, p∇UtqtPr0,1sq

where p∇UtqtPr0,1s is the unique gradient field curve generating pρtqtPr0,1s. By
the usual convention, when BppρtqtPr0,1sq “ H, we take LppρtqtPr0,1sq “ `8.

Following a traditional path, we construct a Riemannian-like distance D
on P`pMq by defining, for any ρ0, ρ1 P P`pMq,

Dpρ0, ρ1q B inftLppρtqtPr0,1sq : pρtqtPr0,1s P Rpρ0, ρ1qu (25)

where Rpρ0, ρ1q is the set of continuous curves in P`pMq, starting at ρ0 and
ending at ρ1.

To check this distance takes finite values, we have to show that Rpρ0, ρ1q
contains at least one curve generated by a continuous vector field. The fol-
lowing result is the main step in this direction.

Lemma 5 Let be given ρ P P`pV q and a signed measure η P HpV q with

HpV q B

#

η B pηpxqqxPV P RV :
ÿ

xPV

ηpxq “ 0

+

Then there exists a unique function U P RV with
ř

xPV Upxq “ 0 and such
that

η “ ρLρ,∇U (26)

Furthermore the mapping pρ, ηq ÞÑ U is continuous.

Proof Equation (26) amounts to

@ x P V, ηpxq “
ÿ

y‰x

ρpyq∇`Upy, xqLρpy, xq ` ρpxqLρ,∇U px, xq (27)

where ∇`Upy, xq stands for p∇Upy, xqq`. By definition, we have

ρpxqLρ,∇U px, xq “ ´ρpxq
ÿ

z‰x

Lρ,∇U px, zq

“ ´
ÿ

z‰x

∇`Upx, zqρpxqLρpx, zq

“ ´
ÿ

z‰x

∇´Upz, xqρpzqLρpz, xq

so (27) rewrites
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@ x P V, ηpxq “
ÿ

y‰x

ρpyq∇Upy, xqLρpy, xq

“ ´rLρrU spxq (28)

where the Markov generator rLρ is defined via

@ x ‰ y P V, rLρpx, yq B ρpyqLρpy, xq (29)

(and the diagonal of rLρ is such that all the row sums vanish).
Note that rLρ is a symmetric matrix so its reversible measure is the uniform

distribution υ over V . Since rLρ is irreducible, υ is also its unique invariant
measure. These observations show that U is the unique solution of the Poisson
equation

"

rLρpUq “ η
υrU s “ 0

(30)
˝

The continuity of U in pρ, ηq is obtained as in the proof of Proposition 2
in Appendix 3.

The previous lemma proves that any C1 curve pρtqtPr0,1s in P`pV q is gen-
erated by the continuous gradient field p∇UtqtPr0,1s, where for any t P r0, 1s,
∇Ut is obtained as in (26), where η is replaced by 9ρt and ρ by ρt. In particular
Rpρ0, ρ1q ‰ H, for any ρ0, ρ1 P P`pV q.

The fact that in (26), η “ 0 is equivalent to ∇U “ 0 implies that D
defined in (25) is a genuine Riemannian distance on P`pV q. Indeed, from
the previous definitions, the scalar product above ρ P P`pV q of two tangent
vectors η, η1 P HpV q is given by

@@@

η, η1
DDD

ρ
B

@@

∇U,∇U 1
DD

ρ
(31)

where ∇U and ∇U 1 are the respective unique solutions to (26) and to η1 “
ρLρ,∇U 1 .

The particular case where pLρqρPP`pV q correspond to the Metropolis con-
struction (starting from a given irreducible and fixed couple pπ, Lq) could
be called the Metropolis-Riemann structure of P`pV q. In Appendix 3 we
compute the associated distance D when V has two points and the jump
rates of L are both equals to 1.

