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Abstract

Background: In recent years, acetic acid bacteria have been shown to be frequently associated with insects, but
knowledge on their biological role in the arthropod host is limited. The discovery that acetic acid bacteria of the
genus Asaia are a main component of the microbiota of Anopheles stephensi makes this mosquito a useful model
for studies on this novel group of symbionts. Here we present experimental results that provide a first evidence for
a beneficial role of Asaia in An. stephensi.

Results: Larvae of An. stephensi at different stages were treated with rifampicin, an antibiotic effective on wild-type
Asaia spp., and the effects on the larval development were evaluated. Larvae treated with the antibiotic showed a
delay in the development and an asynchrony in the appearance of later instars. In larvae treated with rifampicin,
but supplemented with a rifampicin-resistant mutant strain of Asaia, larval development was comparable to that of
control larvae not exposed to the antibiotic. Analysis of the bacterial diversity of the three mosquito populations
confirmed that the level of Asaia was strongly decreased in the antibiotic-treated larvae, since the symbiont was
not detectable by PCR-DGGE (denaturing gradient gel electrophoresis), while Asaia was consistently found in
insects supplemented with rifampicin plus the antibiotic-resistant mutant in the diet, and in those not exposed to
the antibiotic.

Conclusions: The results here reported indicate that Asaia symbionts play a beneficial role in the normal
development of An. stephensi larvae.

Background
Symbiotic bacteria are widespread in insects in which
they play different roles, from providing nutrients, to
affecting reproduction and speciation, among others [1].
Mosquitoes are vectors of a variety of infectious diseases
that have a dramatic impact on public health, like
malaria, yellow fever, dengue and chikungunya. Despite
the common knowledge that these diseases are caused
by microorganisms, the interactions between mosquitoes
and their overall microbial community have not been
deeply investigated. Acetic acid bacteria (AAB) are tradi-
tionally isolated from fermented foods and plant mate-
rial [2,3]. In the last years, AABs have been described as
emerging symbionts of insects being found associated
especially with those with a sugar-feeding habit [4,5].

AAB of the genus Asaia have been shown to be stably
associated with larvae and adults of the malaria mos-
quito vectors An. stephensi, An. maculipennis and An.
gambiae [6,7] where they form a main component of
the mosquito-associated microbiota. Asaia is a versatile
symbiont being capable of cross-colonizing insects from
phylogenetically distant taxa [8] and of vertical, venereal
and paternal transmission [9].
However little is known about the effect of Asaia on

the host. In Drosophila melanogaster AAB have been
shown to regulate the microbiota homeostasis, by keep-
ing under control pathogenic species following a fine-
tuning of the host immune response [10,11]. In An.
gambiae, it has been shown that Asaia titer in the host
body is kept under control of the innate immune system
and it massively proliferates in the hemolymph when
the AgDscam component of the immune response is
silenced [12]. Asaia spp. have been shown to fix nitro-
gen [13] and it might be suggested that the role of these
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symbionts is to provide the host insect with organic
nitrogen, a capacity already proposed for gut symbionts
in other insect models [14].
A frequently used strategy to investigate the effect of

microbial symbionts on the host consists of their
removal using antibiotic treatments to observe the effect
on the host vitality and fitness [15,16]. A main limit of
such a strategy is the lack of a suitable control, since the
effects observed could be caused by direct effects of the
antibiotic on the insect and/or on other components of
the microbiota. Here we have adopted a different strat-
egy, setting control experiments with Asaia resistant to
the antibiotic treatment. By using this strategy we
showed that Asaia contributes positively to the normal
larval development of An. stephensi.

Results and discussion
Asaia is important for larval development
The effects of rifampicin treatment on the An. stephensi
larval development are reported in Figure 1 and 2. The
developmental time of the larvae that were reared under
rifampicin treatment (rearing batches A) was delayed 2-
4 days depending on the larval stage, when compared to
that of the control larvae (rearing batches C). The addi-
tion of a rifampicin- resistant Asaia to the breeding
water (rearing batches Ar) restored the normal develop-
mental time of the controls. Statistical analysis showed
that the developmental time of larvae from groups (C)
and (Ar) was significantly different from that of group
(A) at all the developmental stages (respectively, Mann-
Whitney U test, P=0.009 and Mann-Whitney U test,
P=0.021).
The differences in the development time resulted in

