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The spin-fermion (SF) model postulates that the dominant coupling between low-energy fermions
in near critical metals is mediated by collective spin fluctuations (paramagnons) peaked at the
Néel wave vector, QN , connecting hot spots on opposite sides of the Fermi surface. It has been
argued that strong correlations at hot spots lead to a Fermi surface deformation (FSD) featuring
flat regions and increased nesting. This conjecture was confirmed in the perturbative self-consistent
calculations when the paramagnon propagator dependence on momentum deviation from QN is
given by χ−1 ∝ |∆q|. Using diagrammatic Monte Carlo (diagMC) technique we show that such a
dependence holds only at temperatures orders of magnitude smaller than any other energy scale in
the problem, indicating that a different mechanism may be at play. Instead, we find that a χ−1 ∝
|∆q|2 dependence yields a robust finite-T scenario for achieving FSD. To link phenomenological
and microscopic descriptions, we applied the connected determinant diagMC method to the (t− t′)
Hubbard model and found that in this case: (i) the FSD is not very pronounced, and, instead, it
is the lines of zeros of the renormalized dispersion relation that deform towards nesting; (ii) this
phenomenon appears at large U/t > 5.5 before the formation of electron and hole pockets; (iii)
the static spin susceptibility is well described by χ−1 ∝ |∆q|2. Flat FS regions yield a non-trivial
scenario for realizing a non-Fermi liquid state.

Introduction. The two-dimensional spin-fermion model
was formulated as an effective theory for near critical
metals and used to explain the non-Fermi liquid physics
and superconducting instability in doped cuprates [1, 2].
In this semi-phenomenological model the low-energy
quasiparticles interact with collective magnetic fluctua-
tions, or paramagnons. In some theories of high-Tc su-
perconductors the paramagnons play a role similar to
phonons in ordinary metals, with the general concept for-
mulated in Refs. [3, 4]. The model has found a wide range
of applications in cuprates and iron-based superconduc-
tors including proposals for pairing mechanisms in the
“strange metal” [5].

On approach to the antiferromagnetic instability, the
spectrum of paramagnons softens and strong near-critical
fluctuations may cause the Fermi surface (FS) to change
its shape near hot spots—these are FS points connected
by the Néel wave vector QN . In what follows we consider
the case with eight hot spots when QN = (±π,±π)/a
with a = 1 being the lattice constant. The exchange in-
teraction mediated by soft modes changes the dispersion
relation and, thus, deforms the FS in the vicinity of hot
spots making it flatter and closer to the nesting condi-
tion between the opposing FS patches (for illustration
see, Fig.1 in [6]). This remarkable Fermi surface defor-
mation (FSD) is solely the effect of strong correlations

within the hot spots. However, when is comes to estab-
lishing the quantitative description of the phenomenon,
one finds that the result crucially depends on the form of
the paramagnon propagator χ. Its frequency dependence
is dominated by Landau damping, ∝ |ω|, describing de-
cay of spin waves into particle-hole excitations [2, 7]. The
momentum dependence is more subtle, and different be-
haviors lead to different results.

The critical Ornstein-Zernike form, χ−1 ∝ |∆q|2, with
∆q = q − QN , leads to the non-Fermi liquid behavior
[1, 2, 7–11]; the tendency to FSD was established in one-
loop RG [1, 2]. [A model with four hot spots, when the
FS touches the antiferromagnetic Brillouin zone bound-
ary (AFBZB) is a “non-conventional” Fermi liquid state;
its self-energy differs from the standard Fermi liquid ex-
pectations but the low-energy quasiparticles remain well
defined [12, 13].] It was suggested in Ref. [14] that in the
limit of weak coupling and small angle between the QN

and FS normal at hot spots, the effective paramagnon
propagator takes the form χ−1 ∼ |∆q|. In this case, the
outcome of the second-order self-consistent solution is a
flow towards flat hot spot domains. However, an attempt
of Ref. [15] to verify predictions of Ref. [14] using deter-
minant Monte Carlo simulations [16, 17] at temperature
T/EF ≥ 0.005 did not find evidence for linear momen-
tum dependence χ−1 ∼ |∆q| despite observing deviations
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from the Ornstein-Zernike ansatz.
It should be noted that since interactions mediated

by critical modes do not displace quasiparticles along
the FS, well nested flat regions effectively act as one-
dimensional subsystems [6]. This is an alternative sce-
nario for realizing the non-Fermi liquid state that ex-
plains several important properties of the pseudogap
regime in cuprates, including the excitation spectrum and
transport phenomena (see, for instance, [18, 19]).

