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MULTI-VIEW VARIATIONAL AUTOENCODERS ALLOW FOR INTERPRETABILITY
LEVERAGING DIGITAL AVATARS: APPLICATION TO THE HBN COHORT

Corentin Ambroise, Antoine Grigis, Edouard Duchesnay, Vincent Frouin

Neurospin, CEA Saclay, University Paris-Saclay, France

Abstract – If neural network-based methods are praised for
their prediction performance, they are often criticized for
their lack of interpretability. When dealing with multi-omics
or multi-modal data, neural network methods must be able
learn the independent and joint effect of heterogeneous views
while yielding interpretable results intra- and inter-views.
In the literature, multi-view generative models exist to learn
joint information in a reduced-size latent space. Among
these models, multi-view variational autoencoders are very
promising. In this work, we demonstrate how they provide a
convenient statistical framework to learn the input data joint
distribution and offer opportunities for the results interpreta-
tion. We design a method that discovers the relationships be-
tween one view and others. The generative capabilities of the
model enable the exploration of a whole disorder spectrum
through the generation of realistic values. While modifying a
subject’s clinical score, the model retrieves a representation
of the subject’s brain at this clinical status, so-called digital
avatar. By computing associations between cortical regions
measures and behavioral scores, we showcase that such digi-
tal avatars convey interpretable information in a multi-modal
cohort with children experiencing mental health issues.

1. INTRODUCTION

Autism Spectrum conditions (ASD) are recognized to be
caused by a combination of genetic and environmental fac-
tors, and consequently, its diagnosis, subtyping, or care
modalities are difficult to establish. Gaining insights into
the disease etiology or generating new research hypotheses
are major challenges in neuroscience. Recent approaches
propose integrative analyses in population cohorts gathering
multimodal data including subjects with and without ASD
symptoms. Most current ASD-related multimodal studies
usually explore correlates of image-derived features with
binary diagnoses like DSVM-IV [1] or scores assessing com-
munication and social skills. Other approaches try to derive
subgroups within populations. However, we argue that set-
ting subgroups can never be validated in practice and is often
not replicable to other datasets. Multivariate multi-task ap-
proaches usually rely on an a priori model of variability that
involves removing the general variability from the data (e.g.,
site, sex, age) to focus on the variability of interest. We follow

an alternative strategy to study the ASD variability hidden in
multi-block data like clinical scores, imaging data, or geno-
typing either directly (one block) or jointly (several blocks)
[2], taking into account both global and subject-specific vari-
abilities.
Recent advances in deep learning have opened up opportuni-
ties beyond the models’ predictive capacities. These advances
help investigate pathology while encompassing the growing
amount of medical data. In particular, Artificial Neural Net-
works (ANN) flexibility make them sensibly adapted to inte-
grate data from different sources and build multi-block mul-
tivariate models. Developments of Variational AutoEncoder
(VAE) have resulted in frameworks that manage multiple
views and model their interactions [3, 4, 5, 6].
We apply a generative VAE-based architecture as an explo-
ration tool on the Healthy Brain Network (HBN) cohort with
subjects not recruted solely based on an ASD diagnosis but
on the presence of behavioral constructs relevant to the field
of ASD [7]. We design a novel interpretability framework
built upon the so-called digital avatars to study ASD-related
variability. The contributions are two-fold: i) we implement
a method to exhibit interpretable relationships between views
features, and ii) we showcase the relevance of these relation-
ships in the HBN cohort.

2. RELATED WORKS

Model Choice. In machine learning, Canonical Correlation
Analysis (CCA), and its Regularized Generalization to mul-
tiple blocks (RGCCA) [8], are frameworks for modeling and
quantifying the interactions within and between blocks of het-
erogeneous variables. CCA extensions can use ANNs as pro-
jectors to learn non-linear relationships [9] or embed them
as a variational framework [10]. More recent methods ap-
ply VAEs for multi-modal learning. For instance, conditional
VAEs model latent variables and data conditioned on some
input label [11]. Other VAE-based methods avoid such su-
pervision by mixing the view information within each view-
specific latent space by optionally enforcing a shared sparsity
[3] and reconstructing each view from every latent representa-
tion. Most recent multi-view VAE-based models learn a joint
latent space between views, writing the joint posterior distri-
bution as a product or a mixture of the marginal posteriors
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[4, 5]. Finally, the MoPoe-VAE generalizes the two previous
methods by combining their assets [6].
Interpretability. ANNs are often criticized for their lack of
interpretability and explainability. Considerable efforts have
been put into filling this gap in recent years, but the chal-
lenge remains. For many practical uses, where the focus is on
getting interpretable results, ANNs are bearly usable. A re-
cent review on interpretability classifies ANNs into three cate-
gories according to the explanation type, nature (active or pas-
sive), and scope (local or global) [12]. The proposed method
is passive - applicable to a trained model - and brings global
interpretation between attribution - associations between in-
put features and output ones - and the hidden semantics in-
trinsic to the model.

