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ABSTRACT

Relying on traditional classification strategies from a single data source is now recognised as in-
effective for understanding, diagnosing, and predicting psychiatric syndromes. Classification tar-
gets that rely solely on clinician labels will not capture enough variability. In 2009, the Research
Domain Criteria (RDoC) project recommended a more comprehensive approach to studying psy-
chiatric disorders by incorporating diverse data types that cover different levels of life organisation
(e.g., imaging, genetics, symptoms). The RDoC principles suggest that a thorough description of
a pathology requires consideration of multiple dimensions that may be shared across different psy-
chiatric syndromes and may even contribute to non-pathological variability. Efficient multivariate
and multimodal unsupervised learning frameworks hold the promise of providing methodologies for
handling and integrating the kind of datasets advocated by the RDoC project. Of particular interest,
deep learning offers the ability to learn on multimodal datasets with modality-specific correlation
structure. However, it is often disregarded due to its perceived lack of transparency. In this study,
we employ a digital avatar procedure as an interpretability module capable of reporting the relation-
ships learned within a multimodal autoencoder. We integrate this procedure into a novel framework
that utilises stability selection to identify meaningful and reproducible associations between brain
imaging modalities and behaviour. Specifically, we apply this framework to uncover specific brain-
behaviour interactions present in the transdiagnostic Healthy Brain Network cohort. The identified
brain-behaviour interactions establish connections between cortical measures derived from structural
magnetic resonance imaging and electronic clinical record forms assessing psychiatric symptoms.
We show that by using incomplete records and automatically isolating variability of interest from
that of confounders, this framework is able to find relevant and stable associations.

1 Introduction

Today, psychiatry, in both its diagnostic and therapeutic dimensions, is moving from a paradigm based on the study
of syndromes to a new one built on an understanding of their underlying neurobiological mechanisms. Achieving this
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goal of precision psychiatry is an ongoing process that requires the combination of scientific advances, technologi-
cal innovations, and a patient-centered approach [Williams, 2022]. Identifying relationships between behaviours and
brain measures is a key aspect of this paradigm. However, behaviours are complex and often result from a combination
of genetic, environmental, and psychological factors. In addition, many behaviours observed in mental health condi-
tions can be present in multiple disorders, and the same disorder may manifest with different behaviours in different
individuals. This complexity challenges the idea that a single behaviour signature can correspond to a sole disorder.
The NIMH Research Domain Criteria (RDoC) [Insel et al., 2010] provides recommendations for properly addressing
this complexity. In contrast to traditional approaches that aim to find a diagnosis from a specific score or modality
(as outlined in the Diagnostic and Statistical Manual of Mental Disorders (DSM) [Association, 2013]), the RDoC
promotes dimensional and transdiagnostic approaches. These dimensions include genetic, biological, environmental,
and lifestyle factors in the research on personalised psychiatry. In recent years, the transdiagnostic literature in psy-
chopathology has developed along these lines [Fusar-Poli et al., 2019]. Transdiagnostic studies propose to examine a
general psychopathological factor, the so-called p-factor [Caspi et al., 2014, Caspi et al., 2023]. This p-factor under-
lies mechanisms common to several psychiatric syndromes and is usually represented as a single dimension calculated
on the basis of different symptoms. The goal of such studies is to search for neural correlates of the p-factor using
various biological markers, such as imaging or genetics.

For these novel experimental studies in populations, new methods are being developed to integrate multimodal data,
including structural or functional characteristics of the brain, tabular data from report forms, genotyping, or lifestyle
conditions. At the same time, cohorts of at-risk individuals and numerous clinical initiatives are collecting datasets
consistent with the RDoC framework. In imaging genetics, publicly available cohorts show diverse psychological
scores as well as imaging phenotypes such as regional cortical thickness or gyrification. Among the currently avail-
able integrative methods, some aim to adjust a classifier, a regressor, a clustering to find biomarkers (selection of
combined features) or significant associations (univariate approach). In this paper, our focus will derive from the
latter type of approach –integrative association study –, specifically aimed at uncovering associations between mea-
surements coming from multiple modalities. Integrative association studies represent a departure from conventional
univariate association analyses that consider a single measurement from one modality and find its associations with
other modalities. Instead, we combine multivariate tools with association tools in accordance with the principles of
precision psychiatry. These tools allow for modeling intra- and inter-modality structures, enabling the estimation of
joint relationships between multiple measures across modalities. Integrative association methods face specific chal-
lenges, most notably the problem of missing data. This problem does not only affect data in a sporadic manner but
can occasionally strikes all measurements of a modality for a patient. Furthermore, research in integrative association
is also very active, especially regarding three axes: first, the integrative capacity of the considered multivariate models
–whether they are linear or not –, second their interpretability, and third their generalisability or stability. These three
points are important in assessing the contribution of these methods to precision psychiatry and are detailed below.

Integrative capacity. Pioneering works on integrative association models are Canonical Correlation Analysis (CCA)
[Hotelling, 1936] or Partial Least Squares (PLS) [Wold et al., 2001]. We retain these two methods as emblematic
of integration analysis. Two essential concerns when using these approaches are the limited capacity of linear
framework used, and the need to normalise the different data blocks beforehand. Beyond linearly adjustable co-
variates such as age or sex, the removal of other known confounding factors, such as imaging acquisition site, is
more challenging. These factors introduce variability that may entangle the signal of interest in a manner that de-
pends on the recruitment configuration. The need to address normalisation challenges has drawn attention to ar-
tificial neural network-based methods. For example, mutli-view AutoEncoders (AEs) have been shown to embed
disentanglement capabilities [Lee and Pavlovic, 2021], which in turn could replace normalisation. In line with the
idea proposed by [Andrew et al., 2013], we propose to use Deep Learning (DL) for its greater integrative capac-
ity and to leverage this disentanglement to avoid normalisation. Of particular interest, multimodal Variational AE
(mVAE) is an extension of traditional VAE, as proposed by [Kingma and Welling, 2014], designed to handle mul-
tiple views or modalities. It extends the idea of a VAE to capture the joint distribution of data from different
views. The choice of the prior distribution in latent space represents the assumed distribution of the latent vari-
ables. Thus, it plays a crucial role in constraining the learning process and influences the structure of the latent
space. Classical choices for the prior distribution in an mVAE include standard or multimodal Gaussian distributions
[Kingma et al., 2014, Suzuki et al., 2017, Wu and Goodman, 2018, Antelmi et al., 2019]. Recent proposals for prior
distributions include Product of Experts (PoE), Mixture of Experts (MoE), or a combination of the two (MoPoE)
[Wu and Goodman, 2018, Shi et al., 2019, Sutter et al., 2021]. The rationale for adopting a mVAE lies in its ability
to capture shared latent representations that account for intra-view correlation structure and model the inter-view cor-
relation. However, questions remain regarding some limitations of mVAE in modeling only a shared latent space
where information from different views is integrated [Daunhawer et al., 2022]. Recent research advocates exploring
alternatives involving view-specific latent spaces [Sutter et al., 2021, Lee and Pavlovic, 2021, Daunhawer et al., 2021,
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Palumbo et al., 2022]. In this work, we propose to use a MoPoE-VAE as a specific mVAE, which promotes integrative
capacity. This model can elaborate modality-specific and shared across modalities latent representations during the
training phase. This shared representation conveniently dampens the influence of non-interest factors.

Interpretability. Using an mVAE to perform integrative association analysis comes at the expense of interpretabil-
ity, a strength of their linear counterparts, such as CCA or PLS. Indeed, these classical methods have been praised
for their interpretability. For example, adaptations of CCA and PLS propose to obtain interpretability by impos-
ing latent covariation exploration with various sparsity constraints, including L1 or total variation regularisations
[Tenenhaus et al., 2014, Cao et al., 2011]. These implementations not only identify associations between different
blocks, but also select the variables within each block that contribute to these correlations. This selection step facilitates
the translation of these associations into interpretable knowledge. Bringing interpretation capabilities to mVAE, and
more generally in DL, remains an opened and significant challenge. In previous work, we developed an interpretabil-
ity method to explain the information learned by a mVAE. This method is used to evaluate the effect of controlled
variations in the input of one view on the output of other views as generated by the mVAE [Ambroise et al., 2023].
In the present work, we adopt this novel interpretability framework, which is rooted in what we call a Digital Avatar
(DA). This framework is used to study brain-behaviour relationships, allowing us to showcase interpretable associa-
tions between features across different views. Harnessing the generative capabilities of a trained mVAE, we generate
sets of DAs from left-out subjects. Starting from a subject and varying its behavioural score, the model reconstructs
the corresponding brain image for each score value. The analysis performed on the obtained sets of DAs yields what
we hereafter call a Digital Avatar Analysis (DAA). It allows the exploration of brain-behaviour relationships through
linear model fitting for all pairs of behavioural scores and regional image measures. The interpretability of DAs is
enhanced by their exclusive reliance on the joint latent representation. However, DAA results are strongly affected
by the epistemic variability [Kendall and Gal, 2017] of the mVAE inherent to training stochasticity and weight ini-
tialisation. We mitigate the effects of epistemic variability through ensembling, using multiple trained mVAE models
with different initialisation parameters on the same training subjects. This strategy, which acts as a regularisation of
the DAA, is parameterised by the number of trained models and hereafter referred to as regularised-DAA (r-DAA). In
summary, we expect that an ensemble of DAAs will provide a more comprehensive understanding of brain-behaviour
associations.