overall delays of the molting time, from two days at the
1st larval stage (Figure 1: L1) to more than four days in
the 3rd and 4th stages (Figure 1: L3, L4). The graphs
show that for the first two developmental stages (Figure
1: L1, L2) the larvae treated with the antibiotic follow a
developmental curve similar to that of the control larvae
(and of those supplemented with Ar in addition to the
antibiotic), with the curve that is only shifted in time.
For the latter developmental stages (Figure 1: L3, L4)
the larvae treated with rifampicin showed very different
curve shape. The appearance of the first larvae at these
3rd and 4th stages is also delayed in the group (A). In
addition, we can also observe that in these stages (Figure
1: L3, L4) the larvae that are subjected only to the anti-
biotic treatment have a less synchronous appearance.
This asynchronous development is not observed in trea-
ted larvae from previous stages (Figure 1: L1, L2). The
loss of synchronicity appears when the larvae are pas-
sing from the L2 to the L3 stage. On the other hand,
the control larvae and those treated with the antibiotic
and supplemented with Ar remain synchronized in their

development until the later L4 instar, and start to lose
their synchrony only at the appearance of the pupal
instar (Figure 1: L4; Figure 2).
Since dead larvae are almost impossible to spot into

the water batches, particularly at the early stages, we
were not able to directly determine the mortality in the
different groups, although mortality could still be esti-
mated indirectly, based on the number of the remaining
larvae alive (considering also those removed throughout
the study for molecular analysis). At the end of the
experiment the cumulative number of living larvae in
the different groups was similar, thus suggesting that
removal of Asaia did not affect the mortality of the lar-
vae. However, in the batches treated with antibiotic only
(group A) a minor part of the larvae had molted to L4
when we interrupted the experiment (day 17; Figure 1:
L3 and L4). In parallel, the number of pupae that devel-
oped in the group A was limited, compared to the
pupae developed in groups C and Ar (Figure 2). Thus,
even though the cumulative number of living larvae in
the three groups was similar at the end of the experi-
ment, in the group A more than half of the larvae were
blocked at the L3 stage (Figure 1: L3).

Larval developmental delay is concomitant with Asaia
loss in the gut
The larval microbiome tended toward a less heteroge-
neous community when the insect was fed with a rifam-
picin-based diet (Figure 3). Analysis of the bacterial
diversity by PCR-DGGE (denaturing gradient gel elec-
trophoresis) of 16S rRNA gene showed a remarkable
simplification of the banding patterns, with the disap-
pearance of several amplification products. In addition,
besides the disappearance of most of 16S rRNA gene
bands, the antibiotic treatment decreased the overall
bacterial abundance, as shown by the low intensity of
the bands remaining after the treatment in comparison
with the control larvae (Figure 3). In the case of the lar-
vae treated with antibiotic but supplemented with the
rifampicin-resistant Asaia strain, the resulting bacterial
community structure was simplified with respect to the
untreated insects, while still showing bands that, after
sequencing, were identified as coming from Asaia bogor-
ensis. These bands co-migrated with a corresponding
band in the control larvae that was also identified as A.
bogorensis by band DNA sequencing (Figure 3). Other
bands that have been sequenced are indicated in Figure
3a, and were identified as Burkholderia sp. and Delftia
sp. Finally, quantitative PCR analysis on a subset of the
samples showed that the levels of Asaia in the pupae
were 1.2x107, 1.4x102 and 1.2x106 in the C, A and Ar
groups respectively. In adults, Asaia levels in the same
groups were 4.9x107, 6.8x102 and 1.1x106. These quanti-
tative PCR results indicate that the antibiotic actually
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Figure 1 Effects of rifampicin on mosquito larvae: developmental time is restored after administration of rifampicin-resistant Asaia.
Evolution of larval number at each different stage, in relation with time, when submitted to three different treatments. C: no treatment; A:
rifampicin at 120 μg ml-1; Ar: rifampicin at 120 μg ml-1 plus rifampicin-resistant Asaia. L1: number of larvae at 1st instar; L2: number of larvae at
2nd instar. L3: number of larvae at 3rd instar; L4: number of larvae at 4th instar. I: time at which all the L1 non treated larvae molted to L2; II:
time at which all the L2 non treated larvae molted to L3; III: time at which all the L3 non treated larvae molted to L4. Statistical analysis showed
that the developmental rate of the larvae submitted only to the rifampicin treatment (A) is different from the two other cases (C and Ar; p <
0.05), for which the development time was not different. The X-axis reports the number of days and the Y-axis reports the number of the larvae
at the stage indicated. In the case of the L1, the graph shows the disappearance of these larvae (i.e. their passage to the successive stage) from
the starting number (50 for each experiment). In the other cases, the graphs report the appearance of the larvae at that stage, and then their
disappearance (i.e. the passage to the successive stage).
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decreased the Asaia level, and that the Asaia load was
restored when antibiotic-resistant bacteria were added
into the cages.
It has already been shown that antibiotic treatment

