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Abstract
Subword tokenization has become the prevailing standard in the field of natural language processing (NLP) over
recent years, primarily due to the widespread utilization of pre-trained language models. This shift began with
Byte-Pair Encoding (BPE) and was later followed by the adoption of SentencePiece and WordPiece. While subword
tokenization consistently outperforms character and word-level tokenization, the precise factors contributing to its
success remain unclear. Key aspects such as the optimal segmentation granularity for diverse tasks and languages,
the influence of data sources on tokenizers, and the role of morphological information in Indo-European languages
remain insufficiently explored. This is particularly pertinent for biomedical terminology, characterized by specific rules
governing morpheme combinations. Despite the agglutinative nature of biomedical terminology, existing language
models do not explicitly incorporate this knowledge, leading to inconsistent tokenization strategies for common
terms. In this paper, we seek to delve into the complexities of subword tokenization in French biomedical domain
across a variety of NLP tasks and pinpoint areas where further enhancements can be made. We analyze classical
tokenization algorithms, including BPE and SentencePiece, and introduce an original tokenization strategy that
integrates morpheme-enriched word segmentation into existing tokenization methods.
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1. Introduction

Word tokenization into subword units is a longstand-
ing challenge in the field of natural language pro-
cessing (NLP), initially conceived to address out-of-
vocabulary words in language modeling (Larson,
2001; Bazzi and Glass, 2002; Szoke et al., 2008).
In recent years, this strategy of splitting words into
smaller units has gained prominence, primarily
driven by the widespread adoption of pre-trained
language models (PLMs) such as BERT (Devlin
et al., 2019) and GPT (Brown et al., 2020). This
shift began with statistical tokenizers, particularly
Byte-Pair Encoding (BPE) (Gage, 1994), as intro-
duced in BERT (Sennrich et al., 2016). It was later
extended by other data-driven variants, such as
SentencePiece (SP) (Kudo and Richardson, 2018)
and WordPiece (Devlin et al., 2019).

While empirical evidence consistently demon-
strates that subword tokenization outperforms char-
acter and word-level tokenization (Wang et al.,
2017; Wu et al., 2016), the precise reasons behind
this success remain not fully understood. Some
studies have explored the impact of segmentation
granularity on subword performance (Samuel and
Øvrelid, 2023; Novotný et al., 2021), suggesting
that each task or language may have its own opti-
mal granularity for maximizing performance. How-
ever, other factors, such as the influence of data
sources used to construct tokenizers or the role of
morphological information, require more compre-

hensive investigation.
In the context of Indo-European languages, par-

ticularly in French, words are composed of a se-
ries of morphemes1 (Touratier, 2012). These mor-
phemes can be categorized as either lexical or
grammatical and are analogous to the subword
units idea previously mentioned, but here adhere
to well-defined linguistic rules.

In specialized domains, such as medical one,
meaningful morphemes follow construction rules
from Greek and Latin languages. These rules help
medical professionals deduce the meanings of un-
familiar terms and remember complex terminol-
ogy effectively. Despite the agglutinative nature
of biomedical terminology, existing PLMs do not ex-
plicitly integrate this knowledge into their tokeniza-
tion processes since they only rely on statistical
tokenizers (BPE, SentencePiece, etc.). As a result,
common terms are inconsistently tokenized into
arbitrary subwords in these models.

In this paper, we investigate the impact of word
tokenization strategies in the French biomedical
domain and their effectiveness on downstream
NLP tasks. Our study delves into the nuances of
different tokenization algorithms, aiming to under-
stand why subword tokenization strategies, such as
BPE and SentencePiece, outperform other meth-
ods (Kudo, 2018). We also identify areas for further

1In linguistics, a morpheme is defined as the smallest
unit of meaning within a word.



optimization and provide a comprehensive analysis
of their performance on a large set of 23 diverse
French biomedical NLP tasks, such as named entity
recognition (NER), multi-label classification (CLS),
or semantic textual similarity (STS). Finally, we
propose an original tokenization strategy that in-
tegrates morpheme-enriched word segmentation
into existing tokenization algorithms. The latter is in-
cluded in the comparison of tokenizers and makes
it possible to study the contribution of subword units
constructed from linguistic rules.

Our contributions are as follows:

• We introduce an original tokenization strategy
that integrates manually defined morphemes
into statistical tokenization algorithms.

• We analyze the ability of statistical tokenizers
to segment words regarding their real linguistic
segmentation.

• We provide both qualitative and quantitative
analyses to assess how word tokenization ap-
proaches (statistical methods vs. morpheme-
enriched variants) and the data source on
which they are trained impact the performance
of BERT-based language models.

• We explore the relationship between tokeniza-
tion granularity and its impact on performance
in various downstream NLP tasks.

The morpheme-enriched tokenization strategy,
experiment reproduction scripts, and resulting
BERT-based PLMs are freely available under the
MIT license on GitHub and Hugging Face2

2. Related works

Recent research into domain-specific language
models has shown that utilizing specialized data
during pre-training significantly enhances model
performance in that domain. Various strategies,
with varying proportions of in-domain and out-of-
domain training data, have been proposed across
diverse fields, including biomedicine (Lee et al.,
2019; Gu et al., 2021; El Boukkouri et al., 2022;
Labrak et al., 2023), scientific research (Beltagy
et al., 2019) and clinical (Alsentzer et al., 2019).