Stability. The stability of results in integrative association studies within a multimodal dataset is a critical con-
sideration to ensure the generalisability of the approach. Traditional approaches, such as sparse CCA, em-
ploy cross-validation strategies that often include the definition of a downstream auxiliary predictor for model
selection. However, it has been shown that these procedures may not consistently identify stable associations
[Labus et al., 2015, Baldassarre et al., 2017, Ing et al., 2019, Mihalik et al., 2020, Chegraoui et al., 2023]. This is par-
ticularly true when correlations between views are low or sample sizes are small [Cao et al., 2011, Helmer et al., 2023,
Yang et al., 2021, Nakua et al., 2023]. Clearly, the challenge of stability remains an open question, especially in the
context of the DAA described above. To address this concern, we propose to use a sound framework. Stability se-
lection is an inspiring technique developed in machine learning that efficiently exploits the regularisation mechanisms
embedded in classical optimisation problems such as fitting a classifier [Meinshausen and BÃijhlmann, 2010]. This
procedure consistently identifies stable structures upon which the classifier is built, which inherently promotes robust-
ness. In this study, we leverage Meinshausen’s concepts regarding the stability of selected features and extend their
application to the stability of selected associations. In fact, the DAA procedure, which generates the brain-behaviour
associations, is not only affected by the epistemic variability, but is also sensitive to aleatoric variability (characteris-
tics of the train / left-out split of the dataset). To reduce it, the stability selection procedure splits the dataset multiple
times to generate different training and left-out splits. This allows the generation of stability paths, which identify
stable brain-behaviour associations. The overall goal of this approach is to increase the robustness of our findings.
This, in turn, contributes to a more reliable exploration of brain-behaviour relationships in the context of multimodal
data analysis.

Overall, we present an empirical framework for extracting a consistent set of brain-behaviour associations from a
multimodal dataset containing behavioural reports and brain imaging features. This framework is based on the stable
selection of r-DAA output associations. In summary, our methological contributions are threefold. First, we propose
a r-DAA that uses a weighted ensembling procedure to consolidate interpretations. Second, we introduce a stability
selection procedure to generate a set of robust brain-behaviour associations. Finally, we show that our procedure,
which is built on mVAEs, inherits from their ability to handle data with missing modality, and alleviates the need for
additional normalisation. The proposed framework is applied to a publicly available cohort of at-risk children with
notable behavioural symptoms. The cohort consists of structural MRI data and behavioural scores. Our results reveal
interesting transdiagnostic brain-behaviour associations common to several psychiatric syndromes, such as Autism
Spectrum Disorder (ASD) or Attention Deficit Hyperactivity Disorder (ADHD).
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Figure 1: Illustration of the interpretation framework based on DAA. In (a) the HBN cohort with two modalities:
imaging data (metric × ROI) and clinical questionnaires (eCRF). For each split (orange bounding box) of the dataset,
complete data are split into training (plain orange removing the dotted part) and left-out (dotted orange part) subjects.
Each r-DAA (blue bounding box) procedure uses one split of the dataset. In the inner dotted blue bounding box, we
repeat the following nE times : (b) a MoPoE-VAE is trained using all the subjects with one modality and the training
subjects with both. (c) Left-out subjects are used for DAA using this trained model, outputting coefficients β. (d)
These nE DAA outputs are then ensembled with an aggregation and a binary support decision function into nselect
associations. The r-DAA procedure is repeated for each of the N = 100 different splits of the complete dataset. (e)
A stability selection procedure is used to retain associations with stability path Π ≥ πthr high enough. The whole
framework outputs stable associations between clinical questionnaires and imaging.

2 Material and methods

This section introduces the proposed concept of performing stable association discovery in multimodal data using
association study and stability selection. The digital avatar-based association study, referred to as DAA, is designed to
find associations from a trained mVAE in heterogeneous multimodal datasets with potential missing data. Specifically,
a regularised DAA (r-DAA) procedure is employed to mitigate the epistemic uncertainty inherent in training neural
networks. Regularisation is achieved by ensembling the results of DAAs to retain meaningful associations. Finally,
stability selection is applied to r-DAA by resampling the original dataset. This strategy is employed to handle the
aleatoric uncertainty associated with the inherent variability in the data. Associations consistently selected by the
r-DAA across these resampling splits are considered stable associations. The proposed approach consists of three
nested steps listed from the innermost to the outermost: 1) DAA - training a mVAE and conducting an association
study, 2) r-DAA - ensembling results from several DAAs derived on a same left-out set but with different initialisations
and training batches, and 3) stability selection - performing several r-DAAs on different left-out sets to select stable
associations. These steps are described below and illustrated in Fig. 1, and Supplementary Alg. D.1 and D.2.
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2.1 Multimodal dataset

This study uses the Healthy Brain Network (HBN) cohort [Alexander et al., 2017]. This dataset is a multi-center,
transdisciplinary clinical study. It includes a variety of assessments, including imaging, and a comprehensive set of
psychological and clinical assessments to better understand psychiatric disorders. Inclusion criteria are not diagno-
sis dependent, but rather encompass an at-risk population with notable behavioural symptoms. Specifically, subjects
were selected based on the presence of behavioural constructs related to Autism Spectrum Disorder (ASD) or At-
tention Deficit Hyperactivity Disorder (ADHD). Consensus diagnoses are not available for the majority of subjects
enrolled in the HBN cohort. As such, the dataset allows for the study of the different manifestations of psychiatric
syndromes within the data. In particular, it provides an opportunity to explore methods for new biomarker discovery
and dimensional analysis.

In a previous study, our group identified seven behavioural assessments that capture the most salient dimensions in
ASD patients [Mihailov et al., 2020]. Specifically, a quantitative measure of clinical autistic traits was defined as
the parent Social Responsiveness Scale (SRS), hyperactivity levels were determined using the hyperactivity subscale
within the Strengths and Difficulties Questionnaire (SDQ-ha), the anxiety was measured using the total score from the
Screen for Child Anxiety Related Disorders Parent-Report (SCARED), irritability was defined using the total score
of the Affective Reactivity Index Parent-Report (ARI), and finally, levels of depression, aggression, and attention
problems were determined using subscales of the same names within the Child Behavior Checklist (CBCL-wd, CBCL-
ab, and CBCL-ap, respectively). Filtering out subjects with sporadic missing data in questionnaires results in 2454
individuals.

The MRIs were acquired at four sites. A mobile 1.5T Siemens Avanto on Staten Island, a 3T Siemens Tim Trio
at the Rutgers University Brain Imaging Center, and 3T Siemens Prisma at the CitiGroup Cornell Brain Imaging
Center and at the CUNY Advanced Science Research Center. Collected T1-weighted images were preprocessed using
FreeSurfer [Dale et al., 1999]. All results were manually reviewed in-house. The Euler number is used as a quality
metric summarising the topological complexity of the reconstructed cortical surfaces [Rosen et al., 2018]. Specifically,
a single Euler number exclusion threshold of−217 is applied to yield 2042 selected subjects. Finally, cortical measures
based on three metrics - cortical thickness, curvature, and area - are averaged in the 148 cortical regions of interest
(ROIs) defined by Destrieux’s parcellation [Destrieux et al., 2010].

The proposed brain-behaviour integrative analysis considers these two blocks of data. First, the electronic Clinical
Record Forms (eCRF) view consists of the peCRF = 7 behavioural scores. Second, the ROI view is composed of
the pROI = 444 cortical features from the 3 considered metrics across the 148 ROIs. In total, our dataset comprises
2991 subjects. Among them, 1505 have both complete views (referred to as complete dataset in Fig. 1(a) and 1486
have only one of the two views available (referred to as incomplete dataset in Fig. 1(a). Missing views remain a
common problem in data integration. The factors contributing to missing data are usually not known in advance.
Most traditional data mining and machine learning approaches operate on complete data and fail when data is missing.
As fallback strategies, some models rely only on samples with all views available or on an auxiliary inference step
that generates missing views. Our goal here is to use a model able to accommodate missing views, in order to use a
maximum number of available samples.

