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Abstract9

Proof assistants such as Coq implement a type theory featuring three important features: impredic-10

ativity, cumulativity and product covariance. This combination has proven difficult to be expressed11

in the logical framework Dedukti, and previous attempts have failed in providing an encoding that12

is proven confluent, sound and conservative. In this work we solve this longstanding open problem13

by providing an encoding of these three features that we prove to be confluent, sound and to satisfy14

a restricted (but, we argue, strong enough) form of conservativity. Our proof of confluence is a15

contribution by itself, and combines classic and modern criteria from higher-order rewriting theory.16

Our proof of soundness also contributes a new strategy in which the result is shown in terms of an17

inverse translation function, fixing a common flaw made in some previous encoding attempts.18
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1 Introduction23

As the number of proof systems grow, it becomes increasingly important to understand the24

relationship between their logics and to which extent they can be expressed in a unified25

setting. The research project centered around the logical framework Dedukti [7, 17] has26

precisely the intent of providing such a setting. By allowing for the encoding of popular27

logics such as predicate logic [17], higher-order logic [32, 17], set theory [18] and pure type28

systems [19, 23], it provides a common framework in which proofs coming from different29

proof systems can rechecked, increasing the trust in their correctness. Moreover, Dedukti30

can then also be used for sharing these proofs with other systems, which has already allowed31

for exporting results to tools like Coq [16, 44], Agda [25] and HOL [44, 29].32

The correctness of the verification provided by Dedukti relies however on methatheoretic33

results stating that the theorems that can be proven by a Dedukti encoding are exactly34

the same ones of the encoded logic. In the particular case of the cumulative calculus35

of constructions, a type theory combining impredicativity and cumulativity with product36

covariance, giving an encoding satisfying these properties has remained to this day a challenge.37

This issue is made especially relevant by the fact that this theory is quite popular, and is38

most notably implemented by the proof assistant Coq.39

The current situation regarding encodings of this theory is summarised in Table 1. All40

encodings presented until now came with a proof of soundness, meaning that all facts that41

can be proven by the encoded logic can also be proven in the encoding. However, the proofs42

provided by Assaf, Assaf et al and Thiré have turned out to be incorrect, as they rely on43

ill-defined translation functions—see Section 9 for a detailed explanation. The situation is44
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23:2 Impredicativity, Cumulativity and Product Covariance in Dedukti

Assaf˚ [5] Assaf et al [8] Thiré˚ [45] Férey` [27] This work
Confluence ✗ ✓; ✗ ✗ ✓

Soundness ✗: ✗: ✗: ✓ ✓

Conservativity ✗ ✗ ✗ ✗ ✓‹

:: The translation function is ill-defined (see the discussion in Section 9).
;: Requires matching modulo ACU. ‹: Only in a restricted form.
˚: Also handles other cumulative type systems. `: Also supports universe polymorphism.

Table 1 Comparison with previous encodings

even more serious regarding conservativity, the property dual to soundness and which ensures45

that the encoding cannot prove more theorems than the encoded system. Indeed, none of46

the previous proposals have provided a proof of this fact, which is nevertheless essential to47

ensure that a proof checked by Dedukti is indeed correct in the original system.48

One of the challenges in proving conservativity is that all known proof methods rely on49

confluence—which is moreover also essential to establish subject reduction. However, the50

combination of impredicativity, cumulativity and product covariance has proven difficult to51

be expressed in a confluent way in Dedukti. Indeed, almost all previous encodings have not52

succeeded in proving this property. A notable exception is the impressive work of Assaf et53

al [8], which however relies on matching modulo ACU (assocativity-cumutativity with unit)54

a form of matching that is much less efficient and harder to implement than pure syntactical55

matching. For instance, the addition of ACU matching to the DkCheck implementation56

doubled the size of the kernel [21] (see also the discussion by Blanqui [15]).57

In this work we address this unsatisfying state of affairs by giving an encoding of the58

cumulative calculus of constructions, featuring cumulativity with product covariance, that59

we show to satisfy the necessary metaproperties to be used in practice.60

Contrary to the previous proposals, our encoding does not require non-left-linear rewrite61

rules, which not only are less efficient but also make confluence proofs much harder [33].62

Our proof of confluence then relies on a sophisticated combination of classical results and63

techniques [36, 39], and automated checkers developed by the rewriting community [30, 28, 38].64

With the confluence of our encoding in hand, we proceed to show soundness. In order65

to fix the problem with the translation function made in previous attempts, we contribute66

an adaptation of the technique of Winterhalter et al [47] and Oury [40] in which the well-67

typedness of the translation is stated and proved in terms of an inverse translation function.68

The direct translation function can then be extracted from our constructive proof of soundness.69

We finish by showing that our encoding satisfies a restricted form of conservativity, namely70

only for so-called object terms. We argue that, in the encoding, these are the only terms that71

one writes in practice, and therefore that this restricted result is sufficient.72

Outline of the paper73

We start in Sections 2 and 3 by recalling the definitions of Dedukti and of the variant of74

the calculus of constructions we consider. We then proceed in Section 4 to present the theory75

used in our encoding, and in Section 5 by proving its desirable properties—in particular its76

confluence. We define the translation function we use in Section 6, and in Sections 7 and 877

we establish the soundness and conservativity of our encoding respectively. We finish by78

discussing related work in Section 9, before concluding in Section 10. The proofs not given79

in the main body of the text can be found in the technical appendix at the end of the paper.80

Supplementary material81

We provide an artifact containing supplementary data used in some of our proofs [20].82
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EmptyCtx

¨ $

ExtCtx
Γ $ A : Type

Γ, x : A $
x : A P Γ

Var
Γ $

Γ $ x : A
c : A P Σ

Cons
Γ $

Γ $ c : A

Sort
Γ $

Γ $ Type : Kind
A ” B

Conv
Γ $ t : A Γ $ B : s

Γ $ t : B

Pi
Γ $ A : Type Γ, x : A $ B : s

Γ $ px : Aq Ñ B : s

Abs
Γ $ A : Type Γ, x : A $ B : s Γ, x : A $ t : B

Γ $ λx : A.t : px : Aq Ñ B

App
Γ $ t : px : Aq Ñ B Γ $ u : A

Γ $ t u : Bru{xs

Figure 1 Typing rules of Dedukti

2 Dedukti83

We assume an underlying set c, d, ... P C of constants, x, y, z... P V of variables and84

A, B, t, u, ... P M of metavariables equipped with an arity (a natural number). The metaterms85

of Dedukti [27] are defined by the following grammar.86

Λ̂dk Q t, u, A, B, ... ::“ x | c | Type | Kind | px : Aq Ñ B | λx : A.t | t u | ttt1, ..., tarityptqu87
88

A metavariable application is written ttt1, ..., tku when arityptq “ k, or just t when89

arityptq “ 0. The metaterms Type and Kind are called sorts and referred to by the letter s.90

We write px : Aq Ñ B for the dependent function type, and whenever x does not appear free91

in B we write A Ñ B instead. We define fvptq as the set of free variables of t and mvptq as92

the set of metavariables of t. When no ambiguity can arise, we allow ourselves to also write93

t, u, A, B for variables. We adopt the convention of writing constants names in blue font.94

A substitution θ is a finite set of pairs t{x or px1..xk.tq{t, where k “ arityptq. We95

write trθs for the application of a substitution θ to a metaterm t. The main cases of its96

definition are xrθs “ t when t{x P θ, and ttu1, ..., ukurθs “ tru1rθs{x1, ..., ukrθs{xks when97

px1..xk.tq{t P θ—see for instance Férey [27] for the complete definition. A rewrite system R98

is a set of rewrite rules, which are pairs of the form t ÞÝÑ u where t is of the form c t1...tk99

and fvptq “ fvpuq “ H and mvpuq Ď mvptq and all occurrences of metavariables in t are of100

the form ttx1, ..., xku with x1...xk pairwise disjoint (known as the pattern condition [37]).101

When convenient, a rule can be given a name α, in which case we write t
α

ÞÝÑ u.102

Metavariables are useful in order to define the notion of rewrite rules. However, apart103

from this they will have no use for us, and in particular typing will only be defined for104

metaterms without metavariables. Because of this, we define the set of Dedukti terms Λdk105

as the metaterms t satisfying mvptq “ H. Given that terms will be the main object of study,106

from now on we adopt the convention that the letters t, u, A, B, ... refer to terms, unless they107

explicitly appear inside of a rewrite rule—for instance, as in c t1..tk ÞÝÑ u.108

We write ÝÑR for the closure under context and substitution of R, and ÝÑβR for109

ÝÑβ Y ÝÑR where ÝÑβ is the usual β-reduction. We then write ÝÑ˚
βR for its transitive110

closure, and ”βR for its reflexive-symmetric-transitive closure, usually called conversion or111

definitional equality. Most of the time R is clear from the context, allowing us to write just112

ÝÑ for ÝÑβR and ” for ”βR. We then say that the underlying rewrite system is confluent113

when, for all terms t, u, v, if u ˚ÐÝ t ÝÑ˚ v then u ÝÑ˚ w ˚ÐÝ v for some term w.114

CVIT 2016
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Sub
n ď m

n Ď m

Eq
A ” B

A Ď B

Trans
A Ď B B Ď C

A Ď C

ProdCov
A Ď B

Πx : C.A Ď Πx : C.B

EmptyCtx

¨ $CC

ExtCtx
Γ $CC Γ $CC A : n

Γ, x : A $CC

px : Aq P Γ

Var
Γ $CC

Γ $CC x : A

Sort
Γ $CC

Γ $CC n : Apnq

Pi
Γ $CC A : n Γ, x : A $CC B : m

Γ $CC Πx : A.B : Rpn, mq

Lam
Γ $CC A : n Γ, x : A $CC t : B

Γ $CC λx : A.t : Πx : A.B

App
Γ $CC t : Πx : A.B Γ $CC u : A

Γ $CC t u : Bru{xs
A Ď B

Conv
Γ $CC t : A Γ $CC B : n

Γ $CC t : B

Figure 2 Typing rules for CC

A context Γ is a finite sequence of entries of the form x : A. A signature Σ is a (possibly115

infinite) sequence of entries of the form c : A. One central notion in Dedukti is that of116

theory, which is a pair T “ pΣT, RTq where ΣT is a signature and all constants appearing in117

RT are declared in ΣT. Theories are used in Dedukti to define the object logics in which118

we work (for instance, predicate logic). Given a theory T, the typing rules of Dedukti are119

given in Figure 1, where the signature Σ and the conversion relation ” are the ones defined120

by the theory T. Whenever T is not clear from the context, we write T Ż Γ $ t : A.121

A signature entry c : A is valid in T when T Ż ¨ $ A : s for some sort s. A theory T is122

said to be well typed when each entry c : A P ΣT is valid in pΣ1, R1q, where Σ1 is the prefix of123

ΣT preceding c : A, and R1 is the restriction of RT to rules only containing constants in Σ1.124

3 The Cumulative Calculus of Constructions with Product Covariance125

We recall the definition of the cumulative calculus of constructions with product covariance [35,126

31]. It can be seen as the underlying cumulative type system [34, 10] of the Coq proof127

assistant [42], omitting the sorts Set and SProp. Its syntax is given by the following grammar.128

ΛCC Q t, u, A, B ::“ x | n | Πx : A.B | λx : A.t | t u129
130

Here we have made the choice of representing universes directly by a natural number n.131

The universe that is commonly referred to as Prop then corresponds to 0, whereas Typen132

corresponds to n ` 1, allowing us to manipulate them in a more uniform way. The typing133

rules are then given in Figure 2, and are parametrized by the following axiom and rule134

functions, as they are known in the pure type system literature [9].135

A : N Ñ N R : N ˆ N Ñ N136

Ap0q :“ 2 Rpn, 0q :“ 0137

Ap1 ` nq :“ 2 ` n Rpn, 1 ` mq :“ maxtn, 1 ` mu138
139

§ Remark 1. We choose to follow the implementation of Coq in placing 0 (Prop) in the140

universe 2 (Type1). Some presentations choose instead to place it in 1 (Type0) [35], a technical141

change that would have no impact in the strategy developed in this paper.142
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Compared with type systems that do not feature cumulativity, the conversion rule for CC143

does not only allow to exchange two types A and B when they are convertible, but also to144

coerce a term from type A to B when the latter is a subtype of the former. This subtyping145

relation, written A Ď B, is defined in the base case as A Ď B when A ” B, or n Ď m when146

n ď m. The second rule allows us for instance to coerce a type Γ $ A : 0 to Γ $ A : 1. Then,147

what one calls product covariance is the rule allowing to deduce Πx : C.A Ď Πx : C.B from148

A Ď B, which lets us for instance to coerce a function Γ $CC f : Nat Ñ 0 to Γ $CC f : Nat Ñ 1.149

4 Introducing the theory TCC150

We now introduce the Dedukti theory TCC we will use in our encoding. We build it151

incrementally in order to motivate as best as possible the choices we have made.152

Our first step is declaring a type S along with constants 0 and S for zero and successor,153

allowing us to represent the CC sort n by the Dedukti term Sn 0—which from now on we154

write n. We then define many auxiliary constants that will be useful later, such as addition155

` , truncated predecessor P, and also constants A and R to represent the functions A and156

