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Abstract. Learning biological markers for a specific brain pathology
is often impaired by the size of the dataset. With the advent of large
open datasets in the general population, new learning strategies have
emerged. In particular, deep representation learning consists of training
a model via pretext tasks that can be used to solve downstream clinical
problems of interest. More recently, self-supervised learning provides a
rich framework for learning representations by contrasting transformed
samples. These methods rely on carefully designed data manipulation to
create semantically similar but syntactically different samples. In paral-
lel, domain-specific architectures such as spherical convolutional neural
networks can learn from cortical brain measures in order to reveal orig-
inal biomarkers. Unfortunately, only a few surface-based augmentations
exist, and none of them have been applied in a self-supervised learn-
ing setting. We perform experiments on two open source datasets: Big
Healthy Brain and Healthy Brain Network. We propose new augmenta-
tions for the cortical brain: baseline augmentations adapted from classi-
cal ones for training convolutional neural networks, typically on natural
images, and new augmentations called MixUp. The results suggest that
surface-based self-supervised learning performs comparably to supervised
baselines, but generalizes better to different tasks and datasets. In addi-
tion, the learned representations are improved by the proposed MixUp
augmentations. The code is available on GitHub (https://github.com/
neurospin-projects/2022 cambroise surfaugment).

Keywords: Data augmentation · Spherical convolutional neural
networks · Self-supervised learning · Brain structural MRI

1 Introduction

Data-driven studies of brain pathologies are often hampered by the scarcity of
available data, leading to potential failures in the discovery of statistically sig-
nificant biomarkers. Key factors include recruitment of rare disease patients and
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Fig. 1. Overview of the proposed evaluation framework for spherical augmentations:
a) input cortical measures (here curvature) inflated to a sphere, b) a set of adapted
and domain-specific augmentations T that allow the generation of augmented cortical
measures, c) a self-supervised model with parameters θ consisting of a spherical Con-
volutional Neural Network (CNN) and a Multi-Layer Perceptron (MLP) projector, and
d) evaluation of the model’s frozen representations using a linear predictor (here the
mean absolute deviation between linearly predicted brain age and true age).

acquisition costs. Many research efforts have attempted to address this challenge
[12]. Transfer learning has become a promising solution with the advent of large
cohorts such as Big Healthy Brain (BHB) [11]. Transfer learning consists of train-
ing a Neural Network (NN) with pretext tasks on a large dataset. The trained NN is
then fine-tuned on a smaller, application-specific dataset. However, transfer learn-
ing for medical imaging is still in its early stages. Interestingly, there is a consensus
that using a natural image dataset may not lead to the best transfer strategy [2,21].
In recent years, several training schemes have been proposed for learning “univer-
sal” data representations [3]. The goal is to summarize as much of the semantic
information as possible. Among the most promising approaches are self-supervised
schemes that can provide good NN initialization for transfer learning [4,16,29].
Specifically, contrastive learning uses data augmentation to structure the learned
latent space [5,17,19]. Therefore, such techniques rely heavily on the data aug-
mentation [4,5,16,28]. Currently, data augmentation for medical imaging is only
available for image data defined on a regular rectangular grid.

In this work, we focus on domain-specific architectures called Spherical Con-
volutional Neural Networks (SCNNs). SCNNs have the potential to discover novel
biomarkers from cortical brain measures. The bottleneck is the definition of convo-
lution strategies adapted to graph or spherical topologies. Several strategies have
been proposed in the literature [6,8,9,18,20,23,25,32]. In neuroimaging, cortical
measures are usually available on the left and right brain hemisphere surfaces of
each individual. These surfaces can be inflated to icosahedral spheres [13]. Leverag-
ing the regular and consistent geometric structure of this spherical mesh on which
the cortical surface is mapped, Zhao et al. defined the Direct Neighbor (DiNe) con-
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volution filter on the sphere [32]. The DiNe convolution filter is analogous to the
standard convolution on the image grid, but defines its neighbors as concentric
rings of oriented vertices (see Supplemental S1).