2.2 Digital avatar analysis

Multimodal deep learning, which does not impose data normalisation and provides integrative capacitive models, is a
promising approach to decipher the relationship between clinical dimensions, neuroimaging and a pathology. It has the
potential to support the development of personalised medicine. If the considered model has generative capabilities, the
exploration of a disorder spectrum can be achieved through the generation of so-called Digital Avatars (DAs). In the
proposed work, we employ a mVAE and specifically use a MoPoE-VAE (see Supplementary A for details). We keep
L = 301 subjects with complete data for the left-out set and use the remaining subjects, whether having complete or
incomplete data, for the training set. The MoPoE-VAE can indeed be trained on data with missing views. Once trained,
a MoPoE-VAE cannot directly provide brain-behaviour associations. However, the information learned by the model
can be used to discover relevant pairwise associations between views, which we consider in our work to be relevant
pairwise associations between each brain imaging feature and each score. Starting from the left-out subjects, we
modify each subject’s clinical score and generates a set of T = 200 DAs. Thus, as being predicted by the model, each
DA bears brain imaging features at a given clinical state. From this set of virtual neuroimaging data, a conventional
association study is performed to find brain-behaviour relationships. For each score of the eCRF view, we perform
pROI univariate association studies. In a previous publication, we introduced this DA analysis [Ambroise et al., 2023].
Hereafter, we describe in detail how the DAs are obtained and analysed.
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For the DAA step, we use the left-out set for which all subjects have complete data. Without loss of generality and
for simplicity, we consider the case where the eCRF view has only one score in what follows. Our aim is to create
a set of DAs from each of the L left-out subjects. Let s = (s1, . . . , sL) ∈ RL represent the scores from the eCRF
view, and m = [m1, . . . ,mL] ∈ RL×pROI represent all cortical measures from the ROI view. Note that this specific
case can be generalised to all clinical scores and additional views. The general idea is to modify s into ŝ and observe
how these modifications affect the reconstructed cortical measures m̂. In this way, virtual pairs (ŝ, m̂) are obtained. A
first, although simplistic, approach to perturb s is to sample linearly or randomly between feature percentiles or even
to bootstrap values across subjects. Conversely, the proposed approach relies on a simulation scheme to realistically
perturb s. The realism of these perturbations stems from the generative aspect of the model. We hypothesise that
such an approach, which models the composite variability of subjects measurements, will facilitate the discovery
of interesting brain-behaviour relationships. Indeed, the variability in the simulated avatars integrates both subject-
specific and population-level variability. The latter source of variability is captured through the learned variance that
is shared across the population. Our goal is to comprehensively assess what the model has learned by introducing
subject-level perturbations and investigating their effects on the reconstructed digital avatars. The proposed strategy
can be divided into three stages (inference, simulation, and association), which are outlined below and illustrated in
Fig. 1(c) and Supplementary Fig. S2.

Inference - estimating likelihood distributions
For a given subject i ∈ {1, . . . , L}, we propose to use pθ(si|zi), the likelihood distribution of observations conditioned
on the latent variable learned from the data, to sample DA score values. In pθ(s

i|zi), θ represents the weights of the
eCRF view decoder, and zi = (zieCRF, z

i
Joint) is the latent representation of si, consisting of the eCRF specific and

joint latent representations, respectively (see Supplementary A). This likelihood model will tend to sample likely
values in the sense of the model. Therefore, provided our model is properly trained, such perturbed clinical scores
will at best reflect the training data. The estimation of pθ(si|zi) is obtained by drawing D = 1000 realisations of
zi ∼ qϕ(z

i|si,mi), where ϕ are the weights of the MoPoE-VAE encoders (see Supplementary A). Passing these latent
representations to the eCRF decoder provides a good estimate of pθ(si|zi) [Kingma and Welling, 2014] (by averaging
the D decoded reconstructions). Note that the same strategy can be applied to categorical data by approximating the
parameters of a Bernouilli distribution instead of a Gaussian.

Simulation - sampling realistic values
Given a subject i ∈ {1, . . . , L}, T samples are drawn from pθ(s

i|zi), resulting in T perturbations ŝi ∈ RT . Re-
peating this sampling for all subjects i, the generated perturbed set forms our DA perturbed eCRF observations
ŝ = [ŝ1, . . . , ŝL] ∈ RL×T . Importantly, when we generalise to multiple clinical scores, only one score is perturbed
at a time. Finally, the perturbed ROI measures are reconstructed using a forward pass by considering ŝ and the cor-
responding ROI features m as input to the model. This results in a set of T perturbed ROI measures representing our
DAs m̂ ∈ RL×T×pROI . As a compromise between computational cost and accuracy, we set T = 200.

Association - computing inter-view associations
We search for associations between a clinical score and each ROI measure. We refer to the generated DA score values
as ŝ ∈ RL×T , and generated DA ROI measures as m̂ ∈ RL×T×pROI . Associations are obtained using hierarchical
regression models [Bryk and Raudenbush, 1992]. Specifically, for each image feature k ∈ {1, . . . , pROI}, a linear
regression of the form ŝi = cik + bikm̂

i
k + ϵik is fitted for each subject i. The resulting slopes are averaged over all

subjects as βk = 1
L

∑L
i=1 b

i
k. Performing the same analysis for all available eCRF scores results in the association

vector β ∈ Rp, where p = pROI ∗ peCRF . This vector encompasses all potential associations between the peCRF

clinical scores of the eCRF view and the pROI cortical features of the ROI view.

2.3 Regularised digital avatar analysis

In our seminal paper [Ambroise et al., 2023], we observed that the associations were not stable, even when the model
was retrained on the same training set, and evaluated on the same left-out set. This instability is likely due to epis-
temic variability [Kiureghian and Ditlevsen, 2009, Kendall and Gal, 2017], and has mainly been studied in supervised
settings [Gal and Ghahramani, 2016, Lakshminarayanan et al., 2017]. In feature selection using deep learning, studies
have shown that ensembling can enhance stability and thus mitigate epistemic variability [Gyawali et al., 2022]. We
propose to repeat the previous step nE times: we train a MoPoE-VAE on the training subjects, then perform the DAA
on the obtained model using the left-out set. Note that the training set and left-out set remain the same throughout
these nE procedures, only the random weights initialisations and batches during training vary. This is illustrated in
Fig. 1. By subsequently using ensembling, our objective is to identify stable associations from nE DAAs association
matrix β = [β1, . . . , βnE ] ∈ RnE×p. Like classical deep ensembling, our approach involves ensembling candidate as-
sociations (i.e., model predictions in supervised settings [Lakshminarayanan et al., 2017]) proposed by the nE DAAs,
and regrouped in the β matrix. The proposed ensembling procedure requires the definition of an aggregation function
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f and a decision function g. The aggregation function summarises the nE associations coefficients. The decision
function generates a binary decision support from the aggregated coefficients, which is designed to retain meaningful
associations. Formally, let f : RnE×p → Rp be an aggregation function and g : Rp → {0, 1}p be a decision func-
tion. The composition g ◦ f forms the proposed ensembling, which is outlined below and illustrated in Fig. 1(d) and
Supplementary Alg. D.1(b) and D.2(b).

Aggregation - f
The role of the aggregation function f is to assign an importance to each association from the association matrix β.
Initially, we opt for a classical mean, although alternative functions such as median or maximum could also be relevant.
However, the quality of the estimated nE models is not accounted for by any of these functions. In fact, some models
may converge to local minima of the optimised loss function, resulting in less relevant models and representations.
Such behaviour can produce outlier associations that affect the stability of selected associations [Gyawali et al., 2022].
Therefore, we employ a weighted average where the weights reflect the quality of the estimated models. The weights
are determined by the model’s joint latent space ability to capture a significant proportion of the eCRF-related vari-
ability. Practically, we use the representational similarity analysis (RSA) [Kriegeskorte et al., 2008], which generates
correlations between the joint latent space and the eCRF scores (see Supplementary B and Supplementary Alg. D.2
for details).

Decision - g
The purpose of the decision function g is to obtain binary decision support from the aggregated coefficients on a score-
metric basis. This support allows us to choose a subset of the most informative associations for each score-metric pair
(s,m), enhancing reproducibility and interpretability. While a simple strategy involves specifying a numeric threshold
or defining built-in heuristics to find this threshold, we prefer setting the number of features explicitly rather than using
a threshold. This approach provides consistency across score-metric pairs and DAAs. In practice, we choose to select
the top nselect = 12 associations with the greatest amplitudes.

2.4 Stability selection

Stability selection, derived from penalised machine learning [Meinshausen and BÃijhlmann, 2010], is designed to
reinforce feature selection through the definition of stability paths. Stability paths represent the probability of selecting
each feature when training the same algorithm with some regularisation parameter on different random splits of a
dataset. We extend this methodology to our brain-behaviour association study. In our context, the regularisation
parameter is the number of models nE considered in the ensembling step. We propose to repeat the r-DAA (see Section
2.3) N times, using different splits of the original dataset, and setting the regularisation parameter nE ∈ {1, . . . , 20}.
This approach allows us to model aleatoric uncertainty inherent to population variability [Kendall and Gal, 2017]. The
implementation comprises three aspects outlined below and illustrated in Fig. 1(e) and Supplementary Alg. D.1(c) and
D.2(c). First, we define a valid splitting strategy. Then, we repeat the r-DAA N times by varying the regularisation
parameters nE , enabling us to estimate stability paths. Finally, we define a criterion to assess the stability of the results
obtained across the N splits.

Splitting strategy
Our dataset consists of two parts: 1505 subjects with complete data and 1486 subjects with incomplete data (see
Section 2.1). It’s important to note that subjects with missing views can only be used to train the model. For each
split, out of the 2991 subjects available, 2690 are used in the training set. The latter includes the 1486 subjects
with incomplete data and 1204 randomly selected subjects with complete data. The remaining L = 301 subjects
with complete data form the left-out set (see Fig. 1). To maintain population statistics, including age, sex, and
acquisition site distributions, we employ shuffled iterative stratification [Sechidis et al., 2011]. Although using the
entire incomplete dataset in each training iteration may appear as a limitation, it is effectively mitigated by employing
different shuffled batches at each training epoch. We opt for using N = 100 splits.