In this Letter, we address the FSD problem within
the spin-fermion and (t− t′) Hubbard models in the pa-
rameter regime considered optimal for high-Tc supercon-
ductivity. Using diagrammatic Monte Carlo (diagMC)
method we first verify the self-consistent scenario of
Ref. [14] for the SF model and demonstrate that it holds
only at ultra-low temperatures. Next, to connect phe-
nomenological considerations with microscopic physics,
we apply the connected determinant diagMC technique
(CDet) to the (t− t′) Hubbard model to reveal how FSD
develops in this case and what is the corresponding mo-
mentum dependence of the spin susceptibility.

The diagMC approach combines advantages of quan-
tum field-theory tools with power of MC sampling of
complex configuration spaces [20, 21]. It works directly
in the thermodynamic limit and does not suffer from the
conventional fermionic sign problem [22], making it suit-
able for solving systems with arbitrary dispersion rela-
tions and shapes of the interaction potential [23–25]. The
CDet approach [26] performs efficient summation of all
diagram topologies “on the fly” and currently represents
the most advanced unbiased technique for the Hubbard
model.

Models. In the SF model with hot spots, Landau damp-
ing renders the “bare” quadratic dependence of χ on fre-
quency irrelevant at low temperature. This allows one to
formulate the model in the Hamiltonian form [1, 2]:

H =
∑
k,α

ϵkc
†
k,αck,α +

∑
q

χ−1
0 (q)Sq·S−q

+ g
∑

k,q,α,β,i

c†k+q,ασ
i
α,βck,βS

i
−q, (1)

where c†k,α is the fermion creation operator in the state

with momentum k and spin projection α, σi are Pauli
matrices (i = x, y, z), g is the SF coupling con-
stant, ϵk is the bare electron dispersion, and S is the
collective spin degree of freedom. In what follows we
choose ϵk as the tight-binding dispersion relation on the
square lattice with two hopping amplitudes, t and t′

(t = 1 in our units), yielding ϵk = −2t(cos kx + cos ky)−
4t′ cos kx cos ky.
Feynman diagrams for proper self-energy, Σ(q, ωn),

and polarization, Π(q, ωm), where ωn and ωm are
fermionic and bosonic Matsubara frequencies, respec-
tively, follow from the standard rules for the conven-
tional and the skeleton representations, and have the

same structure as for fermions interacting via

Vi,j(q, ωm) = −g

4

σz
i σ

z
j + (σ+

i σ
−
j + σ−

i σ
+
j )/2

γ|ωm|+ χ−1
0 (|q−QN |)

, (2)

where γ is the Landau damping constant (in what follows
we take γ/t = 1). This form respects the spin SU(2)-
symmetry (on the square lattice all four vectors (±π,±π)
are formally identical to QN).
The standard Fermi-Hubbard model on a square lat-

tice at half filling is parameterized by the nearest- and
next-nearest-neighbor hopping amplitudes t and t′ and
on-site repulsion U (see, for instance, Ref. [27]). For de-
scription of the corresponding diagrammatic series and
their treatment see Refs. [26, 27, 29].

SF model. We start by verifying the scenario put for-
ward in Ref. [14], which corresponds to the limit of weak
coupling and small angle θN between QN and the FS
normal at the hot spot. Building on the one-loop RG
result of Ref. [8] that dynamical exponent z decreases
from z = 2 it was conjectured that the flow is towards
χ−1 = [c(|∆qx|+ |∆qy|) + |ω|]. Moreover, it was shown
that χ−1 reproduces itself within the Dyson-Schwinger
equation at the level of two skeleton diagrams for the
polarization Π, and, thus, represents the proper effective
paramagnon propagator. The linear in momentum term
is generated by the second-order diagram, see Π(1) in the
inset (a) of Fig.1, while higher-order diagrams were ar-
gued to be small. This form of χ then leads to the FSD
with flat hot spots because for renormalized spectrum
θN tends to zero. The major drawback of this scenario is
an assumption that the renormalized coupling constant
is small for which there is no evidence.
Using the diagMC technique for Eqs. (1)-(2) with

χ−1
0 = c(|∆qx| + |∆qy|) + η, where η ∼ ξ−1 is the in-

verse correlation length, we computed the polarization
and proper self-energy diagrams shown in both insets of
Fig. 1, and confirmed the prediction of Ref. [14] regard-
ing the formation of flat regions around hot spots in the
limit of interest. However, the entire scheme turned out
to be extremely fragile against finite temperature effects.
Fig. 1 shows that already at 10−4 < T/t < 10−3 the

momentum dependence of Π(1) deviates from the linear
law. On the one hand this may explain why Ref. [15] did
not observe it. On the other hand, our results invalidate
the proposed in Ref. [14] FSD scenario at T/t > 10−4.
This ultra-low temperature scale finds no explanation in
any of the microscopic system parameters or the effec-
tive theory of Ref. [14]. Thus, if FSD is observed in a
microscopic model at higher temperature it has to be a
different effective theory.
If we proceed with computing the self-energy Σ(0) (see

