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Abstract—Traditional load shedding schemes can be inad-
equate in grids with high renewable penetration, leading to
unstable events and unnecessary grid islanding. Although for
both manual and automatic operating modes load shedding areas
have been predefined by grid operators, they have remained fixed,
and may be sub-optimal due to dynamic operating conditions.
In this work, a distributed tri-level linear programming model
for automatic load shedding to avoid system islanding is pre-
sented. Preventing islanding is preferred because it reduces the
need for additional load shedding besides the disconnection of
transmission lines between islands. This is crucial as maintaining
the local generation-demand balance is necessary to preserve fre-
quency stability. Furthermore, uneven distribution of generation
resources among islands can lead to increased load shedding,
causing economic and reliability challenges. This issue is further
compounded in modern power systems heavily dependent on non-
dispatchable resources like wind and solar. The upper-level model
uses complex power flow measurements to determine the system
areas to shed load depending on actual operating conditions using
a spectral clustering approach. The mid-level model estimates
the area system state, while the lower-level model determines the
locations and load values to be shed. The solution is practical
and promising for real-world applications.

Index Terms—Automatic load shedding, intentional control is-
landing, linear programming, phasor measurement units, spectral
clustering, state estimation.

I. INTRODUCTION

W ITH the increasing penetration levels of distributed
energy resources (DERs) and the decommissioning of

conventional generating units due to efforts in decarbonization
policies and grid modernization, power system operations are
becoming highly complex [1]. DERs are typically connected
through inverters, which poses technological challenges to
grid operation [2]. Fast and reliable protection systems are
crucial for stabilizing power system dynamics and prevent-
ing blackouts. Phasor measurement units offer opportunities
for advanced wide-area measurement protection and control
(WAMPAC) systems, but traditional hierarchical communica-
tion architectures might not meet real-time requirements.

Load shedding is the last resort to maintain system reliabil-
ity and avert blackouts caused either by power capacity short-
ages or stability issues [3]. Current load-shedding schemes
comprehend manual and automatic approaches [4], [5]. In
manual operating mode, operators notify utilities of antici-
pated stressful conditions, leading to planned load shedding.

Automatic load shedding otherwise employs under-frequency
relays at substations. Loads are shed in predefined stages based
on peak net load estimates. Although the existing framework
has ensured reliability, it may yield sub-optimal outcomes
in power grids with high renewable penetration. Advanced
load-shedding solutions with centralized architectures face
challenges in real-life applications due to communication
technology latency.

To address these issues, [6] presented a bi-level linear
programming model for automatic load shedding utilizing
a distributed architecture while leveraging data from pha-
sor measurement units (PMU). Although this model shows
promising results for real-world applications, two strong as-
sumptions were made: when determining system areas for
load shedding, they were previously user-defined and after
kept static. Regularly, determining areas to shed load requires
the grid operator’s knowledge of the system and system
disturbance identification. However, recent advancements in
related fields like intentional control islanding [7], have used
the system topology, the admittance matrix, or transmission
line ratings to pinpoint these areas [8], [9]. Nevertheless,
these parameters remain constant in any power system and
ignore the dynamic operating conditions introduced by DERs.
To overcome this challenge, in this work PMU power flow
measurements are considered in an upper-level model to
determine system areas best to shed loads. Spectral clustering
is used towards model solution. This information is then sent
to a mid-level model, which employs a distributed weighted
least squares constrained approach to estimate the system state.
Decision variables at the mid-level model are then integrated
into the lower-level model, which uses system estimated state
to determine the optimal location and the load to be shed in
each area. The key contributions of this work are:

• A formal linear programming tri-level model for under-
frequency load shedding using a distributed architecture;

• The determination of optimal areas to shed load according
to the system’s actual operating and disturbance condi-
tions.

The remaining of the paper is organized as follows. Sec-
tion II presents the tri-level model. A study case using the
IEEE 14-bus test system is presented in Section III, while
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conclusions and future research topics are contained in Sec-
tion IV.

II. TRI-LEVEL MODEL

The proposed tri-level linear programming model is com-
posed of upper-level, mid-level, and a lower-level model.
A schematic illustration is shown in Fig. 1. In contrast to
traditional algorithm execution on a centralized computer that
has communication capabilities with the load-shedding relays,
we envision our application on an energy management system
(EMS) that will be running in the server of the utility consid-
ering critical infrastructure protection (CIP) zones. The North
American Electric Reliability Corporation (NERC) defines the
CIP zones to ensure the protection of assets used to operate
North America’s bulk electric systems.

A. Upper-Level Model

The upper-level model estimates best system areas to shed
load according to operating and disturbance conditions. These
areas are determined and continuously updated in less than
t < 90ms complying with the range of PMU processing
times [10]. To avoid communication issues during fault events,
the model uses the most recent set of PMU power flow
measurements prior to a disturbance to construct the network’s
graph representation, which is essential for area determination.