Stability paths
Each r-DAA with regularisation parameter nE produces a decision support Sj(nE) ∈ {0, 1}p for a given split j ∈
{1, . . . , N}. The stability paths ΠnE ∈ [0, 1]p are the probability for each association to be selected across the N
splits. It is obtained by averaging all the calculated binary decision supports as:

ΠnE =
1

N

N∑
j=1

Sj(nE) (1)

Stability criterion
The stability criterion analyses the stability paths and defines which associations are considered stable. If the prob-
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eCRF Joint ROI
Score τ̄ (↑) τ̄ (↑) τ̄ (↑)
SRS 0.302 0.018 −0.003
SCARED 0.101 0.032 −0.004
ARI 0.256 0.05 0.017
SDQ ha 0.326 0.058 0.005
CBCL ab 0.406 0.03 0.008
CBCL ap 0.443 0.026 −0.002
CBCL wd 0.152 0.06 0.008

Site 0.004 0.011 0.156
Age −0.005 0.05 0.10
Sex 0.014 0.003 0.067

Table 1: Representational similarity analysis results between the different latent spaces (eCRF, Joint, and ROI) and the
clinical eCRF scores, and some covariates of interest : the imaging acquisition site (Site), the patient age (Age) and sex
(Sex). τ̄ is the corresponding average Kendall τ across models and splits. We computed the p-value associated with
this statistic. Values in bold indicate their significativity, i.e. median corrected p-value < 0.01, see Supplementary B
for details.

ability of an association happens to be greater than a user-defined threshold πthr ∈ [0, 1] for a specific regularisation
parameter nE , then the corresponding association is selected. Finally, we define the set of stable features as:

Sstable = {k : max
nE∈{1,...,20}

ΠnE

k ≥ πthr} (2)

More simply, this means that associations with a high probability of selection for any regularisation parameter are
retained as stable associations. Conversely, those with a low probability of selection are dropped.

3 Results

3.1 Models inspection

To evaluate the information encoded in the various latent spaces of the trained models, we employ the RSA
[Kriegeskorte et al., 2008] tool introduced in Supplementary B. The RSA results in Table 1 depict the relationships
between different latent spaces (eCRF, Joint, and ROI) and each eCRF score, alongside other relevant covariates like
age, sex, and image acquisition site. In short, we computed each of these Kendall τ correlations for every N = 100
splits and corresponding nE = 20 models. The reported correlations τ̄ are averaged across these N ∗ nE values. See
Supplementary B for further details.
Notably, each eCRF score strongly correlates with the eCRF-specific latent space, as highlighted in pink in Table 1.
This is noteworthy since the models successfully learned in a single one-dimensional space, capturing a significant
amount of variability associated with all eCRF view scores. This outcome is expected, considering the correlations be-
tween the eCRF scores (see Supplementary Fig. S1). Additionally, it underscores that this latent space is not informing
about age, sex, or image acquisition site. In contrast, the latent space specific to the ROI view does not significantly
correlate with the eCRF scores with the only exception of ARI, yet with a small correlation. Note that it significantly
correlates with age, sex, and image acquisition site, as shown in the cells highlighted in orange. Finally, we highlight
in salmon in Table 1 what the joint latent space has learned. These representations moderately and significantly corre-
late with each score but not with acquisition site or sex. Moreover, it appears to correlate with age. It seems that the
brain-behaviour relationships, modeled in the MoPoE-VAE joint latent space, relies on information related to age.

3.2 Stability selection from r-DAA

By increasing the number of models and applying a stability selection procedure, we aim to increase the stabil-
ity of the sets of brain-behaviour associations supported by our multimodal dataset. In the following, we con-
sider the SRS score associations with the thickness metric. Figure 2 illustrates the associations trajectories taken
by the considered 148 ROIs. This illustration is inspired by the figure of merit proposed in the seminal paper
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[Meinshausen and BÃijhlmann, 2010]. In Figure 2(a), we display trajectories of aggregated β values (i.e., effect
sizes), using a mean function for f , against the number of model nE . Some trajectories become more prominent than
others as the number of models increases. However, they are hardly distinguishable from other trajectories, which
remain densely packed with low values. This general aspect is displayed here for one of the N = 100 stability selec-
tion splits. This suggests that we can isolate some, but not all, stable associations by increasing the number of models
aggregated in the r-DAA.

Figure 2(b) presents the stability paths Π for each ROI with respect to the number of models nE . This probability is
computed as described in Eq. 1 and summarises the N = 100 stability selection splits. Here, the aggregation function
f is the mean function. The results highlights that the most stable ROIs, characterised by higher probabilities Π, are
easily identifiable. The stable paths reach a plateau with the number of models (i.e., the considered regularisation
hyperparameter) between 5 and 10 models, depending on the considered ROI.

Figure 2(c) is similar to Figure 2(b), but the procedure uses the RSA-weighted average as the aggregation function f
instead of a simple average (see Supplementary Alg. D.2). The results suggest that stability is only slightly affected
by the choice of the aggregation function f . We keep the RSA-weighted average because it may be more robust to
outlier models. We apply a threshold of πthr = 0.4 (as illustrated by the dashed red line) to retain stable associations,
displayed in colors. These colors correspond to the same ROIs throughout the different plots. Comparing Figure 2(b)
or Figure 2(c) with Figure 2(a) reveals that a high coefficient amplitude is not always a good indicator of stability. In
fact, the ROIs represented by pink or light purple paths in Figure 2(a) are indistinguishable from other black dotted
lines (i.e., unselected ROIs). However, these ROIs convey some of the most stable associations (Π ≃ 0.7 when
nE = 20). Note that the variability of the SRS score is not the best captured by our models on our dataset (see
Table 1). To test the influence of the selected score and metric on the stability paths, we generate similar figures by
examining the association coefficients between the SDQ-ha score and the area metric, as well as the stability paths.
Very similar observations can be made, as shown in Supplementary E.

3.3 Transdiagnostic-factor spatial support

At the core of our approach is a MoPoE-VAE network designed to construct a latent space consolidating joint in-
formation between the entire ROI view and the entire eCRF view, along with ROI- and eCRF-specific latent spaces.
The interpretation of joint latent representations amounts to extracting brain-behaviour associations that effectively
represent this joint information. This strategy supports the research on the general psychopathology dimension intro-
duced by Caspi [Caspi et al., 2014, Caspi et al., 2023]. In line with these ideas, our goal is to identify the brain regions
and metrics that underpin these similarities. These brain-behaviour associations retained by our approach for each
score-metric pair (s,m) are listed in see Supplementary F.

In this section, we focus on transdiagnostic associations whose ROIs exhibit co-association with exactly four specific
scores. These regions could be considered as components of a transdiagnostic spatial support for mental disorders. We
focus on four specific scores of interest: SRS, which assesses social interaction and is correlated with autism disorder;
SCARED, which assesses fear and anxiety issues and is correlated with anxiety disorders; SDQ-ha, which is related
to hyperactivity disorders; and CBCL-wd, an indicator of depression, a symptom common to most of these patholo-
gies. For each cortical measure, Figure 3 highlights the ROIs found to be associated with these four scores. Among
these selected transdiagnostic regions, many belong to the pericalosal and cingulate regions. These regions, whether
considered with the area or curvature metrics, are consistently associated with each examined score. This means that
the associations between selected ROIs and scores show similar covariations. In the identified pericalosal and cingu-
late regions, a decrease in both area and curvature metrics is associated with an increase in the SRS, SCARED, or
CBCL-wd scores. However, the opposite is observed for the SDQ-ha score (Figure 3(b)-(c)). Looking at the thickness
metric and grouping the curvature and area metrics, we find two disjoint sets of regions among the selected transdiag-
nostic regions. First, the left and right occipital poles for the thickness metric. Second, the cingulate regions for the
curvature/area metrics. Only the right cingulate mid / posterior region (R.Ci.Mid.Post.) and left cingulate posterior
dorsal gyrus (L.G.Ci.Post.Dors) seem to be related to the four scores for both metrics. Finally, looking at the SDQ-ha
score and comparing to the grouped SRS, SCARED and CBCL-wd scores, we find that the associations identified have
systematically opposite signs. Overall, the transdiagnostic regions are mostly bilateral and present a spatially smooth
pattern of association with the eCRF scores.

3.4 Transdiagnostic-factor spatial support in ASD and ADHD

Recall that our method, with the presented setting, is designed to find transdiagnostic associations, in line with the
general psychopathology dimension. Among the structural biomarkers involved in ASD (or ADHD), we can study
the ones that can attributed to transdiagnostic factors. In this section, we focus on transdiagnostic associations whose
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(a) Coefficients

(b) Stability paths using uniform ensembling (c) Stability paths using weighted ensembling

Figure 2: Investigation of the ROIs associated with SRS in thickness. Each line corresponds to a ROI, dotted black
ones are not selected as below the threshold πthr = 0.4 when using as aggregation function a mean weighted by RSA
correlations. The ROIs thus selected are colored and the colors are consistent across the plots. The red horizontal
dotted line highlights the threshold πthr = 0.4. (a) Mean coefficients aggregated across models for a given split over
the N = 100 splits, plotted against the number of models. (b) ROIs stability paths Π when using an uniformly
weighted mean to aggregate the coefficients output from DAA on each model in the r-DAA, against the number of
models used. (c) Same as the last one, except that the mean was weighted using RSA correlations. The latter strategy
is used to select the ROIs associated in thickness with the SRS score, with Π > πthr = 0.4.