In the context of biomedical-specific language
models, it is widely recognized that training mod-
els from scratch using in-domain corpora (Gu et al.,
2021) yields noticeable performance improvements
compared to other pre-training strategies. The
authors also demonstrated the benefits of using

2Repositories are currently private to
respect the double-blind review process,
but an anonymized version is available:
https://anonymous.4open.science/r/BioMedTok-D665/

domain-specific tokenizers generated through con-
ventional statistical tokenization construction tech-
niques, such as WordPiece (Schuster and Naka-
jima, 2012), SentencePiece (Kudo and Richardson,
2018), and BPE (Sennrich et al., 2016), on an in-
domain corpus, resulting in improved performance
in downstream tasks.

Although statistical-based tokenization algo-
rithms are the predominant method employed in
recent biomedical language models, some studies
have raised questions about the effectiveness of
this approach and its suitability for specific down-
stream tasks or languages (Mielke et al., 2021;
Novotný et al., 2021). As a result of these in-
quiries, various methods for improving tokeniza-
tion have emerged, some involving training models
from scratch (Kudo, 2018), while others do not (Hof-
mann et al., 2022; Fan and Sun, 2023). One such
method involves incorporating linguistic knowledge
during the tokenization process by utilizing mor-
phemes (Fujii et al., 2023; Pan et al., 2020; Chen
and Fazio, 2021; Toraman et al., 2023), with the
aim of mimicking how humans learn and under-
stand languages. However, there have been fewer
contributions in the context of biomedical domains
and Indo-European languages (Jimenez Gutierrez
et al., 2023), despite these fields being highly de-
pendent on an agglutinative terminology.

3. Tokenization Strategies

In this section, we provide a brief overview of
the two studied statistical-based tokenization ap-
proaches (Section 3.1), followed by the description
of our original approach that integrates linguistic
knowledge through morphemes into existing tok-
enizers algorithms (Section 3.2).

3.1. Statistical Tokenization Algorithms
In this study, we compare two statistical-based tok-
enization methods, BPE and SentencePiece. BPE
begins with individual characters and progressively
combines them into subword pairs based on their
frequency in the training data. In contrast, Sen-
tencePiece employs two subword segmentation
algorithms, Unigrams and BPE, offering flexibility
in terms of segmentation granularity. While Sen-
tencePiece is widely used in French biomedical
models (Touchent et al., 2023; Labrak et al., 2023;
Copara et al., 2020; Berhe et al., 2023), its appro-
priateness for a specific language and domain may
vary, potentially leading to suboptimal subword seg-
mentation.

3.2. Morpheme-enriched Tokenization
In our study, focusing on improving the modeling
of specialized medical terminology in the medical

https://anonymous.4open.science/r/BioMedTok-D665/


field and reducing the impact of unseen words dur-
ing model pre-training, our primary emphasis is on
lexical morphemes (Touratier, 2012). To achieve
this, we created a manual list of around 600 fre-
quently used lexical morphemes in the French medi-
cal domain, sourced from the book by Cottez (1980).
Examples of these morphemes include terms like
céphal-, clinico-, -thérapie, thoraco-, -ome and
-gène.

We trained our morpheme-enriched tokenizers
by modifying both the BPE and SentencePiece al-
gorithms. During training, we introduced a prede-
fined list of language-specific morphemes as to-
kens. These morphemes were enforced selections
by the tokenizer when encountered, while the re-
maining text underwent the standard tokenization
process of the chosen algorithm. This approach
enabled us to combine traditional BPE and Sen-
tencePiece tokenizations with morpheme tokens,
mitigating issues related to unseen words during
training.

4. Experimental Protocol

In this section, we outline the experimental ap-
proach used to evaluate the impact of tokeniza-
tion strategies on French biomedical PLMs. Firstly,
in Section 4.1, we present the set of 23 selected
biomedical NLP downstream tasks used in our
study. Next, we describe the different training data
sources employed to train the statistical tokeniz-
ers in Section 4.2. Following this, in Section 4.3,
we explain the training procedure for the chosen
BERT-based model architecture. Finally, in Sec-
tion 4.4, we provide a comprehensive description
of the evaluation methodology used to assess the
performance of these models.

4.1. Downstream Tasks
We summarize the datasets of the 23 NLP biomed-
ical downstream tasks from DrBenchmark (Labrak
et al., 2024), including NER, part-of-speech (POS)
tagging, STS and classification.

DEFT-2020 (Cardon et al., 2020) is a dataset fea-
tured in the 2020 edition of the annual French Text
Mining Challenge, known as DEFT. It encompasses
clinical cases, encyclopedia, and drug labels, all of
which have been annotated for two specific tasks:
(i) assessing textual similarity and (ii) performing
multi-class classification. The first task is geared to-
wards determining the degree of similarity between
pairs of sentences, with a scale ranging from 0 to 5
and involves 1,010 sample pairs. The second task
involves identifying, for a given sentence, which
among three provided sentences is the most simi-
lar. There are 1,102 samples included in this task.

DEFT-2021 (Grouin et al., 2021) is a subset of
275 clinical cases taken from the 2019 edition of
DEFT. This dataset is manually annotated in two
tasks: (i) multi-label classification with 275 sam-
ples and (ii) NER. The multi-label classification
task focuses on identifying the patient’s clinical pro-
file based on the diseases, signs, or symptoms
mentioned in the clinical cases with 4,712 samples.
The dataset is annotated with 23 axes derived from
Chapter C of the Medical Subject Headings (MeSH).
The second task involves fine-grained information
extraction for 13 entities.

