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Abstract—Network communication has been proven to be a
very important tool and a key factor in the recent development
and progress of the power grid operation. It is also considered as
the foundation for the smart grid because information and com-
munication are integrated into electricity distribution to achieve
reliable and accurate knowledge of the power grid. In previous
years, absorbing energy from substations and delivering it to
customers was the only type of interaction we knew between
utility companies and customers. Presently, the growing connec-
tions of small distributed generation units caused by the cost
reduction of most of the technologies used in the generation and
storage of electrical energy, along with the potential benefits of
renewable energy have pushed many researchers to look into the
improvement of information and communication technologies
(ICT) in order to ensure a bidirectional flow of power and
data. Moreover, the evolution of information and communication
technologies and its applications to smart grid have converted
the smart grid into a cyber-physical system where vulnerabilities
and additional security challenges such as cyber-threats and
cyber-attacks have emerged. Previously, we have demonstrated
that using machine learning-based processing on data gathered
from communication networks and the power grid was a
promising solution for detecting cyber threats by implementing
a co-simulation of cyber-security for cross-layer strategy. Since
the majority of the challenges observed can only be solved in the
network communication layer, we present in this work a physics-
based state estimation model of the communication network
system towards enhanced cyber-physical security of the smart
grid. Information integration with the previously developed
machine learning model is developed, providing an enhanced
cyber-physical security application for the smart grid. Easy-to-
implement model, without hard-to-derive parameters, highlights
potential aspects of the model for real-life applications.

Index Terms—cyber-physical security, information and com-
munication technologies, power grid, renewable energy

I. INTRODUCTION

Data collection is the foundation for development, progress
and reliable operation, and it is not different for the smart
grid. Wide Area Measurement System (WAMS) in the smart
grid is responsible for the collection of data pertaining
to the status and the health of the grid. It combines the
functions of metering and communication devices to collect
data in wide geographical areas and transmit them to control
centers for processing and decision making. In the previous
years, utilities mostly used the Supervisory Control and Data
Acquisition systems also known as SCADA to monitor and
control the power grids. In [1] the authors described how this
system works and the challenges encountered by using it. The
SCADA system gathers data measured by the Measurement
Devices (MDs) from the Remote Terminal Units (RTUs), then
transfers them to the Programmable Logic Controllers (PLCs)
which interact with the Intelligent Electronic Devices (IEDs)
to operate the systems. Unfortunately, SCADA can only

process data every 2 to 4 seconds. This lack of performance
and the need for real-time data has led to the development
of the phasor measurement units also known as PMUs. PMU
and micro PMU equipment not only transmit data every 20
to 40 milliseconds but also generate them based on GPS time
synchronization signal [2]. To ensure a secure transmission
of such big amount of data, and uncover hidden patterns
that could be due to cyber-attacks, we have implemented
the state estimation of the network communication layer.
In our simulation we have created a 14 bus power system
communication network using sim-component, and we have
measured certain metrics to estimate certain state variables
that define the state of the network and that can help prevent
cyber-attacks.

In our previous studies [3]–[6], we explored the use of
cross-layered data from both the power grid and commu-
nication layer in order to create our Cross-Layer Ensemble
CorrDet with Adaptive Statistics (CECD-AS) model which
allowed for the greater identification and classification of
various cyber attacks versus other models. We proposed three
controllers, logically distributed software-defined networking
(SDN) controller layer as a possible underlying architecture
to manage the dynamic communication needs of a smart grid
[4], [7]. Our previous study [6], documented the increased
resilience to DoS attacks of a distributed SDN control layer
provides in comparison to other singular controller architec-
tures in literature. This work is a continuation of our previous
work [6] by further increasing the security of the networking
layer by incorporating network state estimation to predict
the current status of the communication layer. The specific
contributions of this paper are as follows:

• A communication layer state estimation model to en-
hance cybersecurity of a flat SDN architecture for smart
grids.

