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Net force in the absence of external forces in systems with retardation: Emphasis in electromagnetism

This paper demonstrates retardations can have significant implications for the kinetics and physical properties of electromagnetic systems, which should not be overlooked in general. It is shown that two electrical objects, besides attraction or repulsion, may exhibit an uncommon behavior resembling a leader-follower interaction, where one object follows the other. It is shown that the sum of forces within a system can be non-zero under certain conditions and the absence of external forces. Additionally, further analysis shows that accounting for retardation can reveal an uncommon oscillatory resistive reactance at high frequencies in circuits. Finally, an experimental setup is proposed to measure the one-way speed of light. In this proposal, clock synchronization is not needed, potentially allowing the identification of anisotropy of the speed of light.

Introduction

The origin of this work stemmed from a thought experiment. In this experiment, two magnetic bodies are imagined: one on Earth and the other on the Moon. They produce a magnetic field for a period of time and exert force on each other. If one of the objects suddenly loses its magnetism, there will be a delay before the other object detects this change. During this delay, the second object will continue to experience a force for the duration equivalent to the time it takes for an electromagnetic wave to travel from the Moon to Earth. In contrast, the other object ceases to experience any force. Claiming that the loss of force for both objects is immediate after the loss of magnet implies that information can travel instantaneously and is equivalent to having instant internet on the Moon with zero latency. On the other hand, accepting the delay in reaction leads to the conclusion that one object carries load while the other does not. A question immediately arises: What implications can arise from changing the state of electrical objects when there is a delay in the reaction? This leads to other thought experiments detailed in this paper.

In electromagnetism, the term "retardation" refers to the delay in the propagation of electromagnetic effects from a source to an observer. This delay is a crucial factor that should be incorporated into the laws of physics, as it can lead to significant consequences. One consequence of retardation in electromagnetism is illustrated in a thought experiment where two objects at a distance do not experience equal and opposite forces, seemingly defying Newton's Third Law. Several scientific literatures mention the violation of Newton's third law [START_REF] Cornille | Review of the application of newton's third law in physics[END_REF][START_REF] Pinheiro | On newton's third law and its symmetry-breaking effects[END_REF][START_REF] Ivlev | Statistical mechanics where newton's third law is broken[END_REF]. The question of whether this law universally holds ambiguously is answered. However, this alleged violation can be avoided by positing that the Third Law is locally and instantaneously applicable at the point of interaction between charged particles and the fields, where equal and opposite momentum is exchanged. Sebens, in his work [START_REF] Sebens | Forces on fields[END_REF], has taken a step further, proposing that Newton's Third Law can be preserved by assuming that fields themselves can carry force. It is stated that "The force from the electromagnetic field on matter is balanced by an equal and opposite force from matter on the field". Regarding distant interactions, it can be said that the reaction force depends on the state of the field and particles at their respective points. Consequently, no predetermined statements or laws should be made about them without considering the specific conditions at those locations. For instance, it is impossible to make any definitive statements about the magnitude and direction of the force acting on an object at a distance based on the force experienced at one's current time and projecting forward. This is because the force at any given moment depends on the specific conditions and interactions at that distance, which may not immediately depend on the other one's current situation, position, and time. Conclusively, while Newton's Third Law may hold in local interactions, it is not accurate to universally apply it to objects at a distance.

Despite the controversies, one may be less concerned about Newton's Third Law as long as the conservation of momentum within the field is maintained [START_REF] Feynman | The feynman lectures on physics[END_REF][START_REF] Griffiths | Introduction to electrodynamics[END_REF], and the exchange of force and momentum aligns with the fundamental laws of physics. In this work, in section 4, the Lorentz force is used for the applied force of electromagnetic fields, and the fields are derived from Maxwell equations, which inherently satisfies the conservation of momentum.

In section 5, the discussion centers on the oscillatory reactance of a circular loop, presenting a unique perspective on incorporating retardation effects. This illustration reveals a new aspect of the electromagnetic properties of circuits. To the author's best knowledge, this specific property has not been addressed in any existing literature until now.

In section 6, a new method for measuring the anisotropy of one-way speed of light is proposed. In the proposed method, clock synchronization is not needed, and the measurement is sensitive to the speed of light for both the outgoing and coming waves.