ROIs are specifically associated with one symptom/score. We perform this analysis for two scores. First, the SRS
score, which is considered as a proxy for ASD [Constantino et al., 2003]. Although the SRS score alone may not be
sufficient, clinicians often use it to determine a patient’s status. This score has also a high correlation with diagnosis
(unpublished results based on our databases) in datasets adhering to diagnosis-balanced inclusion criteria such as
ABIDE I (SRS-1, 0.82), ABIDE II (SRS-1, 0.86 and SRS-2, 0.72), or EU-AIMS (SRS-2, 0.85). With the same
general caveats, we use the SDQ-ha score as a proxy for ADHD-related symptoms and diagnosis [Goodman, 1997].
The retained associations can be found in Supplementary F and are summarised below.

Markers related to SRS (ASD). In Figure 4, we display ROIs associated in thickness and area with the score SRS.
Interestingly, the selected ROIs display a rather symmetrical pattern. With the thickness metric, the SRS appears to
positively covary with the bilateral occipital poles, bilateral pericallosal region, and a right prefrontal region, while
negatively covarying with the bilateral temporal sulci and right postcentral region. With area metrics, the SRS appears
to positively covary with the left prefrontal cortex, left subcallosal gyrus and bilateral circular inferior insular sulci,
while negatively covarying with the bilateral cingulate and left parieto-temporal cortex.
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(a) ROIs (b) Thickness

(c) Curvature (d) Area

Figure 3: Display of ROIs associated with selected eCRF scores for a transdiagnostic assessment, e.g. SRS, SDQ-ha,
SCARED and CBCL-wd, for each cortical measure. (a) ROIs color-coded, corresponding to color in the following
polar plots. Lateral and medial view are displayed for each hemisphere (left hemisphere on the left hand side and right
hemisphere on the right). The polar plots indicate the sign of each association (negative when the bar is close to the
center, postive when it is close to the edge of the circle). Only retained associations are displayed. Each polar plot
correspond to a metric : (b) displays assocations in thickness, (c) associations in curvature and (d) in area. L: left,
R: right, Ci: cingulate, Oc: occipital, Te: temporal, S: sulcus, G: gyrus, Mid: middle, Post: posterior, Dors: dorsal,
med: medial, Inf: inferior, Marg: marginal, Ant: anterior, PeriCal: pericallosal, PostCe: postcentral, Sup: superior,
Li: lingual, Pl: plan, Pola: polar.

Marker related to SDQ (ADHD). In Figure 5, we display ROIs found associated in thickness and area with the score
SDQ-ha. Once again the figure displays symmetrical patterns. With the thickness metric, the SDQ-ha appears to
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(a) Thickness (b) Area

Figure 4: Display of ROIs associated with the SRS score.

(a) Thickness (b) Area

Figure 5: Display of ROIs associated with the SDQ-ha hyperactivity score.

positively covary notably with postcentral and superior parietal regions, including the left precuneus, while negatively
covarying with central sulci, cingulate and occipital cortices. With the area metric, the SDQ-ha appears to positively
covary notably with bilateral parieto-temporal cortex and bilateral cingulate cortex, while negatively covarying with
bilateral central sulci and right precentral gyrus. Of note, the central sulci appear affected by the SDQ-ha score in the
same direction for both area and thickness metrics.

4 Discussion

In this paper, we present an interpretability method dedicated to deep learning-based integration models using mVAEs.
We demonstrate its application in the study of the transdiagnostic dimension within the HBN cohort, integrating neu-
roimaging data and psychological assessments in an at-risk population with notable behavioural symptoms. Our
method is endowed with a stability selection procedure to retain associations and we investigate its effects. A suf-
ficient number of models is the only need to achieve stability. Finally, with only a prior on the expected number
of associations, our method enables the identification of stable associations between measures of the brain cortical
surface and symptom scores.
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Deep mVAE model are expressive multi-modal integration tools

We take advantage of the versatile definition of the latent space in the MoPoE-VAE to choose a representation set-
ting that naturally disentangles specific and shared sources of variation between view-specific and joint latent spaces.
Other work already identified the disentanglement achieved with this type of architecture [Lee and Pavlovic, 2021,
Qiu et al., 2022], but we apply it here to neuroimaging and score questionnaires integration. We also leverage this
source separation using our interpretation module based on digital avatars. By mitigating or eliminating confounding
effects such as the MRI acquisition site in shared representation, we expect interpretations to be unaffected, with-
out performing any standardisation or harmonisation of the data prior to learning. Moreover, the joint latent spaces
that significantly correlate with age highlight how our models handle age information, although it is never explicitly
provided. This contrasts with conventional approaches using age residualisation.

Our framework based on the MoPoE-VAE can conveniently handle incomplete data, a common issue in multi-view
integration. The requirement of complete data often significantly reduces the number of subjects that can be used
and impairs the statistical power of most studies. This resilience made it possible for us to use an openly available
cohort with minimal missing data control and include nearly all available subjects. This has provided us with a
substantial sample size collected from multiple acquisition sites. This characteristic should improve reproducibility
and replicability when employing such an approach in multi-modal neuroimaging studies, aligning with state-of-the-
art guidelines [Klapwijk et al., 2021].

We also show that MoPoE-VAE networks, when equipped with a stable interpretation module, can provide associations
between variables of different views. This stable interpretation module can be configured with only one a priori
parameter which is the expected number of associations (nselect = 12 here).

Deep mVAE models for transdiagnostic studies

Transdiagnostic researches [Fusar-Poli et al., 2019] focus a common risk factor of pathology in psychiatry, often re-
ferred to as p-factor [Caspi et al., 2014], computed using various clinical assessments and summarised in a unique
dimension. These approaches address the fact that many psychiatric illnesses share common symptoms and comor-
bidities, and that the heterogeneity of the population cohorts makes it difficult to obtain reproducible results based on
a single diagnosis. Studies hypothesise a common etiology, that would explain some underlying mechanisms common
to multiple psychiatric disorders. They usually express this global pathological variability as p factor, and then inspect
its association with brain imaging to find potential biomarkers for these common mechanisms.

Deep learning MoPoE-VAE models are trained from data in an at-risk population cohort in which subjects are assessed
with questionnaires, expressing symptoms of several psychiatric syndromes (SRS, SDQ-ha, etc). This MoPoE-VAE
training is organised to integrate all available data to create distinct representations of shared and specific information.
This shared representation contains multivariate variability linking multiple symptom scores to imaging. Our stable
interpretation pipeline inspects this joint latent space to produce transdiagnostic associations between behaviour and
cortical measures. By displaying regions linked with multiple symptom scores, we capture regions often reported as
associated with transdiagnostic factors in the literature.

In particular, results from our transdiagnostic perspective in section 3.3 highlight fairly symetrical regions, mostly
associated in area and curvature in cingulate regions and in thickness in the occipital poles. Studies in functional MRI
already identified cingulo-opercular network (CON) [Sheffield et al., 2017] and default mode network (DMN), and
particularly the anterior cingulate areas [Gong et al., 2016, MacNamara et al., 2017] as related to transdiagnostic fac-
tors. Other fMRI studies identified anterior / middle cingulate and occipital areas, among other, associated with general
p-factor [Elliott et al., 2018], as well as in studies of transdiagnostic population with other factors [Feldker et al., 2017,
Tong et al., 2022], and in particular with ASD and ADHD [Bush et al., 1999, D’Cruz et al., 2016, Lukito et al., 2020].

Alongside fMRI studies, many studies report structural alterations associations with transdiagnostic factors, such
as changes in cortical thickness or grey matter volume of the cingulate and occipital cortices, as part of more global
patterns [Clementz et al., 2016, Yin et al., 2022, Parkes et al., 2021]. Such findings were highlighted as well in specific
ASD [Oblak et al., 2010, Chien et al., 2021, Mihailov et al., 2020, Ecker et al., 2022] or ADHD [Amico et al., 2011,
He et al., 2015, Bayard et al., 2020] studies, as well as research studying these diseases jointly [Rommelse et al., 2017,
Lukito et al., 2020]. Moreover, occipital lobe grey matter reduction was specifically identified as linked with increases
in p-factor [Romer et al., 2018, Romer et al., 2021]. Finally, cingulate related white matter tracks fractional anisotropy
extracted from diffusion MRI were found associated with transdiagnostic factors as well [Stefanik et al., 2018].

Cingulate regions are well-known to be implicated in cognition, emotion processing [Bush et al., 2000,
Vogt et al., 1992, Denson et al., 2009], while occipital regions are responsible for primary visual processing. Since
these functions are often altered when expressing psychiatric symptoms, their implication in a common mechanism
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to multiple syndromes is very likely. Our results support the hypothesis that cingulate and occipital regions and their
related functional or structural networks are important in general psychopathology and warrant further investigation.