can strongly affect the structure of the bacterial commu-
nity of insects. For instance, Lehman et al. [17] observed
a modification in the microbial community associated
with the predatory ground beetle (Poecilus chalcites)
when transferred from the environment to a rearing
facility. This modification was greater after antibiotic
treatments, and was characterized by a loss of heteroge-
neity of the microbiota. However the microbial commu-
nity was not completely eliminated.
In the case of An. stephensi larvae, rifampicin treat-

ment determined a profound modification of the micro-
biome that was evidenced by a loss of bands in the
PCR-DGGE profiles and a remarkable decrease of inten-
sity as well. DGGE banding patterns indicated that the
insects displaying a delayed development were actually
deprived of Asaia presence. One could argue that the
first effect (disappearance of Asaia) is not the cause the
second one (delayed developmental time). However,
when a rifampicin-resistant Asaia strain was supplemen-
ted to the diet, the normal larval development was
restored. In addition, PCR-DGGE analysis revealed a
sole difference between treated larvae (with delayed
development), and treated larvae supplemented with the

antibiotic-resistant Asaia (with normal development), i.
e. the reappearance of the Asaia bands. In summary,
our experiments provide evidence that Asaia plays a
beneficial function for the normal mosquito larval
development.
The fact that Asaia is the major inhabitant of the gut

in An. stephensi [7], and that it is transmitted to the
progeny by different ways [7][9], is also in agreement
with the idea that this alpha-proteobacterium has a ben-
eficial role for the insect. Even though we did not gener-
ate experimental evidence that could indicate the
specific function for Asaia, some hypothesis can be pro-
posed. The negative effects of Asaia loss on the larval
growth of An. stephensi increase with the advancement
of the development, in parallel with the increased meta-
bolic requirement. We could thus suggest that Asaia is
involved in the supply of nutrients to the host, like a
nitrogen source [13], or vitamins, or other essential
nutritional factors. But this does not exclude the possi-
bility that Asaia can play a role in the development/
homeostasis of the immune system of the host, as
shown for other acetic acid bacteria that contribute to
the proper functioning of the host insect immunity [11].

Conclusions
Antibiotic removal of bacterial symbionts is a classic
experimental strategy in studies on invertebrate