State change in retarded systems and actionreaction consequences

Let us consider a scenario in which two individuals, designated as A and B, engage in a shooting exchange. Both shooters, A and B, are situated at a distance d from each other within an inertial frame. They initiate gunfire simultaneously at time t = 0, with the bullets traveling at a velocity c. If either shooter is struck by the opposing party's bullet, they will experience a force of magnitude f in the direction opposite to their fired shot. Assume the bullet travel time is t 0 = d c . Shooter A, unaware of shooter B's actions, is instructed to lie down after firing, a maneuver that takes a duration t l where t l < t 0 . Under these circumstances, the outcome of the shooting incident is as follows: shooter B's reaction to shooter A's action results in receiving a force f . Conversely, shooter A does not experience a reactionary force due to shooter B's action. However, if the change in shooter A's stance occurs over a longer duration, t l > t 0 , then both A and B will experience forces of equal magnitude but in opposite directions. There is an equal and opposite momentum exchange between each shooter and the bullet they shoot, which happens nearly instantly. In the same way, there is an equal and opposite momentum exchange between the bullet and the victim. Now consider two electrical objects, A and B, positioned at a distance d. Following the principles of relativity, the fields generated by these objects cannot propagate faster than the speed of light c. Assume that both elements possess an equal electrical charge at time t = 0. It takes a duration t ret = d c for the fields from each side to reach and interact with the other's electrical charges. If the electric charge of object A dissipates within a time t l where t l < t ret , it will not experience any force when the electric field of B reaches A. In contrast, element B will experience an electrical force. There is an equal and opposite exchange of momentum between the electric charge and the field at the point of the electrical charge. This exchange of momentum results in a force being applied to the electrical charge.

These thought experiments clearly demonstrate that under certain circumstances, mainly due to the delay in the exchange of momentum in a distributed system, the sum of reactionary forces at specific time instances is not zero.

It can be stated that the reaction force experienced by any entity within a system at any given point is dependent on the state of the entity itself, as well as the state of other actors at a retarded time t ret (the time at which the state information is sent from the actor to the entity through the corresponding field and is available for the observer). In a distributed system, the force at point p is the function of the state of p and the state of the other entities in the system 3 and can be written as

F p (x, y, z, t) = n i=1,i̸ =p F p i (S p (x p , y p , z p , t); S i (x i , y i , z i , t ret = t -r i /c)) (1)
where r i is the distance between the point p and entity i, and r i is not necessarily an Euclidean distance (in specific conditions, the electromagnetic wave does not travel along the shortest path). In the classical Newtonian framework, F p n (S p ; S n ) = -F n p (S n ; S p ) and consequently, the sum of all internal forces in a system should be zero when there is no external force on the system. However, this is not true in general according to Equation (1), i.e. F p n ̸ = -F n p . If the speed of the wave c is an inherent property of the physics of the system and is related to the propagation of the field and, consequently, the propagation of momentum, then neglecting retardation means overlooking a critical aspect of the system's physics. Therefore, not accounting for the force in a retarding manner concerning the state of the system may violate the underlying physics.

Let's assume two electrical objects with their specific geometry and electrical state are positioned at a distance r from each other, and their state changes through time and also Let's assume the applied force is obtained thorough 1,2

F A B = D(r AB ) |S A ||S B |g A (t)g B (t -r/c)r AB ; F B A = D(r BA ) |S A ||S B |g B (t)g A (t -r/c)r BA ; (2) 
where state of object A and B are defined by

S A = |S A |g A (t); S B = |S B |g B (t); (3) 
where D(r) relates the force magnitude to the relative distance, g A and g B defines the dependency of the element state A and B to the time. S A and S B define the state of the electrical element and the unit distance vector are defined as rBA = -r AB . F A B and F B A will cancel out each other at time t 0 under the condition that there is almost no change in electromagnetic state of A and B during the time interval [t 0 -r/c, t 0 ] interval, i.e. g A (t 0 ) ≈ g A (t 0 -r/c) and g B (t 0 ) ≈ g B (t 0 -r/c). The sum of force acts on A and B at time t can be approximated by Taylor series expansion and neglecting second and higher order terms of r/c as