R from the definition of CC. We declare the associated rewrite rules so that they have the157

expected computational behavior, such as n`m ÝÑ˚ n ` m, n _ m ÝÑ˚ maxtn, mu, etc.158

S : Type
0 : S
S : S Ñ S

A : S Ñ S

A 0 ÞÝÑ S pS 0q

A pS lq ÞÝÑ S pS lq

P : S Ñ S

P 0 ÞÝÑ 0
P pS lq ÞÝÑ l

´ : S Ñ S Ñ S pinfixq

l1 ´ 0 ÞÝÑ l1

l1 ´ pS l2q ÞÝÑ pP l1q ´ l2

` : S Ñ S Ñ S pinfixq

0`l2 ÞÝÑ l2

l1 `0 ÞÝÑ l1

pS l1q`l2 ÞÝÑ S pl1 `l2q

l1 `pS l2q ÞÝÑ S pl1 `l2q

_ : S Ñ S Ñ S pinfixq

0 _ l2 ÞÝÑ l2

l1 _ 0 ÞÝÑ l1

pS l1q _ pS l2q ÞÝÑ S pl1 _ l2q

R : S Ñ S Ñ S

R l1 0 ÞÝÑ 0
R l1 pS l2q ÞÝÑ l1 _ pS l2q

Using S we can then encode the universes of CC. This is done by declaring a constant U,159

such that the inhabitants of Un can then be thought of as codes for the types of CC in n.160

The decoding function El then maps each such code to the Dedukti type of its elements.161

U : pl : Sq Ñ Type pwritten Ulq El : pl : Sq Ñ Ul Ñ Type pwritten Ellq

Next we add constants to represent the codes inhabiting such universes. Because in CC162

each universe n inhabits Apnq, we add a constant u mapping each l : S to its code in UpA lq.163

An associated rewrite rule then ensures that ul decodes to the type Ul as expected.164

u : pl : Sq Ñ UpA lq pwritten ulq Elp_q ul ÞÝÑ Ul

A similar story happens for the function type: we add a constant π mapping a code165

a : Ula and a family of codes b : Ella a Ñ Ulb
to a code in UpR la lbq, so that if a represents166

A and b represents B, then the result represents the CC type Πx : A.B. However, for reasons167

that will become clear later, our constant also allows us to decompose the sorts la and lb168

into a common factor l0 to which we apply offsets l1 and l2. In order to equate different169

decompositions of la and lb, we also add a rewrite rule which removes two successors of l1170

and l2 and compensates it by adding one in l0. Finally, we add a rewrite rule defining the171

elements of πl0
l1,l2

a λx.b as the Dedukti functions from the elements of a to the ones of b.172

CVIT 2016
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π : pl0 l1 l2 : Sq Ñ pA : Upl0 ` l1qq

Ñ pB : Elpl0 ` l1q A Ñ Upl0 ` l2qq Ñ UpR pl0 ` l1q pl0 ` l2qq pwritten πl0
l1,l2

q

πl0
pS l1q,pS l2q

A B
πS

ÞÝÑ π
pS l0q

l1,l2
A B

Elp_q pπl0
l1,l2 A λx : C.Btxuq ÞÝÑ px : Elpl0 ` l1q Aq Ñ Elpl0 ` l2q Btxu

The theory given until this point is a representation of CC without cumulativity, and173

straightforwardly applies well-known techniques from previous Dedukti encodings [19, 17].174

The interesting part is for the encoding of cumulativity. The main insight of our proposal175

comes from the following simple result regarding the relation Ď. In the following, given a176

context ∆ “ x1 : B1..xk : Bk, let us write ∆ ñ A for the CC term Πx1 : B1...xk : Bk.A.177

§ Lemma 2 (Case analysis of Ď). If A Ď B then either A ” B or A ÝÑ˚ ∆ ñ n and178

B ÝÑ˚ ∆ ñ m for some context ∆ and natural numbers n, m with n ď m.179

Therefore, in order to simulate CC’s cumulativity it suffices to add a lift Ò allowing the180

coercion of terms from a type ∆ ñ n to ∆ ñ n ` 1. However, to be able to state the type of181

Ò we first need to have an internal representation for types of the form ∆ ñ n in Dedukti.182

We do this by first defining a type for telescopes whose canonical elements are either the183

empty telescope ˛, or the extension A lđ λx.D of a telescope D with a code A in universe Ul.184

We can then define a function ñ that computes a Dedukti type corresponding to ∆ ñ n.185

Tele : Type
˛ : Tele
đ : pl : Sq Ñ pA : Ulq Ñ pEll A Ñ Teleq

Ñ Tele pinfix, written lđ q

ñ : Tele Ñ S Ñ Type pinfixq

˛ ñ l1
ñ˛
ÞÝÑ Ul1

pA l2 đ λx : _.Dtxuq ñ l1
ñđ
ÞÝÑ px : Ell2 Aq Ñ Dtxu ñ l1

With these definitions in place we can finally give the definition of Ò.1186

Ò : pl : Sq Ñ pD : Teleq Ñ pD ñ lq Ñ pD ñ pS lqq pwritten Òlq

Because in CC the applications of cumulativity are silent, the main challenge in the187

encoding is to ensure that different Dedukti representations of the same CC term are188

convertible. The pioneering work of Assaf [4] first identified that, in a setting without189

product covariance, it suffices to add the following full reflection equations—here and in the190

rest of the article we write Ò
m
n D t as a notation for Òm´1 D p...pÒn D tq...q when n ď m.191

π
0
1`n,m pÒn ˛ aq pλx.bq ” Ò

Rp1`n,mq

Rpn,mq
˛ pπ

0
n,m a pλx.bqq192

π
0
n,1`m a pλx.Òm ˛ bq ” Ò

Rpn,1`mq

Rpn,mq
˛ pπ

0
n,m a pλx.bqq193

194

The main difficulty in implementing these as rewrite rules is that the multistep lift Ò
m
n is195

just a notation which computes the correct number of lifts Ò to be inserted only for a given196

concrete choice of n and m. For instance, if n ą m ą 0 in the second equation then no lifts197

should be inserted in the right hand side, whereas if n ą m “ 0 then we must insert n´1 lifts.198

1 Note that our lift is single-step, in contrast with some previous encodings [5, 45, 27] which employed a
multi-step lift, taking a type A : Ul1 to Ò

l2
l1

˛ t : Ul2 . The avoidance of the multi-step lift is essential in
order to prevent its associated non-left-linear rules, such as Ò

l
l D t ÞÝÑ t.
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If only we could have more information about n and m when applying the rule, we would199

be able to calculate the correct amount of lifts. Thankfully, because the sorts of a and b can200

be decomposed with the rule πS, we know that for any π
n0
n1,n2 a λx.b in normal form we must201

have either n1 “ 0 or n2 “ 0. We can then proceed with a disjunction of cases, where in202

each situation we have enough information to apply the right number of lifts.203

π0
pS lq,0 pÒ_ ˛ Aq B

Ò1
π

ÞÝÑ π0
l,0 A B

π
pS l1q

0,l2
pÒ_ ˛ Aq B

Ò2
π

ÞÝÑ πl1
0,pS l2q

A B

π
pS l1q

pS l2q,0 pÒ_ ˛ Aq B
Ò3

π
ÞÝÑ ÒpS pl1 ` l2qq ˛ pπ

pS l1q

l2,0 A Bq

ò : pl : Sq Ñ pA : U0q Ñ Ul pwritten òlq

ò0 A ÞÝÑ A

òpS lq A ÞÝÑ Òl ˛ pòl Aq

π
pS pS l1qq

l2,0 A pλx : C.Ò_ ˛ Btxuq
Ò4

π
ÞÝÑ π

pS l1q

pS l2q,0 A pλx : C.Btxuq

πl1
0,pS l2q

A pλx : C.Ò_ ˛ Btxuq
Ò5

π
ÞÝÑ Òpl1 ` l2q ˛ pπl1

0,l2 A pλx : C.Btxuqq

π
pS 0q

l,0 A pλx : C.Ò_ ˛ Btxuq
Ò6

π
ÞÝÑ òpS lq pπ0

pS lq,0 A pλx : C.Btxuqq

Note that in order to state the last rule we also define an auxiliary constant ò which204

given a sort l, lifts a type from U0 to Ul. The following proposition then ensures that we205

have correctly implemented Assaf’s full reflection equations.206

§ Proposition 3 (Simulation of Assaf’s full reflection rules). We have the following conversions.207

π
0
1`n,m pÒl ˛ aq pλx : C.bq ” Ò

Rp1`n,mq

Rpn,mq
˛ pπ

0
n,m a pλx : C.bqq (1)208

π
0
n,1`m a pλx : C.Òl ˛ bq ” Ò

Rpn,1`mq

Rpn,mq
˛ pπ

0
n,m a pλx : C.bqq (2)209

210

Proof. By a disjunction of cases in which each case corresponds to one of the rules Òi
π. đ211

§ Remark 4. We note that these rules are also very similar to the ones identified by Assaf et212

al [8]. However they also differ in a crucial way by avoiding the use of non-left-linearity and213

matching modulo ACU, which render confluence proofs much harder and are less efficient.214

The rules given until now would ensure the uniqueness of codes for a version of CC with215

“simple” cumulativity. However, in a setting with product covariance we also need to ensure216

that Ò properly commutes with abstraction and application. We therefore add the following217

two rules, which are variants of similar equations first identified by Thiré [45] and Férey [27].218

Òl p_ p_qđ λx : _.Dtxuq λx : A.ttxu
Òλ

ÞÝÑ λx : A.Òl Dtxu ttxu

Òl p_ p_qđ λx : _.Dtxuq t u
Ò@

ÞÝÑ Òl Dtuu pt uq

We now have almost finished presenting the theory TCC. The final step is adding the219

following rule explaining the relationship between the elements of Òl ˛ A and the ones of A,220

which as expected should be the same. Here we have purposely avoided the expected rule221

ElpS lq pÒp_q ˛ Aq ÞÝÑ Ell A used in some previous proposals [5, 45]. This subtle difference is222

essential in order to allow the critical pairs between Òi
π and Elπ to close. We add a similar223

rule for ò, but once again we annotate El with l2 ´l1 instead of 0 in order to ensure that224

critical pairs all close. Finally, we need a last rule similar to ElÒ ensuring the uniqueness of225

telescope representations, which will be key when proving the injectivity of ñ.226

Ell pÒ_ ˛ Aq
ÒEl
ÞÝÑ ElpP lq A Ell2 pòl1 Aq

òEl
ÞÝÑ Elpl2 ´ l1q A pÒ_ ˛ Aq lđ D

Òđ
ÞÝÑ A pP lqđ D
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5 Basic properties of TCC227

With the definition of the theory TCC in place, we now show that it satisfies the basic properties228

one expects, which will be essential for proving soundness and conservativity later. The first229

of them is the fact the the theory TCC is well-typed, in the sense defined in Section 2.230

§ Proposition 5 (Well-typedness of TCC). The theory TCC is well typed.231

Proof. Checked automatically with Lambdapi—see the artifact [20] for more details. đ232

5.1 Confluence233

Unlike all previous proposals, our theory TCC only makes use of left-linear rules. By preventing234

the use of non-left-linearity, which interacts very badly with higher-order rewriting, we have235

made a first step for proving confluence. Yet, confluence still does not come for free. In236

order to show it, we split βRCC into subsystems βR1 and R2, allowing us to apply different237

techniques for showing their confluence. Note that the union βR1 Y R2 is not disjoint: the238

rule ÒEl, needed for closing critical pairs in both subsystems, is shared between them.239

R1 :“ tÒ@, Òλ, Òđ, ñ˛, ñđ, ÒElu R2 :“ RCCztÒ@, Òλ, Òđ, ñ˛, ñđu240
241

The hardest part of our proof is showing the confluence of βR1, for two main reasons.242

First, even though all critical pairs of βR1 close (as shown in Figure 4), because the β rule243

is non-normalizing on untyped terms, we cannot apply Newman’s Lemma to reduce proving244

confluence to local confluence. Second, because the critical pairs are neither trivial [39]245

nor development closed [46], we cannot apply the classical criteria that avoid the use of246

termination. Thankfully, it turns out that we can still employ the well-known technique of247

showing that orthogonal rewriting with βR1 satisfies the diamond property—the proof can248

be found in the appendix. Confluence of βR1 then follows from this as a simple corollary.249

§ Corollary 6. βR1 is confluent.250

§ Remark 7. Alternatively, one can show the confluence of βR1 by applying a recent criterion251

by Dowek, Férey, Jouannaud and Liu [22, Theorem 38]. However, the proof we give is more252

elementary as it relies neither on orthogonal critical pairs nor on decreasing diagrams, and253

therefore we believe that it is accessible to a wider audience.254

We can then move to the proof of confluence of R2, which relies on termination.255

§ Lemma 8. R2 is strongly normalizing.256

Proof. We translate from R2 into the first-order rewrite system R̂2 obtained by forgetting257

about binders: λx : A.t is translated into λ̂ A1 t1 and Πx : A.B is translated into Π̂ A1 B1,258

where A1, B1, t1 are the translations of A, B, t. For instance, the rule Ò4
π is translated into259

the rule π
pS pS l1qq

l2,0 A pλ̂ C pÒ_ ˛ Bqq ÞÝÑ π
pS l1q

pS l2q,0 A pλ̂ C Bq. We can easily show that this260

interpretation preserves reduction sequences, therefore we reduce SN of R2 to the one of R̂2.261