In general, let us compute more explicitly the scalar product given in (31):

Lemma 6 For any ρ P P`pV q and any η, η1 P HpV q, we have
@@@

η, η1
DDD

ρ
“

ÿ

x‰yPV

rAρpx, yqpηpyq ´ ηpxqqpη
1pyq ´ η1pxqq

with rAρ B p rAρpx, yqqx,yPV the matrix given by
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@ x, y P V, rAρpx, yq B 2

ż

r0,`8q

rPρ,tpx, yq ´
1

|V |
dt (32)

where

@ t ě 0, rPρ,t B expptrLρq

(recall that the Markov generator rLρ was defined in (29), that it is reversible
with respect to the uniform distribution υ ” 1

|V | and that the r.h.s. is abso-
lutely convergent since the integrant is converging exponentially fast to zero).

Proof By definition, we have for any ρ P P`pV q,
@@

∇U,∇U 1
DD

ρ
“

ÿ

x‰yPV

ρpxqLρpx, yqpUpyq ´ UpxqqpU
1pyq ´ U 1pxqq

“
ÿ

x‰yPV

rLρpx, yqpUpyq ´ UpxqqpU
1pyq ´ U 1pxqq

“
ÿ

xPV

rLρrpU ´ UpxqqpU
1 ´ U 1pxqqspxq

Note that

rLρrpU ´ UpxqqpU
1 ´ U 1pxqqs “ rLρrUU

1s ´ UpxqrLρrU
1s ´ U 1pxqrLρrU s

so we deduce, taking into account the reversibility of υ for rLρ

xx∇U,∇U 1yyρ
|V |

“ υrrLρrU
2s ´ U rLρrU

1s ´ U 1rLρrU ss

“ ´υrU rLρrU
1ss ´ υrU 1rLρrU ss

“ ´2υrU rLρrU
1ss

“ 2υrUη1s

according to (26), where η and U are replaced by η1 and U 1.
Recall that the solution of (30) is given by

@ x P V, Upxq “

ż `8

0

Erηp rXρ,xptqqs dt

where rXρ,x B p rXρ,xptqqtě0 is a Markov process of generator rLρ starting from
x P V . Taking into account that η P HpV q, the r.h.s. can written

ż `8

0

Erηp rXρ,xptqqs ´ υrηs dt “

ż `8

0

rPρ,trηspxq ´
1

|V |

ÿ

yPV

ηpyq dt
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“
ÿ

yPV

ηpyq

ż `8

0

ˆ

rPρ,tpx, yq ´
1

|V |

˙

dt

It follows that

@@

∇U,∇U 1
DD

ρ
“ 2

ÿ

x,yPV

η1pxqηpyq

ż `8

0

ˆ

rPρ,tpx, yq ´
1

|V |

˙

dt

“ 2
ÿ

x,yPV

rAρpx, yqη
1pxqηpyq

Note that rAρ B p rAρpx, yqqx,yPV is a symmetric matrix, since the same is
true for rLρ and thus for rPρ,t for any t ě 0. Furthermore we have

@ x P V,
ÿ

yPV

ˆ

rPρ,tpx, yq ´
1

|V |

˙

“ 0

and by symmetry

@ y P V,
ÿ

xPV

ˆ

rPρ,tpx, yq ´
1

|V |

˙

“ 0

It follows that

@ x P V,
ÿ

yPV

Aρpx, yq “ 0 “
ÿ

yPV

Aρpy, xq ˝

and the announced result follows.

Consider any scalar product, xxx¨, ¨yyy on HpV q. It can be extended into a
semi-definite scalar product on RV , still written xxx¨, ¨yyy, by imposing that 1,
the vector whose entries are all equal to 1, is orthogonal to HpV q and that
xxx1,1yyy “ 0. Consider A B pApx, yqqx,yPV the associated symmetric matrix.
It is a non-negative matrix of rank |V | ´ 1 and all the row and column sums
vanish and we can write

@ η, η1 P HpV q,
@@@

η, η1
DDD

“
ÿ

x‰yPV

Apx, yqpηpyq ´ ηpxqqpη1pyq ´ η1pxqq

Any Riemannian structure on P`pV q is thus equivalent to the datum of a
smooth mapping

P`pV q Q ρ ÞÑ Aρ P A (33)

where A is the space of all symmetric non-negative matrices of rank |V | ´ 1
whose row and column sums all vanish.
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It is natural to wonder if all Riemannian structures on P`pV q come from
a smooth family pLρqρPP of irreducible Markov generators, respectively re-
versible with respect to the ρ. Or equivalently, if the mapping (33) is con-
structed, as in Lemma 6, from a family prLρqρPP of irreducible Markov gener-
ators reversible with respect to the uniform distribution υ. Let us call these
metric structures Markov-Riemannian.