F A B + F B A ≈ D(r AB ) |S A ||S B | 0 -g A (t 0 ) dg B (t) dt t0 -g B (t 0 ) dg A (t) dt t0 r c r AB (4) 
1 In general, the force between two electrical objects may not conform to this specific form. However, in this paper, the examples presented have this general form. The primary objective of this work is to explore the possibility of generating net force without external excitation, and the generality of the formulation is not intended to encompass all possible scenarios 2 An evident example can be two electromagnetically active celestial bodies separated by a distance r Equation ( 4) clearly shows when the rate of the change in the state of A and B is small with regard to r/c, the sum of the forces is nearly zero.

3 Time-state profiles and net force

Square wave

Without delving into the specifics, let's assume we have two electrical objects exerting forces on each other at a distance r. The goal is to define an electrical state-time profile such that net force is produced. The selection of objects A and B could be any charged plate or magnetic element, resulting in a force-time profile as described in Equation [START_REF] Pinheiro | On newton's third law and its symmetry-breaking effects[END_REF]. A simple choice would be to select g A and g B such that

g A (t)g B (t -r/c) = 1; g B (t)g A (t -r/c) = -1; (5) 
If the time function is chosen such that g A (t) = g(t) and g B (t) = g(t + ϕ), it can be shown mathematically that g(t) is a periodic function with a constant magnitude |g(t)| = 1. This function changes its sign at the midpoint of its period, resembling a square wave (for the proof, see Appendix A). The period of the function is T = 4 × r c and the phase shift is ϕ = r c . The time profile of g A (t) = g(t) and g B (t) = g(t + ϕ) is depicted in Figure 1. In this case, the sum of all forces applied on two elements will be |F | = 2 D(r AB ) |S A ||S B |, which is twice the force exerted on each object when they are stationary at their maximum state value.

Sinusoidal wave

The square wave profile is not always suitable for real-world applications, as sharp load changes often result in very high impedance in circuits and inductors. Consequently, a very high voltage is required to overcome this impedance. In addition, the natural oscillation of most circuits is sinusoidal, and using square waves for these types of applications leads to imbalanced response to square wave excitation. Now lets consider a sinusoidal function for g A (t) = sin(ωt) and g B (t) = sin(ωt + ϕ). After some mathematical calculations, the sum of all internal forces will be

F = D(r AB ) |S A ||S B |sin(ϕ) sin(ω r/c)r AB (6) 
If the angular velocity is given by ω = 2πf and f is the frequency, the Equation (6) will be maximized when 

f = n c 2 r + c

Leader-follower interaction

In Equation (2), when g A = 1 and g B = -1, with these values remaining constant over time, objects A and B exhibit mutual attraction. Conversely, if they possess the same sign, they repel each other. In the case of square-wave and sinusoidal state-time profiles, different behaviors can be observed depending on the value of ϕ. For instance, object B follows object A if ϕ = π/2 in a sinusoidal wave. In contrast, if ϕ = -π/2, the situation reverses with object A following object B. Similarly, in a square-wave scenario, if ϕ = r/c, object B follows object A, and with ϕ = -r/c, object A follows object B. In these cases, both objects experience forces in the same direction, resulting in non-zero net force. This occurs without any external force being applied, illustrating a "leader-follower" behavior where one object dynamically responds to changes in the state of the other. Recent experiments, as reported in [START_REF] Mandal | A molecular origin of non-reciprocal interactions between interacting active catalysts[END_REF], illustrates such non-reciprocal force interactions between enzyme molecules where molecules experience nonreciprocal interactions akin to prey-predator(leader-follower) behavior in the absence of external forces. It's important to clarify that the intention here is not to explain this phenomenon with the present work. Rather, the goal is to highlight the existence of such non-reciprocal behavior as a phenomenon in the natural world.

Implication of assuming zero net force

On the contrary, it can be demonstrated that if the states of elements A and B change over a sufficiently long period of time3 , such that g A and g B are not constant. Consequently, there exists no time interval during which they are constant (including zero) 4 , the only possible scenario in which the sum of the forces on the two elements equals zero is by assuming that the speed of the traveling wave c is infinite.