The latter can be shown with the use of the first-order termination checker AProVE [1, 28], and262

the proof can be verified by the formally certified tool CeTA [2, 43]—see the artifact [20]. đ263

§ Proposition 9. R2 is confluent.264

Proof. We use the tools CSIho [3, 38] and SOL [30] to verify that all critical pairs of R2 are265

joinable—see the artifact [20] for details—so by Mayr and Nipkow’s critical pair criterion266

[36, Theorem 4.7] we conclude that R2 is locally confluent. Together with Lemma 8, this267

gives the confluence of R2 by applying Newman’s Lemma. đ268
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Putting everything together, we obtain the confluence of βRCC.269

§ Theorem 10. βRCC is confluent.270

Proof. By Corollary 6 and Proposition 9 we have the confluence of βR1 and R2, and moreover271

the rewrite systems are left-linear and there are no critical pairs between them. Therefore, we272

conclude the confluence of their union by applying Van Oostrom and Raamsdonk’s orthogonal273

combinations criterion [39, Theorem 3.13]. đ274

We obtain the following useful corollary, which we implicitly use in the rest of the article.275

§ Corollary 11 (Injectivity of undefined symbols). If c is a constant that does not appear in276

the head of a rewrite rule, then c t1...tk ” c u1...uk implies ti ” ui for i “ 1..k.277

5.2 Subject reduction278

We start with subject reduction for β. Because we have already shown confluence of βRCC,279

we obtain directly the injectivity of function types: if px : Aq Ñ B ” px : A1q Ñ B1 then280

A ” A1 and B ” B1. This is sufficient in order to ensure that β satisfies subject reduction.281

§ Proposition 12 (SRβ). If Γ $ t : A and t ÝÑβ t1 then Γ $ t1 : A.282

Proof. Follows from the injectivity of function types [13, Lemma 31]. đ283

Moving to subject reduction for RCC, the first point we realize is that this property does284

not hold unconditionally. For instance, the rule285

π
pS l1q

0,l2
pÒ_ ˛ Aq B ÞÝÑ πl1

0,pS l2q
A B286

only preserves typing if S pl1rθs _ pl1rθs`l2rθsqq ” l1rθs _ S pl1rθs`l2rθsq, yet both sides287

are already in normal form. Nevertheless, this is actually not a problem because whenever l1288

and l2 are substituted by terms of the form n for some n P N then we see that the equation289

holds. Starting from this insight, we now show that subject reduction holds in a restricted290

form, which turns out to be sufficient for our needs.291

We say that a term is guarded when all occurrences of ò are of the form òn and all292

occurrences of π are of the form π
n0
n1,n2 for some n, n0, n1, n2 P N. The set of guarded terms293

satisfies the following basic stability properties.294

§ Proposition 13 (Stability of guarded terms under substitution and reduction).295

1. If t, u are guarded then tru{xs is guarded.296

2. If t is guarded and t ÝÑ t1 then t1 is guarded.297

We can now show that RCC satisfies subject reduction for guarded terms.298

§ Proposition 14 (SRRCC). If t is guarded and Γ $ t : A and t ÝÑRCC t1 then Γ $ t1 : A.299

Proof. We use Lambdapi to automatically verify that the rules preserve typing (the cor-300

rectness of this verification relies on the confluence of the rewrite system [41, 14], which we301

have by Theorem 10). The verification succeeds for all rules l ÞÝÑ r P RCC, except for those302

which do not preserve typing unconditionally. For these cases, Lambdapi reports conversion303

constraints on the substitution θ under which Γ $ lrθs : A implies Γ $ rrθs : A.304

1. Case òEl. Preserves typing if l2rθs ´l2rθs ” 0. But by inversion of typing of the left-hand305

side we also get l1rθs ” l2rθs, so the rule preserves typing whenever l1rθs ´l1rθs ” 0.306
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2. Case Ò2
π. Preserves typing if S pl1rθs _ pl1rθs`l2rθsqq ” l1rθs _ S pl1rθs`l2rθsq.307

3. Case Ò3
π. Preserves typing if pl1rθs`l2rθsq _l1rθs ” l1rθs`l2rθs and308

S pl1rθs`l2rθsq _l1rθs ” S pl1rθs`l2rθsq.309

4. Case Ò4
π. Preserves typing if S pl1rθs`l2rθsq _l1rθs ” S ppl1rθs`l2rθsq _l1rθsq.310

5. Case Ò5
π. Preserves typing if l1rθs _ S pl1rθs`l2rθsq ” S pl1rθs`l2rθsq and311

R l1rθs pl1rθs`l2rθsq ” l1rθs`l2rθs.312

Because t is guarded, it follows that l1rθs is a concrete sort in case 1, and both l1rθs313

and l2rθs are concrete sorts in the other cases, so the result follows from the fact that these314

equations all hold for natural numbers. đ315

§ Corollary 15 (SRβRCC). If t is guarded and Γ $ t : A and t ÝÑ˚ t1 then Γ $ t1 : A.316

§ Remark 16. Corollary 15 guarantees that the usual type inference algorithm for Dedukti [41]317

is sound when Γ and t are guarded. Indeed, by inspection on its definition, if the inputs Γ318

and t are guarded then only guarded terms are ever reduced.319

6 The translation function320

Defining a Dedukti encoding usually requires specifying a translation function from the321

syntax of the source system to the one of the framework. However, whereas cumulativity322

is implicit in CC, in Dedukti it is made explicit by the use of a lift (Ò). Therefore, when323

translating a CC term, the translation function needs to figure out when to insert such lifts,324

even though the initial term contains no information about cumulativity. To handle this, a325

first idea could be to define this function only for well-typed CC terms and use typing to326

retrieve the missing information. However, it is not clear how to define such a function in a327

unique and well-founded way—see the discussion is Section 9 for a detailed discussion.328

To solve this problem, we adapt the approach of Winterhalter et al [47] of relying instead329

on an inverse translation function | ´ |, defined from a subset of the syntax of the framework330

to the syntax of CC. Because the syntax of Dedukti is more explicit than the one of CC,331

this function can be straightforwardly defined by structural induction. Then, we can use it332

to state and prove soundness and conservativity. Finally, the direct translation function can333

then be recovered as the underlying algorithm of our constructive proof of soundness.334

We start by carving out a subset of Dedukti’s syntax over which we define | ´ |. These335

are the object terms and object contexts, defined by the following grammars, and where n, m336

ranges over natural numbers and G ranges over arbitrary guarded terms.337

Λo Q t, u, A, B ::“ x | λx : Eln A.t | un | π
0
n,m A λx : G.B | Òn G t | t u338

Ctxo Q Γ ::“ ¨ | Γ, x : Eln A339
340

The inverse translation function can then defined by structural induction over object341

terms and contexts, by the following clauses.342

| ´ | : Λo Ñ ΛCC } ´ } : Ctxo Ñ CtxCC343

|x| :“ x } ¨ } :“ ¨344

|un| :“ n }Γ, x : Eln A} :“ }Γ}, x : |A|345

|λx : Eln A.t| :“ λx : |A|.|t|346

|π
0
n,m A pλx : G.Bq| :“ Πx : |A|.|B|347

|Òn G t| :“ |t|348

|t u| :“ |t| |u| pt u not of previous formsq349
350
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Crucially, object terms are all guarded, ensuring that whenever they are well typed then351

their reducts also are. In addition, object terms are stable under substitution, which moreover352

commutes with | ´ |, two basic properties that will be essential to our proofs.353

§ Proposition 17 (Basic properties of Λo and | ´ |).354

1. If t P Λo then t is guarded.355

2. If t, u P Λo then tru{xs P Λo and |t|r|u|{xs “ |tru{xs|.356

7 Soundness357

Our proof of soundness requires multiple intermediate steps. The first of them is showing the358

injectivity modulo lifting of El (Proposition 34) and the injectivity of ñ (Proposition 35),359

two technical results that will be essential for the subsequent parts. However, for space360

reasons, we give these proofs in the appendix.361

Then, we can move to the proof of coherence, the central auxiliary result needed for362

soundness, ensuring that any two different Dedukti representations of the same CC term363

must be convertible. The actual statement of the theorem is however a bit more intricate.364

§ Theorem 18 (Coherence). Let t1, t2 P Λo with Γ $ t1 : A1 and Γ $ t2 : A2. If |t1| “ |t2|365

then at least one of the following holds:366

(1) t1 ” t2367

(2) Γ $ Ò
m
n D t2 : D ñ m and t1 ” Ò

m
n D t2 for some D guarded368

(3) Γ $ Ò
m
n D t1 : D ñ m and t2 ” Ò

m
n D t1 for some D guarded369

Proof. The proof is by induction on t1 and t2, following the definition of | ´ |. We first treat370

the cases in which t1 or t2 is of the form Òn D u. Then, for the other cases the definition of371

| ´ | imposes that t1 and t2 have the same head structure, and therefore we only consider t1372

and t2 of the same form.373

We illustrate the case where t1 “ u1 v1 and t2 “ u2 v2. By inversion we have Γ $ ui : px :374

Aiq Ñ Bi and Γ $ vi : Ai. By the i.h. applied to u1 and u2, we have three cases to consider:375

(a) u1 ” u2. We thus get A1 ” A2 and B1 ” B2. Looking at the induction hypothesis on v1376

and v2, in all cases we must have v1 ” v2. Indeed, if we are in cases (2) or (3) then we get377

A1 ” D ñ p and A2 ” D ñ q, but together with A1 ” A2 this implies p “ q, meaning378

that no lifts are inserted between v1 and v2. We thus conclude that t1 ” t2.379

(b) Γ $ Ò
m
n D u2 : D ñ m and u1 ” Ò

m
n D u2. Now, px : A1q Ñ B1 ” D ñ m, so by380

Lemma 36 we have D ÝÑ˚ a lđ λx : C.D1 with Ell a ” A1 and B1 ” D1 ñ m. Moreover,381

we also get that Ell a ” A2 and B2 ” D1 ñ n. We are again in a situation where v1 and382

v2 share a type, so by the same arguments as in case (a) the i.h. gives v1 ” v2. Therefore,383

t1 “ u1 v1 ” pÒ
m
n pa lđ λx : C.D1q u2q v2 ” Ò

m
n D1rv2{xs pu2 v2q “ Ò

m
n D1rv2{xs t2384

385

For typing, we have Γ $ t2 : B2rv2{xs so by conversion we have Γ $ t2 : D1rv2{xs ñ n386

and thus Γ $ Ò
m
n D1rv2{xs t2 : D1rv2{xs ñ m.387

(c) Γ $ Ò
m
n D u1 : D ñ m and u2 ” Ò

m
n D u1. Symmetric to case (b). đ388

With coherence in hand, we can show that the conversion relation of CC can be reflected389

by the inverse translation function into the framework. As an intermediate lemma, we first390

need to show that individual reduction steps of CC can be simulated in Dedukti.391
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§ Lemma 19 (Simulation of reduction steps). Let t P Λo with Γ $ t : A and |t| ÝÑ u for some392

u P ΛCC. Then, there is some t1 P Λo such that |t1| “ u and t ÝÑ˚ t1.393

Proof. By induction on t, following the definition of Λo. Almost all cases are either impossible,394

or follow by applying the i.h. to the subterm being reduced. The only interesting case is395

when t “ t1 t2 and the reduction happens in the head. Then, the only possibility is that396

t1 “ Ònk
Dk p...pÒn1 D1 vq...q with v “ λx : C.s and |t| “ pλx : |C|.|s|q |t2| ÝÑ |s|r|t2|{xs. If397

k “ 0 then the result is immediate, as t is a β redex. Otherwise, by typing constraints and398

Proposition 35 we can see that we have D1 ” ... ” Dk and ni`1 “ ni ` 1 for i “ 1..k ´ 1,399

so by confluence we have some common reduct D0 of all of them so that t1 ÝÑ˚ Ò
nk

n1 D0 v.400

Then, by inversion of typing, v has both types D0 ñ n1 and px : Cq Ñ A1 for some A1,401

hence by uniqueness of types we have D0 ñ n1 ” px : Cq Ñ A1, which by Lemma 36 implies402

D0 ÝÑ˚ C 1
lđ λx : B.D1 for some C 1, l, B, D1. Abbreviating C 1

lđ λx : B.D1 as D1
0,403

t ÝÑ˚ Ò
nk

n1 D1
0 pλx : C.sq t2 ÝÑ˚ pλx : C.Ò

nk

n1 D1 sq t2 ÝÑ Ò
nk

n1 D1rt2{xs srt2{xs404

and we indeed have Ò
nk

n1 D1rt2{xs srt2{xs P Λo, with |Ò
nk

n1 D1rt2{xs srt2{xs| “ |s|r|t2|{xs. đ405

§ Proposition 20 (Reflection of type conversion). Let A, B P Λo with Γ $ A : Un and406

Γ $ B : Um. If |A| ” |B| then Eln A ” Elm B.407

Proof. Take k :“ maxtn, mu; we have Γ $ Ò
k
n ˛ A : Uk and Γ $ Ò

k
m ˛ B : Uk and408

|Ò
k
n ˛ A| “ |A| ” |B| “ |Ò

k
m ˛ B|. By confluence we have |Ò

k
n ˛ A| ÝÑ˚ C ˚ÐÝ |Ò

k
m ˛ B|409

for some C. By iterating Lemma 19 with subject reduction, we get Ò
k
n ˛ A ÝÑ˚ A1 and410