To investigate the existence of non-Markov-Riemannian structures, we
consider a generic A P A and we wonder if we can find on V an irre-
ducible Markov generator rL reversible with respect to υ such that A “ rA B
p rApx, yqqx,yPV with

@ x, y P V, rApx, yq B 2

ż

r0,`8q

expptrLqpx, yq ´
1

|V |
dt

Consider a spectral decomposition of ´rL: prλn, rϕnqnPJ0,|V |´1K, where
prϕnqnPJ0,|V |´1K is an orthogonal basis of RV for its usual scalar product,
where

@ n P J0, |V | ´ 1K, rLrrϕns “ ´rλn rϕn

and where rλ0 “ 0 and rϕ0 “ 1.
It appears that a spectral decomposition of rA is pλn, rϕnqnPJ0,|V |´1K, where

@ n P J0, |V | ´ 1K, λn B

"

0 , if n “ 0
2
rλn

, otherwise

We are thus led to the following question. Consider an orthogonal ba-
sis pϕnqnPJ0,|V |´1K of RV , with ϕ0 “ 1. Let be given positive numbers
pλnqnPJ|V |´1K and take λ0 “ 0. The matrix of the operator A : RV Ñ RV
described by

@ n P J0, |V | ´ 1K, Arϕns “ λnϕn

corresponds to a generic element of A. When is the operator rL defined by
rLrϕ0s “ 0 and

@ n P J|V | ´ 1K, rLrϕns “ ´
2

λn
ϕn (34)

a Markov generator? It amounts to check that the off-diagonal entries of rL
are non-negative.

This problem is related to the determination of Markov sequences, see
Definition 2.3 of Bakry and Huet [3] and to the hypergroup property of the
basis pϕnqnPJ0,|V |´1K .
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When |V | “ 2, the operator rL defined by (34) is always a Markov genera-
tor, since it is given by

rL “

ˆ

´1{λ1 1{λ1
1{λ1 ´1{λ1

˙

But as soon as |V | ě 3, it is well-known that rL defined by (34) may not
be a Markov generator.

Here is an example with V “ t1, 2, 3u (which can be extended to any V
with |V | ě 3). We take

ϕ0 “

¨

˝

1
1
1

˛

‚ ϕ1 “

¨

˝

1
´2
1

˛

‚ ϕ2 “

¨

˝

´1
0
1

˛

‚

Consider rL described by (34), with λ1, λ2 ą 0 to be chosen later. Introduce
the function

f B 2ϕ0 ` ϕ1 ` 3ϕ2 “

¨

˝

0
0
6

˛

‚

If rL was to be Markovian we would have

@ t ě 0, ft B 2ϕ0 ` expp´2t{λ1qϕ1 ` 3 expp´2t{λ2qϕ2 ě 0

In particular we should have Btftp1q|t“0 ě 0. But we compute that

Bt|t“0ftp1q “ ´
2

λ1
`

6

λ2

quantity which is negative with λ1 “ 2 and λ2 “ 7.
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Appendix 1: Continuity of the solution to the Poisson
equation

The purpose of this appendix is to show that the solution U of (16) is con-
tinuous in terms of F,L and π.
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On the finite set V , let RpV q be the set of couples pπ, Lq consisting of
an irreducible Markov generator L reversible with respect to the probability
measure π. Endow V with a total order ď and consider

ÝÑ
V B tpx, yq P V 2 : x ă yu

The mapping

RpV q Q pπ, Lq ÞÑ ppπpxqqxPV , pLpx, yqqpx,yqPÝÑV q P p0, 1q
V ˆ r0,`8q

ÝÑ
V

is a bijection on its image and enables us to endow RpV q with a natural
topology.