To prove that, we also need to assume that the state of objects A and B are generally not dependent, i.e., there is no state entanglement for two objects at every time and position. To achieve a net force of zero on both elements, the following relation must hold in Equation ( 2)

g A (t)g B (t -r/c) = g B (t)g A (t -r/c) (8) 
since the states of A and B are independent, Equation 8 can be written as

g A (t) g A (t -r/c) = g B (t) g B (t -r/c) = cte (9) 
Equation ( 9) should hold for r = 0 and consequently cte = 1 and finally we have

g A (t) = g A (t -r/c); (10) 
Since Equation [START_REF] Zhang | Special relativity and its experimental foundation[END_REF] should hold for all possible distances r between elements A and B, it follows that either g A is constant over time or r c → 0. The first conclusion contradicts our initial assumption; thus, the only possible scenario is when the speed of c is infinite.

Retarded field response to electromagnetic source

In this section, the electromagnetic field response to an infinitesimally small current source through retardation is investigated using Maxwell's electromagnetic equations. Some examples show that the force acting on currents can obey the general form presented in (2) or a combination of these forms in integral format. The general Maxwell wave equation for an element with charge density ρ and current density J can be expressed as

∇ 2 E - 1 c 2 ∂ 2 E ∂t 2 = 1 ϵ 0 ∇ρ + µ 0 ∂J ∂t (11) 
and

∇ 2 B - 1 c 2 ∂ 2 B ∂t 2 = -µ 0 ∇ × J ( 12 
)
where ϵ 0 is the permittivity and µ 0 is the permeability of the vacuum. The speed of light in vacuum is given by ϵ 0 µ 0 = 1/c 2 . The electric and magnetic field is presented by E and B, respectively. In [START_REF] Jefimenko | Causality, electromagnetic induction, and gravitation: a different approach to the theory of electromagnetic and gravitational fields[END_REF], it is demonstrated that the solution to the inhomogeneous wave equation ( 12) can be correlated with its cause. More specifically, it is related to the state of the cause at a retarded time, as expressed through the following:

E = - 1 4πϵ 0 ∇ s ρ(x s , y s , z s , t s ) + 1 c 2 ∂J(xs,ys,zs,ts) ∂ts ret r dV s (13) 
and

B = µ 0 4π [∇ s × J] ret r dV s (14) 
The integral over dV s represents the summation of interactions encompassing the entire volume of source points. When the retardation symbol, [] ret , is applied to a function, it indicates the state of the source element located at coordinates (x s , y s , z s ) as observed from the point (x, y, z). This observed state is a function of the distance r between these two points and the speed of the wave c. For example

[f (x, y, z, t)] ret = f (x s , y s , z s , t -r/c) (15) 
In the subsequent examples presented in this paper, our focus will be solely on the electric objects that possess a current and no electric charge. Consequently, we consider the charge density ρ to be zero. Jefimenko [START_REF] Jefimenko | Causality, electromagnetic induction, and gravitation: a different approach to the theory of electromagnetic and gravitational fields[END_REF], has reformulated equations ( 13) and ( 14) in absence of charge density ρ as

E = - 1 4πϵ 0 1 r ∂J ∂t s ret dV s (16) 
and

B = µ 0 4π [J] ret r 3 + 1 r 2 c ∂J ∂t s ret × rdV s (17) 
The first term on the right-hand side of Equation (17) typically represents the classical Biot-Savart law. The second term on the right-hand side of this equation is typically negligible in everyday observations and can be difficult to measure at low-frequency AC currents. Furthermore, even in high-frequency circuits, the amplitude of currents is usually tiny, and this term remains insignificant. However, for the current work, the significance of this term is shown in the following examples and sections.

Two parallel wires

Consider a scenario involving two parallel wires spaced a distance d apart. Suppose there is a current I flowing through these wires. Additionally, we assume the presence of two sources for each wire, positioned sufficiently far from the cables, such that the phase difference in the alternating current (AC) along the wire is negligible due to the effect of retardation. The magnetic field around the wire is cylindrically symmetric. The magnetic field at a distance d around a wire carrying an alternating current of |I| sin(ωt + ϕ) can be derived from Equation (17). This derivation involves integrating over the wire by summing the effects of each wire segment. To simplify the calculation, the distance from the segment is chosen as the integration variable, and it is performed from the minimum distance to positive infinity for half of the wire.