Ò
k
m ˛ B ÝÑ˚ B1 and |A1| “ C “ |B1| for some A1 and B1. We also have Γ $ A1 : Uk and411

Γ $ B1 : Uk, so by Theorem 18 we get A1 ” B1 — note that because A1 and B1 have the412

same type, there can be no lifts between them. Therefore, we have Ò
k
n ˛ A ” Ò

k
m ˛ B and413

thus we conclude Eln A ” Elk pÒ
k
n ˛ Aq ” Elk pÒ

k
m ˛ Bq ” Elm B. đ414

We now have almost all auxiliary results needed for showing soundness. As a last step,415

we only need the following two easy lemmas.416

§ Lemma 21 (Computing the El of a translation). Let A P Λo with Ell A well typed.417

1. If |A| “ n then Ell A ÝÑ˚ Un.418

2. If |A| “ Πx : A1.A2 then Ell A ÝÑ˚ px : Eln1 A1
1q Ñ Eln2 A1

2 with |A1
i| “ Ai.419

Proof. By definition of | ´ | and typing constraints. đ420

§ Lemma 22 (Telescope translation). Let A1, A2 P Λo with Γ $ Ai : Uni . If |Ai| “ ∆ ñ mi421

for some m1 ď m2, then we have Elni
Ai ” D ñ mi for some guarded D with Γ $ D : Tele.422

Proof. By induction on ∆. đ423

§ Theorem 23 (Soundness). If Γ $CC t : A then we have Γ1 $ t1 : Eln A1 for some Γ1 P Ctxo424

and t1, A1 P Λo and n P N with }Γ1} “ Γ and |t1| “ t and |A1| “ A.425

Proof. We instead show the following two points, which together imply the theorem.426

If Γ $CC then Γ1 $ for some Γ1 P Ctxo with }Γ1} “ Γ.427

If Γ $CC t : A and Γ1 $ for some Γ1 P Ctxo with }Γ1} “ Γ then Γ1 $ t1 : Eln A1 for some428

n P N and A1, t1 P Λo with |A1| “ A and |t1| “ t.429
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We prove them by induction on the derivation of Γ $CC or Γ $CC t : A, and illustrate here430

one of the interesting cases.431

Case432

A Ď B

Conv
Γ $CC t : A Γ $CC B : n

Γ $CC t : B
433

By induction hypothesis we have Γ1 $ t1 : Elm A1 and Γ1 $ B1 : Un with |t1| “ t, |A1| “ A434

and |B1| “ B (using Lemma 21 for the second derivation). By inversion we obtain435

Γ1 $ A1 : Um. We now use Lemma 2 to split A Ď B into two cases:436

A ” B. We have |A1| ” |B1| so by Proposition 20 we conclude Elm A1 ” Eln B1, and437

thus Γ1 $ t1 : Eln B1.438

A ÝÑ˚ ∆ ñ p and B ÝÑ˚ ∆ ñ q with p ď q. We apply Lemma 19 on A1 to get some439

A2 such that |A2| “ ∆ ñ p and A1 ÝÑ˚ A2. Similarly, we get B2 with |B2| “ ∆ ñ q440

and B1 ÝÑ˚ B2. We can then apply Lemma 22 to obtain a guarded term D such that441

Γ1 $ D : Tele and Elm A2 ” D ñ p and Eln B2 ” D ñ q. We can now conclude with442

Γ1 $ Ò
q
p D t : Eln B1. đ443

8 Conservativity444

Now that we have seen that our encoding is sound, we can move to the proof of conservativity.445

The usual statement of conservativity (using direct translation functions r´s : ΛCC Ñ Λdk and446

J´K : CtxCC Ñ Ctxdk) would say that, given Γ, A satisfying Γ $CC A : n, if JΓK $ t : Eln rAs447

then we have Γ $CC t1 : A for some t1. When rephrasing this statement with the inverse448

translation function | ´ |, the full conservativity property would then assert that, for Γ P Ctxo449

and A P Λo with }Γ} $ |A| : n, if Γ $ t : Eln A then }Γ} $CC t1 : |A| for some t1.450

In the following, we instead show conservativity for object terms, a restricted form of451

conservativity in which the witness t of the typing judgment Γ $ t : Eln A is required to be an452

object term. We argue that this is enough because in practice the object terms are the only453

ones a user of the encoding (or an automatic translator) would write. Nevertheless, it should454

be possible to strengthen our result to obtain full conservativity, as discussed in the conclusion.455

The first step in our proof is showing that | ´ | preserves definitional equality. This is456

however not immediate, because | ´ | does not preserve reduction steps. Fortunately, we can457

define an auxiliary function | ´ |‚ extending | ´ | that satisfies this property. We start by458

defining the extended object terms Λ‚
o which will be used as the domain of | ´ |‚. Here we459

write G, G1 for any guarded terms, and n, n0, n1, n2 for any natural numbers.460

Λ‚
o Q t, u, A, B ::“ x | px : Aq Ñ B | λx : A.t | Un | ElG A | un461

| π
n0
n1,n2 A λx : G.B | ÒG G1 t | òn t | t u462

463

The function | ´ |‚ is then defined by the following clauses.464

| ´ |‚ : Λ‚
o Ñ ΛCC |px : Aq Ñ B|‚ :“ Πx : |A|‚.|B|‚465

|x|‚ :“ x |ElG A|‚ :“ |A|‚ |λx : A.t|‚ :“ λx : |A|‚.|t|‚466

|un|‚ :“ n |ÒG G1 t|‚ :“ |t|‚ |π
n0
n1,n2 A pλx : G.Bq|‚ :“ Πx : |A|‚.|B|‚467

|Un|‚ :“ n |òn t|‚ :“ |t|‚ |t u|‚ :“ |t|‚ |u|‚ pt u not of previous formsq468
469
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We can show that | ´ |‚ satisfies many desirable properties, among them being the470

preservation of reduction steps and thus also of definitional equality by | ´ |‚.471

§ Lemma 24 (Basic properties of Λ‚
o and | ´ |‚).472

1. Λ‚
o is a superset of Λo, and | ´ |‚ restricts to | ´ | in Λo.473

2. If t P Λ‚
o then t is guarded.474

3. If t, u P Λ‚
o then tru{xs P Λ‚

o and |t|‚r|u|‚{xs “ |tru{xs|‚.475

4. If t P Λ‚
o and t ÝÑ˚ u then u P Λ‚

o and |t|‚ ÝÑ˚ |u|‚.476

5. If t, u P Λ‚
o and t ” u then |t|‚ ” |u|‚.477

Using these basic properties, we can now show conservativity.478

§ Theorem 25 (Conservativity for object terms). Let Γ P Ctxo and A P Λo with }Γ} $CC |A| : n479

for some n. If Γ $ t : Eln A with t an object term, then we have }Γ} $CC |t| : |A|.480

Proof. We instead show the following claim.481

Ź Claim 26. Let Γ $ t : A with Γ P Ctxo and }Γ} $CC. If t is an object term, then there482

exists A1 P Λ‚
o with A ” A1 and }Γ} $CC |t| : |A1|‚.483

First note that this implies the statement of the theorem. Indeed, by the claim we have484

}Γ} $CC |t| : |B|‚ for some B P Λ‚
o with B ” Eln A. Therefore |B|‚ ” |A|‚ “ |A|, so we485

conclude }Γ} $CC |t| : |A| by the conversion rule.486

We proceed with the proof of the claim, by induction on t, following the definition of487

Λo. We illustrate the interesting case of λ-abstraction: t “ λx : Eln A1.u. By inversion we488

have Γ $ A1 : Un and Γ, x : Eln A1 $ u : A2 for some A2 with A ” px : Eln A1q Ñ A2.489

By i.h. we thus have }Γ} $CC |A1| : |B1|‚ with B1 ” Un. Therefore, we have |B1|‚ ” n,490

so by conversion we can derive }Γ} $CC |A1| : n, and so }Γ}, x : |A1| $CC. By i.h. once491

more, we have }Γ}, x : |A1| $CC |u| : |B2|‚ for some B2 with B2 ” A2. We can thus derive492

}Γ} $CC λx : |A1|.|u| : |px : Eln A1q Ñ B2|‚ and A ” px : Eln A1q Ñ B2. đ493

9 Related work494

The first attempt to encode CC in Dedukti dates back to the work of Assaf. He first495

identified the full-reflection equations (discussed in Section 4) in earlier work studying a496

variant of the calculus of constructions with explicit cumulativity [4]. There, cumulativity is497

made explicit by a family of lifts Òi: Ui Ñ Ui`1, which are sufficient in his setting because498

the theory considered lacks product covariance.499

These ideas were then employed in encoding a class of cumulative type systems (CTSs)500

in Dedukti [5], containing in particular the type system CC. In order to handle product501

covariance, he proposed the use of η-expansion at translation time: for instance, a variable502

f : Nat Ñ 0 would be translated at type Nat Ñ 1 as λx.Ò0 pf xq. This however turned out to503

invalidate conservativity, as observed by Thiré [45, Example 6.6].504

Moreover, as mentioned in the introduction, the translation functions used by Assaf for505

stating and proving soundness turn out to be ill-defined. He mutually defines functions506

r´sΓ and r´sΓ$C and J´K, and among their defining clauses he states rtsΓ$C :“ λx :507

JAK.rt xsΓ,x:A$B if C ” Πx : A.B and t has a principal type convertible to Πx : A.B1 with508

B1 Ĺ B. However, the term A is only determined up to conversion, yet the function is defined509

over unquontiented terms, and the preservation of conversion is only shown at a later stage.510

Worse, because A is recovered using typing information, it might not be structurally smaller511

than t, and no well-founded order is given to justify the recursive call of J´K on A.512
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Regarding confluence, Assaf actually relies in his presentation on an axiomatization of the513

conversion relation required for the encoding. Because in Dedukti the conversion must be514

implemented by rewrite rules, each instantiation of his encoding then also needs to provide a515

rewrite system correctly implementing these equational axioms. In the particular case of CC,516

Assaf provides rules for implementing them, yet they are not confluent since some critical517

pairs are not joinable. This problem was later fixed in his joint work with Dowek, Jouannaud518

and Liu [8], though it required the use of rewriting modulo ACU, which is less efficient519

and harder to implement than pure syntactic matching. The problems with soundness and520

conservativity remained unaddressed.521

Some years after the work of Assaf, the problem regained attention and new encodings522

were proposed by Thiré [45], also supporting a class of CTSs, and Férey [27], also supporting523

universe polymorphism. Starting from Thiré’s observation that η-expanding at translation524

time breaks conservativity, they decided to instead rely on a generalized cast operator525

mapping a term t : Ella
a to lb

la
Òb

a e t : Ellb
b, where e is a term witnessing the inclusion of a526

in b. Unfortunately, the use of a multi-step lift then required non-left-linear rules to ensure527

that two consecutive casts can be composed or that identity casts can be removed. Despite528

the impressive work of Férey on confluence criteria for non-left-linear systems [26], they were529

unable to show the confluence of their encodings.530

The translation function employed by Thiré unfortunately inherited the issue of Assaf’s531

function, as it also makes recursive calls on terms obtained through typing information without532

giving a decreasing measure. The proposal of Férey uses however a different technique, and533

instead defines the translation function over typing derivations. Finally, conservativity is534

only stated as a conjecture for both of the encodings.535

10 Conclusion536

In this work we have given an encoding of CC in Dedukti satisfying the necessary properties537

for being used in practice, solving a longstanding open problem. Our proof of confluence538

combines many confluence criteria and heavily uses the automated tools developed by the539

community. Yet, at the present moment, none of the available tools are able to fully show540

our result by themselves. Proving the confluence of our system automatically can thus be an541

interesting challenge for the next generation of today’s confluence checkers.542

Our work has also identified a problem with the definition of the translation function543

in some previous attempts at encoding CC in Dedukti. To solve this issue, we have then544

contributed an adaptation of the technique of Winterhalter et al [47] in which soundness is545

instead stated and proved using an inverse translation function.546

Regarding conservativity, we have proven a restricted form concerning only object terms.547

Even though we believe that for practical needs our result is sufficient, we conjecture548

that full conservativity can be obtained by adapting the logical relations technique of549

Assaf [6]. Alternatively, we could modify our encoding and employ the technique described550

by Felicissimo [23], which allows for easy conservativity proofs at the cost of increasing the551

amount of type annotations in the syntax. There is already ongoing work on removing552

these annotations by incorporating bidirectional typing into Dedukti [24], yet the encoding553

presented here would not be covered by the presently available framework.554

Finally, we believe that our work can be a starting point for incorporating Coq’s universe-555

polymorphism. Among previous work, only Férey considers the combination of CC with556

universe polymorphism. Combining his ideas with ours is a promising direction to explore.557
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S : Type
0 : S
S : S Ñ S