E3C (Magnini et al., 2020) is a multilingual col-
lection of clinical cases annotated for Named En-
tity Recognition (NER). It encompasses two types
of annotations: (i) clinical entities and (ii) tempo-
ral information and factuality. While this dataset
spans five languages, our evaluation focuses on the
French portion. Since the dataset does not come
with predefined subsets for its 1,402 samples, we
conducted random splits of 70% for training, 10%
for validation, and 20% for testing, as outlined in
Table 1.

Subset Train Validation Test
Clinical 87.38% of L2 12.62% of L2 100% of L1
Temporal 70% of L1 10% of L1 20% of L1

Table 1: Description of the sources for E3C.

The QUAERO French Medical Corpus (Névéol
et al., 2014), simply referred to as QUAERO in this
paper, contains annotated entities and concepts
for NER tasks. The dataset covers two text gen-
res (drug leaflets and biomedical titles). 10 entity
categories corresponding to the UMLS Semantic
Groups (Lindberg et al., 1993) were annotated, for
a total of 26,409 entity, which were mapped to 5,797
unique UMLS concepts. Due to the presence of
nested entities, we opted to simplify the evaluation
process by retaining only annotations at the higher
granularity level, following a similar approach to
the one described in Touchent et al. (2023), which
translates into an average loss of 6.06% of the an-
notations on EMEA and 8.90% on MEDLINE. Ad-
ditionally, considering that some documents from
EMEA exceed the maximum input sequence length
that most current language models can handle, we
decided to split these documents into sentences.

MorFITT (Labrak et al., 2023b) is a multi-label
dataset that has been annotated with medical spe-
cialties. It comprises 3,624 biomedical abstracts
sourced from PMC Open Access. These abstracts
have been annotated across 12 distinct medical
specialties, resulting in a total of 5,116 annotations.



Mantra-GSC (Kors et al., 2015) is a multilin-
gual dataset annotated in biomedical NER for
five languages, however we focused only on the
French subset. It covers three sources (EMEA,
Medline and Patents) and use two distinct anno-
tation schemes. These sources encompass di-
verse types of documents, including biomedical
abstracts/titles, drug labels, and patents. To main-
tain evaluation uniformity, we randomly divided the
dataset into three subsets: 70% for training, 10%
for validation, and 20% for testing.

CLISTER (Hiebel et al., 2022) is a collection
of French clinical case sentence pairs used for
Semantic Textual Similarity (STS) evaluation. It
consists of 1,000 sentence pairs, manually anno-
tated by multiple annotators who assigned similar-
ity scores ranging from 0 to 5 for each pair. These
individual scores were then averaged to derive a
floating-point number that represents the overall
similarity of the two sentences.

CAS (Grabar et al., 2018) dataset comprises
3,790 clinical cases that underwent POS tagging
with 31 different classes, using automatic tagging
through the Tagex tool3, achieving a 98% precision
rate in comparison to manual annotations. This
dataset involves tasks like classifying clinical cases
for negation and uncertainty, as well as named-
entity recognition for identifying markers of nega-
tions and speculation within medical histories and
patient care. To create subsets, a random split was
applied, allocating 70% for training, 10% for valida-
tion, and 20% for testing since predefined subsets
were not provided.

ESSAI (Dalloux et al., 2021) consists of 7,247
clinical trial protocols that have been annotated with
41 POS tags using the TreeTagger tool (Schmid,
1994). It does also contain a classification and
two named-entity recognition tasks similar to those
from CAS dataset. As the dataset was not initially
separated into three distinct subsets, we opted to
apply the same processing methodology as we did
for CAS dataset.

PxCorpus (Kocabiyikoglu et al., 2022) is a
dataset designed for spoken language understand-
ing in the medical domain, specifically focusing on
transcripts related to drug prescriptions. It com-
prises 4 hours of transcribed dialogues, amounting
to 1,981 recordings. These dialogues have been
meticulously transcribed and semantically anno-
tated. The primary task involves categorizing the
textual utterances into one of four intent classes
(prescribe, replace, negate, none). The second

3https://allgo.inria.fr/app/tagex

task pertains to NER, where each word in a se-
quence is classified into one of 38 classes, includ-
ing categories such as drug, dose, or mode.

4.2. Tokenizers Data Sources

To ensure a fair and comprehensive comparison
of training data sources used by the statistical tok-
enizers, we carefully curated a 1GB subset of raw,
lowercase text data from a variety of sources, in-
cluding NACHOS (Labrak et al., 2023), PubMed
Central, CC100 (Wenzek et al., 2020), and the
French Wikipedia. We then constructed tokeniz-
ers using both tokenization algorithms, resulting
in a total of 16 tokenizers: 8 with the integration
of morphemes and 8 without. These specific data
sources were chosen for their diversity: NACHOS
focuses on French biomedical content, PubMed
Central on English biomedical content, Wikipedia
on general French language, and CC100 on gen-
eral multilingual content. Each tokenizer was con-
figured with a vocabulary size of 32k tokens, consis-
tent with the original hyperparameters used in other
French biomedical models such as CamemBERT-
BIO (Touchent et al., 2023) and DrBERT (Labrak
et al., 2023).