inset (b) in Fig. 1) with χ−1
0 = c2∆q2 + η2 and use it

to determine the renormalized dispersion relation, Ek =

ϵk + ReΣ
(0)
k (iω → 0) − µ, counted from the chemical

potential µ, we obtain results for the FSD shown in Fig. 2.
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FIG. 1. Polarization Π(1) as a function of |∆q| (see text)
along the (π, π) direction at zero Matsubara frequency. Insets
show leading-order diagrams contributing to (a) polarization
function and (b) proper self-energy. All data were obtained
for t′/t = −0.1, c = 1, g = 1, and η = 10−6 at half-filling; in
this case the initial angle θN is less than 10◦).

We plot the distance ∆FS between the FS and AFBZB
as a function of angle ϕ = tan−1[(ky − π)/(kx − π)] with
∆FS = 0 corresponding to the hot spot. Clearly, it is
possible to produce flat hot-spot regions with quadratic
momentum dependence of χ at temperatures orders of
magnitude higher than the limit established above for
the linear momentum ansatz, including the t′/t = −0.3
case when the initial angle θN is relatively large.

When ReΣk and ImΣk have similar magnitudes, zeros
of Ek may not coincide with spectral intensity peaks mea-
sured by ARPES. In this case, one may consider defin-
ing FS and the so-called Dzyaloshinskii-Luttinger surface
(DLS) [30, 31] from the maxima and minima of spec-
tral intensity, respectively. The purple diamond curve
in the inset of Fig. 2 shows part of DLS extracted from

the maxima of |ImΣ
(0)
k | at the smallest Matsubara fre-

quency, which also features a flat hot-spot. Within hot
spots |ImΣk| is large leading to suppressed intensity in
the nested regions.

It was suggested in Ref. [6] that χ−1 ∝ |∆q|2 within
the SF model confines quasiparticles within the flat FS
regions, and, as a result, these parts of FS form a one
dimensional subsystem weakly coupled to the rest of the
FS. At sufficiently low temperature the state should be
viewed as mixture of the non-Fermi liquid whose physics
is dominated by strong one-dimensional fluctuations and
the conventional Fermi liquid. Eventually, the flat re-
gions are gapped out leaving behind a state with reduced
FS [18, 19].

Since the perturbative expansion for χ−1
0 = c2∆q2+η2

with vanishing η breaks down, one has to assume that all

x

y

FIG. 2. Deviation of the FS from the AFBZB (dashed line) in
momentum space as a function of angle φ for the SF model.
The inset displays one segment of the FS (solid red line)
extracted from Ek = 0 (see text). The dashed diamond
curve shows part of the DLS corresponding to the maxima

of |ImΣ
(0)
k |. All results are obtained for T/t = 0.1, c = 1,

g/t = 0.4, and η = 10−3.

vertex corrections are ultimately reduced to the renor-
malization of constants in the effective theory. The best
way to verify this assumption and to establish a link
between the microscopic physics and phenomenological
treatments is to perform CDet simulations of the two-
dimensional (t− t′) Hubbard model at half filling.

Fermi-Hubbard model. The Fermi-Hubbard model
on the square lattice is the most studied prototypical
model in the context of cuprate superconductors. Nev-
ertheless, the possibility of the FSD towards flat hot
spots in this model was never addressed by unbiased
first-principles methods. Our approach is to employ the
CDet technique at fixed density [27, 28] to evaluate Feyn-
man diagrams up to 9-th order to accurately compute the
shape of the Fermi surface and spin susceptibility for the
(t − t′) Hubbard model at half filling (for series resum-
mation procedure see Supplemental Material [32]). The
choice of half-filling was dictated by our goal of maximiz-
ing antiferromagnetic correlations and avoiding compet-
ing ordering tendencies.

We display in Fig. 3 our results for a representative
point U/t = 5.75 and T/t = 1/7. Defining the FS
as the maximum of the spectral function proxy at the
smallest Matsubara frequency, −ImGk,iω0

, we see that
it does not deform much. It is instead the line of zeros of
Ek that undergoes significant deformation towards nest-
ing. However, imaginary part of Σ is large all along the
AFBZB, and largest at the “antinode” k = (π, 0) and
the symmetry related points, as is clear from the sec-
ond panel of Fig. 3. It suppresses the spectral weight
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FIG. 3. Momentum-resolved spectral function proxy (left)
and imaginary part of the self-energy (right) at the low-
est Matsubara frequency of the half-filled two-dimensional
Hubbard model with parameters U/t = 5.75, t′/t = −0.3,
T/t = 1/7. The calculation was performed on a 60 × 60 lat-
tice up to ninth order in the interaction strength, and, for
visualization purposes, it was assumed that the self-energy is
zero outside a 60 × 60 box around the origin. We plot here
a quarter of the Brillouin zone. The black line is the non-
interacting FS, while the red line is the solution of Ek = 0.