A : S Ñ S

A 0 ÞÝÑ S pS 0q

A pS lq ÞÝÑ S pS lq

P : S Ñ S

P 0 ÞÝÑ 0
P pS lq ÞÝÑ l

´ : S Ñ S Ñ S pinfixq

l1 ´ 0 ÞÝÑ l1

l1 ´ pS l2q ÞÝÑ pP l1q ´ l2

` : S Ñ S Ñ S pinfixq

0`l2 ÞÝÑ l2

l1 `0 ÞÝÑ l1

pS l1q`l2 ÞÝÑ S pl1 `l2q

l1 `pS l2q ÞÝÑ S pl1 `l2q

_ : S Ñ S Ñ S pinfixq

0 _ l2 ÞÝÑ l2

l1 _ 0 ÞÝÑ l1

pS l1q _ pS l2q ÞÝÑ S pl1 _ l2q

R : S Ñ S Ñ S

R l1 0 ÞÝÑ 0
R l1 pS l2q ÞÝÑ l1 _ pS l2q

U : pl : Sq Ñ Type pwritten Ulq

El : pl : Sq Ñ Ul Ñ Type pwritten Ellq
u : pl : Sq Ñ UpA lq pwritten ulq

Elp_q ul ÞÝÑ Ul

π : pl0 l1 l2 : Sq Ñ pA : Upl0 ` l1qq

Ñ pB : Elpl0 ` l1q A Ñ Upl0 ` l2qq Ñ UpR pl0 ` l1q pl0 ` l2qq pwritten πl0
l1,l2

q

Elp_q pπl0
l1,l2 A λx : C.Btxuq

πS
ÞÝÑ px : Elpl0 ` l1q Aq Ñ Elpl0 ` l2q Btxu

πl0
pS l1q,pS l2q

A B ÞÝÑ π
pS l0q

l1,l2
A B

Tele : Type
˛ : Tele
đ : pl : Sq Ñ pA : Ulq Ñ pEll A Ñ Teleq

Ñ Tele pinfix, written lđ q

ñ : Tele Ñ S Ñ Type pinfixq

˛ ñ l1
ñ˛
ÞÝÑ Ul1

pA l2 đ λx : _.Dtxuq ñ l1
ñđ
ÞÝÑ px : Ell2 Aq Ñ Dtxu ñ l1

Ò : pl : Sq Ñ pD : Teleq Ñ pD ñ lq Ñ pD ñ pS lqq pwritten Òlq

Ell pÒ_ ˛ Aq
ÒEl
ÞÝÑ ElpP lq A

pÒ_ ˛ Aq lđ D
Òđ

ÞÝÑ A pP lqđ D

Òl p_ p_qđ λx : _.Dtxuq λx : A.ttxu
Òλ

ÞÝÑ λx : A.Òl Dtxu ttxu

Òl p_ p_qđ λx : _.Dtxuq t u
Ò@

ÞÝÑ Òl Dtuu pt uq

π0
pS lq,0 pÒ_ ˛ Aq B

Ò1
π

ÞÝÑ π0
l,0 A B

π
pS l1q

0,l2
pÒ_ ˛ Aq B

Ò2
π

ÞÝÑ πl1
0,pS l2q

A B

π
pS l1q

pS l2q,0 pÒ_ ˛ Aq B
Ò3

π
ÞÝÑ ÒpS pl1 ` l2qq ˛ pπ

pS l1q

l2,0 A Bq

ò : pl : Sq Ñ pA : U0q Ñ Ul pwritten òlq

ò0 A ÞÝÑ A

òpS lq A ÞÝÑ Òl ˛ pòl Aq

Ell2 pòl1 Aq
òEl
ÞÝÑ Elpl2 ´ l1q A

π
pS pS l1qq

l2,0 A pλx : C.Ò_ ˛ Btxuq
Ò4

π
ÞÝÑ π

pS l1q

pS l2q,0 A pλx : C.Btxuq

πl1
0,pS l2q

A pλx : C.Ò_ ˛ Btxuq
Ò5

π
ÞÝÑ Òpl1 ` l2q ˛ pπl1

0,l2 A pλx : C.Btxuqq

π
pS 0q

l,0 A pλx : C.Ò_ ˛ Btxuq
Ò6

π
ÞÝÑ òpS lq pπ0

pS lq,0 A pλx : C.Btxuqq

Figure 3 Definition of the theory TCC “ pΣCC, RCCq
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Òl p_ p_qđ λx : C.Dtxuq pλx : A.ttxuq u Òl Dtuu ppλx : A.ttxuq uq

pλx : A.Òl Dtxu ttxuq u Òl Dtuu ttuu

β

β

Òλ

Ò@

Òl ppÒp_q ˛ Bq l1 đ λx : C.Dtxuq pλx : A.ttxuq λx : A.Òl Dtxu ttxu

Òl pB pP l1qđ λx : C.Dtxuq pλx : A.ttxuq

Òλ
Òđ

Òλ

Òl ppÒp_q ˛ Bq l1 đ λx : C.Dtxuq t u Òl Dtuu pt uq

Òl pB pP l1qđ λx : C.Dtxuq t u

Ò@
Òđ

Ò@

ppÒl2 ˛ Aq l1 đ λx : C.Dtxuq ñ l px : Ell1 pÒl2 ˛ Aqq Ñ Dtxu ñ l

pA pP l1qđ λx : C.Dtxuq ñ l px : ElpP l1q Aq Ñ Dtxu ñ l
ñđ

ÒElÒđ

ñđ

Figure 4 Critical pairs of R1

Validity If Γ $ t : A then either A “ Kind or Γ $ A : s for some sort s706

For all the following points, suppose furthermore that βR is confluent.707

Subject reduction for β If Γ $ t : A and t ÝÑβ t1 then Γ $ t1 : A.708

Uniqueness of types If Γ $ t : A and Γ $ t : B then A ” B709

Inversion of constant applications If c : px1 : A1q Ñ .. Ñ pxk : Akq Ñ B P Σ and Γ $710

c u1..uk : B1 then we have Γ $ ui : Airuj{xjsj“1..i´1 for i “ 1..k and B1 ” Bruj{xjsj“1..k711

Proof. We refer to the literature [13, 27, 41] for detailed proofs—even if there the definition712

of the typing system is not exactly the same, the proofs for the variant used here are713

straightforward adaptions of their proofs. đ714

B Basic metaproperties of CC715

We recall the following basic properties of CC.716

§ Proposition 28 (Basic properties of CC).717

Church-Rosser If t ” u then t ÝÑ˚ v ˚ÐÝ u for some v718

Weakening If Γ Ď Γ1 and Γ1 $ and Γ $ t : A then Γ1 $ t : A719

Substitution If Γ $ t : A and Γ, x : A, Γ1 $ u : B then Γ, Γ1rt{xs $ urt{xs : Brt{xs720

Validity If Γ $ t : A then Γ $ A : s for some sort s721

Subject Reduction If Γ $ t : A and t ÝÑ t1 then Γ $ t1 : A722

Proof. See for instance [5], [11] or [34]. đ723

C Omitted proofs of Section 4724

§ Lemma 2 (Case analysis of Ď). If A Ď B then either A ” B or A ÝÑ˚ ∆ ñ n and725

B ÝÑ˚ ∆ ñ m for some context ∆ and natural numbers n, m with n ď m.726



Felicissimo & Winterhalter 23:21

Proof. By induction on the definition of Ď.727

Cases Sub and Eq : Trivial.728

Case Trans : By i.h. we consider four cases :729

Subcase A ” B and B ” C : Then A ” C.730

Subcase A ” B and B ÝÑ˚ ∆ ñ n and C ÝÑ˚ ∆ ñ m with n ď m : By confluence731

we have A ÝÑ˚ P ˚ÐÝ ∆ ñ n. It is easy to see that P must be of the form ∆1 ñ n732

for some reduct ∆1 of ∆. Therefore, we also have C ÝÑ˚ ∆1 ñ m.733

Subcase A ÝÑ˚ ∆ ñ n and B ÝÑ˚ ∆ ñ m with n ď m and B ” C : Symmetric to734

the previous one.735

Subcase A ÝÑ˚ ∆ ñ n and B ÝÑ˚ ∆ ñ m with n ď m, and B ÝÑ˚ ∆1 ñ n1 and736

C ÝÑ˚ ∆1 ñ m1 with n1 ď m1 : By confluence, we have ∆ ñ m ÝÑ˚ P ˚ÐÝ ∆1 ñ n1.737

It is easy to see that P is of the form ∆2 ñ m for some reduct ∆2 of ∆ and ∆1, and that738

m “ n1. Hence we get A ÝÑ˚ ∆2 ñ n and C ÝÑ˚ ∆2 ñ m1 with n ď m “ n1 ď m1.739

Case ProdCov : By i.h. we consider two subcases740

Subcase A ” B : Then we also have Πx : C.A ” Πx : C.B741

Subcase A ÝÑ˚ ∆ ñ n and B ÝÑ˚ ∆ ñ m with n ď m: Then by taking ∆1 :“ x :742

C, ∆ we have Πx : C.A ÝÑ˚ ∆1 ñ m and Πx : C.B ÝÑ˚ ∆1 ñ m with n ď m. đ743

§ Proposition 3 (Simulation of Assaf’s full reflection rules). We have the following conversions.744

π
0
1`n,m pÒl ˛ aq pλx : C.bq ” Ò

Rp1`n,mq

Rpn,mq
˛ pπ

0
n,m a pλx : C.bqq (1)745

π
0
n,1`m a pλx : C.Òl ˛ bq ” Ò

Rpn,1`mq

Rpn,mq
˛ pπ

0
n,m a pλx : C.bqq (2)746

747

Proof. Each statement is shown separately, by a disjunction of cases in which each case748

corresponds to one of the rules involving Ò and π.749

1. m “ 0 : Then the identity follows directly from the rule Ò1
π.750

1 ` n ď m (which implies m ‰ 0) : Then we have m “ k ` 1 ` n for some k P N and751

π
0
1`n,k`1`n pÒl ˛ aq pλx : C.bq ” π

1`n

0,k pÒl ˛ aq pλx : C.bq752

” π
n
0,1`k a pλx : C.bq pby Ò2

πq753

” π
0
n,m a pλx : C.bq754

755

1 ` n ą m ą 0 : Then we have n ě m and thus n “ k ` m for some k P N and756

π
0
1`k`m,m pÒl ˛ aq pλx : C.bq ” π

m
1`k,0 pÒl ˛ aq pλx : C.bq757

” Òk`m ˛ pπ
m
k,0 a pλx : C.bqq pby Ò3

πq758

” Òn ˛ pπ
0
n,m a pλx : C.bqq759

760

2. m ě n : Then we have m “ k ` n for some k P N and761

π0
n,1`m a pλx : C.Òl ˛ bq “ π0

n,1`k`n a pλx : C.Òl ˛ bq762

” π
n
0,1`k a pλx : C.Òl ˛ bq763

” Òn`k ˛ pπ
n
0,k a pλx : C.bqq pby Ò5

πq764

” Òm ˛ pπ
0
n,m a pλx : C.bqq765

766
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m ă n with m “ 0 : Then we have n “ 1 ` k for some k P N and767

π
0
n,1 a pλx : C.Òl ˛ bq “ π

0
1`k,1 a pλx : C.Òl ˛ bq768

” π
1
k,0 a pλx : C.Òl ˛ bq769

” ò1`k pπ
0
1`k,0 a pλx : C.bqq pby Ò6

πq770

” òn pπ
0
n,0 a pλx : C.bqq771

” Ò
n
0 ˛ pπ

0
n,0 a pλx : C.bqq772

773

m ă n with m ą 0 : Then we have m “ 1 ` k for some k P N and n “ m ` 1 ` k1 for774

some k1 P N and775

π
0
n,1`m a pλx : C.Òl ˛ bq “ π

0
2`k`k1,2`k a pλx : C.Òl ˛ bq776

” π
2`k

k1,0 a pλx : C.Òl ˛ bq pby Ò4
πq777

” π
1`k

1`k1,0 a pλx : C.bq778

” π
0
n,m a pλx : C.bq đ779

780

D Omitted proofs of Section 5781

D.1 Confluence of βR1782

Given a rewrite system R, the orthogonal rewriting relation ùñβR [22, 27] (also known783

as developments or multi-step reduction [12]) is defined over metaterms by the following784

inference rules, where we write θ ùñ θ1 as an abbreviation for dompθq “ dompθ1q and for all785

x⃗.t{t P θ and x⃗.t1{t P θ1 we have t ùñ t1.786

Var

x ùñ x

Const

c ùñ c

Sort

s ùñ s

Meta
ti ùñ t1

i for all i

ttt1..tku ùñ ttt1
1..t1

ku

App
t ùñ t1 u ùñ u1

t u ùñ t1 u1

Abs
A ùñ A1 t ùñ t1

λx : A.t ùñ λx : A1.t1

Fun
A ùñ A1 B ùñ B1

px : Aq Ñ B ùñ px : A1q ùñ B1

l ÞÝÑ r P R

RedR

θ ùñ θ1

lrθs ùñ rrθ1s

Redβ

t ùñ t1 u ùñ u1

pλx : A.tq u ùñ t1ru1{xs

Orthogonal rewriting satisfies the following well-known properties—see [27, Lemma 3.1.2]787

and [27, Lemma 3.1.6] for the proofs.788

§ Proposition 29. We have ÝÑβR1 ĎùñβR1 ĎÝÑ˚
βR1

, hence ÝÑ˚
βR1

and ùñ˚
βR1

are equal.789

§ Proposition 30. If t ùñβR t1 and θ ùñβR θ1 then trθs ùñβR t1rθ1s.790

In the following, recall that a rule l ÞÝÑ r overlaps l1 ÞÝÑ r1 when some non-metavariable791

subterm of l unifies with l1.792

§ Proposition 31. ùñβR1 satisfies the diamond property.793
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Proof. Given t, u, v with u ðù t ùñ v we show that there is w with u ùñ w ðù v. The794

proof is by induction on t ùñ u and t ùñ v. The only interesting cases is when t ùñ u795

(or dually, t ùñ v) is derived with rule RedR, in which case we have t “ lrθs for some796

l ÞÝÑ r P R1 and u “ rrθ1s with θ ùñ θ1. There are then three possibilities regarding t ùñ v.797

If all applications of Red in t ùñ v occur inside the substitution θ, then because l is798

linear we have v “ lrθ2s with θ ùñ θ2. By i.h. we have θ1 ùñ θ3 ðù θ2 for some θ3,799

and thus u “ rrθ1s ùñ rrθ3s ðù lrθ2s “ v.800

If t ùñ v starts with an application of RedR using the same rule as the one applied in801

t ùñ u, then we have v “ rrθ2s with θ ùñ θ2. By i.h. we have θ1 ùñ θ3 ðù θ2 for some802

θ3, and thus u “ rrθ1s ùñ rrθ3s ðù rrθ2s “ v.803

If Red is applied in t ùñ v with a rule l1 ÞÝÑ r1 overlapped by l ÞÝÑ r, we consider all804

such possible cases (which correspond to the critical pairs in Figure 4).805

Case Ò@ overlaps Òλ.806

Òl p_ p_qđ λx : C.Dq pλx : A.tq u Òl1 D1ru1{xs ppλx : A1.t1q u1q

X X 1

i.h.