B(wt, ϕ, d) = µ 0 |I|d 2π +∞ d sin(ω(t -r/c) + ϕ) r 2 √ r 2 -d 2 + ω c cos(ω(t -r/c) + ϕ) r √ r 2 -d 2 dr (18)
The first integral represents the short-range interactions, which decay rapidly with increasing distance from the wire. In contrast, the second integral corresponds to long-range interactions, with its magnitude being proportionally affected by the current's frequency. The right-hand rule determines the direction of the magnetic field at each point. For two wires A and B with current I A and I B that are out of phase with phase difference ϕ, the force on each wire would be 18) is the term commonly utilized in static electromagnetic equations, while the effect of the second term is typically overlooked. It's important to note that the net force approaches zero at low frequencies, aligning with daily observations and classical predictions. Figure 3 illustrates the effect of different distances on the net force of two infinite wires. The frequency of the wires is selected as C 2d0 and d 0 = 1m. It can be observed the long-range force decays very slowly over different distances due to the fact that the effect of long-range force accumulates over infinite wire, and the more extended portion of wire can contribute to magnifying the magnetic field.

F A B = B B (wt, ϕ, d)|I A |sin(ωt) F B A = -B A (wt, 0, d)|I B |sin(ωt + ϕ) (19) 

Two concentric parallel loops

Let's consider two parallel loops, each with a radius R, positioned at a distance d from each other, with their connecting centers orthogonal to the loops. Let's also assume the alternating current I is passing through the loop. The magnetic 

B(wt, ϕ, r, R) = µ 0 |I| 4π 2π 0 sin(ω(t -|r-R| c ) + ϕ) |r -R| 3 R ′ × (r -R) dθ + µ 0 ω|I| 4πc 2π 0 cos(ω(t -|r-R| c ) + ϕ) |r -R| 2 R ′ × (r -R) dθ (20)
assuming that the normal of the loop is in Z direction R and R ′ is given by

R = R [cos(θ), sin(θ), 0] R ′ = R[-sin(θ), cos(θ), 0] (21) 
For two Loops of A and B with current I A and I B that are out of phase with phase shift ϕ, the force on each loop would be:

F A B = 2π 0 r ′ A B × B B (wt, ϕ, r A B , R)|I A |sin(ωt)dθ A F B A = 2π 0 r ′ B A × B A (wt, 0, r B A , R)|I B |sin(ωt + ϕ)dθ B ( 22 
)
where

r A B = [R cos(θ A ), R sin(θ A ), d] r B A = [R cos(θ B ), R sin(θ B ), -d] (23)
Figure 4 illustrates the net force between two circular wires separated by various distances, operating at different frequencies, and carrying a current of 1000 amps with a phase shift of ϕ = -π/2. Figure 2(a) depicts the net force between two loops spaced 0.2m apart for various frequencies. The first term in Equation (20) results in a nearly constant force amplitude across different frequencies. However, the second term causes an amplification in the net force. Figure 2(b) demonstrates the net force between two loops at various distances at a frequency of ∼ 375 MHz. The force arising from the first term of the integral in Equation ( 20) is a short-range term whose amplitude decays rapidly over distance and is negligibly influenced by frequency changes. In contrast, the second term is responsible for the long-range force and has a milder decay over distance.

Oscillatory resistive reactance of circuits at high frequencies

The retardation in electromagnetic fields results in significant consequences, which are often overlooked in the daily application of electrical instruments.

One of these phenomena that can be magnified at high frequencies in circuits is oscillatory resistance and inductive reactance caused by the produced electromotive force (EMF). According to Maxwell-Faraday's law of induction, the EMF is given by:

ε = c E • dl = A ▽ × E • dA = - A ∂B ∂t • dA (24) 
Assuming that the integration is done over a frame that is stationary, as it is extensively explained in [START_REF] Jefimenko | Causality, electromagnetic induction, and gravitation: a different approach to the theory of electromagnetic and gravitational fields[END_REF], the equation (24) can be written as:

∂B ∂t = µ 0 4π ▽ × 1 r ∂J ∂t s ret dV s (25) 
considering the below identity for retarded fields(proof can be found in [START_REF] Li | Jefimenko made easy: Electromagnetic fields through retardation[END_REF])

∇ × [J] ret r = 1 r 3 [J] ret + 1 r 2 c ∂J ∂t s ret × r (26) 
and using the equations ( 25) and ( 26), the emf produced in a closed circuit with current I is given

ε = - µ 0 4π A c 1 r 3 ∂I ∂t s ret + 1 r 2 c ∂ 2 I ∂t 2 s ret dl × r.dA (27) 
Where r represents the radial distance from the closed loop at which the EMF is evaluated. In this context, the current i is expressed as |I|sin(ωt + ϕ) where |I| denotes the amplitude of the current, ω is the angular frequency. Hence, Equation ( 27) becomes

ε = -|I|ω [L (ω) cos(ωt) + R react (ω) sin (ωt)] (28) 
The EMF has two parts: one acts as inductance and the other as resistance to the current. Inductance reactance opposes the change in the current, and resistive reactance opposes the current direction. It can be demonstrated that these elements exhibit behaviors contrary to their typical roles at certain frequencies. The L (ω) and R react (ω) in Equation ( 28) is given by

L (ω) = µ 0 4π A c 1 r 3 cos (ωr/c) + ω r 2 c sin (ωr/c) dl × r.dA (29) 
and

R react (ω) = µ 0 4π A c 1 r 3 sin (ωr/c) - ω r 2 c cos (ωr/c) dl × r.dA (30) 
It is evident that assuming an infinite speed of light (c) or no retardation in the system, the reactive resistance component (R react ) vanishes, and the inductance (L) takes its classical form. This conclusion is also valid at low frequencies with a finite speed of c. Figure 5 illustrates a circular loop's resistive and inductive reactance with a radius of R = 20cm for various frequencies. The wire's radius is chosen a = 2cm. The integrals in Equation ( 29) and (30) are calculated from the center to the inner radius of the wire R -a. Owing to the complexity involved in calculating the current distribution inside the wire, which requires detailed calculations beyond the scope of this work, only the approximation of the EMF at the inner radius is calculated here 5 .

The resistive and inductive reactance oscillate at various frequencies and can get negative values. Negative resistive reactance suggests that the energy stored in the field aids the current flow in its direction. This negative resistance arises from the delay in the magnetic field, which, at specific frequencies, generates an EMF opposing the current, while at other frequencies, it supports the current.

On one-way speed of light test

The results presented in previous sections are based on the assumption of the isotropic speed of light in both directions between two stationary electrical objects in their respective frames. According to Zhang [START_REF] Zhang | Special relativity and its experimental foundation[END_REF], in specific experiments, an anisotropic speed of light assumption yields results compatible with the isotropy of the one-way speed of light as long as the isotropy and constancy of the two-way speed of light are maintained in anisotropy assumption. However, it can easily be demonstrated that in retarded systems, the anisotropy can lead to distinct outcomes, such as different net forces. The measurement of the speed of light in one direction has been a subject of controversy and a significant challenge, primarily due to the conventions of clock synchronization and the philosophical debates surrounding these conventions [START_REF] Janis | Conventionality of Simultaneity[END_REF][START_REF] Reichenbach | The philosophy of space and time[END_REF]. Additionally, the methodologies employed to synchronize spatially separated clocks may rely on knowing the one-way speed of light or physics laws that assume the isotropic speed of light, which cannot be used for anisotropy tests [START_REF] Mansouri | A test theory of special relativity: I. simultaneity and clock synchronization[END_REF][START_REF] Selleri | Noninvariant one-way velocity of light[END_REF][START_REF] Anderson | Conventionality of synchronisation, gauge dependence and test theories of relativity[END_REF].

In this work, a test experiment is suggested to test the anisotropy of the speed of light without the need for clock synchronization. This test is based on the measurement of the net force between two electric objects, where the anisotropy of the speed of light affects the measured force.