Figure 2 Effects of rifampicin on larval development: the apparition rate of pupae is similar between non treated groups and
rifampicin treated groups supplemented with a rifampicin-resistant Asaia. The average cumulative number of pupae appearance, in
relation with time, is reported for three different treatments. C: no treatment; A: rifampicin at 120 μg ml-1; Ar: rifampicin at 120 μg ml-1 plus
rifampicin-resistant Asaia. The X-axis reports the number of days, starting from day seven, and the Y-axis reports the number of the pupae. The
number of pupae at each day results from the sum of the pupae appeared at that day and the number of pupae counted in the days before.
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Figure 3 Normal developmental time of mosquitoes is associated with amplification bands from Asaia in PCR-DGGE. PCR-DGGE carried
out on pupae and freshly molted adults of An. stephensi from the experimental groups of this study. a: DGGE on the non treated larvae. b:
DGGE on the larvae treated with rifampicin at 120 μg ml-1. c: DGGE on larvae treated with rifampicin at 120 μg ml-1 and supplemented with
rifampicin-resistant Asaia. I: bands at this level were identified as Asaia sp. after sequencing. II: bands at this level were identified as Burkholderia
sp. III: bands at this level were identified as Delftia sp. Sequencing of bands at level VI was unsuccessful. V bands at this level were identified as
Anopheles sp. 18S. * indicate the position in the gel form the larvae treated with antibiotics where Asaia bands were expected.
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symbioses. After administration of an antibiotic to the
host, which is supposed to be effective on a given sym-
biont, physiological/pathological effects on the host are
recorded, with the goal of getting clues on the biological
role of the symbiont under study [15]. This strategy is
however flawed by the multiple effects associated with
antibiotic treatments, from direct effects on the host, to
effects on other components of the microbiota. Here we
have adopted a novel strategy, consisting in the adminis-
tration antibiotic-resistant symbionts to antibiotic-trea-
ted individuals. In our study, the simple observation of a
delay in the development in An. stephensi larvae after
rifampicin treatment, in parallel with a dramatic reduc-
tion of Asaia burden, led to the hypothesis that this
bacterium plays a beneficial role in the development of
the mosquitoes. The restoration of the normal develop-
mental time after administration of rifampicin-resistant
Asaia provides a strong support to the above hypothesis.
However, our work does not prove that Asaia is neces-
sary for mosquito development. Indeed, we cannot
exclude that a normal developmental time could be
restored after administration of other microorganisms.
On the other side, it is clear that introduction of anti-
biotic-resistant Asaia is sufficient for restoring mosquito
development. In summary, while our results indicate
that Asaia is sufficient for allowing a normal mosquito
development, we cannot conclude that this bacterium is
necessary, since we have not tested the administration
of other bacteria. It is worth to remark that bacteria of
the genus Asaia are found in the environment [18], and
typing and phylogenetic studies did not reveal a specific
clustering of strains collected from insects, as compared
with environmental strains [19]. In addition, Asaia can
be transmitted horizontally not only among insects of
the same species [9], but also cross-colonizing insects
from phylogenetically distant orders [4]. Finally, indivi-
dual mosquitoes have been detected to host more than
one strain of Asaia [19]. Overall, the results of our cur-
rent work, and those of previous studies, do not argue
for Asaia as an obligatory mutualist of An. stephensi,
but as secondary, non essential, but beneficial symbiont
of this insect.

Material and methods
Strains and rearing conditions
The experimental work was performed using a colony of
An. stephensi (Liston strain) reared in the insectary of the
Laboratory of Parasitology (University of Camerino, Italy)
since 1988. The larvae were kept in 300 ml-volume trans-
parent plastic containers, with a light period of 12:12
(Light:Dark) and a room temperature at 30°C. Larvae
were fed with sterile minced commercial mouse food:
Mice standard diet G.L.P. (Mucedola s.r.l. Italy)

Antibiotic stability test
A test was carried out to check the stability of the anti-
biotic under the experimental conditions. The antibiotic
(rifampicin) was put in a solution of water and food
(concentrated at 0,4 g l-1) at a concentration of 120 μg
ml-1 and left for 30 days at the rearing condition men-
tioned above. Every two days the efficiency of the anti-
biotic was tested with well-diffusion method [20] on a
fresh culture of strain SF2.1 Asaia., isolated from An.
stephensi [10; thereafter Asaia SF2.1].

Generation of a rifampicin-resistant Asaia SF2.1
spontaneous mutant
Asaia SF2.1 was cultivated in GLY liquid medium (2.5%
glycerol and 1% yeast extract, pH 5) until they reached
OD600 of 1 (equivalent to 108 CFU per ml), and 100 μl
of the culture were plated on solid GLY medium (2.5%
glycerol and 1% yeast extract, 20% agar, pH 5) supple-
mented with 100 μg ml-1 of rifampicin to obtain a spon-
taneous rifampicin-resistant mutant. After 96h of
incubation at 30°C, one rifampicin-resistant colony, out
of the 10 colonies obtained, was selected and transferred
on liquid GLY medium and incubated until OD600 of 1.
Then the cells were centrifuged and the pellet was con-
served at 4°C to be used later.

Function investigation
After assessing that rifampicin was stable and active for
30 days in larval rearing conditions (see antibiotic stabi-
lity test), we started the experimental work on the lar-
vae. The investigation of the possible role of Asaia was
carried out monitoring three study cases: (i) larvae in
water + food, i.e. the control case (C); (ii) larvae in
water +food + antibiotic (A) at a concentration of 120
μg ml-1; and (iii) larvae in water+food+antibiotic+rifam-
picin-resistant Asaia (Ar). Each study case was con-
ducted in triplicate. The antibiotic used was rifampicin,
an mRNA synthesis inhibitor. In each case 50 larvae
were used in 300 ml of a previously autoclaved medium
(water plus food at the concentration of 0,4 g l-1). Each
day a count was realized. The monitoring of the experi-
ment was carried for 18 days. When reaching the pupal
stage, half of the pupae were sampled and conserved for
further analysis. The second half of the pupae was let to
molt; after emergence, adults were immediately sampled
and conserved.