X2 X3

pλx : A2.Òl2 D2 t2q u2 Òl3 D3ru3{xs t3ru3{xs

807

Case Òλ overlaps Òđ.808

Òl ppÒp_q ˛ Bq l0 đ λx : C.Dq pλx : A.tq λx : A1.Òl1 D1 t1

X X 1

i.h.

X2 X3

Òl2 pB2
pP l2

0qđ λx : C2.D2q pλx : A2.t2q λx : A3.Òl3 D3 t3

809

Case Ò@ overlaps Òđ.810

Òl ppÒp_q ˛ Bq l0 đ λx : C.Dq t u Òl1 D1ru1{xs pt1 u1q

X X 1

i.h.

X2 X3

Òl2 pB2
pP l2

0qđ λx : C2.D2q t2 u2 Òl3 D3ru3{xs pt3 u3q

811

Case ñđ overlaps Òđ.812

ppÒl1 ˛ Aq l0 đ λx : C.Dq ñ l px : Ell1
0

pÒl1
1

˛ A1qq Ñ D1 ñ l1

X X 1

i.h.

X2 X3

pA2
pP l2

0qđ λx : C2.D2q ñ l2 px : ElpP l3
0 q A3q Ñ D3 ñ l3

813

đ814
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§ Remark 32. In a first read, one can have the impression that the above proof always applies815

when all critical pairs close in at most one step. This is not the case, and it crucially relies on816

the fact that all orthogonal critical pairs are simple, ensuring two facts. First, at most one817

rule in t ùñ v can be overlapped by l ÞÝÑ r in t ùñ u. Second, if a rule l ÞÝÑ r in t ùñ u818

overlaps an a rule l1 ÞÝÑ r1 in t ùñ v, then no rule in t ùñ u is overlapped by l1 ÞÝÑ r1.819

§ Corollary 6. βR1 is confluent.820

E Omitted proofs of Section 7821

E.1 Injectivity822

We start with the following generalization of Assaf’s full reflection equations, used in the823

proof of the injectivity of El modulo lifting. From now on, let us write pÒ_ Dqk t for824

Òl1 D p...pÒlk
D tq...q where the l1, ..., lk can be any terms.825

§ Lemma 33 (Generalized full reflection). For all k1, k2, n1, n2 P N we have826

π
0
k1`n1,k2`n2

ppÒ_ ˛qk1 Aq pλx : C.pÒ_ ˛qk2 Bq ” Ò
Rpn1`k1,n2`k2q

Rpn1,n2q
˛ pπ

0
n1,n2 A pλx : C.Bqq827

Proof. By induction on k1 ` k2, using Proposition 3. đ828

In the following, we use the greek letter ρ to refer to rewrite sequences t ÝÑ˚ u. Given a829

rewrite sequence ρ, we write ℏρ for the first rewrite rule applied in the head in ρ or ℏρ “ K830

if no step takes place at the head, and we write #ρ for the total number of rewrite steps in831

ρ. For instance, if ρ denotes the sequence832

Ell ppλx.Òl1 ˛ xq u0q ÝÑ Ell pÒl1 ˛ u0q ÝÑ ElpP lq u0 ÝÑ U0833

then we have #ρ “ 3 and ℏρ “ ElÒ, which is the rule applied in the middle.834

We can now show that the constant El is injective modulo the insertion of some lifts.835

§ Proposition 34 (Injectivity of El modulo lifting). If Ell1 A1 ” Ell2 A2, where both sides are836

guarded and well typed, then there are natural numbers k1, k2 such that837

(1) A1 ” pÒ_ ˛qk1 A0 and A2 ” pÒ_ ˛qk2 A0 for some term A0.838

(2) Sk1 l0 ” l1 and Sk2 l0 ” l2 for some term l0.839

Proof. First note that, under the hypotheses of the lemma, (1) implies (2). Indeed, by840

applying confluence multiple times we obtain a term A1 with A1 ÝÑ˚ pÒ_ ˛qk1 A1 and841

A2 ÝÑ˚ pÒ_ ˛qk2 A1, and by subject reduction and inversion of typing we get Γ $ A1 : Ul1
1

842

with Sk1 l1
1 ” l1, and Γ $ A1 : Ul1

2
with Sk2 l1

2 ” l2. Therefore, by uniqueness of typing and843

injectivity of U we have l1
1 ” l1

2, and so l1 ” Sk1 l1
1 and l2 ” Sk2 l1

1.844

We now proceed to show that the hypotheses imply (1), however when applying the i.h.845

we also obtain (2) for free. By confluence we have Ell1 A1 ÝÑ˚ B ˚ÐÝ Ell2 A2 for some B.846

Let us to refer to the reduction sequence Ell1 A1 ÝÑ˚ B by ρ1 and to Ell2 A2 ÝÑ˚ B by ρ2.847

We show the result by induction on #ρ1 ` #ρ2, and by case analysis on ℏρ1 and ℏρ2.848

Case ℏρ1 “ ElÒ. Then ρ1 is of the form849

Ell1 A1 ÝÑ˚ Ell1
1

pÒl2
1

˛ A1
1q ÝÑ ElpP l1

1q A1
1

ρ1
1

ÝÑ˚ B850

Note that we have #ρ1
1 ` #ρ2 ă #ρ1 ` #ρ2, therefore we can apply the i.h. to deduce851

that for some term A0 and natural numbers k1, k2 we have A1
1 ” pÒ_ ˛qk1 A0 and852

A2 ” pÒ_ ˛qk2 A0. We therefore have A1 ” pÒ_ ˛qpk1`1q A0 as required.853
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Case ℏρ1 “ Elò. Then ρ1 is of the form854

Ell1 A1 ÝÑ˚ Ell1
1

pòn A1
1q ÝÑ Elpl1

1 ´ nq A1
1

ρ1
1

ÝÑ˚ B855

where the first argument ò must be a concrete sort, because it is a reduct of a guarded856

term. Note that we have #ρ1
1 ` #ρ2 ă #ρ1 ` #ρ2, therefore we can apply the i.h. to857

deduce that for some term A0 and natural numbers k1, k2 we have A1
1 ” pÒ_ ˛qk1 A0 and858

A2 ” pÒ_ ˛qk2 A0. Because n is concrete, we have òn A1
1 ÝÑ˚ pÒ_ ˛qn A1

1. Therefore,859

we have A1 ” pÒ_ ˛qk1
1 A0 by taking k1

1 “ k1 ` n.860

The cases ℏρ2 “ ElÒ and ℏρ2 “ Elò are symmetric to the above. Note that if ℏρ1 and ℏρ2861

are both different from ElÒ and Elò, then we must have ℏρ1 “ ℏρ2. Therefore, to conclude862

the proof it suffices to consider the following three cases:863

Case ℏρ1 “ ℏρ2 “ K. Immediate.864

Case ℏρ1 “ ℏρ2 “ Elu. For i “ 1, 2 we can decompose ρi as865

Elli Ai ÝÑ˚ Ell1
i

ul2
i

ÝÑ Ul2
i

ÝÑ˚ B866

By injectivity of U we have l2
1 ” l2

2, so by taking A0 “ ul2
1

and k1 “ k2 “ 0 we conclude.867

Case ℏρ1 “ ℏρ2 “ Elπ. For i “ 1, 2 we can decompose ρi as868

Elli
Ai ÝÑ˚ Ell1

i
pπ

mi

na
i

,nb
i

Aa
i λx : Ci.A

b
i q ÝÑ px : Elpmi ` na

i
q Aa

i q Ñ Elpmi ` nb
i

q Ab
i

ρ1
i

ÝÑ˚ B869

where the first arguments of π must be concrete sorts because these are reducts of guarded870

terms. In the following, we write δ for either a or b. Then it must be the case that B is of871

the form px : Baq Ñ Bb and that we can decompose ρ1
1 and ρ1

2 into ρa
1 , ρb

1, ρa
2 , ρb

2 given by872

Elpm1 ` nδ
1q Aδ

1

ρδ
1

ÝÑ˚ Bδ
ρδ

2
˚ÐÝ Elpm2 ` nδ

2q Aδ
2873

We have #ρδ
1 ` #ρδ

2 ă #ρ1 ` #ρ2, therefore by i.h. we deduce that for some terms Aδ
0, lδ

0874

and natural numbers kδ
1, kδ

2 we have875

(a) Aδ
1 ” pÒ_ ˛qkδ

1 Aδ
0 and Aδ

2 ” pÒ_ ˛qkδ
2 Aδ

0876

(b) m1 `nδ
1 ” Skδ

1 lδ
0 and m2 `nδ

2 ” Skδ
2 lδ

0877

Because m1 `nδ
1 ÝÑ˚ m1 ` nδ

1, by confluence it follows that lδ
0 also reduces to a concrete878

sort pδ P N. We therefore have m1 ` nδ
1 “ kδ

1 ` pδ and m2 ` nδ
2 “ kδ

2 ` pδ. Together with879

the equations from (a), this allows us to show the following for i “ 1, 2.880

Ai ” π
mi

na
i

,nb
i

Aa
i λx : Ci.A

b
i ” π

0
mi`na

i
,mi`nb

i

Aa
i λx : Ci.A

b
i881

” π
0
ka

i
`pa,kb

i
`pb ppÒ_ ˛qka

i Aa
0q pλx : Ci.pÒ_ ˛qkb

i Ab
0q882

” Ò
Rppa

`ka
i ,pb

`kb
i q

Rppa,pbq
˛ pπ0

pa,pb Aa
0 pλx : Ci.A

b
0qq883

884

where the last equation follows from Lemma 33. It suffices now to show that C1 ” C2.885

To see this, note that by typing constraints we must have Ci ” Elmi`na
i

Aa
i and thus886

Ci ” Elka
i

`pa ppÒ_ ˛qka
i Aa

0q ” ElpaAa
0887

where the right-hand side does not depend on i. đ888
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The injectivity of El modulo lifting is then used to establish the injectivity of ñ.889

§ Proposition 35 (Injectivity of ñ ). If D1 ñ l1 ” D2 ñ l2 and both sides are well typed890

and guarded, then D1 ” D2 and l1 ” l2.891

Proof. By confluence there is some term B such that D1 ñ l1 ÝÑ˚ B ˚ÐÝ D2 ñ l2. Let892

us refer to the reduction D1 ñ l1 ÝÑ˚ B by ρ1 and to the reduction D2 ñ l2 ÝÑ˚ B by ρ2.893

We show the result by induction on #ρ1. We proceed with a case analysis on ℏρ1, which by894

inspection must be equal to ℏρ2.895

Case ℏρ1 “ ℏρ2 “ K. It follows that B “ D0 ñ l0 for some D0, l0 with D1 ÝÑ˚ D0
˚ÐÝ896

D2 and l1 ÝÑ˚ l0
˚ÐÝ D2.897

Case ℏρ1 “ ℏρ2 “ ñ˛. For i “ 1, 2, we can decompose ρi as898

Di ñ li ÝÑ˚ ˛ ñ l1
i ÝÑ Ul1

i
ÝÑ˚ B899

So we have D1 ” ˛ ” D2, and from Ul1
1

” Ul1
2

we deduce l1
1 ” l1

2 and thus l1 ” l1
1 ” l1

2 ” l2.900

Case ℏρ1 “ ℏρ2 “ ñđ. For i “ 1, 2 we can decompose ρi as901

Di ñ li ÝÑ˚ pAi l2
i
đ λx : Ci.D

1
iq ñ l1

i ÝÑ px : Ell2
i

Aiq Ñ D1
i ñ l1

i ÝÑ˚ B902

In the last reduction sequence there can be no other steps in the head, so we must have903