5 Perspectives

The method described in this paper focuses on an integrative multi-view approach based on deep learning and featuring
interpretation capacity. We discussed the main benefits of its use and we list below some perspectives related to some
limitations of the proposed approach, while highlighting more general remarks regarding the integration of the ever
growing volume and variety of available data in neuroscience.

Effect size. In our transdiagnostic study, the stable associations found are characterised by rather small effect sizes.
This underscores the difficulty of exploring the common processes that hypothetically contribute to the etiology of
multiple psychopathologies. While individual effect sizes may be modest, the cumulative evidence supports the exis-
tence of transdiagnostic factors. One could expect an increase of the observed effect sizes by considering functional
MRI (fMRI) data instead of structural MRI. Association studies using fMRI offer numerous advantages, including di-
rect measurement of brain activity and localisation of function. Current research with fMRI shows strong associations
compared to structural MRI [Oblong et al., 2023] and would be worth investigating using our tool.

Data harmonisation. Several recent works have shown that machine learning models are strongly biased by the
MRI acquisition site and do not generalise well to new MRI images from sites that have never been seen before
[Glocker et al., 2019, Wachinger et al., 2021]. This problem is due to differences in scanner manufacturers, specifica-
tions, settings, and hardware. While traditional residualisation technique applied to remove the site effect marginally
improves the performance of machine learning models, it does not bring any improvement for deep learning models
[Dufumier et al., 2024]. In this work, we show that the influence of non-interest factors, in particular the site ef-
fect, can be effectively eliminated by disentangling modality-specific and joint latent representations. Nevertheless
data harmonisation remains an ongoing research area [Dinsdale et al., 2021, Bashyam et al., 2022]. For example, the
OpenBHB challenge [Dufumier et al., 2022] on brain age prediction with site effect removal could bring new harmon-
isation techniques developed by the community.

Views with different internal correlation structure. As mentioned above, a wide variety of assessments are available
in large population cohorts. Most often, each type of data is exploited separately for regression, classification and
segmentation. Deep learning has been extensively used on imaging data and has demonstrated considerable benefits
over traditional methods for some tasks, such as the segmentation of medical anomalies and anatomical structures
[Menze et al., 2015, Henschel et al., 2020]. But in the medical field, many assessments, such as imaging or genomic
data, can be more naturally represented as graphs due to their underlying biological properties (e.g. functional /
structural connectomes or protein interactions). DL specific operators [Bronstein et al., 2017, Ghosal et al., 2022]
have been developed to take into account such correlation structure when learning from such data. In the current
study, we integrate cortical measures on ROIs as tabular data. It would be highly relevant to return to brain surface
data and model their actual correlation structure using dedicated convolution operators [Zhao et al., 2019]. The same
applies to other available modalities such as genomic data.

Dimensional discrepancy of the views. The demonstrated integrative capacity of mVAEs comes from modelling
modality-specific and joint latent spaces. Handling views with very different number of variables is an ongoing
research question. For example, genotyping data may have millions of variables. Training a mVAE in such setting
is challenging. Intuitively, learned modality specific latent spaces will have different sizes, somehow proportional to
their input size, but this is not so clear for the joint representations. Pioneering work defines a sparse multichannel
VAE [Antelmi et al., 2019]. It leverages a variational dropout regularisation [Molchanov et al., 2017] that identifies an
optimal number of joint latent dimensions.

Disentanglement. In the development of digital avatars, transparency of the trained NN models is a key fea-
ture. Importantly, the chosen mVAE model must learn disentangled representations that separate modality spe-
cific and joint variability. Indeed, confounding factor like site effect are usually specific to one modality, and
such disentanglement would ensure the joint latent is devoid of such unwanted effects. Recent works propose
contrastive VAE which uses deep encoders to capture higher-level semantics [Aglinskas et al., 2022], as com-
pared to its former linear conterpart contrastive PCA [Abid et al., 2018]. From two encoders, they typically
structure the learned latent space into two parts containing the background (i.e., common to the studied popu-
lation) and salient (i.e., specific to a pathology) variabilities. Followup works show that classical VAE losses
alone can not effectively separate joint and salient variability, and that further constraints and regularisations are
needed to satisfy the assumptions of the generative process and to promote disentanglement in the latent space
[Abid and Zou, 2019, Choudhuri et al., 2020, Weinberger et al., 2022, Zou et al., 2022]. In the case of mVAEs, the
same observations hold. Modeling modality-specific and joint latent spaces somehow separates joint from specific
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variability [Lee and Pavlovic, 2021], as observed in this study. However, to ensure disentanglement, additional regu-
larisations during training are needed [Daunhawer et al., 2021].
Replication. The design of a replication study will contribute to the generalisability of our findings. In particular,
it would be interesting to apply our approach to cohorts such as the Dunedin Longitudinal Study [Caspi et al., 2014,
Romer et al., 2021], the ABCD Study [Casey et al., 2018, Karcher and Barch, 2021] or the Duke Neurogenic Study
[Romer et al., 2018, Elliott et al., 2018]. These studies were not explicitly focused on transdiagnostic research, but
their design, including comprehensive assessments with a multidisciplinary context, has provided valuable insights
into the understanding of psychiatric disorders from a transdiagnostic perspective.
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A Multimodal Variational AutoEncoders

This appendix presents details on the multiview variational autoencoder (mVAE) models, used to perform the Digital
Avatar Analysis, once they are trained.

Multimodal (or multiview) VAEs are extensions of the well-established VAE [Kingma and Welling, 2014] that al-
low joint integration and reconstruction of two or more views. These two VAE models are themselves derived
from AEs which attempt to find a compressed representation that contains as much information as possible about
the input data. They are based on the assumption that the input data can be generated from a lower dimen-
sional space [Kramer, 1991]. AEs have been extensively studied [Vincent et al., 2010] and used in various ap-
plications such as medical image segmentation [Ronneberger et al., 2015]. In the variational version of anAE,
the main idea is to learn a probability distribution over the low dimensional latent space. Finally, multimodal
VAEs allow the construction of view-specific and shared latent spaces via the different modeling schemes. This
is of great interest in medicine, for example to separate common sources of variability from disease-specific one
[Wu and Goodman, 2018, Shi et al., 2019, Sutter et al., 2021].

The selected model
Let x = {x1, . . . , xK} be an observation of K views, where each xk can have different dimensions Jk. The general
form of the latent of the variable is {z, z1, . . . , zk, . . . , zK} with z denoting the d-dimensional latent variable shared
by all xk, and zk the view-specific dk-dimensional latent variables. We assume the following generative process for
the observation set:

z ∼ p(z)

zk ∼ p(zk)

xk ∼ pθ(xk|z, zk)

where p(z), p(zk) are prior distributions for the latent variables and pθ(xk|z, zk) is a likelihood distribution of the
observations conditioned on the latent variable. The generative process pθ(x) is approximated by its Evidence Lower
Bound (ELBO) . The bottleneck of this approximation problem comes to computing the posterior pθ(z, zk|x). A first
usual assumption about pθ(z|x) considers that it contains all the shared information between the views, and we can
write pθ(z, zk|x) = pθ(z|x) × pθ(zk|xk). Other assumptions are needed since these posteriors are not analytically
tractable. The posterior distributions are classically approximated by parametrized distributions qϕ(z|x) (the so-called
joint variational posterior) and qϕ(zk|xk) respectively.

State-of-the-art models solve this problem with different ways of modeling the joint variational posterior distribution
qϕ(z|x). These approaches compose qϕ(z|x) using the Gaussian experts qϕ(z|xk) unimodal posteriors, which may be
combined in various ways. In Product of Experts (PoE) approach [Wu and Goodman, 2018], qϕ(z|x) is defined as a
product of individual Gaussian experts, assuming the conditional independence of the experts, hence remains Gaus-
sian. The product operator used in PoE may dampen the specific variability of a given block described by gaussian
unimodal posterior, and other work proposes to model [Shi et al., 2019] qϕ(z|x) using a Mixture of Experts (MoE), as-
suming each unimodal experts contributes equally to the joint posterior. MoPoE approaches defines qϕ(z|x) as a Mix-
ture of Product of Experts. Each product of experts is computed over the different subsets of views [Sutter et al., 2021].
We use the latter strategy, referred to as MoPoE, as it is a generalization of the two previous approaches. Each strategy
has different ways of handling missing views, that may differ between train and test time. MoPoE simply uses the
subsets of available views for each observation. As regards to the unimodal posteriors qϕ(zk|xk), we classicaly use
Gaussian distributions.

The MoPoE optimizes a generalized multimodal ELBO objective for learning view-specific and a joint distribution of
multiple views x with potential missing data, defined as:

LMoPoE(θ, ϕ;x) =

K∑
i=1

Eqϕ(z,zk|x) [log(pθ(xk|z, zk)]

−
K∑
i=1

DKL (qϕ(zk|xk)||pθ(zk))−DKL


1

2K

∑
xp∈P(x)

q̃ϕ(z|xp)︸ ︷︷ ︸
=qϕ(z|x)

||pθ(z)
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There are 2K different subsets contained in the powerset P(x), and q̃ϕ(z|xp) =
∏

xk∈xp
qϕ(z|xk) is the product of

Gaussian expert posteriors qϕ(z|xk), defined for the subset of views in xp.