Statistical analysis
The results were analyzed to assess if there is a statisti-
cally significant difference between the treated larvae
and the controls, in terms of mortality and development.
The statistical analyses were carried out using the non
parametric test U of Mann-Whitney under the SPSS
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software (ver.17, SPSS inc, USA). Values of P < 0.05
were considered as statistically significant.

Analysis of the bacterial community of An. stephensi
Total DNA was extracted from pupae and adults of An.
stephensi using the CTAB method with a prior cell lysis
by enzymatic method and followed by an isopropanol
precipitation of the DNA, as described by Jara et al.
[21]. PCR amplification for DGGE was carried out using
primers 357f (5’-CCTACGGGAGGCAGCAG-3’) and
907r (5’-CCGTCAATTCCTTTRAGTTT-3’) with a GC
clamp, as described by Sanchez et al. [22].
DGGE (Denaturant Gradient Gel Electrophoresis) ana-

lysis was carried out on each PCR amplicon using a
DCodeTM Universal Mutation Detection System
(BioRad, Hercules, USA), following the procedure
described previously [23]. Electrophoresis was per-
formed in 0.5-mm polyacrylamide gel (7% (w/v) acryla-
mide–bisacrylamide 37.5:1) containing a 35–55% urea–
formamide denaturing gradient (100% corresponds to
7M urea and 40% (v/v) formamide) according to the
method of Muyzer et al. [24], increasing in the electro-
phoretic run direction. The gel was subjected to a con-
stant voltage of 90 V for 15 h at 60 °C in TAE Buffer
1X (50X TAE stock solution consisting in 2 M Tris
base, 1 M glacial acetic acid, 50 mM EDTA). After
electrophoresis, the DGGE gels were stained in 1X
TAE solution containing SYBR Green (Molecular
Probes, Leiden, The Netherlands) for 45 min and
photographed under a UV illumination using a GelDoc
2000 apparatus (BioRad, Hercules, USA). For the
sequencing of DGGE bands, bands of interest were
excised from the gels with a sterile blade, mixed with
50 μl of sterile water, and incubated overnight at 4°C
to allow the DNA of the bands to diffuse out of the
polyacrylamide gel blocks. Two microliters of this aqu-
eous solution was used to reamplify the PCR products
with the same primers described above, excluding the
GC clamp. Reamplified bands were then sequenced
using ABI technology [22].

Quantitative Real-Time PCR
Quantitative PCR (qPCR) was performed, on a subset of
18 samples (nine adults and nine pupae) grouped in
pools of three taken from each cage, with a IQ5-cycler
thermal cycler (Bio-Rad) using Asaia specific primers
Asafor (5’-GCGCGTAGGCGGTTTACAC-3’) and
Asarev (5’-AGCGTCAGTAATGAGCCAGGTT-3’), 0.3
µM each. The concentration of each insect DNA sample
was measured with a Nanodrop ND-1000 spectrophot-
ometer, and 5 ng DNA was used in 25-µl reactions. For
Asaia qPCR an initial denaturation at 94°C for 3 min
was followed by 40 cycles consisting of denaturation at
94°C for 30 sec, annealing at 60°C for 30 sec. For both

the qPCR a final step for melting curve analysis from 70
to 95°C, measuring fluorescence every 0.5°C, was added.
PCR products for standard curve were cloned using
pGEM T-easy Vector Cloning Kit (Promega). Standard
curves had an average correlation coefficient of 0.998, a
slope of -3.663, with a PCR efficiency of 95% for Asaia
specific qPCR.

List of abbreviations used
(C): control cages for mosquito larvae (water + food); (A): cages for
mosquito larvae, with administration antibiotic (water + food + antibiotic);
(Ar): cages for mosquito larvae, with administration antibiotic and antibiotic-
resistant Asaia (water + food + antibiotic + antibiotic-resistant Asaia) [for
further explanation on (C), (A), and (Ar), see Material and Methods and
Results and Discussion]; DGGE: denaturing gradient gel electrophoresis; AAB:
acetic acid bacteria; L1, L2, L3, L4: mosquito larvae at the first, second, third
and fourth stage.
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