4.3. Language Model Pre-Training

To assess the impact of introducing morphemes
into tokenizers on the pre-training process of
biomedical language models, we conducted pre-
training from scratch using the 16 tokenizer com-
binations (see Section 4.2). Our choice of archi-
tecture was RoBERTa (Liu et al., 2020), which is
based on the masked language modeling objec-
tive and configured with standard token masking
percentages as introduced by the authors.

For the PLMs training data, we utilized the NA-
CHOS corpus created by (Labrak et al., 2023). This
corpus, already pre-processed and converted to
lowercase, is consistent with the data sources used
for training the tokenizers. It comprises 1.1 bil-
lion words, equivalent to 7.4GB of raw text data,
sourced from a wide range of online resources fo-
cusing on the French biomedical and clinical do-
mains.

The pre-training process was conducted uni-
formly across all models, employing the same hy-
perparameters and executed over a 20-hour period.
We harnessed the computational power of 32 V100
32GB GPUs available on the Jean-Zay supercom-
puter for this purpose. By maintaining consistent
procedures and employing a fixed seed to mitigate
randomness during training, we ensured the relia-
bility and reproducibility of our experiments.

https://allgo.inria.fr/app/tagex


BPE SentencePiece
NACHOS PubMed CC100 Wiki NACHOS PubMed CC100 Wiki

Dataset Task Metric w/o w/ w/o w/ w/o w/ w/o w/ w/o w/ w/o w/ w/o w/ w/o w/

CAS

CLS F1 94.2* 94.9 94.7 94.2* 95.2 95.3 94.8 94.8 94.8 94.7* 93.4** 93.6** 94.4 94.1 95.3* 95.1**
NER Neg SeqEval 87.0 83.3* 82.4** 81.3** 84.9 84.2 84.7 84.5* 86.1 86.4 83.6* 83.9 85.4 84.2** 85.6 83.2
NER Spec SeqEval 30.3* 30.6 35.0 28.2* 34.6 32.0 34.4 34.0 36.1 29.8 28.4* 22.2** 31.9 28.7* 32.1 27.0*

POS SeqEval 97.0** 96.9** 97.1 96.9** 97.1* 97.0** 97.2 96.9** 97.1* 97.0* 96.9** 96.9** 97.1 97.1 97.1 97.1

PxCorpus CLS F1 94.8 94.2 93.6 93.9 94.2 94.6 93.4 93.7 94.9 94.1 94.8 94.1 94.8 93.7 93.7 94.5
NER SeqEval 95.9 95.9 95.9 95.9 96.1 96.0 96.2 95.9 96.1 96.1 96.0 96.1 95.9 96.1 96.2 96.1

DEFT2020 STS MSE 0.71 0.71 0.64* 0.75 0.70 0.67 0.71 0.69 0.72 0.71 0.63** 0.63 0.70 0.67* 0.70 0.67*
CLS F1 91.0 85.9 57.6** 73.7 79.5 76.3 77.1 66.0 83.0 85.3 80.9 66.7** 61.1* 66.3* 75.0* 77.4*

MORFITT CLS F1 68.6** 68.0** 66.5** 65.9** 68.4** 67.0** 68.7 67.3** 69.6 68.8* 66.8** 66.2** 68.2 67.5** 69.1** 67.7**

E3C NER Clinical SeqEval 54.2 53.1 52.4 48.6** 52.7 51.3** 51.1* 52.0* 54.2 52.4 52.1 51.1** 53.8 52.5* 53.2 51.7
NER Temporal SeqEval 82.0 81.2 80.9** 80.0** 81.8 81.2 82.3 80.6** 82.1 81.6 80.3** 79.8** 80.6** 81.1** 81.6* 81.73*

CLISTER STS MSE 0.63* 0.63 0.63 0.60** 0.65 0.63 0.62** 0.66 0.61* 0.64 0.61** 0.62** 0.62 0.60* 0.64** 0.63**

DEFT2021 NER SeqEval 60.3 59.0** 58.1** 56.2** 59.4** 59.2** 60.1** 59.1** 61.3 60.1* 57.0** 56.6** 59.2** 59.9** 59.3** 58.9**
CLS F1 32.9 34.5* 33.4 32.3 34.5* 33.9 34.2 32.9 34.3 33.1 34.3 33.1 31.0 31.9* 34.2 34.9

ESSAI

NER Spec SeqEval 60.5 60.9 56.4* 59.2 57.9 61.5 63.6 57.4 63.9 62.8 57.6 55.7* 64.6 62.0 61.4 63.1
POS SeqEval 98.4* 98.3 98.3 98.2** 98.4 98.4 98.3 98.3 98.4 98.4 98.3 98.2* 98.4 98.3 98.3* 98.3

NER Neg SeqEval 83.0 83.4 79.3 76.4 82.2 83.2 81.8 84.2* 81.3 84.0* 80.2 81.1 83.2 84.2 82.1 79.6*
CLS F1 97.3 97.1* 97.4 96.6** 97.4 96.7** 97.4 97.0** 97.3 97.3 97.5 97.2* 97.0 97.0 97.5* 97.0*

QUAERO NER Medline SeqEval 57.7 56.2** 55.4** 53.6** 57.9 55.0** 57.3 56.4** 58.2 55.5** 54.8** 52.9** 57.5* 55.8** 56.9 54.9**
NER EMEA SeqEval 65.6 65.1 63.9 63.1** 62.1** 62.7* 63.1** 62.6* 65.5 65.9 62.6** 63.8* 62.8** 63.1* 62.7* 62.0**