1) Determining k-Shedding Areas: To determine areas
where load can be shed according to actual operating con-
ditions, we first need to build the power flow-based graph
Laplacian matrix W . For this, we represent the power grid as
an undirected graph, denoted as G = (V, E). The set of buses
is V = {1, 2, ..., n}, where n is the total number of buses.
The set of edges is E ⊂ V × V , where (i, j) ∈ E represents
an edge connecting buses i and j. Edges can be transmission
lines or transformers. For a network with n buses, the weighted
adjacency matrix of the graph is

W =

 0 ω12 · · · ω1n

...
...

. . .
...

ωn1 ωn2 · · · 0

 , (1)

where ωij represents an edge weight as a non-negative func-
tion ω : V × V→ R+ such that

• ωi,j = 0 if (i, j) /∈ E, i.e., vertices i and j are not
connected by and edge.

• ωi,j = ωj,i if i ̸= j, i.e, edge directions are ignored since
G is undirected.

Power Flow Weighted Matrix. In this work, complex power
flow (in MVA) measurements are used to define edge weights.
To avoid any specific weight from leading to inaccurate clus-
tering results due to fluctuating operating conditions reflected
in the complex power flow magnitudes, we transform the
resulting matrix W into a normalized Laplacian matrix.

Graph Laplacians. In this work, we use the normalized
symmetric graph Laplacian matrix Ln, which is commonly
employed for clustering purposes (see [8], [9] and references

therein). The entry-wise definition of both the unnormalized
(2) and normalized (3) graph Laplacian matrices follows:

Lij =


di if i = j

−1 if i is adjacent to j

0 otherwise,
(2)

where di = ω(i, i) =
∑n

j=1 ω(i, j) is the degree of the ith
vertex. This is closely related to the adjacency matrix and is
sometimes written as L = D−W , where D is defined as the
diagonal matrix with weighted vertex degrees d1, · · · , dn on
the diagonal (i.e., di). The normalized graph Laplacian matrix
Ln is defined as:

Ln = D−1/2LD−1/2 = I −D−1/2 ×W ×D−1/2. (3)

The eigenvalues of the normalized Laplacian matrix satisfy the
inequality 0 ≤ λLn

i ≤ 2 for all i [11]. The interested reader is
referred to [9] for a detailed explanation of the preference of
Ln over L in the power systems area.

2) Choice of Dimension: In situations where information
such as the number of coherent groups of generators in
the system is limited, a typical approach to determining the
number of areas to shed load involves calculating the ratio of
the absolute value of the difference between two consecutive
eigenvalues of Ln and their size. This parameter serves as a
similarity measure known as the relative eigengaps [11]:

γk,rel =
|λk+1 − λk|

λk
(k ≥ 2). (4)

The presence of favorable k-areas is indicated by a small
value of the kth eigenvalue, denoted as λk in the graph
Laplacian. Then, a high value of γk,rel means that a minimum
of k-shedding areas can be determined. This characteristic is
expected to be evident through the spectral embedding in the
k-dimensional space.

3) The Algorithm: In this work, we use the normalized
spectral clustering algorithm according to [12] with some
minor modifications.

Algorithm 1 The Spectral Clustering Algorithm.

INPUT: Matrix W ∈ Rn×n; parameter k.
Compute the normalized Laplacian Ln.
Compute the eigenvectors v1, · · · , vk
of the generalized eigenproblem Lnv = λDv
and take the first k eigenvectors
Let V ∈ Rn×k be the matrix containing the vectors
v1, · · · , vk as columns.
For i = 1, · · · , n let yi ∈ Rk be the vector
corresponding to the ith row of V .
Cluster the points (yi)i=1,··· ,n in Rk with k−means
or agglomerative clustering into areas C1, · · · , Ck.

OUTPUT: Areas A1, · · · , Ak with Ai = {j|yj ∈ Ci}

B. Mid-Level Model

This model estimates the system state in each of the k areas
determined by the upper-level model. For a power system
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Fig. 1. The Tri-level model for automatic load shedding using linear programming and spectral clustering.

comprised of n buses and m measurements, it is possible to
represent it as a collection of linear algebraic equations, as
follows (see [6] and references therein):

z = H(x) + e, (5)

where z ∈ Rm is the measurement vector, x ∈ RN is the state
variables vector, H(x) : RN −→ Rm, (m ≥ N) is a linear
function that relates the states to the measurements, and e is
the measurement residual vector with a Gaussian probability
distribution, zero mean, standard deviation σ, and N state
variables such that N = 2n− 1. We can now write (5) for k
areas, n buses, and m measurements as follows:

zk = Hk(xk) + e. (6)