To train SCNNs using contrastive learning, we introduce three baseline
and two original augmentations specifically designed for the brain cortical sur-
faces (Fig. 1). The three baseline augmentations are directly inspired by natural
image transformations: the SurfCutOut involves cutting out surface patches,
the SurfNoise adds Gaussian noise at each vertex, and the SurfBlur applies
Gaussian blur. The proposed MixUp augmentations build on the original idea
of randomly selecting some cortical measures and replacing them with realis-
tic corrupted samples: the HemiMixUp exploits the symmetry of the brain and
permutes measures between hemispheres of the same individual, and the Group-
MixUp bootstraps vertex-based measures from a group of similar individuals.
In this work, we illustrate how these augmentations can fit into the well-known
SimCLR self-supervised scheme [5]. We provide a comprehensive analysis show-
ing that self-supervised learning with SCNNs and the proposed augmentations
shows similar predictive performance as supervised SCNNs for predicting age,
sex and a cognitive phenotype from structural brain MRI. Furthermore, we show
that the MixUp augmentations improve the learned representations and the gen-
eralization performance of the self-supervised model.

2 Methods

2.1 Baseline Brain Cortical Augmentations

All augmentations defined for natural and medical images are not directly appli-
cable to the cortical surface. In a self-supervised scheme, an effective augmenta-
tion must reflect invariances that we want to enforce in our representation. It is
not a requirement that these augmentations produce realistic samples. Their goal
is to provide synthetic constrastive hard prediction tasks [5,24]. They must also
be computationally efficient. For example, geometric transformations such as
cropping, flipping, or jittering cannot be applied to cortical measures. We could
use small rotations as proposed in [31], but such an augmentation is not compu-
tationally efficient due to multiple interpolations and less effective in nonlinear
registration cases. We adapt three baseline domain-specific transformations con-
sisting of cutting out surface patches (SurfCutOut), adding Gaussian noise at
each vertex (SurfNoise), and Gaussian blurring (SurfBlur). Specifically, the Sur-
fCutOut sets an adaptive neighborhood around a random vertex to zero. The
neighborhood is defined by R concentric rings of vertices (for a definition of a
ring, see the previously introduced DiNe operator). On structural MRI images, a
cutout strategy has proven its efficiency in a similar contrastive learning setting
[10]. Then, the SurfNoise adds a Gaussian white noise with standard deviation
σ1 (to weight the signal-to-noise ratio), and the SurfBlur smooths the data by
applying a Gaussian kernel with standard deviation σ2 (which controls the spa-
tial extent expressed in rings).
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Fig. 2. Illustration of the considered cortical augmentations: a) the three baselines, b)
the proposed HemiMixUp, and c) the proposed GroupMixUp brain cortical augmen-
tations. In the GroupMixUp, groups are defined from the reduced input data using
PCA embeddings colored by age. The arrows in b) and c) represent how the cortical
measures are modified and are explained in more detail in Supplemental S2.

2.2 Proposed MixUp Brain Cortical Augmentations

Here, we assume that the structural measures across the cortical surface have a
vertex-to-vertex correspondence for both hemispheres. We propose to randomly
select vertices and their associated cortical measures and to replace them with
noisy realistic ones. A similar approach has been proposed by Yoon et al. [27] for
tabular data, and a comparable augmentation has been used for natural images
in supervised contexts by mixing up labels [30]. All augmentations are applied
on a cortical measure and hemisphere basis. A corrupted version x̃ of a cortical
measure x ∈ RP , where P is the number of vertices, is generated as follows:

x̃ = m � x̄ + (1 − m) � x (1)

where � is the point-wise multiplication operator, x̄ is a noisy sample to be
defined, and m ∈ {0, 1}P is a binary random mask. In our case x ∈ {x1, . . . , xN},
where N is the number of subjects. The proposed HemiMixUp and GroupMixUp
augmentations offer different ways to construct x̄ (Fig. 2). The mask m is gen-
erated by drawing binary random numbers from a Bernoulli distribution B(p),
where p is a hyperparameter controlling the proportion of x to be modified. In
both cases, the augmentation is done at the subject level.