It is assumed that two electrical objects, A and B, are positioned in an inertial frame, and their electromagnetic states change alternatively over time. There is no initial phase synchronization between the states of A and B, and their phases are independent. A and B can rotate( or reposition) within the inertial frame, and the net force on both can be measured (See Figure 6). However, force measurements are carried out when A and B are at rest after relocating. Although A and B can rotate, the positions of the sources feeding A and B are fixed in the inertial frame and not under accelerated movement. Consequently, no change in the clocking of sources A and B should occur. The fact that A and B move in the inertial frame will not affect the clocks at rest in the frame, and our signal generators are independent of the position of A and B. The sources A and B may have a phase difference of ϕ s . However, there is no consensus on the value of ϕ s as different observers may not concur on its relative value. This discrepancy arises because different observers experience delays due to their varying distances from the sources and potential anisotropy in the speed of light. The only way that all observers reach a unanimous agreement on the value of ϕ s is to know the speed of light in all directions. Despite this, the procedure will not depend on the measurement of the phase shift ϕ s (initial synchronization is not needed). The only agreement for all observers is that changing the phases of sources will change the observed net force. The phase difference between A and B, denoted as ϕ, differs from ϕ s due to the distances of the sources from their respective receivers. The distance from the source of A to receiver A is selected equal to the distance from the source of B to receiver B. This symmetry is deliberately chosen for simplification.

To further explain the procedure, let's assume c AB defines the speed of the wave traveling from A to B and c BA is the speed of the wave traveling from B to A (indicating anisotropy in the speed of light). The sources have an angular velocity of ω, and their states sinusoidally change, and there is a phase shift ϕ s between the two sources. The state of A is proportional to the time profile of + ϕ), and that of B is determined by sin(ωt). Where ϕ is the phase shift between A and B, the phase shift at the angle of θ = 0 • and θ = 180 • can be related to the phase shift of sources and the delay resulting from their distance from the sources through

ϕ 0 • = ϕ s + ω(d s /c BA -d s /c AB ) ϕ 180 • = -ϕ s -ω ((d s + d)/c BA -(d s + d)/c AB ) = -ϕ 0 • -ω(d/c BA -d/c AB ) (31)
Where d is the distance of objects from each other. Although time and phase synchronization may not be practically possible, observers in the inertial frame can agree on the angular velocity of objects and sources A and B at rest. The force exerted by object B on A is denoted as F A B , and F B A is the force exerted by A on B.

F A B = D(r AB ) |S A ||S B |sin(ωt + ϕ) sin(ω(t -r/c BA ))r AB ; F B A = D(r BA ) |S A ||S B |sin(ωt) sin(ω(t -r/c AB ) + ϕ)r BA ; (32) 
With some mathematical calculation, the net force on two objects considering they have phase shift ϕ 0 • is given by

F net = 1 2 D(d) |S A ||S B | [cos(ϕ 0 • + ωd/c BA ) -cos(ϕ 0 • -ωd/c AB )] [cos(2ωt + ϕ 0 • -ωd/c AB ) -cos(2ωt + ϕ 0 • -ωd/c BA )] r AB (33) 
When light speed is isotropic, there is no oscillatory component over time, which allows us to observe a fixed net force without oscillation. Conversely, when light speed is anisotropic, by filtering out the oscillatory component, the fixed part can be measured and is given by

|F | f ixed 0 • = 1 2 D(d) |S A ||S B | [cos(ϕ 0 • + ωd/c BA ) -cos(ϕ 0 • -ωd/c AB )] r AB ( 
34) By positioning A and B in opposite directions by rotating the system and keeping it running, now A and B are replaced, and they will be in position of each other but with phase shift ϕ 180 • . If the light speed is anisotropic in direction, different setups lead to different magnitudes of force at different angles. For the current setup and at ϕ 180 • the fixed component of the net force can be Using the equations (34), (35), and (36), a set of exact solutions can be obtained for t AB and t BA . However, to ensure the uniqueness of these solutions, it can be considered, from Equation (36), that t AB and t BA are bounded and the solutions can be limited to a specific range. The experimental setup described above ensures that the sources remain stationary to prevent any effect on their timing due to the theory of relativity. However, it is possible to rotate the sources within the rotating frame very slowly, allowing a more straightforward test setup while introducing a negligible change in clocks.