The distributed weighted least squares (WLS) state estimator
aims to find optimal estimates of the system states xk by
minimizing the objective function Jk(xk):

Jk(xk) = e(zk, Hk)
T ∗R−1

k ∗ e(zk, Hk), (7)

where in area k, the residual vector e(zk, Hk) is represented as
(zk−Hk(xk)), and Rk stands for the measurement covariance
matrix of the kth area. Jk(xk) is essentially an L2-norm
in the measurements vector space Rmk of area k. Notice
that Rk for each area is a symmetric positive definite matrix
with diagonal elements determined by the magnitudes of the
corresponding measurements. The mid-level model’s decision
variables consist of the voltage angles of the buses within each
area. The overall objective cost function for the distributed
state estimation architecture is obtained by summing up the
individual objectives of areas k = 1, 2, 3.

min
xk∈χk,xkl

K∑
k=1

e(zk, Hk)
T ∗R−1

k ∗ e(zk, Hk) (8)

C. Lower-Level Model

The lower-level model utilizes the mid-level estimated sys-
tem states to determine both the location and the load to be
shed. The primary objective is to reduce the effects of load

shedding in the system. This is quantified by calculating the
mismatch between the current system state obtained from the
mid-level model, and the estimated state after implementing
load shedding. To achieve this, the L1-norm of the difference
between the current and the estimated system states is used.
The multi-objective optimization formulation of [6] has a
secondary goal: to minimize the load flows through the tie-
lines of the k areas. However, as a consequence of the spectral
clustering approach, this additional goal is unnecessary since
the algorithm already ensures that the system is divided into k
areas with tie-lines carrying the minimum complex power flow,
resulting in minimal energy disruption. The interested reader is
referred to [8] and references therein for a detailed explanation
of determining system areas considering minimum power flow
disruption. The formulation of the lower-level model corre-
sponds to a constrained linear optimization problem, expressed
as follows:

min
d∈Λ

ωlδl + ωpδp

s.t.
N∑
i=1

N∑
j=1

|∆Vij − gl| = δl

∆Vij = |V̂i − V̂j |+ |V̂out,i − V̂i|+ |V̂out,j − V̂j |
Srs − Slim

rs ≤ δp; δp ≥ 0
kl∑
i=1

di ≥ 0.9

kl∑
i=1

dmid,i;

S = XV,

(9)

where δl ∈ R is the distance to the primary goal (V̂out,i is
the mid-level model decision variable of bus i, and V̂i is
the estimated system state after load shedding, and gl is a
previously defined goal), ωl is its normalizing weight; δp is a
user-defined parameter, which represents the complex power
flow violation over the limit for each tie-line connecting the k
areas modeled as a soft constraint that penalizes the objective
function using a high value of ωp so that every area adjusts
its tie-line complex power flows to remain within the limits;
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Fig. 2. The relative eigengap, γk,rel, of L (left) and Ln (right).

Λ is the set of area loads; Srs is the complex power flow
between buses r and s; Slim

rs is the complex power flow
limit between buses r and s; d ∈ Rkl is the load shedding
vector, and kl is the area number of loads that can be shed;
dmid ∈ Rkl is the load vector estimated from the mid-level
model; S ∈ RN is the intra-area complex power injection bus
vector; X : RN−1 → Rm, (m > N), is a linear function that
relates the states to the measurements; and V ∈ RN−1 is the
state variables vector.

III. CASE STUDY

In this case study, the tri-level model is applied to the
IEEE 14-bus system for three operating conditions: maximum,
mid, and low demand. In all cases, the loss of the generator
connected at bus 8 is considered. Each area is considered to
have a measurement data set comprising 12 measurements
obtained from GridSandbox [13]. This results in a local global
redundancy level of four.

An under-frequency load shedding (UFLS) scheme is set
to operate once the frequency drops below 59.5 Hz, 59.1 Hz,
and 58.7 Hz by shedding 10% of the maximum demand with
a time delay of 14 cycles between frequency thresholds. The
preset value for gl in (9) is set to zero. All relay settings are
adapted from PJM’s automatic under-frequency relay setting
program [14]. For the study case, islanding schemes are
designed to activate after all three steps of the UFLS scheme
have been executed, and the frequency drops to 58.5 Hz or
below. This setting is based on the Southwest Power Pool’s
(SPP) automatic islanding scheme [15] for which no time-
delay is considered as in [16].
Obtaining the Number of Areas. Complex power flow
magnitudes in the system are used to update the weighted adja-
cency matrix W described in Section II-A1. Then, the relative
eigengaps of Ln are computed as described in Section II-A2.
Fig. 2 shows the relative eigengaps of L (left) and Ln (right)
for the power flow-based Laplacian of the IEEE 14-bus test
system for different operating conditions: maximum, mid, and
low demand.