Let ΣpV 2q be the set of general vector fields, which are the functions
F : V 2 Ñ R satisfying

@ px, yq P V 2, F px, yq “ ´F py, xq (35)

(in particular F vanishes on the diagonal). Again, ΣpV 2q is endowed with
the topology inherited from R

ÝÑ
V .

The divergence associated to L is the mapping transforming any vector
field F P ΣpV 2q into the function divLpF q defined on V via

@ x P V, divLpF qpxq “
ÿ

yPV

F px, yqLpx, yq

For any vector field F P ΣpV 2q and any pπ, Lq P RpV q, consider the
Poisson equation in the unknown function UL,F described by

"

LpUL,F q “ divLpF q
πrUL,F s “ 0

(36)

By reversibility of π for L and by the anti-symmetry property (35), we
have πrdivLpF qs “ 0 so there is a unique solution UL,F to (36). Our main
result here is:

Proposition 2 The mapping

ΣpV 2q ˆRpV q Q pF, π, Lq ÞÑ UL,F P RV

is continuous.

Proof Recall the probabilistic representation of UL,F :

@ x P V, UL,F pxq “ ´

ż `8

0

ErdivLpF qpXxptqqs dt (37)

where Xx B pXxptqqtě0) stands for a left-limit and right-continuous Markov
process starting from x and admitting L (resp. L) as generator.
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To see the r.h.s. of (37) is well-defined, introduce the spectral gap of L:

λpLq B min

"

´
πrfLrf ss

πrf2s
: f P RV zt0u, πrf s “ 0

*

which is the smallest non-zero eigenvalue of ´L (which is diagonalizable in
R` by reversibility). We have ΛpLq ą 0 by irreducibility of L.

For x P V and t ě 0, denote mx,t the law of Xxptq, seen as a row vector.
Using matrix product, we have

@ t ě 0, mx,t “ mx,0 expptLq

and by duality, il follows that

@ t ě 0,
mx,t

π
“ expptLq

”mx,0

π

ı

where the densities mx,t
π and mx,0

π are seen as a function, thus represented by
column vectors.

We deduce that for any test function f P RV ,

@ t ě 0, |mx,trf s ´ πrf s| “
ˇ

ˇ

ˇ
π
”´mx,t

π
´ 1

¯

f
ı
ˇ

ˇ

ˇ

ď

d

π

„

´mx,t

π
´ 1

¯2


a

πrf2s

“

d

π

„

´

expptLq
”mx,0

π
´ 1

ı¯2


a

πrf2s

ď expp´λpLqtq

d

π

„

´mx,0

π
´ 1

¯2


a

πrf2s

“ expp´λpLqtq

g

f

f

eπ

«

ˆ

δx
π
´ 1

˙2
ff

a

πrf2s

ď

d

πrf2s

πpxq
expp´λpLqtq

Applying this bound with f “ divLpF q, we get

@ x P V, @ t ě 0, |ErdivLpF qpXxptqqs| “ |mx,trdivLpF qs ´ πrdivLpF qs|

ď

d

πrdivLpF q2s

πpxq
expp´λpLqtq

which shows that the integral in (37) is absolutely converging.
It is well-known, see for instance Kato [7], that the mapping
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RpV q Q pπ, Lq ÞÑ λpLq P p0,`8q ˝

is continuous. More precisely, to come back to the symmetric setting of Chap-
ter 2 Section 5 of Kato [7], note that λpLq is also the spectral gap of the
symmetric matrix pLpx, yq

a

πpxq{πpyqqx,yPV .
It follows we can apply the convergence under integral theorem to get the

desired continuity from (37).