3. METHOD

We selected a particular model among the state-of-the-art
multi-view VAEs, namely MoPoe-VAE [6]. VAE assumes
that some random process involving an unobserved continu-
ous random variable with lower dimension Z enables the data
generation [13]. Z is generated from some prior distribution
pθ(Z) approximated via the posterior pϕ(Z|X), computed
through an encoder. The data X is generated from some
conditional distribution pθ(X|Z) = N (µθ(Z), σθ), approx-
imated via the decoder network. ϕ and θ respectively refer
to the encoder and decoder parameters. Z is also referred
to as the hidden representation of X . MoPoe-VAE handles
multi-views by modeling different latent spaces posterior
distributions, one specific for each input view, and a joint
posterior distribution shared between views as the mixture of
the products of their marginal posteriors (experts). Its robust-
ness to missing blocks, which is very frequent in multi-view
settings, makes it specifically convenient. It also enables the
setting of different sizes for each view-specific latent spaces,
convenient when views have discrepancies in dimensionality.

3.1. Digital avatars to produce interpretability

Considering a trained MoPoe-VAE, we further focus on the
hold out test observations (or subjects) Xi, i ∈ {1, . . . , N}.
We assume that each observation has every view available,
i.e. for all i, Xi = (X1

i , . . . , X
K
i ) with K being the number

of views (e.g. clinical, imaging or genomic). We note Xk
i =

(Xk,1
i , . . . , Xk,Jk

i ) the view k with Jk features. From the
trained MoPoe-VAE, the proposed framework will decipher
the relationships of one view with others using digital avatars.
Let l ∈ {1, . . . ,K} be this view’s index. The general idea is
to vary one feature j at a time for each feature of view l, j ∈
{1, . . . Jl} and observe how these modifications influence the
reconstruction of other views. Without loss of generality and
for simplicity, let’s assume Jl = 1. A first approach, albeit too
simplistic, is to linearly or randomly sample values between
feature percentiles or even bootstrapping values between dif-

Fig. 1. Illustration of the proposed interpretation framework
in a clinical cohort setting with two modalities: imaging data
and clinical questionnaires. First, the inference flow estimates
output distributions via sampling in the latent space. Then,
the simulation flow generates realistic perturbed samples of
the view we want to study against others (here, the question-
naires) and infer digital avatars through the model. Finally,
meaningful inter-view associations are inspected using hier-
archical linear regressions.

ferent observations. The proposed method offers a simulation
scheme to realistically perturb the feature in block l to gener-
ate digital avatars through the model, allowing the discovery
of interesting relationships with further analyses. The realis-
tic nature of these perturbations derives from the variational
aspect of the VAEs. Indeed they quantify population-level
uncertainty via a learned shared variance across subjects and
is subject-specific via the mean reconstruction. We therefore
try to globally assess what the model learned by introducing
subject-level perturbations and monitoring their impact on the
reconstructed digital avatars. The interpretability method en-
ables a general insight into individual- and cohort-wide ef-
fects. We think this approach is a suitable way to model the
multi-faceted variability of the subjects. The proposed strat-
egy can be divided into three steps (inference, simulation and
association) outlined below, and illustrated in Figure 1.
Inference flow - estimating output distributions: We pro-
pose to use the output probability distributions pθ(X

l
i |Zi)

learned from the data to sample values. This likelihood
model will tend to sample likely values in the sense of the
model. Therefore, provided our model is properly trained,
such values reflects at best the training data. In order to
accurately estimate pθ(X

l
i |Zi), we first draws M = 1000

latent representations zp, p ∈ {1, . . . ,M}, realisations of
Zi ∼ pϕ(Z|Xi) that are sampled for each observation i.
pθ(X

l
i |Zi) is a Gaussian distribution with two parameters,

its mean µθ(Zi) and its variance σθ. Passing the latent rep-
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Score
SRS
SCARED
ARI
SDQ ha
CBCL ab
CBCL ap
CBCL wd
Site