MantraGSC
NER EMEA SeqEval 60.9 63.9 58.2* 60.6* 69.3 63.0 61.9* 62.3** 66.9 62.5* 56.8** 60.3 60.8* 59.5 64.0* 63.9**

NER Medline SeqEval 41.4* 42.9 39.3 36.2** 44.3 41.2 43.8 40.8* 41.9 39.5* 36.4** 37.8 46.4* 39.9 47.1 36.1*
NER Patents SeqEval 52.1* 53.3* 57.0 50.2* 57.0 53.9 53.6 52.3* 52.0 49.6* 50.7** 49.4 52.8* 48.0 50.6* 47.8*

Average performances per tasks
CLS F1 79.80 79.10 73.87 76.10 78.20 77.30 77.60 75.28 78.98 78.88 77.95 75.15 74.42 75.08 77.47 77.77
NER SeqEval 63.92 63.75 62.63 60.73 64.63 63.42 64.15 63.24 65.05 63.55 61.27 60.82 64.22 62.69 64.06 62.00
POS SeqEval 97.70 97.60 97.70 97.55 97.75 97.70 97.75 97.60 97.75 97.70 97.60 97.55 97.75 97.70 97.70 97.70
STS MSE 0,67 0,67 0,64 0,68 0,68 0,65 0,67 0,68 0,67 0,68 0,62 0,63 0,66 0,64 0,67 0,65

Table 2: Performance of the tokenization algorithms and different data sources used to train tokenizers
(top). Average performance per type of tasks is also reported (bottom). w/o and w/ denote models without
and with morphemes. Best models are in bold, and the second-best are underlined. Statistical significance
is determined using Student’s t-test, where * indicates p < 0.05, and ** p < 0.01.

4.4. Evaluation

All models undergo fine-tuning following a stan-
dardized protocol with identical hyperparameters
for each downstream task, enabling a focused eval-
uation of tokenizers. We ensure robustness and
reliability by averaging the results across four inde-
pendent runs and performing statistical significance
assessments using Student’s t-test.

For consistent comparisons, especially in
sequence-to-sequence tasks like POS tagging and
NER, we employ the SeqEval (Nakayama, 2018)
metric in conjunction with the IOB2 format. To align
with established practices (Touchent et al., 2023),
our models are trained to predict only the label for
the initial token of each word.

5. Results and Discussions

In this section, we present the results of our to-
kenization strategies on various biomedical NLP
tasks, with a focus on key aspects. We investigate
the impact of tokenization granularity (Section 5.1),
the introduction of morphological information dur-
ing tokenizer construction (Section 5.2), and the
influence of data sources on tokenizers, including
token sparsity, morpheme coverage, and the over-
all performance of different tokenization algorithms

(Section 5.3).
Table 2 summarizes the performance of the BPE

and SentencePiece strategies, both with (w/) and
without our morpheme-enriched approach (w/o),
across various French biomedical downstream
tasks. Average performance per task type is also
provided for clarity. It’s worth noting that, before
delving into detailed analysis, there is no consis-
tent tokenization strategy that consistently yields
the best results in all tasks, whether it employs a
purely statistical algorithm or a statistical approach
coupled with morpheme enrichment.

5.1. Impact of tokenization granularity

To assess the impact of tokenization granularity,
Table 3 presents the average number of sub-word
units per word for each tokenization strategy and
data source used in the studied tasks. While deriv-
ing overarching conclusions from these results can
be challenging, we calculated Pearson correlation
(ρ) between models performances on the down-
stream tasks from Table 2 and the corresponding
average number of sub-word units per word. These
correlation scores range from −1 to +1, where −1
indicates a complete negative linear correlation, 0
represents no correlation, and +1 signifies a strong
positive correlation. In the context of tokenization,



BPE SentencePiece
NACHOS PubMed CC100 Wikipedia NACHOS PubMed CC100 Wikipedia

Corpus Task w/o w/ w/o w/ w/o w/ w/o w/ w/o w/ w/o w/ w/o w/ w/o w/ ρ

CAS

CLS 1.32 1.38 2.20 2.13 1.49 1.49 1.51 1.50 1.32 1.45 2.18 2.15 1.49 1.56 1.51 1.57 -0.62
NER Neg 1.32 1.38 2.20 2.13 1.49 1.49 1.51 1.50 1.32 1.45 2.18 2.15 1.49 1.56 1.51 1.57 -0.70
NER Spec 1.32 1.38 2.20 2.13 1.49 1.49 1.51 1.50 1.32 1.45 2.18 2.15 1.49 1.56 1.51 1.57 -0.42

POS 1.32 1.38 2.20 2.13 1.49 1.49 1.51 1.50 1.32 1.45 2.18 2.15 1.49 1.56 1.51 1.57 -0.36

PxCorpus CLS 1.54 1.62 2.26 2.27 1.76 1.72 1.73 1.72 1.54 1.67 2.24 2.30 1.72 1.77 1.77 1.82 -0.22
NER 1.54 1.62 2.26 2.27 1.76 1.72 1.73 1.72 1.54 1.67 2.24 2.30 1.72 1.77 1.77 1.82 -0.22

DEFT2020 STS 1.41 1.45 2.27 2.24 1.42 1.45 1.43 1.45 1.41 1.49 2.24 2.23 1.41 1.48 1.42 1.49 -0.47
CLS 1.21 1.26 2.13 2.09 1.31 1.34 1.33 1.36 1.20 1.32 2.05 2.04 1.25 1.34 1.29 1.37 -0.41