The previous result enables us to extend Proposition 1 to the finite setting,
by showing that continuous curve r0, 1s Q t ÞÑ ρt P P`pV q generated (in
the sense of (24)) by a continuous vector field curve is also generated by a
continuous gradient vector field curve. Proposition 1 is even more than what
we need. Indeed in Section 3, we fixed an element pπ, Lq of RpV q and only
considered the other elements prπ, rLq P RpV q sharing with pπ, Lq the same
oriented edge set E defined in (7). We end up with the previous set RpV q
only when E coincides with V 2 minus its diagonal. Otherwise, the set of such
elements prπ, rLq is a proper subset RpEq of RpV q. Of course by restriction,
Proposition 2 is also valid if RpV q is replaced by RpEq.

The interest ofRpEq is that a Girsanov formula holds between its elements,
a finite setting analogue of Remark 2. More precisely, let prπ, rLq P RpEq and
denote rXx B p rXxptqqtě0 be a left-limit and right-continuous Markov process
starting from x and admitting rL as generator. Then for any T ě 0, the laws
Lp rXr0, T sq and LpXr0, T sq of rXr0, T s and Xr0, T s are equivalent and the
Radon-Nikodym derivative of Lp rXr0, T sq with respect to LpXr0, T sq is given
by

dLp rXr0, T sq
dLpXr0, T sq

“ exp

¨

˝

ÿ

px,yqPE

ln

˜

rLpx, yq

Lpx, yq

¸

NT px, yq ´

ż T

0

HpXtq dt

˛

‚

where for any px, yq P E, NT px, yq is the number of jumps of Xr0, T s from x
to y and

@ x P V, Hpxq B rLpx, xq ´ Lpx, xq

For a proof of this result, see e.g. the lecture notes [11].

Appendix 2: On the two point state space

The goal of this appendix is to compute a Metropolis distance on the set of
positive probability measures on V B t0, 1u, as an illustration of the con-
structions of Section 3.

As reference framework we choose
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L B

ˆ

´1 1
1 ´1

˙

so π “ p1{2, 1{2q and the corresponding edge set is E “ tp0, 1q, p1, 0qu.
Any ρ P P`pV q writes p1 ´ ρp1q, ρp1qq, where ρp1q P p0, 1q. From now on,

to simplify notations, ρ is identified with ρp1q which is denoted ρ P p0, 1q. We
consider the Metropolis choice of generators described in (21):

@ ρ P p0, 1q, Lρ “

ˆ

´ρp0, 1q ρp0, 1q
ρp1, 0q ´ρp1, 0q

˙

with

ρp0, 1q “ 1^
ρ

1´ ρ

ρp1, 0q “ 1^
1´ ρ

ρ

Any vector field F P ΣpEq is determined by the value F p0, 1q P R which
will simply be denoted F P R in the sequel. Note that in the present situation,
any vector field is a gradient field. With this convention, the Markov generator
(18) is given by

@ ρ P p0, 1q, @ F P R, Lρ,F “

$

’

’

’

’

&

’

’

’

’

%

ˆ

´Fρp0, 1q Fρp0, 1q
0 0

˙

, if F ě 0

ˆ

0 0
´Fρp1, 0q Fρp1, 0q

˙

, if F ă 0

We also compute that, as in (20) and with the above notations,

@ ρ P p0, 1q, @ F P R, }F }
2
ρ “

ÿ

x‰yPV

F 2px, yqρpxqLρpx, yq

“ 2rρ^ p1´ ρqsF 2

Given a continuous curve r0, 1s Q t ÞÑ Ft P R, Equation (24) writes

@ t P r0, 1s, 9ρt “

"

p1´ ρtqFtρtp0, 1q , if Ft ě 0
ρtFtρtp1, 0q , if Ft ă 0

“ rρ^ p1´ ρqsFt (38)

Let be given ρ0, ρ1 P p0, 1q, the distance Dpρ0, ρ1q defined in (25) is de-
scribed by

D2pρ0, ρ1q “ 2min

"
ż 1

0

rρt ^ p1´ ρtqsF
2
t dt : pFtqtPr0,1s P Dpρ0, ρ1q

*

(39)
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where pρtqtPr0,1s is the solution of (38) and where Dpρ0, ρ1q is the set of
stepwise continuous mappings r0, 1s Q t ÞÑ Ft P R which are such that the
corresponding pρtqtPr0,1s does start at ρ0 and end at ρ1. Indeed, our previous
continuity assumption can be relaxed into stepwise continuity by classical
arguments of regularization by convolution.