B of the form px : P q Ñ Q with Ell2
1

A1 ÝÑ˚ P ˚ÐÝ Ell2
2

A2 and904

D1
1 ñ l1

1

ρ1
1

ÝÑ˚ Q ˚ÐÝ D1
2 ñ l1

2905

where #ρ1
1 ă #ρ1. Therefore, by i.h. we deduce D1

1 ” D1
2 and l1

1 ” l1
2. Moreover,906

by inversion of typing in Ai l2
i
đ λx : Ci.D

1
i we get Ci ” Ell2

i
Ai and thus C1 ” C2.907

Finally, by applying Proposition 34 with Ell2
1

A1 ” Ell2
2

A2 we get A1 ” pÒ_ ˛qk1 A0908

and A2 ” pÒ_ ˛qk2 A0 and l2
1 ” Sk1 l0 and l2

2 ” Sk2 l0 for some terms A0, l0 and natural909

numbers k1, k2. Therefore, we conclude910

D1 ” A1 l2
1
đ pλx : C1.D1

1q ” ppÒ_ ˛qk1 A0q pSk1 l0qđ pλx : C2.D1
2q911

” A0 l0 đ pλx : C2.D1
2q912

” ppÒ_ ˛qk2 A0q pSk2 l0qđ pλx : C2.D1
2q913

” A2 l2
2
đ pλx : C2.D1

2q ” D2 đ914
915

E.2 Coherence916

We first need the following technical lemma, allowing to decompose a telescope D when917

D ñ l is convertible to a function type.918

§ Lemma 36 (Telescope decomposition). If D ñ l ” px : P q Ñ Q then D ÝÑ˚ A l1 đ λx : C.D1
919

for some A, l1, C, D1 with P ” Ell1 A and Q ” D1 ñ l.920

Proof. By confluence, we have D ñ l ÝÑ˚ B ˚ÐÝ px : P q Ñ Q. We must have B of the921

form px : P 1q Ñ Q1 with P 1 ” P and Q1 ” Q, and we can decompose D ñ l ÝÑ˚ B as922

D ñ l ÝÑ˚ pA l1 đ λx : C.D1q ñ l2 ÝÑ px : Ell1 Aq Ñ D1 ñ l2 ÝÑ˚ px : P 1q Ñ Q1
923

We thus have D ÝÑ˚ A l1 đ λx : C.D1 and Ell1 A ” P 1 ” P and D1 ñ l ” Q1 ” Q. đ924
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§ Theorem 18 (Coherence). Let t1, t2 P Λo with Γ $ t1 : A1 and Γ $ t2 : A2. If |t1| “ |t2|925

then at least one of the following holds:926

(1) t1 ” t2927

(2) Γ $ Ò
m
n D t2 : D ñ m and t1 ” Ò

m
n D t2 for some D guarded928

(3) Γ $ Ò
m
n D t1 : D ñ m and t2 ” Ò

m
n D t1 for some D guarded929

Proof. The proof is by induction on t1 and t2, following the definition of | ´ |.930

Case t1 “ Òn D u. By inversion of typing, uniqueness of type and injectivity of function931

types, we have Γ $ D : Tele and Γ $ u : D ñ n. By i.h. on u and t2, we have three cases932

to consider.933

(a) u ” t2. By confluence, u and t2 have a common reduct w. Using subject reduction we934

know w has both types D ñ n and A2 so by uniqueness of type, we know D ñ n ” A2935

so we can conclude that Γ $ t2 : D ñ n and thus that Γ $ Òn D t2 : D ñ pS nq.936

Knowing that t1 ” Òn D t2 by congruence, we conclude.937

(b) Γ $ Ò
m1

n1 D1 t2 : D1 ñ m1 and u ” Ò
m1

n1 D1 t2. Similarly to above, we can show938

D ñ n ” D1 ñ m1 by confluence, subject reduction and uniqueness of type. By939

injectivity of ñ (Proposition 35) we get D ” D1 and n ” m1 which means n “ m1
940

given that they are concrete. So t1 “ Òn D u ” Òn D pÒ
n
n1 D t2q “ Ò

1`n

n1 D t2 by folding941

notations. Finally, we have Γ $ t2 : D1 ñ n1, so by conversion we get Γ $ t2 : D ñ n1
942

and thus Γ $ Ò
1`n

n1 D t2 : D ñ 1 ` n.943

(c) Γ $ Ò
m1

n1 D1 u : D1 ñ m1 and t2 ” Ò
m1

n1 D1 u. This gives us in particular that944

Γ $ u : D1 ñ n1 so by uniqueness of type we get D ñ n ” D1 ñ n1 and thus D ” D1
945

and n “ n1. If m1 “ n then we have t2 ” u so we proceed as in case (a), otherwise946

m1 ě 1 ` n so we can conclude with t2 ” Ò
m1

n D u “ Ò
m1

1`n D pÒn D uq “ Ò
m1

1`n D t1947

and Γ $ Ò
m1

1`n D t1 : D ñ m1.948

The case t2 “ Òn D v is symmetric to the one above, therefore, in the following, we consider949

t1 and t2 not headed by Ò, in which case the definition of | ´ | impose that they have the950

same head structure. Moreover, when applying the induction hypothesis, the proofs for the951

cases (b) and (c) are almost always symmetric, so we only give the proofs for case (c) when952

they are not symmetric.953

Case t1 “ x “ t2. Trivial.954

Case t1 “ un “ t2. Trivial.955

Case t1 “ π
0
n1,m1 A1 pλx : C1.B1q, t2 “ π

0
n2,m2 A2 pλx : C2.B2q. By inversion we know956

that A1 and A2 are well typed, of type Un1 and Un2 respectively. We also know that957

B1 and B2 are well typed—of type Um1 and Um2 respectively—but in a priori different958

contexts: Γ, x : Eln1 A1 and Γ, x : Eln2 A2 (we exploited here inversion and injectivity to959

conclude that Ci ” Elni
Ai). We thus first apply induction hypothesis on A1 and A2:960

(a) A1 ” A2. We can thus deduce that Un1 ” Un2 and thus that n1 “ n2, which also961

implies C1 ” Eln1 A1 ” Eln2 A2 ” C2. Using context conversion, we type both B1962

and B2 in context Γ, x : Eln1 A1 and thus apply induction hypothesis on them:963

(a) B1 ” B2. We deduce m1 “ m2 and we can thus conclude π
0
n1,m1 A1 pλx : C1.B1q ”964

π
0
n2,m2 A2 pλx : C2.B2q.965
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(b) Γ, x : Eln1 A1 $ Ò
p1

q1 D1 B2 : D1 ñ p1 and B1 ” Ò
p1

q1 D1 B2. Since Γ, x : Eln1 A1 $ B2 :966

Um2 we get D1 ñ q1 ” Um2 which by confluence means that D1 ” ˛ and q1 “ m2.967

We thus have Γ, x : Eln1 A1 $ Ò
p1

q1 D1 B2 : Up1 and Γ, x : Eln1 A1 $ B1 : Um1 so968

p1 “ m1. Therefore, we get B1 ” Ò
m1
m2 ˛ B2. Together with C1 ” C2 and A1 ” A2969

and Lemma 33, we can show t1 ” Ò
Rpn1,m1q

Rpn1,m2q
˛ t2. Finally, it is easy to see that970

Γ $ Ò
Rpn1,m1q

Rpn1,m2q
˛ t2 : ˛ ñ Rpn1, m1q.971

(b) Γ $ Ò
p
q D A2 : D ñ p and A1 ” Ò

p
q D A2. Since Γ $ A1 : Un1 we deduce Un1 ” D ñ p972

which means that D ” ˛ and p “ n1. Since Γ $ A2 : Un2 we also get that q “ n2.973

Hence we have A1 ” Ò
n1
n2 ˛ A2 and thus Eln1 A1 ” Eln1 pÒ

n1
n2 ˛ A2q ” Eln2 A2. We974

can thus apply our induction hypothesis on B1 and B2:975

(a) B1 ” B2. We obtain m1 “ m2, thus by combining C1 ” C2 and A1 ” Ò
n1
n2 ˛ A2 and976

Lemma 33, we can show t1 ” Ò
Rpn1,m1q

Rpn2,m1q
˛ t2, and moreover it is easy to see that977

Γ $ Ò
Rpn1,m1q

Rpn2,m1q
˛ t2 : ˛ ñ Rpn1, m1q.978

(b) Γ $ Ò
p1

q1 D1 B2 : D1 ñ p1 and B1 ” Ò
p1

q1 D1 B2. As before, we obtain B1 ” Ò
m1
m2 ˛ B2,979

so by combining C1 ” C2 and A1 ” Ò
n2
n1 ˛ A2 and Lemma 33, we can show980

t1 ” Ò
Rpn1,m1q

Rpn2,m2q
˛ t2, and we indeed have Γ $ Ò

Rpn1,m1q

Rpn2,m2q
˛ t2 : ˛ ñ Rpn1, m1q.981

(c) Γ $ Ò
p1

q1 D1 B1 : D1 ñ p1 and B2 ” Ò
p1

q1 D1 B1. As before, we obtain B2 ” Ò
m2
m1 ˛ B1,982

so by combining C1 ” C2 and A1 ” Ò
n1
n2 ˛ A2 and Lemma 33, we can show t1 ”983

Ò
Rpn1,m1q

Rpn2,m1q
˛ pπ

0
n2,m1 A2 pλx : C2.B1qq and t2 ” Ò

Rpn2,m2q

Rpn2,m1q
˛ pπ

0
n2,m1 A2 pλx : C2.B1qq.984

If Rpn2, m2q “ Rpn1, m1q then it follows that t1 ” t2. Otherwise, suppose wlog985

that Rpn2, m2q ą Rpn1, m1q, the other case being symmetric. Then we conclude986

t2 ” Ò
Rpn1,m1q

Rpn2,m2q
˛ t1 and it is easy to see that Γ $ Ò

Rpn1,m1q

Rpn2,m2q
˛ t1 : ˛ ñ Rpn1, m1q.987

Case t1 “ u1 v1 and t2 “ u2 v2. By inversion we have Γ $ ui : px : Aiq Ñ Bi and988

Γ $ vi : Ai. We first apply induction hypothesis on u1 and u2:989

(a) u1 ” u2. We thus get A1 ” A2 and B1 ” B2. Looking at the induction hypothesis on990

v1 and v2, in all cases we must have v1 ” v2. Indeed, if we are in cases (2) or (3) then991

we get A1 ” D ñ p and A2 ” D ñ q, but together with A1 ” A2 this implies p “ q,992

meaning that no lifts are inserted between v1 and v2. We thus conclude that t1 ” t2.993

(b) Γ $ Ò
m
n D u2 : D ñ m and u1 ” Ò

m
n D u2. Now, px : A1q Ñ B1 ” D ñ m, so994

by Lemma 36 we have D ÝÑ˚ a lđ λx : C.D1 with Ell a ” A1 and B1 ” D1 ñ m.995

Moreover, we also get that Ell a ” A2 and B2 ” D1 ñ n. We are again in a situation996

where v1 and v2 share a type, so by the same arguments as in case (a) the i.h. gives997

v1 ” v2. Therefore, we have998

t1 “ u1 v1 ” pÒ
m
n pa lđ λx : C.D1q u2q v2 ” Ò

m
n D1rv2{xs pu2 v2q “ Ò

m
n D1rv2{xs t2999

1000

For typing, we have Γ $ t2 : B2rv2{xs so by conversion we have Γ $ t2 : D1rv2{xs ñ n1001

and thus Γ $ Ò
m
n D1rv2{xs t2 : D1rv2{xs ñ m.1002

Case t1 “ λx : Eln1 A1.u1 and t2 “ λx : Eln2 A2.u2. By inversion we have Γ $ Ai : Uni
1003

and Γ, x : Elni Ai $ ui : Bi. We first show Eln1 A1 ” Eln2 A2 by applying induction1004

hypothesis on A1 and A2:1005



Felicissimo & Winterhalter 23:29

(a) A1 ” A2. Immediate.1006

(b) Γ $ Ò
p
q D A2 : D ñ p and A1 ” Ò

p
q D A2. Since Γ $ A1 : Un1 we get Un1 ”1007

D ñ p which entails D ” ˛ and p “ n1. Similarly, q “ n2. Therefore, Eln1 A1 ”1008

Eln1 pÒ
n1
n2 ˛ A2q ” Eln2 A2 which is the wanted result.1009

We now have Γ, x : Eln1 A1 $ ui : Bi and can thus apply the i.h. on u1 and u2:1010

(a) u1 ” u2. We conclude t1 ” t2.1011

(b) Γ, x : Eln1 A1 $ Ò
p
q D u2 : D ñ p and u1 ” Ò

p
q D u2. Let us define D1 :“ A2 n2 đ pλx :1012

Eln2 A2.Dq. We have1013

t1 “ λx : Eln1 A1.u1 ” λx : Eln2 A2.Ò
p
q D u21014

” Ò
p
q pA2 n2 đ pλx : Eln2 A2.Dqq λx : Eln2 A2.u21015

“ Ò
p
q D1 t21016

1017

As for the typing, we have Γ, x : Eln2 A2 $ u2 : D ñ q so Γ $ t2 : px : Eln2 A2q Ñ1018

D ñ q so by conversion Γ $ t2 : D1 ñ q hence we conclude Γ $ Ò
p
q D1 t2 : D1 ñ p. đ1019

E.3 Soundness1020

§ Lemma 21 (Computing the El of a translation). Let A P Λo with Ell A well typed.1021