MorFITT CLS 1.38 1.44 2.45 2.40 1.48 1.50 1.49 1.51 1.37 1.50 2.35 2.33 1.46 1.55 1.48 1.57 -0.82

E3C NER Clinical 1.30 1.35 2.23 2.17 1.48 1.48 1.50 1.49 1.29 1.43 2.22 2.18 1.48 1.55 1.49 1.56 -0.59
NER Temporal 1.29 1.35 2.22 2.16 1.48 1.48 1.48 1.49 1.29 1.43 2.22 2.18 1.47 1.54 1.48 1.55 -0.75

CLISTER STS 1.52 1.59 2.65 2.57 1.73 1.72 1.74 1.72 1.51 1.65 2.56 2.49 1.71 1.77 1.71 1.77 −0.33

DEFT2021 NER 1.31 1.37 2.26 2.19 1.48 1.49 1.50 1.50 1.31 1.44 2.19 2.15 1.48 1.55 1.49 1.56 -0.88
CLS 1.50 1.57 2.63 2.56 1.69 1.70 1.71 1.71 1.46 1.61 2.50 2.46 1.64 1.72 1.66 1.74 -0.11

ESSAI

NER Spec 1.29 1.34 2.20 2.14 1.42 1.43 1.45 1.45 1.29 1.41 2.21 2.16 1.41 1.49 1.46 1.52 -0.68
POS 1.28 1.33 2.19 2.13 1.41 1.42 1.44 1.44 1.28 1.41 2.19 2.15 1.40 1.48 1.44 1.51 -0.61

NER Neg 1.28 1.33 2.19 2.13 1.41 1.42 1.44 1.44 1.28 1.41 2.19 2.15 1.40 1.48 1.44 1.51 -0.69
CLS 1.28 1.34 2.20 2.14 1.42 1.43 1.45 1.46 1.28 1.41 2.20 2.16 1.41 1.49 1.45 1.52 -0.02

QUAERO NER Medline 1.53 1.63 2.35 2.26 1.78 1.78 1.77 1.78 1.52 1.76 2.36 2.35 1.77 1.89 1.76 1.89 -0.77
NER EMEA 1.30 1.34 2.14 2.12 1.44 1.46 1.49 1.51 1.30 1.39 2.06 2.04 1.45 1.51 1.50 1.56 -0.28

MANTRAGSC
NER EMEA 1.33 1.40 2.47 2.41 1.49 1.51 1.50 1.52 1.32 1.43 2.33 2.30 1.46 1.53 1.49 1.55 -0.63

NER Medline 1.89 2.01 2.84 2.70 2.06 2.13 2.14 2.14 1.89 2.09 2.84 2.78 2.06 2.22 2.10 2.22 -0.64
NER Patents 1.54 1.59 2.34 2.30 1.61 1.63 1.59 1.62 1.43 1.52 2.20 2.20 1.50 1.58 1.51 1.60 0.06

Average per model 1.39 1.45 2.30 2.25 1.54 1.55 1.56 1.56 1.38 1.51 2.26 2.24 1.52 1.60 1.55 1.62 -0.48
Relative Difference (%) 0.0 4.5 65.9 61.8 11.2 11.8 12.3 12.6 −0.7 8.9 62.8 61.1 9.9 15.5 11.7 16.9

Table 3: Average number of sub-word units per word for each tokenization strategy and data source
training. Their Pearson correlation (ρ) with each task performance is reported (last column). Cells colored
in red correspond to lower performing models, while those in green represent higher ones. The last row
represents the relative difference in terms of average subwords per word compared to the NACHOS BPE
without morpheme baseline. w/o and w/ denote models without and with morphemes.

a negative correlation implies that fewer subword
units are associated with higher scores, while a
positive correlation suggests that more subword
units are linked to higher scores.

In overall, we observe in Table 3 an average ρ
correlation of −0.48 between tasks and models, in-
dicating that, in general, higher performance scores
tend to be associated with fewer subword units. To
our knowledge, this is the first time such a correla-
tion has been experimentally demonstrated. How-
ever, it’s important to note that this correlation varies
across the targeted tasks. Tasks like CLS show
correlation close to zero, suggesting that they are
less affected by the granularity of tokenization. In
contrast, STS and sequence-to-sequence tasks,
particularly NER, appear to be more influenced by
tokenization granularity, likely due to their heavy
reliance on immediate context for making predic-
tions.

While the RoBERTa model’s embeddings cap-
ture semantic meaning and the encoder module
captures contextual information (Rogers et al.,
2020), we aimed to determine whether the ob-
served correlations are attributed to a specific part
of this architecture. To investigate this, we isolated
and froze the embeddings and/or encoder of our
BERT-based model, based on the NACHOS Sen-
tencePiece, during fine-tuning for various tasks.
The experimental approach, as detailed in Table 4,

involved several stages. Initially, we established a
baseline for each task with no frozen components.
Subsequently, we conducted experiments by freez-
ing only the embedding layer, only the encoder,
and both the embeddings and encoders. Our find-
ings indicate a stronger dependence on RoBERTa’s
encoder for tasks such as POS tagging and STS,
in contrast to other tasks, which corroborate the
context dependency as an explanation to the cor-
relation scores between segmentation granularity
and models performances for these tasks but not
for NER.