• A hybrid physics-based data-driven SDN model for
cybersecurity.

The remainder of the paper is organized as follows. Section
II discusses a theoretical background on state estimation,
the communication network layer and its associated network
statistics. Section III describes a model for estimating the
state of the communication network layer. A case study
is presented in section IV. Section V presents concluding
remarks.

II. BACKGROUND INFORMATION

A. Physics-Based State Estimation

The power grids spanning across different geographical
areas mostly consider the Wide Area Network (WAN) for
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Fig. 1: Network State Estimation Distributed, Flat SDN
Controller Architecture

communication. State estimation of the communication layer
of the smart grid is thereby critical to guarantee the cyberse-
curity CIA triad, Confidentiality, Integrity, and Availability.
The physics-based estimation of the state of the communica-
tion layer is done by utilizing the Weighted Least Squared
(WLS) method as in the method described in [3]. While the
main objective of the state estimation measurement model
for the power grid is to minimize the weighted sum of
the square differences between the estimated state variables
and their corresponding measurements, we use the same
method to determine the state of communication network
nodes while considering the uncertainties associated with the
measurements from the communication layer. The relation-
ship between measurements and state variables is expressed
as follows.

z = h(x) + e (1)

Where z ∈ R1×d is a vector of measurements from the
communication layer, x ∈ R1×N is a vector of state variables,
h : R1×N → R1×d is a continuously non-linear differentiable
function relating the measurements with the state variables,
and e is the measurements error vector. Note that d is the
number of measurements and N is the number of states.

As mentioned in [3] the classical WLS approach shows
that the best estimate of the state vector in (1) is found by
minimizing the cost function J(x):

J(x) = ∥z− h(x)∥2R−1 = [z− h(x)]TR−1[z− h(x)] (2)

where R is the covariance matrix of the measurements.
In this paper, 1% of the measurement magnitude is used

for the standard deviation of each measurement [8]. After
we perform the gross error detection process, we then move
to step 2 of the state estimation process by determining
mathbfH which is given by H = ∂h

∂x .
H is the Jacobian matrix of h at the current state estimate

x∗. ∆z = z − h(x∗) = z − z∗ is the correction of the
measurement vector, and ∆x = x−x∗ is the correction of the
state vector. Considering (3), after obtaining the Jacobian, we
can find the solution of the WLS by performing the projection
of ∆z onto the Jacobian space by a linear projection matrix
P [9].

∆z = H∆x+ e (3)

With ∆z = P∆ẑ, if r = ∆z −∆ẑ is the residual vector,
the P matrix that minimizes J(x) will be orthogonal to the
Jacobian range space and to r; ∆ẑ = H∆x̂. This allows us
to deduct (4) and (5), as follows:

⟨∆ẑ, r⟩ = (H∆x̂)TR−1(∆z−H∆x̂) = 0. (4)

Solving (4) for ∆x̂:

∆x̂ = (HTR−1H)−1HTR−1∆z. (5)

As we run our simulation, each set of measurement for
a particular node is considered as an iteration, and at each
iteration, a new solution is obtained for the state variables.
It is important to note that (5) is solved for each iteration,
and we expect to stop when the solution converges. We can,
as a consequence, express the new state variable vector as
follows:

x∗
new = x∗ +∆x̂. (6)

∆x̂ = (HTR−1H)−1HTR−1 (7)

This work considers measurements that are descriptive
of the communication network with respect to time. These
measurements are mainly the inter-arrival time, packet count,
transmission delay, and round trip time. Inter-arrival time is
defined here as the time interval between successive packet
arrivals at a network node or between network nodes. We
define packet count as the number of packets arriving at a
network node, and because our network is based on packet
switching, transmission delay is the time it takes to push all
packet’s bits into the network links, which is why we define
the data rate in our simulation codes. Also, the round trip time
is the time it takes to send packets to a destination node plus
the time it takes to receive acknowledgment of the packets.
Although considered as a state variable, we also measure the
mean waiting time in the queue for each node during traffic
since our equation for packet count and round trip time is a
function of that parameter. The other state variables taken into
account to determine the state of the communication layer are
the average arrival rate, and the average service rate. We will
make the assumption that all the nodes are at a set distance
to each other which allows us to consider the propagation
delay as constant.