The maximum values of γk,rel for the unnormalized and
normalized Laplacians among all operating conditions are
approximately 1.4 and 3.1 respectively. The violation of the
inequality constraint in (4) indicates that the unnormalized
Laplacian yields a poor similarity measure, aligning with
findings in [8], [9], [17]. Therefore, we will also use the

relative eigengaps of the normalized Laplacian matrix as a
reliable similarity measure. Then, γLn

k,rel = 3.1 suggests that
-at least- k = 3 shedding areas can be determined.
Determining the Buses by Area. By knowing the number
of areas we seek to find, the spectral clustering algorithm
described in Section II-A3 can be implemented to determine
and continuously update the system buses that belong to
each area. The resulting areas to shed load for all operating
conditions are depicted in Fig. 3 and specified in Table I.

TABLE I
SOLUTION FOR k = 3 SHEDDING AREAS BASED ON THREE OPERATING

CONDITIONS: MAXIMUM, MID, AND LOW DEMAND.

Loading Level Case A
Demand = Max.

Case B
Demand = 50%

Case C
Demand = 33%

Areas:
Blue/Green/Red A1 A2 A3 B1 B2 B3 C1 C2 C3

Bus Number

6 7 1 4 6 1 6 1 3
12 8 2 7 10 2 12 2 4
13 9 3 8 11 3 13 5 7
11 10 4 9 12 5 - 10 8
- 14 5 - 13 - - 11 9
- - - - 14 - - - 14

Fig. 3. k = 3 Shedding areas of the IEEE 14-bus system for three operating
conditions via spectral clustering.

Due to the lack of space, the tri-level model for automatic
load shedding is tested under a generator outage for the
maximum demand operating condition only (see case A in
Fig. 3 and Table I).

1) Scenario A - Generator outage with traditional UFLS
scheme: After generator at bus 8 is lost (at t = 1 seconds), the
frequency across the system rapidly drops, and complex power
flows over branches 4-9, 5-6, and 13-14 increase, as shown in
Fig. 4. Two of the flows exceed the threshold set for the relay,

Fig. 4. Scenario A: The complex power flow magnitudes over tie lines.

which is indicated by dashed lines of the same color. After a
short delay, these two tie-lines trip, causing another significant
increase in the power flow magnitude of branch 5-6, causing
it to trip as well. This leaves line 10-11 to be the only tie-line
connecting the system, which is rapidly overloaded and trip.
This cascading failure results in a frequency instability event
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Fig. 5. Top: Frequency response for scenarios A and B. Bottom: Load
shedding for scenario A (solid lines) and scenario B (dashed lines).

as shown in Fig. 5. This situation splits the system into three
unstable islands, with frequency dropping as illustrated.

2) Scenario B - Generator outage with the Tri-level auto-
matic load shedding model: With the same scenario as in A,
the presented tri-level model would handle the event faster and
more intelligently compared to a traditional UFLS scheme.

The tri-level model was able to proactively shed load at
the most impacted buses to arrest system frequency prior to
occurrence of significant deviations. As shown in Fig. 5, loads
at buses 6 and 11 in Area 1, as well as the load at buses 10 and
14 in Area 2 (see Table I) are shed over several short steps. As
we can see in Fig. 5 (see the frequency plot for scenario B),
this scheme successfully prevents the cascading failure seen
in the previous case, and brings the system frequency back to
stable operation.

Overshooting Drawback. Given the fact that the tri-level
model considers post-contingency predictive state estimates
instead of frequency measurements, it continues to shed addi-
tional load so that islanding is still likely to occur due to line
relaying, even though frequency appears to be recovering.

IV. CONCLUSIONS AND FUTURE WORK

In this work, a tri-level linear programming model for auto-
matic load shedding to avoid system islanding using spectral
clustering is presented. The upper-level model continuously
updates the k shedding areas considering minimum power flow
disruption using a spectral clustering approach. The system
state was estimated in the mid-level model by minimizing
the sum of the L2-norm of the measurement errors by area.
The decision variables of this level were embedded into
the lower-level model, which was formulated using a goal

programming framework for which the primary goal was to
minimize the impact of load shedding on the current system
state. A traditional load shedding solution was built, which
failed to respond quickly enough to prevent a cascading failure
while the presented tri-level model was able to determine k
shedding areas depending on the current operating condition
via a spectral clustering approach, identify the severity of the
event, and shed load to avoid a system islanding situation.
Topics for future research. Areas of future work include
adding a feedback control using the residual to correct the
model to get a better estimate of the system states and solving
the current overshooting issue as well.
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