CAS

POS

PxCorpus

NER

PxCorpus

CLS

CLISTER

STS

Full Fine-tuning 97.10 96.10 94.82 0.61

Embedding 97.03 ↓ 0.07 96.10 ↑ 0.00 94.73 ↓ 0.09 0.62 ↑ 1.63

Encoder 65.97 ↓ 32.05 83.95 ↓ 12.64 84.78 ↓ 10.58 0.45 ↓ 26.22

Embedding + Encoder 60.04 ↓ 38.16 79.62 ↓ 17.14 84.78 ↓ 10.58 0.44 ↓ 27.86

Table 4: Performance and relative loss (in %) of the
PLMs based on SentencePiece NACHOS without
morpheme with parts of the models being frozen.

As shown in Table 3, higher performance scores
are associated with fewer subword units. To gain
a linguistic perspective on how tokenization strate-
gies behave, we analyzed the segmentation of 150
biomedical terms equally distributed across car-
diology, dermatology, obstetric-gynecology, and



ophthalmology, as presented in Table 5. Most
models, except for those using SentencePiece NA-
CHOS, struggle to precisely align with the official
morphological segmentation established by the
Académie Française (French Academy). However,
upon closer examination, it is evident that these
models often come very close to the desired seg-
mentation. While the segmentations may exhibit
slight variations, such as the relocation of a letter
from one token to another, they maintain the same
number of tokens as the official morphological seg-
mentation. This observation is further supported
when we analyze actual tokenizer outputs (see Ta-
ble 6) and assess the segmentation statistics in
Table 5. For example, BPE NACHOS tokenizes
the term "ophtalmoscope" into the units "ophtalm
oscope," whereas the morphological segmenta-
tion should be "ophtalmo scope," a segmentation
achieved by its morpheme-enriched counterpart.

Type of errors
EM* Exact # Tok. Under Seg. Over Seg.

BPE

NACHOS w/o 21.3 41.3 9.3 49.3
w/ 34.6 50.0 6.0 44.0

PubMed w/o 2.6 12.0 2.6 85.3
w/ 17.3 28.6 2.6 68.6

CC100 w/o 8.0 28.0 2.6 69.3
w/ 23.3 38.6 2.6 58.6

Wikipedia w/o 8.6 24.6 3.3 72.0
w/ 22.0 36.6 4.6 58.6

SP

NACHOS w/o 56.6 74.6 7.3 18.0
w/ 61.3 70.6 2.6 26.6

PubMed w/o 14.6 26.6 2.6 70.6
w/ 32.0 42.0 2.6 55.3

CC100 w/o 24.0 42.0 4.0 54.0
w/ 36.6 49.3 2.6 48.0

Wikipedia w/o 18.0 42.0 3.3 54.6
w/ 34.0 54.0 4.6 41.3

Table 5: The average Exact Match (EM*) and por-
tion of terms aligned with the official segmenta-
tion length (Exact # Tok.), both in %, are based on
the gold segmentation from 150 biomedical terms.
Both last columns are referring to the portion of
terms suffering from under and over segmentation.
w/o and w/ denote without and with morphemes
respectively. SP stands for SentencePiece.

In Table 5, we observed various types of errors in
segmentation, with the most common issue being
over-segmentation of units that are not present in
our biomedical lexical morphemes list. This over-
segmentation results in smaller, more numerous,
and sparser tokens, which can impact the efficiency
of pre-training. The reduced frequency of tokens
and the faster filling of RoBERTa’s 512-token con-
text window with less meaningful tokens can be
problematic.

Finally, Table 5 reveals an interesting distinction
between BPE and SentencePiece using NACHOS
training data. SentencePiece outperforms BPE
in achieving segmentations that closely resemble

Base cancérigène ophtalmoscope angiographie
Correct cancér i gène ophtalmo scope angio graphie
BPE Wiki c anc éri gène oph tal mos cope ang i ographie
BPE PubMed can c é rig è ne o ph tal m oscope angi ograph ie
BPE NACHOS cancé rig ène ophtalm oscope angiographie
SentencePiece NACHOS cancérigène ophtalm oscope angiographie
BPE NACHOS +Morpheme cancér i gène ophtalmo scope angio graphie
SentencePiece NACHOS +Morpheme cancér i gène ophtalmo scope angio graphie

Table 6: Instances of tokenization juxtaposed with
their correct segmentation.

correct ones, both in terms of the number of to-
kens and their semantic accuracy. SentencePiece
excels at matching correct segmentations, partic-
ularly for medical terminology, in 56.6% of cases
without morphemes and 61.3% when morphemes
are used, while BPE NACHOS achieves only 34.6%
accuracy.

5.2. Impact of morphemes
One of our primary objectives was to approximate
the correct morphological segmentation of words
in the French biomedical language. Our analysis
reveals that tokenizers, such as BPE and Senten-
cePiece trained on NACHOS, enriched with mor-
phemes, can often achieve this goal. Notably, Sen-
tencePiece NACHOS enriched with morphemes
achieved the best performance, with a 61.3% ex-
act match. Our morpheme-enriched approach of-
fers the advantage of obtaining a tokenization that
closely resembles what could be achieved through
a complex rule-based method. This approach is
easily adaptable to other languages with a list of
lexical morphemes and similar principles.