B. Communication Network Statistics

Based on the nature of the network parameters considered
in this paper, the communication layer is modeled following
the M/M/c queuing model where c≥1 as in [10]. In this
designation M means exponential distribution and c is the
number of servers. The first M defines the distribution of
the arrival rate, the second M defines the distribution of
the service time. In this model, the arrival of packets is
assumed to follow a Poisson process with an arrival rate, λ,
and the service time of the server for the arriving packets is
exponentially distributed with a service rate, µ. The average
inter-arrival time measurement (IAT) corresponds with the
successive time intervals for packet arrivals, which is inde-
pendent and exponentially distributed. It is expressed in (8)
as follows:

IAT =
1

λ
(8)
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The packet count (PC), which is the number of packets
arriving within a time interval, [0,T] is independent, and T
is considered as the total waiting time in the system. The
number of packet arrivals can be formulated as in (9) or
considering W as the mean waiting time in the system as
in (10) :

PC = λT (9)

PC = λW (10)

The transmission delay (TD) in this context is assumed to cor-
respond with service time, which is exponentially distributed.
The average transmission delay measurement is given in (11)
as:

TD =
1

µ
(11)

The average round trip time (RTT) measurement from
a source node to a destination node for both forward and
reverse paths is considered to contain three delay components,
namely, propagation delay, transmission delay, and queuing
delay. The three delay components in the round trip time
measurement are assumed to be independent with an expo-
nential distribution. The average round trip time measurement
is expressed in (12).

RTT = α+
1

µ
+Wq (12)

Where α is the propagation delay, which is the time it takes
a packet to traverse a network link from the source node to
the destination node, and Wq is the mean waiting time in
the queue. As mentioned above the mean waiting time in the
system is W and is expressed as W = 1

µ + Wq . The mean
waiting time in the queue, Wq is expressed as Wq = 1

µ−λ

similar to [11]. The propagation delay is given as α = d
s

where d is distance and s is the wave propagation speed of
the network link.

III. COMMUNICATION NETWORK LAYER STATE
ESTIMATION MODEL

A. State Estimation Measurement Model

State estimation was introduced to power systems in 1970
by Fred Schweppe [12]. Back then, he defined it as a data
processing algorithm that allows the conversion of meter
readings and other available information into an estimate of
the state of an electric power system. The WLS approach,
based on this work, is widely used in the world today and
it is an essential part in almost every energy management
system [13]. State estimation is mostly needed because of
the uncertainties in the measurements due mainly to the im-
perfections in devices like current and voltage transformers,
transducers responsible for analog to digital conversion and
tuning, RTU and IED data storage, and communication links.
Imperfections are also obtained because of approximations in
calculations, and the limits observed in the SCADA system
itself where measurements are not in real-time, and can
be missing for more than a second. Despite the usefulness
of the state estimation method, it does not come without
challenges that limit the development of a robust smart
grid. Power system models contain errors, perception of
the state estimation is to a large extent from measurements
that are out of control, and most importantly, the quality
of estimates relies on the ICTs infrastructure input. This

leads to the development and the improvement of information
and communication technologies modeling, crucial for the
purpose of estimating the current state of the grid, hence
the development of the communication layer state estimation
model that is presented in this work.