HemiMixUp: This augmentation randomly permutes a subject’s measure-
ments at specific vertices across hemispheres, assuming a vertex-to-vertex cor-
respondence between hemispheres. Considering the left hemisphere, we get:
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x̃left
i = m � xright

i + (1 − m) � xleft
i (2)

where xleft
i and xright

i are the left and right hemisphere measures of the subject
i, respectively.

GroupMixUp: The GroupMixUp augmentation randomly bootstraps mea-
sures at specific vertices across a group of K subjects Gi = {g1, . . . , gK} sharing
similar cortical patterns with respect to the i-th subject. We aim to generate
realistic noisy measures without missing hemispheric asymmetries by exploiting
the group variability. We define Xi = (xg1 , . . . ,xgK

)T ∈ RK×P . Considering the
left hemisphere, we get:

x̃left
i = m � diag

�
MX left

i

�
+ (1 − m) � xleft

i (3)

where diag is the diagonal operator, and M ∈ {0, 1}P×K is the random selection
matrix. Each row of M selects a particular subject and is generated by draw-
ing a random location from a uniform distribution U(1,K). The Gi grouping
relies on a PCA trained on the residualized input data. The residualization is
performed using ComBat to remove unwanted site-related noise [14]. We use
K-nearest neighbors (with Euclidean distance) in the PCA space to define the
group Gi. This step is performed only once before training, with little compu-
tational overhead. It is important to note that this strategy builds groups from
a semantically meaningful space which maximizes the explained variance of the
data. The first PCA axis is strongly related to age, as shown in Fig. 2-c. Groups
are formed independently for each individual’s hemisphere.

By inverting the left and right notations in Eqs. 2 and 3, the formulations
hold for the right hemisphere.

3 Experiments

3.1 Data and Settings

Datasets: The T1 structural MRI data are processed with FreeSurfer, which
calculates thickness, curvature, and sulcal morphology for each cortical vertex
[13]. Interhemispheric registration (XHemi) is performed to obtain vertex-to-
vertex mapping between hemispheres [15]. Inflated hemispheric cortical topolo-
gies are finally expressed on a regular order-5 icosahedral sphere. We use two
datasets to demonstrate the proposed augmentations. First, we use the BHB,
including more than 5000 individuals (age distribution 25.3 ± 15.0) coming from
multiple acquisition sites [11]. We use the so-called BHB internal train and test
sets. We further split the BHB internal test set into validation and test sets (here-
after referred to as internal test), preserving the population statistics (age, sex,
and acquisition site). Finally, we keep unchanged the BHB external set (here-
after referred to as external test), which consists of subjects with a similar age
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distribution but disjoint acquisition sites. This set is used to evaluate generaliza-
tion and robustness to unseen sites. Second, the Healthy Brain Network (HBN)
cohort, which includes more than 1700 children (age distribution 10.95 ± 3.43)
with behavioral specificities or learning problems [1]. After applying the same
quality control, we keep 1407 subjects. We split the data into training (80 %)
and test (20 %) sets, preserving population statistics (age, sex and acquisition
site). Some subjects (1073) have the cognitive score WISC-V FSIQ available.

The Self-supervised Model: SimCLR [5] contrastive learning strategy
attempts to bring two representations of the same transformed sample as close
as possible in the model latent space, while repelling other representations. We
implement this model following the recent literature on self-supervised learning,
which consists of an encoder and a projector. For the encoder, we choose a single
SCNN architecture to facilitate the comparison between the methods (see Sup-
plemental S3). It has four convolution blocks. Each convolution block consists
of a DiNe convolution layer followed by a rectified linear unit and an average
pooling operator [32]. There are two branches in the first convolution block, one
for each hemisphere. The resulting features are concatenated on the channel axis
and piped to the network flow. For the projector, we implement the architecture
recommended in [5], a Multi-Layer Perceptron (MLP). The model is trained on
the BHB training set. Three augmentation combinations are considered during
training: all the baseline brain cortical augmentations (Base), Base + HemiM-
ixUp, and Base + GroupMixUp. The entire procedure is repeated three times
for each combination (nine trainings in total) to obtain a standard deviation for
each prediction task described below.