1. If |A| “ n then Ell A ÝÑ˚ Un.1022

2. If |A| “ Πx : A1.A2 then Ell A ÝÑ˚ px : Eln1 A1
1q Ñ Eln2 A1

2 with |A1
i| “ Ai.1023

Proof. For the first part, note that by definition of | ´ |, if |A| “ n then A is of the form1024

Òn1 D1 p...pÒnk
Dk unq...q for some k. By typing constraints we can then deduce Di ” ˛ for all1025

i, which by confluence gives Di ÝÑ˚ ˛. We conclude Ell A ÝÑ˚ Ell ppÒ_ ˛qk unq ÝÑ˚ Un.1026

For the second part, by definition of | ´ |, if |A| “ Πx : A1.A2 then we must have A of the1027

form Òn1 D1 p...pÒnk
Dk pπ

0
n1,n2 A1

1 λx : P.A1
2qq...q with |A1

i| “ Ai. By inversion of typing,1028

we must have Di ” ˛ for all i, which by confluence gives Di ÝÑ˚ ˛. We then conclude1029

Ell A ÝÑ˚ Ell ppÒ_ ˛qk pπ
0
n1,n2 A1

1 λx : P.A1
2qq ÝÑ˚ px : Eln1 A1

1q Ñ Eln2 A1
2. đ1030

§ Lemma 22 (Telescope translation). Let A1, A2 P Λo with Γ $ Ai : Uni
. If |Ai| “ ∆ ñ mi1031

for some m1 ď m2, then we have Elni Ai ” D ñ mi for some guarded D with Γ $ D : Tele.1032

Proof. We prove this by induction on ∆.1033

∆ “ ¨. In this case |Ai| “ mi, so by Lemma 21 we get Elni
Ai ” Umi

” ˛ ñ mi.1034

∆ “ x : B, ∆1. We have |Ai| “ Πx : B.∆1 ñ mi, so by Lemma 21 we get Elni Ai ÝÑ˚ px :1035

Elpi
Biq Ñ Elqi

A1
i with |Bi| “ B and |A1

i| “ ∆1 ñ mi. By inversion of typing we have1036

Γ $ Bi : Upi and because |B1| “ |B2| then Proposition 20 gives Elp1 B1 ” Elp2 B2. By1037

inversion of typing once more and conversion in context, we get Γ, x : Elp1 B1 $ A1
i : Uqi

.1038

Now we can apply the i.h. to obtain a guarded D satisfying Γ, x : Elp1 B1 $ D : Tele1039

and Elqi
A1

i ” D ñ mi. By taking D1 :“ B1 p1 đ λx : Elp1 B1.D we can now show1040

Γ $ D1 : Tele and Elni
Ai ” px : Elp1 B1q Ñ D ñ mi ” D1 ñ mi as required. đ1041

§ Theorem 23 (Soundness). If Γ $CC t : A then we have Γ1 $ t1 : Eln A1 for some Γ1 P Ctxo1042

and t1, A1 P Λo and n P N with }Γ1} “ Γ and |t1| “ t and |A1| “ A.1043

Proof. We instead show the following two points, which together imply the theorem.1044

If Γ $CC then Γ1 $ for some Γ1 P Ctxo with }Γ1} “ Γ.1045
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If Γ $CC t : A and Γ1 $ for some Γ1 P Ctxo with }Γ1} “ Γ then Γ1 $ t1 : Eln A1 for some1046

n P N and A1, t1 P Λo with |A1| “ A and |t1| “ t.1047

We prove them by induction on the derivation of Γ $CC or Γ $CC t : A.1048

Case1049

EmptyCtx

¨ $CC

1050

The empty context in the target works.1051

Case1052

ExtCtx
Γ $CC Γ $CC A : n

Γ, x : A $CC

1053

By induction hypothesis we get Γ1 with |Γ1| “ Γ and Γ1 $. Then by i.h. again we have1054

Γ1 $ A1 : Elm B with |A1| “ A and |B| “ n, so by Lemma 21 we get Γ1 $ A1 : Un. Thus1055

Γ1 $ Eln A1 : Type and we can conclude Γ1, x : Eln A1 $.1056

Case1057

px : Aq P Γ

Var
Γ $CC

Γ $CC x : A
1058

Assuming Γ1 $ and }Γ1} “ Γ, we know that px : Aq P }Γ1} meaning there exists some A1
1059

and n such that px : Eln A1q P Γ1 and |A1| “ A. We thus conclude with Γ1 $ x : Eln A1.1060

Case1061

Sort
Γ $CC

Γ $CC n : Apnq
1062

Follows because we have Γ1 $ un : ElA2pnq uApnq with |un| “ n and |uApnq| “ Apnq.1063

Case1064

Pi
Γ $CC A : n Γ, x : A $CC B : m

Γ $CC Πx : A.B : Rpn, mq
1065

By i.h. and Lemma 21 we have Γ1 $ A1 : Un and |A1| “ A. Therefore we have1066

Γ1, x : Eln A1 $, so by i.h. and Lemma 21 again we obtain Γ1, x : Eln A1 $ B1 : Um with1067

|B1| “ B. We then derive Γ1 $ π
0
n,m A1 pλx : Eln A1.B1q : ElApRpn,mqq uRpn,mq to conclude.1068

Case1069

Lam
Γ $CC A : n Γ, x : A $CC t : B

Γ $CC λx : A.t : Πx : A.B
1070

By i.h. and Lemma 21 we have Γ1 $ A1 : Un and |A1| “ A. Therefore we have1071

Γ1, x : Eln A1 $, so by i.h. we get Γ1, x : Eln A1 $ t1 : Elm B1 for some m and with |t1| “ t1072

and |B1| “ B. By inversion, we then deduce Γ1, x : Eln A1 $ B1 : Um. We can now1073

show Γ1 $ λx : Eln A1.t1 : px : Eln A1q Ñ Elm B1 and because its type is convertible to1074

ElRpn,mq pπ
0
n,m A1 pλx : Eln A1.B1qq, which is well typed, we conclude by applying the1075

conversion rule.1076
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Case1077

App
Γ $CC t : Πx : A.B Γ $CC u : A

Γ $CC t u : Bru{xs
1078

By induction hypothesis we have Γ1 $ t1 : Elp C 1 and Γ1 $ u1 : Elq A1 for some t1, C 1, u1, A1
1079

with |t1| “ t and |C 1| “ Πx : A.B and |u1| “ u and |A1| “ A. By Lemma 21 we get1080

Γ1 $ t1 : px : Eln A2q Ñ Elm B1 for some A2, B1 with |A2| “ A and |B1| “ B, and1081

inversion of typing gives Γ1 $ A2 : Un and Γ1, x : Eln A2 $ B1 : Um. We also have1082

Γ1 $ A1 : Uq, so because |A1| “ |A2| we can apply Proposition 20 to get Eln A2 ” Elq A1.1083

So we have Γ1 $ u1 : Eln A2, and therefore Γ1 $ t1 u1 : pElm B1qru1{xs. Since m is concrete,1084

this type is in fact Elm B1ru1{xs, and Proposition 17 ensures that |B1ru1{xs| “ Bru{xs.1085

Case1086

A Ď B

Conv
Γ $CC t : A Γ $CC B : n

Γ $CC t : B
1087

By induction hypothesis we have Γ1 $ t1 : Elm A1 and Γ1 $ B1 : Un with |t1| “ t, |A1| “ A1088

and |B1| “ B (using Lemma 21 for the second derivation). By inversion we obtain1089

Γ1 $ A1 : Um. We now use Lemma 2 to split A Ď B into two cases:1090

A ” B. We have |A1| ” |B1| so by Proposition 20 we conclude Elm A1 ” Eln B1, and1091

thus Γ1 $ t1 : Eln B1.1092

A ÝÑ˚ ∆ ñ p and B ÝÑ˚ ∆ ñ q with p ď q. We apply Lemma 19 on A1 to get some1093

A2 such that |A2| “ ∆ ñ p and A1 ÝÑ˚ A2. Similarly, we get B2 with |B2| “ ∆ ñ q1094

and B1 ÝÑ˚ B2. We can then apply Lemma 22 to obtain a guarded term D such that1095

Γ1 $ D : Tele and Elm A2 ” D ñ p and Eln B2 ” D ñ q. We can now conclude with1096

Γ1 $ Ò
q
p D t : Eln B1. đ1097

F Omitted proofs of Section 81098

§ Theorem 25 (Conservativity for object terms). Let Γ P Ctxo and A P Λo with }Γ} $CC |A| : n1099

for some n. If Γ $ t : Eln A with t an object term, then we have }Γ} $CC |t| : |A|.1100

Proof. We instead show the following claim.1101

Ź Claim 37. Let Γ $ t : A with Γ P Ctxo and }Γ} $CC. If t is an object term, then there1102

exists A1 P Λ‚
o with A ” A1 and }Γ} $CC |t| : |A1|‚.1103

First note that this implies the statement of the theorem. Indeed, by the claim we have1104

}Γ} $CC |t| : |B|‚ for some B P Λ‚
o with B ” Eln A. Therefore |B|‚ ” |A|‚ “ |A|, so we1105

conclude }Γ} $CC |t| : |A| by the conversion rule.1106

We proceed with the proof of the claim, by induction on t, following the definition of Λo.1107

Case t “ x. By inversion we have x : Eln B P Γ with A ” Eln B. Therefore we have1108

x : |B| P }Γ}, so by the variable rule we get }Γ} $CC x : |B| and so }Γ} $CC x : |Eln B|‚.1109

Case t “ um. Then by inversion we have A ” UApmq, and we can easily show }Γ} $CC m :1110

|UApmq|‚.1111
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Case t “ λx : Eln A1.u. By inversion we have Γ $ A1 : Un and Γ, x : Eln A1 $ u : A21112

for some A2 with A ” px : Eln A1q Ñ A2. By i.h. we thus have }Γ} $CC |A1| : |B1|‚ with1113

B1 ” Un. Therefore, we have |B1|‚ ” n, so by conversion we can derive }Γ} $CC |A1| : n,1114

and so }Γ}, x : |A1| $CC. By i.h. once more, we have }Γ}, x : |A1| $CC |u| : |B2|‚ for some1115

B2 with B2 ” A2. We can thus derive }Γ} $CC λx : |A1|.|u| : |px : Eln A1q Ñ B2|‚ and1116

A ” px : Eln A1q Ñ B2.1117

Case t “ u v. By inversion of typing we have Γ $ u : px : A1q Ñ A2 and Γ $ v : A11118

and A ” A2rv{xs. By i.h. we thus have }Γ} $CC |u| : |B|‚ with B ” px : A1q Ñ A2,1119

and }Γ} $CC |v| : |C|‚ with C ” A1. Using confluence multiple times, it follows that1120

B ÝÑ˚ px : A1
1q Ñ A1

2 and C ÝÑ˚ A1
1 for some A1

1 ” A1 and A1
2 ” A2. Therefore1121

}Γ} $CC |u| : Πx : |A1
1|‚.|A1

2|‚ and }Γ} $CC |v| : |A1
1|‚, allowing us to deduce }Γ} $CC |v| :1122

|A1
2rv{xs|‚ and such that A ” A2rv{xs ” A1

2rv{xs.1123

Case t “ Òm D u. By inversion we have Γ $ u : D ñ m and A ” D ñ m ` 1. By i.h. we1124

get }Γ} $CC |u| : |B|‚ with B ” D ñ m. By confluence we have B ÝÑ˚ P ˚ÐÝ D ñ m,1125

and because B is in the domain of | ´ |‚ then so is P , and because it is also a reduct of1126

D ñ m it follows that it must be of the form1127

px1 : A1q Ñ .. Ñ pxk : Akq Ñ Um1128

Therefore we have |B|‚ ÝÑ˚ Πx1 : |A1|‚..xk : |Ak|‚.m and thus }Γ} $CC |u| : Πx1 :1129

|A1|‚..xk : |Ak|‚.m. Because this type is well typed, it is easy to see that Πx1 : |A1|‚..xk :1130

|Ak|‚.m`1 also is, and thus by rule Cumul we get }Γ} $CC |u| : Πx1 : |A1|‚..xk : |Ak|‚.m`1.1131

Now we conclude by noticing that if D ñ m ÝÑ˚ px1 : A1q Ñ .. Ñ pxk : Akq Ñ Um,1132

then it must be the case that D ñ m ` 1 ÝÑ˚ px1 : A1q Ñ .. Ñ pxk : Akq Ñ Um`1.1133

Case t “ π
0
p,q A1 pλx : C.A2q. By inversion we have Γ $ A1 : Up and Γ, x : Elp A1 $1134

A2 : Uq with A ” URpp,qq. So by i.h. we have }Γ} $CC |A1| : |A1
1|‚ with A1

1 ” Up, so1135

|A1
1|‚ ” p and by the conversion rule we get }Γ} $CC |A1| : p and so }Γ}, x : |A1| $CC.1136

By the i.h. once more, we also have }Γ}, x : |A1| $CC |A2| : |A1
2|‚ with A1

2 ” Uq, thus1137

|A1
2|‚ ” q and by the conversion rule we have }Γ}, x : |A1| $CC |A2| : q. Therefore, we can1138

derive }Γ} $ Πx : |A1|.|A2| : |URpp,qq|‚ and we indeed have A ” URpp,qq. đ1139
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