These formulae show our specific implementation of the MoPoE which handles multi-views by modelling view-
specific latent space posterior distributions, and a joint posterior distribution shared between views as a mixture
of the products of their marginal posteriors (experts). This implementation differs from the one benchmarked in
[Daunhawer et al., 2022, Anonymous, 2023] which consider only one joint latent (MoPoE with its initial formulation
[Sutter et al., 2021]). These benchmarks also favor the generative abilities when we essentially consider its represen-
tation space in our intrepretation framework.

Model specification and training
In our work, the encoders with parameters ϕ are each defined as multilayer perceptrons (MLPs), each with one hid-
den layer of 256 units and a ReLU activation. The decoders with parameters θ are linear (a single fully connected
layer). Note that every decoder has a learnable variance parameter for each reconstructed feature that does not de-
pend on the input observation. This allows the decoders to learn a population-level variability. To handle inputs of
different sizes, the dimensions of the view-specific latent spaces were set individually. Based on a previous study
[Ambroise et al., 2021], we chose deCRF = 1 and dROI = 20. Defining the dimension of the shared latent space
jointly with the dimensions (J1, . . . , JK) of the input views seems to be a reasonable criterion, we use the following
rule:

d < mink∈{1,...,K}{Jk − dk}

To spread the variability of the observations across the view-specific and shared latent representations, we choose
d = 3. All data are z-scored before being fed into the network. The model is trained with an Adam optimization, a
initial learning rate of 2× 10−3 and a batch size of 256.

B Representational Similarity Analysis

Assessing model quality in an unsupervised setting remains an open issue. To investigate the learned latent repre-
sentations, we derive a Representational Similarity Analysis (RSA) [Kriegeskorte et al., 2008] between these repre-
sentations and some measures on subjects (e.g. clinical scores or other covariates). We compute the subject-pairwise
dissimilarity matrices in the latent space (modality-specific and joint) using the euclidean distance. We derive the
same subject-pairwise dissimilarity matrices for the target measures. Finally, the Kendall rank correlation coefficient
(Kendall τ ) enables the comparison of these dissimilarity matrices emphasizing the captured information. RSA is used
twice in the present work. First we use it as a component of our framework to weight the contribution of a model when
aggregating its extracted associations in the regularized digital avatar analysis (r-DAA) (see Section 2.3 and Supple-
mentary alg. D.2). Second we consider it to evaluate the information contained in the different latent representations
(see Section 3.1).

Model quality scoring used in r-DAA
We hypothesize that the latent representations of a good model to understand eCRF symptom scores should contain
some amount of symptoms-related variability. We evaluate each trained MoPoE-VAE using RSA output Kendall τ
between the model’s joint latent space and each eCRF score (τs), defined as τ = (τ1, . . . , τ|S|) ∈ [−1, 1]|S|. For each
of the nE models, we use it’s average Kendall τ̂ = 1

|S|
∑|S|

s=1 τs across eCRF scores as it quality score, used to weight
the aggregation function in the ensembling of the nE corresponding DAAs (see section 2.3). This is detailed in the
Supplementary alg D.2 as well.

Assessing the latent representation spaces with RSA
We report in Table 1 aggregated results from RSAs applied to each split and corresponding models. We report the
average N × nE Kendall τ between each different measure and latent space. In the table we report the significance
of these correlations. We compute it by considering the p-values of the Kendall τ statistics (corresponding to the
rejection of the null hypothesis). We correct them for multiple testing using the Hommel [HOMMEL, 1988] correction
for multiple dependent tests and multiple independent test using Bonferroni. Then we consider the median of the
corrected p-values. We chose the value of 1% for the significance threshold.
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Figure S1: Correlations between the 7 eCRf scores.

C Digital Avatar Analysis

Figure S2: Illustration of the interpretation framework based on DAA in a clinical cohort setting with two modalities:
imaging data and clinical questionnaires. First, the inference flow estimates output distributions via sampling in the
latent space. Then, the simulation flow generates realistic perturbed samples of the view we want to study against oth-
ers (here, the questionnaires) and infer digital avatars through the model. Finally, meaningful inter-view associations
are inspected using hierarchical linear regressions.
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D Algorithm pseudocodes

We display below the pseudocode of the two procedures developed for our association discovery pipeline, relying on
r-DAA and stability selection.

D.1 Finding associations with a non-weighted r-DAA

Algorithm 1 r-DAA using a simple average function for aggregation
Input R: a set of ROIs

M : a set of metrics
S: a set of eCRF scores
X: a set with N random train (2690) / left-out (301) splits

1: p← |R| ∗ |M | ∗ |S| ▷ num of features
2: nE ∈ {1, . . . , 20} ▷ num of models
3: N ← 100 ▷ num of splits
4: πthr ← 0.4 ▷ stability path thr
5: for j ∈ {1, . . . , N} do
6: xj

train, x
j
left-out ← X[j] ▷ a random split

7: for nE ∈ {1, . . . , 20} do
8: Fit a MoPoEj

nE
model on xj

train using init random weights θnE

9: Compute the DAA with xj
left-out association weights βj

nE
∈ Rp

10: end for
11: end for
12: f ← mean function ▷ aggregation func
13: for nE ∈ {1, . . . , 20} do
14: for j ∈ {1, . . . , N} do
15: Compute aggregation scores f((βj

1, . . . , β
j
nE

)) ∈ Rp

16: Aj
nE
← f((βj

1, . . . , β
j
nE

))

17: Compute decision support g(Aj
nE

) ∈ {0, 1}p
18: Sj(nE)← g(Aj

nE
)

19: end for
20: Compute the selection probability of each feature ΠnE ∈ Rp

21: ΠnE ← 1
N

∑N
j=1 S

j(nE)
22: end for
23: Sstable ← {k : max

nE∈{1,...,20}
ΠnE

k > πthr} ▷ stable associations

Output Sstable

(a) DAA

(b) ensembling

(c) Stability
selection
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D.2 Finding associations with a weighted r-DAA

Algorithm 2 r-DAA using a RSA weighted average function for aggregation
Input R: a set of ROIs

M : a set of metrics
S: a set of eCRF scores
X: a set with N random train (2690)/ left-out (301) splits

1: p← |R| ∗ |M | ∗ |S| ▷ num of features
2: nE ∈ {1, . . . , 20} ▷ num of models
3: N ← 100 ▷ num of splits
4: πthr ← 0.4 ▷ stability path thr
5: for j ∈ [1, N ] do
6: xj

train, x
j
left-out ← X[j] ▷ a random split

7: for nE ∈ {1, . . . , 20} do
8: Fit a MoPoEj

nE
model on xj

train using init random weights θnE

9: Compute the DAA with xj
left-out association weights βj

nE
∈ Rp

10: Compute the left-out subjects pairwise joint latent representation dissimilarity matrix
Cj

nE
∈ R301×301

11: Cj
nE
← [distance(zi, zk) for (i, k) ∈ {1, . . . , 301}2] ∈ R301×301

12: for s ∈ S do
13: Compute the left-out subjects pairwise eCRF score dissimilarity matrix Sj

nE
∈

R301×301

14: Sj
nE
← [distance(si, sk) for (i, k) ∈ {1, . . . , 301}2] ∈ R301×301

15: Compute the Kendall τ jnE
(s) ∈ R between upper triangular parts of Cj

nE
and Sj

nE

16: end for
17: Compute average Kendall τ jnE

∈ R across the eCRF scores
18: τ jnE

← 1
|S|

∑
s∈S τ jnE

(s)

19: end for
20: end for
21: f ← weighted mean function ▷ aggregation func
22: for nE ∈ {1, . . . , 20} do
23: for j ∈ {1, . . . , N} do
24: Compute aggregation scores f((βj

1, . . . , β
j
nE

), (τ j1 , . . . , τ
j
nE

)) ∈ Rp

25: Aj
nE
← f((βj

1, . . . , β
j
nE

), (τ j1 , . . . , τ
j
nE

)) = 1
nE

∑nE

i=1 τ
j
i β

j
i

26: Compute decision support g(Aj
nE

) ∈ {0, 1}p
27: Sj(nE)← g(Aj

nE
)

28: end for
29: Compute the selection probability of each feature ΠnE ∈ Rp

30: ΠnE ← 1
N

∑N
j=1 S

j(nE)
31: end for
32: Sstable ← {k : max

nE∈{1,...,20}
ΠnE

k > πthr} ▷ stable associations

Output Sstable

(a) DAA

(b) ensembling

(c) Stability
selection
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E Additional stability plots

(a) Coefficients

(b) Stability paths using uniform ensembling (c) Stability paths using weighted ensembling

Figure S3: Investigation of the ROIs associated with SDQ in area. Each line corresponds to a ROI, dotted black
ones are not selected as below the threshold πthr = 0.4 when using as ensembling function a mean weighted by
model ratings. The ROIs selected are colored and the color is consistent across the plots. The red horizontal dotted
line highlights the threshold πthr = 0.4. (a) Aggregated coefficients with a simple mean for a given split over the
N = 100 splits, plotted against the number of models aggregated with the mean. (b) Feature wise stability Π when
using an uniformly weighted mean to aggregate the coefficients output from r-DAA for each model, against the number
of models used. (c) Same as the last one, except that the mean was weighted using model ratings. The latter strategy
is used to select the ROIs associated in area with the SDQ score, with Π > πthr = 0.4.
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F All associations