Model Selection and Evaluation: In self-supervised learning, the training
loss, even when evaluated on a validation set, indicates convergence but does
not reflect the quality of the learned representations [22,26]. As suggested in the
literature to overcome this problem, we add a machine learning linear predictor
on top of the encoder latent representations during training (ridge for regression
and logistic for classification) (Fig. 1). We then estimate and monitor the asso-
ciated prediction score from the validation set at each epoch (Mean Absolute
Error (MAE) and coefficient of determination R2 for regression and Balanced
Accuracy (BAcc) for classification). This score is only used to monitor the train-
ing, leaving the simCLR training process completely unsupervised. Finally, we
evaluate the trained models with the same strategy for age and sex predictions
on all cohorts and for FSIQ prediction on HBN. Age, sex and FSIQ are known
to be proxy measures to investigate mental health [7]. They represent features
that a pre-trained self-supervised model should be able to learn and generalize to
unseen data. Due to the discrepancy in age distribution and the lack of clinical
variables of interest, the linear predictors are fitted to the BHB and HBN train-
ing representations. Finally, the internal and external test sets and the HBN test
set are used to evaluate the prediction scores.
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Table 1. Evaluation of the learned representations using a machine learning linear
predictor on different BHB (a)/HBN (b) sets of data, tasks, and metrics. The pro-
posed MixUp augmentations (HemiMixUp and GroupMixUp) are evaluated against
combined baseline (Base) augmentations (SurfCutOut, SurfBlur and SurfNoise) using
an unsupervised SimCLR-SCNN framework. The results are compared to supervised
SCNNs trained to predict either age or sex (see section Model Comparison for
details).

a)

SimCLR-SCNN BHB internal test BHB external test

Augmentations Age Sex Age Sex

MAE (↓) R2 (↑) BAcc (↑) MAE(↓) R2 (↑) BAcc (↑)

Base 4.87±0.14 0.81±0.01 0.81±0.01 5.89±0.17 0.50±0.03 0.71±0.01

Base + HemiMixUp 4.72±0.16 0.83±0.01 0.81±0.01 5.62±0.13 0.55±0.03 0.71±0.02

Base + GroupMixUp 4.55±0.07 0.84±0.01 0.82±0.01 5.47±0.15 0.58±0.02 0.74±0.01

Supervised-SCNN

Age-supervised 4.00±0.12 0.84±0.01 0.67±0.01 5.06±0.19 0.61±0.02 0.55±0.01

Sex-supervised 6.20±0.20 0.69±0.02 0.86±0.01 6.40±0.32 0.42±0.06 0.68±0.01

b)

SimCLR-SCNN HBN test

Augmentations Age Sex FSIQ

MAE (↓) R2 (↑) BAcc (↑) MAE(↓) R2 (↑)

Base 1.69±0.07 0.65±0.02 0.80±0.01 12.97±0.25 0.10±0.02

Base + HemiMixUp 1.68±0.02 0.66±0.01 0.80±0.01 12.71±0.16 0.13±0.02

Base + GroupMixUp 1.66±0.02 0.66±0.01 0.81±0.01 12.60±0.29 0.14±0.03

Supervised-SCNN

Age-supervised 1.74±0.05 0.63±0.02 0.66±0.01 13.05±0.06 0.09±0.002

Sex-supervised 1.72±0.01 0.63±0.01 0.82±0.0048 12.79±0.01 0.09±0.01

Model Comparison: We compare the proposed SimCLR-SCNN model with
supervised SCNNs. The supervised models consist of the same encoder followed
by a linear predictor. The training loss for these supervised models depends on
the task at hand (L1 for regression and cross-entropy for classification). These
supervised models will be referred to as age-supervised if they were trained
to predict age, and sex-supervised if they were trained to predict sex. Each
supervised model is trained 3 times as well, to derive standard deviations, on the
same train set as self-supervised models. They are evaluated the same way as self-
supervised models: task-dependent machine learning linear predictors (ridge for
regression and logistic for classification) are fitted to the learned representations
from the SCNN encoder and evaluated on the test representations.