Conclusions

In this paper, it is demonstrated that changes in the electrical state can induce a net force on retarded systems, even in the absence of external forces. The magnitude of this net force depends on the rate of change in the state and, under specific conditions, can result in measurable forces. It is also shown that the impact of retardation extends beyond the kinetics of the systems. For instance, retardation effects can lead to oscillatory reactance. Additionally, we have presented arguments that anisotropy in the speed of light can lead to variations in the calculated force. This phenomenon could potentially be utilized to test whether light behaves anisotropically in different frames of reference.

Figure 1 :

 1 Figure 1: A schematic of the state-time profile of two electrical objects, resembling a square wave with the period of T = 4 × r c . The above and below functions have a phase difference of ϕ = r c .

Figure 2

 2 Figure2illustrates the net force per meter between two infinitely long wires separated by a distance of 1 meter and carrying a current of 1000 amps for various frequencies Figure2(a) and phase shifts ϕ Figure2 (b). As observed in Figure2(a), the force resulting from the first term of the integral in equation (18) is the term commonly utilized in static electromagnetic equations, while the effect of the second term is typically overlooked. It's important to note that the net force approaches zero at low frequencies, aligning with daily observations and classical predictions.Figure3illustrates the effect of different distances on the net force of two infinite wires. The frequency of the wires is selected as C 2d0 and d 0 = 1m. It can be observed the long-range force decays very slowly over different distances due to the fact that the effect of long-range force accumulates over infinite wire, and the more extended portion of wire can contribute to magnifying the magnetic field.

Figure 2 :

 2 Figure 2: The net force between two parallel wires at a distance of d 0 = 1m. (a) The variation in net force across different frequencies, with a phase difference set at ϕ = π/2. (b) The change in net force over different phase shifts, for a frequency of ω = πc/2d 0 . The value of ϕ can be the relative phase difference of the first or second wire with respect to the other.

Figure 3 :

 3 Figure 3: The net force between two parallel wires at different distances with a phase difference set at ϕ = π/2 and for a frequency of ω = πc/2d 0 and d 0 = 1m. The plot starts from distance d = 0.25m

Figure 4 :

 4 Figure 4: (a) The net force between two circular wires at a distance of d 0 = 1m. The variation in net force across different frequencies is plotted (b). The net force between two circular wires at different distances for a frequency of ω = πc/2d 0 and d 0 = 0.2m. The plot starts from a distance d = 0.1m. In both cases, the phase difference is set at ϕ = -π/2, and the radius of the circuit is R = 0.25m.

Figure 5 :

 5 Figure 5: The variation in reactance of a circular loop over different frequencies: (a) inductive reactance, (b) resistive reactance

Figure 6 : 2 D

 62 Figure 6: Diagram of the experimental setup for testing anisotropy of speed of light. Two electrical objects, A and B, are positioned within an inertial frame. These objects can rotate within the frame, and net forces are measured when they are at rest after relocation. The sources are fixed in the inertial frame and are connected to receivers. The sources are providing

r ϕ = nπ + π/2where n ∈ N 0 ;(7)The force tends toward zero if ω r/c ≈ 0, indicating that the net forces will be insignificant at low frequencies.

It should be longer than the time required for the information to travel from A to B and vice versa.

g A and g B can be zero a finite number of times on any time interval, and this does not affect the generality of the proof

To make this approximation valid, it can be assumed that the wire is composed of strands with a significantly smaller conductor radius. The voltage distribution across these strands is arranged to generate a concentric current, characterized by a greater current distribution at the center and less current near the circumference.
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Appendix A

Let's start from this point that the equation ( 5) should hold for an arbitrary time shift of r/c. By shifting the first row, we obtain

Similarly, by applying the same shift to the second row of (5), we can conclude that

This implies that the function changes its sign over a time shift of 2 × r/c, and it can be easily deduced that the period is T = 4 × r/c. The equation (A.2) by two times shifting can be expressed as

Given that g B (t) = g A (t+ϕ), and by choosing ϕ = r/c while taking into account (A.2), from (5) we can conclude that |g A | = 1 which represents a square wave with period T = 4 × r/c.
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Call for collaboration

Ideas exist for developing and designing high-frequency electromagnetic systems capable of producing net forces. I want to extend an invitation for future collaboration and support to benefit the science community and humanity.