During the communication layer state estimation process,

we aim to obtain the state variables vector x =

{
λ

µ

using a set of measurement z =


IAT

TD

PC

RTT
Since our system is observable, we can obtain non-linear
functions to map x into z, as z = h(x), which leads to (13).

z =



IAT

PC

TD

RTT


= h(x) =



1
λ

λW

1
µ

α+ 1
µ +Wq


(13)

B. Cross-Layered Framework for Enhanced Smart Grid
Cyber-Physical Security

An observation made is that the smart grid infrastructure is
depending more on communication networks. This has led the
authors of [14] to consider a cross-layered strategy that com-
bines power grid data, communication grid monitoring, and
machine learning-based processing to detect cyber threats.
As stated in this paper most attacks consist of False Data
Injection (FDI) which modifies the measurements used by
the state estimation. It is asserted that the advantage of the
framework is the augmentation of valuable data that enhances
the detection of anomalies in the operation of the power grid.

Hybrid physics-based data-driven SDN model for cy-
bersecurity: The second novelty introduced in this work
lies in the combination of the physics-based approach for
the communication network state estimation described in
III-A with the data-driven method, Cross-layer Ensemble
CorrDet with Adaptive Statistics (CECD-AS). The physics-
based and data-driven methods for anomaly detection in the
communication network layer reside in the control plane of
the Software Defined Network (SDN) based smart grid archi-
tecture as illustrated in Figure 1, which has been extensively
discussed in our previous work [6]. The Cross-layer Ensemble
CorrDet with Adaptive Statistics is the data-driven approach
considered for identifying and detecting anomalies in the
communication network layer of the smart grid. CECD-AS is
an extension of the CorrDet algorithm and comprises multiple
CorrDet detectors in each local environment for anomaly
detection. The CECD-AS learns the measurement statistics
for each network node, and the learning process in the CECD-
AS involves estimating the mean, µm and inverse covariance
matrix, Σ−1

m from the normal training samples. For each
new sample, zm, a set of squared Mahalanobis distances,
δECD
m is calculated as in [10] using (14) and compared

with corresponding thresholds, Tm. The sample is classified
as anomalous if any of the squared Mahalanobis distances
exceeds its threshold.
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δECD
m (zm) = (zm − µm)

T
Σ−1

m (zm − µm) (14)

Otherwise, this sample is classified to be normal, and the
mean, µm and inverse covariance matrix, Σ−1

m are updated
using the Woodbury Matrix Identity [15]. The CECD-AS
uses an adaptive threshold, which is updated in an online
sliding window fashion [10], unlike the fixed threshold in
the CorrDet detector.

The hybrid physics-based data-driven model provides a
combined distance measure, where J(x) described in Section
II forms a portion of the combined distance measure obtained
from the physics-based communication network state estima-
tion and δECD

m (zm) covers the other portion of the combined
distance measure from the data-driven model, CECD-AS.

Jcomb = J(x) + δECD
m (zm) > χ2

(d−N),p (15)

The combined distance measure obtained from the hybrid
model is compared with a threshold value, χ2

(d−N),p, which
is based on the confidence level as expressed in (15), where
(d − N) denotes the degrees of freedom and p is the
probability with a value of 0.97, similar to [16]. A given
sample is classified to be abnormal if the threshold value is
exceeded.

The pseudo-code for the proposed measurement model
algorithm is shown in Algorithm 1.

Algorithm 1 Communication Layer Measurement Model
algorithm

1: Define packets arrivals, sample, and acknowledgment
packets sample distribution:

2: Define switch port data rate, and queue size limit:
3: for The duration of the simulation do
4: for Every test sample node 1 to node 14 do
5: Create simpy environment
6: Create packet sink for receiving nodes
7: Create packet generator for transmitting nodes
8: Create switch port with virtual clock for queue

and service monitoring
9: Transmit packets from generator to sink

10: Measure IAT, PC, RTT, TD, and Wq

11: end for
12: while receiving node number is less than 14
13: Transfer sample of packets to subsequent nodes till

node number reaches 14
14: Append IAT, TD, PC, RTT, and Wq lists
15: end for
16: Create CSV files with measured lists

IV. CASE STUDY

During the simulation, to accurately measure the metrics
presented in section II.B we made the assumption that the
arrival rate of packets is exponentially distributed, and we
have coded the simulation accordingly. The measurement
result obtained for inter-arrival time for each sequence of
packets transferred have proven to also have an exponential
distribution when plotted. This result was expected based on
the theories elaborated in [11]. We can therefore conclude that
our process is a Poisson process for queuing systems since
the inter-arrival times and arrival rates meet the requirement
for Poisson distribution. We obtain then (8) considering the
Markov property also demonstrated in [11].