Score SRS SCARED ARI SDQ ha
Metric
Thickness L.G.Te.Mid L.Ci.Mid.Post L.FrMarg L.Ci.Mid.Post

L.Pole.Oc L.G.Ci.Post.Dors L.Ci.Mid.Post L.G.Pa.Sup
L.S.PeriCal L.G.Pa.Sup L.G.Oc.Te.Med.PH L.G.Precu
L.S.Te.Inf L.G.Te.Mid L.G.PostCe L.Pole.Oc

R.G.Te.Mid L.Pole.Oc L.G.Te.Inf L.S.Ce
R.Pole.Oc L.S.PeriCal R.G.Oc.Te.Med.PH L.S.PeriCal

R.S.PeriCal L.S.Te.Inf R.G.PostCe R.Ci.Mid.Post
R.S.PostCe R.G.Oc.Te.Med.PH R.G.Te.Inf R.G.Ci.Post.Dors

R.S.PreCe.Inf. R.G.Pa.Sup R.Lat.Fis.Ant.Vert R.G.Ins.St
R.S.Te.Inf R.G.Te.Mid R.Pole.Te R.G.Oc.Te.Med.PH

R.Pole.Oc R.S.Fr.Inf R.G.Pa.Sup
R.S.Inter.Prim.Jens R.S.Fr.Mid R.Pole.Oc

R.S.PeriCal R.S.Ce
R.S.PreCe.Inf. R.S.PostCe

R.S.Te.Inf

Meancurv L.Ci.Mid.Post L.Ci.Mid.Post L.G.Ins.St L.G.Ci.Post.Dors
L.G.Ci.Post.Dors L.G.Ci.Post.Dors L.G.SubCal L.G.Ins.Lg.S.Cent.Ins
L.G.Ci.Post.Ventr L.G.Ci.Post.Ventr L.G.Te.Sup.Pl.Pola L.G.Te.Sup.Pl.Pola

L.G.Te.Sup.Pl.Pola L.G.Te.Sup.Pl.Pola L.S.Oc.Te.Med.Ling L.S.Ci.Marg
L.S.Ci.Marg L.S.Ci.Marg L.S.Pa.Oc L.S.Pa.Oc
L.S.PeriCal L.S.Pa.Oc L.S.PreCe.Sup. L.S.SubPa

R.Oc.Inf L.S.PeriCal R.Transv.FrPole R.Oc.Inf
R.Ci.Mid.Post R.Oc.Inf R.G.PostCe R.Ci.Mid.Post

R.G.Ci.Post.Ventr R.Ci.Mid.Post R.G.Te.Sup.Pl.Pola R.G.Oc.Te.Med.Li
R.G.Oc.Te.Med.Li R.G.Ci.Post.Ventr R.S.Ce R.G.Pa.Inf.Ang
R.G.Te.Sup.Pl.Pola R.G.Oc.Te.Med.Li R.S.PeriCal R.G.Pa.Inf.Supr

R.Pole.Oc R.Pole.Oc
R.S.Circ.Ins.Sup R.S.Circ.Ins.Sup

R.S.PeriCal R.S.PeriCal

Area L.Ci.Mid.Ant L.ParaCe L.Ci.Mid.Ant L.Ci.Mid.Ant
L.Ci.Mid.Post L.Ci.Mid.Ant L.Ci.Mid.Post L.Ci.Mid.Post
L.G.Fr.Inf.Tri L.Ci.Mid.Post L.G.PostCe L.G.Te.Sup.Pl.Te

L.G.Pa.Inf.Supr L.G.Te.Sup.Pl.Te L.G.SubCal L.S.Ce
L.G.SubCal L.Lat.Fis.Post L.S.Ce L.S.Ci.Marg

L.G.Te.Sup.Pl.Te L.S.Ci.Marg L.S.Ci.Marg R.Ci.Mid.Post
L.Lat.Fis.Post L.S.Orb.Med.Olfact L.S.Te.Sup R.G.Pa.Inf.Supr
L.S.Ci.Marg R.Ci.Mid.Post R.Ci.Mid.Post R.G.PreCe

L.S.Circ.Ins.Inf R.G.Rect R.G.PreCe R.G.Te.Sup.Pl.Te
L.S.Fr.Inf R.G.Te.Sup.Pl.Te R.S.Ce R.Lat.Fis.Post

R.Ci.Mid.Post R.S.Ci.Marg R.S.Ci.Marg R.S.Ce
R.S.Ci.Marg R.S.Orb.Med.Olfact R.S.Ci.Marg

R.S.Circ.Ins.Inf R.S.PeriCal R.S.PeriCal
R.S.PeriCal

Score CBCL ab CBCL ap CBCL wd
Metric
Thickness L.G.Oc.Te.Med.PH L.FrMarg L.Ci.Mid.Post

L.G.PostCe L.Ci.Mid.Post L.G.Pa.Sup
L.G.Te.Inf L.G.Oc.Te.Med.PH L.Pole.Oc
L.Pole.Oc L.G.Te.Inf L.S.PeriCal
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L.S.Fr.Inf L.S.Fr.Mid L.S.PreCe.Sup.
L.S.PeriCal R.Ci.Mid.Post L.S.Te.Inf
L.S.Te.Inf R.G.Ci.Post.Dors R.Ci.Mid.Post

R.G.Oc.Te.Med.PH R.G.Ins.St R.Pole.Oc
R.G.PostCe R.G.Oc.Te.Med.PH R.S.Ce
R.G.Te.Inf R.G.Te.Inf R.S.PostCe

R.G.Te.Mid R.Pole.Te R.S.PreCe.Inf.
R.Lat.Fis.Ant.Vert R.S.Ce

R.Pole.Oc R.S.Fr.Mid

Meancurv L.Ci.Mid.Post L.G.Ci.Post.Dors L.ParaCe
L.G.SubCal L.G.Ins.Lg.S.Cent.Ins L.G.Ci.Post.Dors

L.G.Te.Sup.Pl.Pola L.G.SubCal L.G.Ins.Lg.S.Cent.Ins
L.S.Pa.Oc L.S.Ci.Marg L.G.Te.Sup.Pl.Pola

L.S.PeriCal L.S.Pa.Oc L.S.Ci.Marg
L.S.PreCe.Sup. L.S.SubPa L.S.Pa.Oc

R.ParaCe R.G.Oc.Te.Med.PH R.Ci.Mid.Post
R.Ci.Mid.Post R.G.Pa.Inf.Ang R.G.Oc.Te.Med.Li

R.G.Te.Sup.Pl.Pola R.G.Pa.Inf.Supr R.G.Pa.Inf.Ang
R.S.Circ.Ins.Sup R.G.PostCe R.Pole.Oc

R.S.PeriCal R.S.Ce R.S.Ci.Marg
R.S.Fr.Sup R.S.PeriCal

Area L.Ci.Mid.Ant L.Ci.Mid.Ant L.ParaCe
L.Ci.Mid.Post L.Ci.Mid.Post L.Ci.Mid.Ant
L.G.Fr.Inf.Tri L.S.Ce L.Ci.Mid.Post
L.G.PostCe L.S.Ci.Marg L.G.Fr.Inf.Tri
L.G.SubCal L.S.Te.Sup L.G.Te.Sup.Pl.Te
L.S.Ci.Marg R.Ci.Mid.Post L.Lat.Fis.Post

L.S.Fr.Inf R.G.Fr.Mid L.S.Ci.Marg
L.S.Te.Sup R.G.Oc.Te.Med.PH L.S.Circ.Ins.Inf

R.Ci.Mid.Post R.G.PreCe L.S.Fr.Inf
R.S.Ci.Marg R.G.Te.Sup.Pl.Te R.Ci.Mid.Post

R.S.Circ.Ins.Inf R.S.Ce R.G.Pa.Inf.Supr
R.S.Ci.Marg R.G.PreCe

R.G.Te.Sup.Pl.Te
R.Lat.Fis.Post
R.S.Ci.Marg
R.S.PeriCal

Table 2: Retained associations for each score and metric. Blue indicates a negative association and red denote a
positive one. L: left, R: right, S: sulcus, G: gyrus, Lat: lateral, Ci: cingul, Pa: parietal, Ce: central, Oc: occipital,
Te: temporal, Fr: front, Orb: orbital, Ins: insula, Post: posterior, Mid: middle, Ant: anterior, Med: medial, Sup:
superior, Inf: inferior, Ventr: ventral, Dors: dorsal, PostCe: postcentral, PreCe: precentral, ParaCe: paracentral,
PeriCal: pericallosal, Marg: marginal, Pl: plan, Tri: triangular, Circ: circular, Supr: supramarginal, Ang: angular, PH:
parahippocampal, SubPa: subparietal, Transv: transverse, FrPole: frontopolar, Pola: polar, SubCal: subcallosal, St:
short, Fis: fissure, Olfact: olfactory, Rect: rectus, Precu: precuneus, FrMag: fronto-marginal, FrMarg: frontomargin,
Inter: intermedius, Li: lingual, Jens: Jensen, Vert: vertical, Prim: primus.
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