eCRF
τ p
0.163 <10−20

0.189 <10−20

0.354 <10−20

0.166 <10−20

0.273 <10−20

0.252 <10−20

0.134 <10−20

0.021 10−6

Joint
τ p

−0.050 <10−20

0.020 10−8

−0.014 10−4

−0.018 10−7

−0.021 10−9

−0.021 10−9

−0.009 10−2

−0.024 10−8

Image
τ p

−0.051 <10−20

−0.014 10−6

0.020 10−10

0.000 100

0.011 10−3

−0.008 10−2

−0.014 10−5

0.128 <10−20

Table 1. Representational similarity analysis results between
the different latent spaces (eCRF, Joint, and Image) and the
clinical eCRF scores.

resentations zp to the decoder, and averaging the p decoded
reconstructions offers a good estimation of pθ(X l

i |Zi) [13].
Simulation flow - sampling realistic values: Drawing T
samples from pθ(X

l
i |Zi), results in T perturbations (X̂ l

i,t)
for each observation i. We create T new input samples, re-
placing the original view l value. More formally, we create
(Xi,1, . . . , Xi,T ) with

Xi,t = (Xk
i , . . . , X

l−1
i , X̂ l

i,t, X
l+1
i , . . . , XK

i )

We generate the other views from these T perturbed observa-
tions with a forward pass in the model, which form the so-
called digital avatars.
Association - finding meaningful associations: Finally, we
search for associations of view l with every feature s of other
views k ̸= l. We test for association using hierarchical re-
gression models. More precisely, we fit a linear regression
Xk,s

i,t = Ck,s
i + βk,s

i X̂ l
i,t + ϵk,si,t for every sample i of our

dataset. Then we aggregate the slopes βk,s = 1
N

∑N
i=1 β

k,s
i

and test for the null hypothesis H0: βk,s is not null. We kept
associations with p-values that passed Bonferroni correction
(pcor < 0.05).

3.2. Representational Similarity Analysis.

To investigate the learned latent representations, we derive
a Representational Similarity Analysis (RSA) [14] between
these representations and some measures on subjects (e.g.
clinical scores or other covariates). We compute the subject-
pairwise dissimilarity matrices in the latent space (modality-
specific and joint) using the euclidean distance. We derive
the same subject-pairwise dissimilarity matrices for the target
measures. Finally, the Kendall rank correlation coefficient
(Kendall τ ) enables the comparison of these dissimilarity
matrices emphasizing the captured information.

4. EXPERIMENTS AND RESULTS

Experimental setup: We trained a MoPoe-VAE on the HBN
cohort. HBN is a clinical multi-center transdisciplinary study

on stratification biomarkers across neurodevelopmental dis-
orders [7]. This study aims to better understand psychiatric
disorders using a variety of assessments, including imaging
and a comprehensive set of psychological and clinical scores.
The inclusion criteria were defined to gather an at-risk popu-
lation with notable behavioural symptoms, which makes it a
good candidate to study ASD with a dimensional approach.
We selected seven scores (eCRF view) from different ques-
tionnaires assessing different symptoms, namely Social Re-
sponsiveness Scale (SRS), hyperactivity (SDQ ha), anxiety
(SCARED), depression (ARI), and behavioral disorders with
aggressivity (CBCL ab), attention deficit (CBCL ap) or seclu-
sion (CBCL wd). For brain imaging data, we focused on
structural MRI (Image view) and, more specifically, on ROI-
based averaged measurements composed of the cortical thick-
ness, curvature, and area computed with FreeSurfer [15]. As
a cortical parcellation prior, we opted for Destrieux’s parcel-
lation [16].
Training setting: The input dataset was split into train and
test sets while preserving the population statistics regarding
the age, sex, and acquisition site distributions using iterative
stratification [17], for subjects with both modalities. We con-
sidered subjects with at most one missing view (either the
eCRFs or Image data), leading to N = 2991 samples. Among
them, N = 1505 subjects had both eCRF and Image data.
Then, we trained a MoPoe-VAE on the train set (N = 2690)
and monitored the training by ensuring it generalized well
to the test set (N = 301). The encoders have a fully con-
nected architecture with one hidden layer with 256 units and
a ReLU activation, and the decoders are linear. The joint la-