Furthermore, for packet count if we consider Little’s for-
mulas where steady state mean system size is related to
average waiting time, our assumptions of Poisson arrivals,
exponential service times, and queue stability will allow us
to determine the size of our queue, the size of our packets,
and thus the packet count in service if we consider steady
states which lead to (8) and (10). During simulation on Sim-
Component, we defined in our python code a constant queue
limit and port rate that we can modify later in order to
monitor and analyze our queue if packets are being dropped
too quickly.

Fig. 2: 14 Bus Network Architecture

We also had to assume c = 1 in our simulation in order
to established a baseline for that new measurement model.
As we can see in the previous sections, our equations do not
take into consideration any value for c. In future works, we
will implement the code to simulate with multiple servers and
show with more emphasis the benefits of SDN and M/M/c in
obtaining a strong, robust and intelligent power grid.

Our simulation ran with a network of 14 nodes arranged
as shown in Figure 2.

Fig. 3: χ2 under Normal Operation

To demonstrate the effectiveness of the proposed net-
work state estimation model, we provide a residual plot
in Figure 3 of the measurement value, packet count (PC).
Figure 3 presents the results of the χ2, considering further
an experimental uncertainty N (0, σ2), where the σ is the
experiment uncertainty standard deviation equal to 1% of the
measurement value.
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As one can see, these results highlight the χ2 calculated
every new batch of measurements arrive. Considering the
experimental uncertainty, the dynamics seen in the calculated
χ2 are expected.

Figure 4 otherwise displays the χ2 after the effects of a
simulated cyber-attack. The red line demonstrates the results
of the chi-square test for 99% confidence level with an
assumed 97 degrees of freedom, d − N , where N denotes
2 state variables and d is equal to 99 measurements.

In this simulation, the attack was modeled as false data
injection at the measurement vector at sample batch 42. The
false data injection is modeled as an added N (0, σ2

mod) to the
measurement set, where σmod is a standard deviation equal
to 5% of the measurement value.

As one can see from Figure 4, at this sample batch number,
the calculated χ2 goes immediately over the threshold value
of 67.562. Still, the χ2 value, after sample batch 42, is then
estimated smaller than the threshold value, as expected.

These results would enable the network operator to esti-
mate the state of the network layer and detect the presence
of the cyber-attack within a 99% confidence level.

Fig. 4: χ2 under Cyberattack Condition

V. CONCLUSION

In this work, a communication layer state estimation model
is presented. Further, an enhanced cyber-security application,
embedding the state estimation model and a machine learning
solution is introduced. An augmented χ2 test is introduced
for information fusion. The smart grid is becoming a cyber-
physical system with more vulnerabilities and additional
security challenges that can only be solved at the commu-
nication layer level. In that optic, we have developed a new
physics-based measurement model to estimate the state of
the communication layer to quickly detect cyber-threats and
manage the health of the network. Promising results highlight
complementary aspects of the cyber-security application. We
have performed a simulation on SimComponent to estimate
the values of communication layer state variables, that are
very descriptive of the state of the communication network.
A case study with and without false data injections on the
measurement vector has been presented. Test results indicate
that the state estimation measurement model can estimate
the state of the communication network layer and detect the
presence of cyber attacks with a 99% confidence level. This
is a great improvement towards the state-of-the-art. Further
analysis of different cyber-attacks types as well as scalability

aspects of the measurement model are currently being under
investigation.
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