To compute Dpρ0, ρ1q, there is no loss of generality in assuming that ρ0 ď
ρ1 and even ρ0 ă ρ1, since Dpρ0, ρ0q “ 0. Furthermore, we can restrict our
attention to non-negative r0, 1s Q t ÞÑ Ft P R`. Indeed, if we have Ft0 ă 0 for
some t0 P r0, 1s, then, since 9ρt has the same sign as Ft for all t P r0, 1s, we can
find t1 ă t2 P r0, 1s with t0 P pt1, t2q such that ρt1 “ ρt2 . It follows that in
the minimization (39), it is advantageous to replace pFtqtPr0,1s by pGtqtPr0,1s
defined by

@ t P r0, 1s, Gt B

"

0 , if t P rt1, t2s
Ft , otherwise

since pGtqtPr0,1s P Dpρ0, ρ1q and
ż 1

0

rρt ^ p1´ ρtqsF
2
t dt ą

ż 1

0

rρt ^ p1´ ρtqsG
2
t dt

Let us consider the case where ρ0 ě 1{2. The situation where ρ1 ď 1{2 can
be treated similarly and the case where ρ0 ă 1{2 and ρ1 ą 1{2 is deduced by
writting Dpρ0, ρ1q “ Dpρ0, 1{2q `Dp1{2, ρ1q.

Lemma 7 For 1{2 ď ρ0 ă ρ1, we have

Dpρ0, ρ1q “ 4p
a

1´ ρ0 ´
a

1´ ρ1q

Proof Assuming, as we are allowed to, Ft ě 0 for any t P r0, 1s, (38) reduces
to

@ t P r0, 1s, 9ρt “ p1´ ρtqFt

since ρt ě 1{2 for all t P r0, 1s.
We deduce that

@ t P r0, 1s, ρt “ 1´ p1´ ρ0q expp´φtq

where

@ t P r0, 1s, φt “

ż t

0

Fs ds

It appears that pFtqtPr0,1s belongs to Dpρ0, ρ1q if and only if

φ1 “ ln

ˆ

1´ ρ0
1´ ρ1

˙

(40)
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Introduce the mapping h defined on R` via

@ u P R`, hpuq B

ż u

0

a

p1´ ρ0qe´q dq

so that
ż 1

0

rρt ^ p1´ ρtqsF
2
t dt “

ż 1

0

p1´ ρtqF
2
t dt

“

ż 1

0

ph1pφtq 9φtq
2 dt

The optimization problem (39) amounts to minimize twice the above r.h.s.
under the condition

hpφ1q “ h

ˆ

ln

ˆ

1´ ρ0
1´ ρ1

˙˙

C A

which is equivalent to (40). Writing for any t P r0, 1s, ϕt B h1pφtq 9φt, we are led
to the simple problem of minimizing

ş1

0
ϕ2
t dt under the contraint

ş1

0
ϕt dt “ A.

It is well-known that the minimizer r0, 1s Q t ÞÑ ϕt is constant and so we end
up with A2 for the minimal value.

Thus we have shown that

D2pρ0, ρ1q

2
“ h2

ˆ

ln

ˆ

1´ ρ0
1´ ρ1

˙˙

“

¨

˝

ż ln
´

1´ρ0
1´ρ1

¯

0

a

p1´ ρ0qe´q dq

˛

‚

2

“ p1´ ρ0q

¨

˝

ż ln
´

1´ρ0
1´ρ1

¯

0

e´q{2 dq

˛

‚

2

“ 8p1´ ρ0q

ˆ

1´

c

1´ ρ1
1´ ρ0

˙2

“ 8p
a

1´ ρ0 ´
a

1´ ρ1q
2 ˝

which is the desired result.
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