Fig. 2. Most significant associations for thickness (top left),
curvature (top right) and area (bottom left). The radars show
the magnitude of the coefficient corresponding to the associ-
ation and the brain plots show the location of the associated
regions. Stars indicate meaningful associations.
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Fig. 3. Significant associations between thickness and SRS.
The left panel shows the regions locations and corresponding
coefficients are shown on the right.

tent space has a dimension of 20, and specific latent spaces for
eCRF and Image views have dimensions of 3 and 20, respec-
tively. We use an Adam optimizer [18] with a learning rate of
2 × 10−3. The model has a learnable parameter for the vari-
ance of each reconstructed feature, which does not depend
on the input sample. All the data are z-scored before being
passed to the network. For all the associations’ analyses that
follow the training, we only use test subjects (for which we
have both modalities, N = 301). The code to reproduce the
experiments and results is made available here.
Latent representations evaluation: The RSA results on the
modality-specific and joint latent representations are given in
Table 1. These results show that the eCRF latent variables
contain most information about each questionnaire score, the
joint space captures some of it, and the Image space a little bit
less. This supports the fact that imaging contains some symp-
tom related variability.
To assess the site effect captured by our model, we used RSA
between site and latent representations from the different la-
tent spaces. The RSA indicated that the Image latent space
strongly encodes the site, while the joint latent space is less
impacted, as well as the eCRF latent space. This suggest that
most site effect is captured by the Image latent space and the
joint latent space is partially spared, which is good as it is
the only latent space explored in our associations analysis.
Further, to ensure our association discovery method is not bi-
ased towards the site, we conducted ANOVA analyses to test
for differences in distributions of association coefficients be-
tween sites and did not find any significant effect.
ROI-score meaningful associations: We focus on the 301
left-out subjects with all views to study the influence of each
clinical score on the cortical features’ reconstructions. We
draw T = 200 samples for each subject and each eCRF score
to generate as many digital avatars. Then, we computed as-
sociations as described in Section 3.1. To study statistical
significance, we bootstrapped 20 times the whole procedure
by using 150 randomly sampled subjects of the test set and
kept only stable associations reproduced in more than 70%
of these experiments. In Figure 2, we represented the ROIs
significantly associated with multiple eCRF scores across

metrics (five associations per metric). We also showed the
coefficient corresponding to these associations’ strengths in
the radar plots. This figure highlights some commonly re-
ported regions in the ASD literature [19]. In particular, we
could observe that the left and right temporal areas (pink and
brown) are associated with different anxiety and seclusion
related scores, in curvature and area respectively. The central
sulcus of the left hemisphere (deep purple) is associated with
anxiety related symptoms in curvature. Some other frontal
regions (blue) are associated in thickness with seclusion,
anxiety and hyperactivity, as well as with other symptom
scores.
To further explore the results, we plotted in Figure 3 all the
regions significantly associated with the SRS score regard-
ing the thickness feature. The SRS is a well-established be-
havioural marker, highly correlated to the ASD diagnostic.
ASD subjects have a higher SRS score. Two trends appear:
thickness in the right insula and the left temporal superior,
right parietal, and frontal regions increases with SRS, while
thickness in the central sulcus decreases with SRS (i.e., high-
lighting a thicker, respectively thinner cortical ribbon in ASD
at these locations). Those regions are commonly reported in
the ASD literature, but it should be noted that they are listed
here as implicated in an association with a score regardless of
typical or neurodiverse development.

5. CONCLUSION AND FUTURE WORKS

Overall, we present and showcase how to derive from a multi-
view VAE some significant relationships between views. The
multi-view VAE was trained on the HBN cohort using all
the subjects, including those with missing records, and was
able to learn information at the population and subject level.
With our interpretation framework, we exhibit in HBN view-
specific features associations that convey interpretable infor-
mation and potential biomarkers. This framework reworks
the classical association studies between score and structural
imaging features: we highlight some relationships in an in-
tegrative approach while taking into account subject- and
population-specific effects. Learning from the whole cohort,
composed of at-risk individuals and typically developing
controls, our method exhibits associations holding for the
entire symptoms range. Unlike a linear regression analysis
between regional thickness and a score, we did not specify
any covariates. This approach achieves association search
by questioning the subjects specificities thanks to their asso-
ciated digital avatars that reflect cohort-level and contextual
subject variabilities.
Our work presents limitations. We varied one feature at a time
to allow simplified interpretation. We could argue that such a
setting is irrealistic because the underlying biological process
may be related to complex score interactions (in HBN, scores
are correlated to each others 0.75 > r > 0.17). Future work
will account for these relationships when varying features.
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