3.2 Results

Self-supervised SCNNs Generalize Better Than Supervised SCNNs:
On BHB, compared to a much more specialized supervised SCNN setup, a
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SCNN trained with the SimCLR self-supervised learning framework and the
proposed augmentations shows a rather comparable performance for each of the
investigated tasks (Table 1-a). For example, on the internal test, the SimCLR-
SCNN age-MAE scores are 4.87, 4.72, and 4.55 for the Base, Base + HemiMixUp
and Base + GroupMixUp augmentations, respectively. These scores are slighlty
worse than the predictions of the age-supervised SCNN (4.0 age-MAE), which
is expected since the latter was trained in a supervised manner to learn good
representations for predicting age. However they remain comparable and largely
outperform the sex-supervised SCNN (6.2 age-MAE). The same trend can be
observed for the R2 for the age prediction task and the BAcc for the sex pre-
diction task for all test sets. Remarkably, for some tasks, the SimCLR-SCNN
with the proposed augmentations even outperforms supervised SCNN models in
terms of generalization performance. This can be seen by comparing the results
on BHB internal and external test sets. For example SimCLR-SCNN loses 10%
(0.81 → 0.71), 10% (0.81 → 0.71), and 8% (0.82 → 0.74) BAcc for the Base,
Base + HemiMixUp and Base + GroupMixUp augmentations, between internal
and external test sets, while age- and sex-supervised SCNNs lose 12% (0.67 →
0.55) and 18% (0.86 → 0.68) BAcc respectively. SimCLR SCNNs even outper-
form sex-supervised SCNNs for the sex prediction task on the external test set.
As expected, the prediction on the external test decreases for both strategies.
When the learned knowledge is transferred to HBN, we show better (or at least
equivalent for sex) prediction performance for the SimCLR-SCNN with the pro-
posed augmentations compared to the supervised SCNNs. Note that the age
distribution in HBN is much narrower with a younger population than in BHB.
Therefore, the MAE between Tables 1-a and 1-b cannot be directly compared.
Interestingly, the R2 values are still comparable and show a stable goodness
of fit for the SimCLR-SCNN model. Note that using a supervised MLP with
more than 120M parameters to predict age from the same input data gives only
slightly better results than using the SimCLR-SCNN (∼2M parameters) trained
with the Base + GroupMixUp augmentations (4.85 vs 5.47 age-MAE on the
BHB external test) [11]. This suggests that the SimCLR-SCNN model with the
proposed augmentations is able to learn good representations without supervi-
sion and without being too much biased by the acquisition site.

The MixUp Augmentations Improve Performance: It is clear that the
MixUp augmentations improve the learned representations for each prediction
task of the BHB internal and external tests (Table 1-a). In practice, we found
that the GroupMixUp works better than the HemiMixUp augmentation strat-
egy. This can be explained by the attenuation of some properties of the inter-
hemispheric asymmetry forced by the HemiMixUp augmentation. Although the
improvement in predicting age and sex on HBN test set is inconclusive, it is
clear that HemiMixUp and GroupMixUp help in predicting FISQ, especially
when looking at the R2 metric (Table 1-b).
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4 Conclusion

This study introduces cortical surface augmentations designed for training a
SCNN in a self-supervised learning setup. The investigated SimCLR-SCNN
shows the ability to generate representations with strong generalization prop-
erties. In fact, the learned representations from data collected from multiple
sites offer promising performance, sometimes even outperforming supervised
approaches. In particular, the GroupMixUp augmentation shows potential for
learning stable representations across different cohorts. An ablation study could
be used to further investigate the characteristics required for cortical-based data
augmentation. Future work aims to incorporate prior information, such as clini-
cal scores, into the GroupMixUp augmentation when computing the groups Gi.
A similar strategy is proposed for structuring the learned representations by
adding a regularization term in the training loss [10].

Data Use Declaration and Acknowledgment. The datasets analyzed during the
current study are available online: OpenBHB in IEEEDataPort (doi 10.21227/7jsg-
jx57), and HBN in NITRC (Release 10).
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