As shown in Table 2, the introduction of mor-
phemes (w/) may lead to performance enhance-
ments in approximately 25% of the studied down-
stream tasks. However, it is noteworthy that the
best results are primarily achieved by classical sta-
tistical tokenizers, BPE and SentencePiece, when
not using morphemes, and when trained on our
biomedical-specific data, NACHOS. This observa-
tion is intriguing because NACHOS-based tokeniz-
ers inherently contain a higher proportion of mor-
phemes, as shown in Table 7, which presents the
portion of correct morphemes already present in the
tokenizers without introducing additional morpho-
logical information based on their length ranges.
This suggests that introducing morphemes and
other forms of morphological knowledge, such as
grammatical endings, may have a more substantial
impact in contexts that do not align directly with the
target domains and languages. However, we can
note that the results of this method are inconsistent
and do not ensure an overall performance boost
across all models or tasks.

Furthermore, it is worth noting that morphemes
are often already present in the tokenizers in their
complete form, as illustrated in Table 7, or with



Coverage of the morphemes (%)
Tokenizer Source 1 - 3 4 - 6 7 - 10 Global

BPE

NACHOS 83.33 45.38 31.00 47.23
PubMed 65.15 39.32 15.00 38.06
CC100 78.78 34.46 7.00 34.77

Wikipedia 87.87 34.95 10.00 36.67

SP

NACHOS 83.33 41.01 28.00 43.59
PubMed 60.60 37.13 14.00 35.81
CC100 83.33 34.70 8.00 35.64

Wikipedia 93.93 37.37 12.0 39.44

Table 7: Percentage of the morphemes already
present in the tokenizers vocabularies per range of
morphemes lengths. SP stands for SentencePiece.

minor modifications based on token probabilities,
as shown in Table 6. Notably, tokenizers based on
NACHOS contain a significantly higher percentage
of morphemes, with 47.23% for BPE and 43.59%
for SentencePiece. Conversely, the source with
the fewest morphemes is CC100, with percentages
of 34.77% for BPE and 35.64% for SentencePiece.
This observation aligns with the fact that CC100
has fewer connections to both the target language
and domain.

In general, we observe that despite the significant
improvement in segmentation quality (as shown
in Table 5), tokenizers enriched with morphemes
do not exhibit a strong correlation with the results
achieved in downstream tasks, as evident in Ta-
ble 2. The ability to deliver satisfactory results de-
spite encountering suboptimal segmentations, as
seen in the case of PubMed, which frequently over-
segments words, underscores the robustness of
RoBERTa’s architecture in handling noise and its
capacity to compensate for such challenges.

5.3. Impact of data sources
As indicated in Table 2, the average performance
across tasks demonstrates a significant impact of
the training data source on the results obtained
by the models. It becomes apparent that using
data that is more suitable for the target language,
even if it originates from various domains such as
Wikipedia and CC100, is more effective than utiliz-
ing data from the target domains but from a different
language. This is particularly evident in the CLS,
NER, and STS tasks, where BPE PubMed achieves
an average of 70.16% for classification, 0.63 MSE
for STS, and 62.62% for NER, whereas CC100
outperforms with 74.14%, 0.67 MSE, and 64.62%,
respectively.

The decrease in performance from PubMed can
be attributed to over-segmentation, as seen in Ta-
ble 3. This over-segmentation is primarily due to
the significant differences between the data used to
build the tokenizer and the language of the model’s
pre-training. These differences stem from distinct
lexicons, writing styles, and morphological struc-

tures in French compared to English, particularly for
specialized words like "Péricardite" (French) and
"Pericarditis" (English), or "Orthophoniste" (French)
and "Speech Therapist" (English). Furthermore,
variations in alphabets, such as special French
characters like "é" or "è," can lead to token sparsity
when encountered in positions not seen during tok-
enizer construction on PubMed. This results in a
lack of both language and domain-specific informa-
tion for French, as only limited tokens can be used
to form sentences.

Some data sources are surprisingly less affected
by the introduction of morphemes. For instance,
the CC100 source is not positively impacted by mor-
phemes, despite having a lower proportion of mor-
phemes in its original version, as shown in Table 7.
This behavior may be explained by the increased
granularity introduced by morphemes, which re-
duces the probabilities of other tokens appearing.
This can lead to a poorer representation of words.

6. Conclusion

In this study, we conducted a comprehensive in-
vestigation into the influence of various word tok-
enization strategies within a BERT-based masked
language model across diverse French biomedi-
cal NLP tasks. Notably, we observed that existing
methods for tokenizing biomedical text often fall
short of aligning with morphological rules and how
humans learn these specialized terms. This sub-
optimal segmentation can impact the agglutinating
nature of biomedical terminology. To assess the
effects of this segmentation on downstream appli-
cations, we developed a set of novel biomedical to-
kenizers that adhere more closely to morphological
rules. These tokenizers combine various automatic
tokenization approaches and vocabularies to en-
rich segmentation with morphemes. We employed
these enhanced tokenizers in the pre-training of
multiple RoBERTa-based models, which we then
evaluated across a wide array of 23 French biomed-
ical tasks, including POS, NER, STS, and CLS.

Our findings show that integrating morphemes
into automatic tokenization approaches can
achieve parity or improve performance in certain
tasks, such as NER and POS tagging. How-
ever, this enhancement is not consistent across
all tasks. While there is a correlation between seg-
mentation granularity and downstream task per-
formance, we also observe that pre-training pro-
cesses exhibit robustness to suboptimal tokeniza-
tion, yielding surprisingly good results even with
very short and sparse subword units. To conclude,
our study reveals that achieving optimal tokeniza-
tion involves a combination of factors, including
minimizing word segmentation and having access
to domain-specific data in the target language.
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