along the AFBZB, indicating that the potential excita-
tions suggested by the renormalized quasiparticle disper-
sion (which neglects ImΣ) are in fact destroyed by large
scattering with momentum transfer close to QN . We em-
phasize that this is in strong contrast to what is expected
from a weak-coupling antiferromagnetic spin-fluctuation
theory, where one would expect that the maximum of the
imaginary part of the self-energy would lie on a (π, π)-
shifted version of FS. Hence, this nesting property of the
self-energy is a strong-coupling non-perturbative effect.
Correspondingly, it is close to the antinode that the real
part of the self-energy has the strongest renormalization
effect on the dispersion relation (see Supplemental Mate-
rial [32]). We finally note that the effective field theory
of Ref. [14] is not applicable at considered temperatures.

The momentum dependence of the spin susceptibility
is presented in Fig. 4. For small |∆q| the response is
nearly isotropic and closely follows the c2|∆q|2 + ξ−2 be-
havior with both c and ξ strongly dependent on U . At
U/t = 6.5 the correlation length is already about five
lattice spacing. We take these results as direct confirma-
tion that diverging spin correlations with quadratic de-
pendence on ∆q are responsible for the formation of flat
hot regions along AFBZB, in the (t− t′) Fermi-Hubbard
model. Once such regions form, they effectively act as
one-dimensional systems with non-Fermi liquid proper-
ties.

Discussion and Conclusion. Using diagrammatic
Monte Carlo methods, we have considered different mech-
anisms and effective theories for formation of flat hot
spots that amplify the nesting conditions in metals with
near-critical anti-ferromagnetic correlations. For the SF
model, we confirmed predictions of the weak-coupling
theory with linear in momentum dependence of the in-
verse paramagnon propagator χ−1. However, this linear

FIG. 4. Inverse static spin susceptibility as a function of
|∆q|2 ≡ |q − QN |2 for the (t − t′) Fermi-Hubbard model at
half-filling and U/t = 5.5, 6.0, T/t = 0.1, t′/t = −0.3. Plots
are presented for: (red diamonds) (0, 0) → (π, π) direction;
(blue circles) (0, π) → (π, π) direction; and (green triangles)
an arbitrary direction to (π, π). Dashed line is the fit demon-
strating a|∆q|2 + b behavior of χ−1 at small deviations |∆q|
with momentum independent a and b. (Reaching larger val-
ues of |∆q| requires much longer simulation times.)

dependence holds only at unreasonably low temperature.
The quadratic momentum dependence of χ−1 is robust
against finite-temperature effects and also leads to flat
Fermi surface domains near the hot spots, but the corre-
sponding effective field theory should assume that higher-
order vertex corrections are already accounted for in the
from of χ(0).

High-order connected determinant Monte Carlo simu-
lations of the (t− t′) Fermi-Hubbard model at half-filling
reveal that the Fermi surface based on spectral intensity
maxima does not undergo dramatic deformation towards
flat AFBZB. It is instead the lines of zero of the renor-
malized quasiparticle dispersion that deforms towards
nesting. This can be explained by a nesting property of
the self energy, which becomes large along the AFBZB,
a typical strong coupling effect. In the same parame-
ter regime, χ has a sharp peak at the Néel wave vector
QN = (±π,±π), and the best description of the depen-
dence of χ−1 on momentum for small deviations from
QN is quadratic.

The key common aspect between the SF and Hub-
bard model is that the quasiparticle dispersion is renor-
malized towards nesting. In the Hubbard model this,
in turn, leads to enhanced scattering along the AFBZB
which destroys quasiparticle coherence in this ‘hot’ re-
gion; this effect being stronger near the antinodes (pre-
sumably due to the proximity of the van Hove singular-
ity). In the spin-fermion model spectral intensity also
gets suppressed within flat hot spots.

At zero temperature, we expect from e.g. mean-field
theory that the half-filled (t−t′) Hubbard model at inter-
mediate values of U has a metallic ground state with a FS
reconstructed into hole and electron pockets due to an-
tiferromagnetic ordering (at larger U , it becomes a Mott
insulator with a fully gapped FS). Our results show that
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further understanding of how this state is reached as tem-
perature is lowered and the correlation length grows, and
of the corresponding fermiology at low but finite temper-
ature, should take into account the quasi-one dimensional
nature of nested hot regions, as was suggested in [6].
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