# Impredicativity, Cumulativity and Product Covariance in the Logical Framework Dedukti 

Thiago Felicissimo, Théo Winterhalter

## To cite this version:

Thiago Felicissimo, Théo Winterhalter. Impredicativity, Cumulativity and Product Covariance in the Logical Framework Dedukti. 2024. hal-04470850v1

## HAL Id: hal-04470850 <br> https://hal.science/hal-04470850v1

Preprint submitted on 21 Feb 2024 (v1), last revised 7 May 2024 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

# Impredicativity, Cumulativity and Product Covariance in the Logical Framework Dedukti 

Thiago Felicissimo $\square$<br>Université Paris-Saclay, INRIA project Deducteam, Laboratoire de Méthodes Formelles, ENS Paris-Saclay, 91190 France<br>Théo Winterhalter $\square$<br>Université Paris-Saclay, INRIA project Deducteam, Laboratoire de Méthodes Formelles, ENS Paris-Saclay, 91190 France


#### Abstract

__ Abstract Proof assistants such as Coq implement a type theory featuring three important features: impredicativity, cumulativity and product covariance. This combination has proven difficult to be expressed in the logical framework Dedukti, and previous attempts have failed in providing an encoding that is proven confluent, sound and conservative. In this work we solve this longstanding open problem by providing an encoding of these three features that we prove to be confluent, sound and to satisfy a restricted (but, we argue, strong enough) form of conservativity. Our proof of confluence is a contribution by itself, and combines classic and modern criteria from higher-order rewriting theory. Our proof of soundness also contributes a new strategy in which the result is shown in terms of an inverse translation function, fixing a common flaw made in some previous encoding attempts.


2012 ACM Subject Classification Theory of computation $\rightarrow$ Type theory; Theory of computation $\rightarrow$ Equational logic and rewriting

Keywords and phrases Dedukti, Rewriting, Confluence, Dependent types, Cumulativity, Universes
Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.23

## 1 Introduction

As the number of proof systems grow, it becomes increasingly important to understand the relationship between their logics and to which extent they can be expressed in a unified setting. The research project centered around the logical framework Dedukti [7, 17] has precisely the intent of providing such a setting. By allowing for the encoding of popular logics such as predicate logic [17], higher-order logic [32, 17], set theory [18] and pure type systems [19, 23], it provides a common framework in which proofs coming from different proof systems can rechecked, increasing the trust in their correctness. Moreover, Dedukti can then also be used for sharing these proofs with other systems, which has already allowed for exporting results to tools like Coq [16, 44], Agda [25] and HOL [44, 29].

The correctness of the verification provided by DEDUKTI relies however on methatheoretic results stating that the theorems that can be proven by a Dedukti encoding are exactly the same ones of the encoded logic. In the particular case of the cumulative calculus of constructions, a type theory combining impredicativity and cumulativity with product covariance, giving an encoding satisfying these properties has remained to this day a challenge. This issue is made especially relevant by the fact that this theory is quite popular, and is most notably implemented by the proof assistant Coq.

The current situation regarding encodings of this theory is summarised in Table 1. All encodings presented until now came with a proof of soundness, meaning that all facts that can be proven by the encoded logic can also be proven in the encoding. However, the proofs provided by Assaf, Assaf et al and Thiré have turned out to be incorrect, as they rely on ill-defined translation functions-see Section 9 for a detailed explanation. The situation is

© Thiago Felicissimo \& Théo Winterhalter;
licensed under Creative Commons License CC-BY 4.0
42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1-23:32
Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

|  | Assaf $^{*}[5]$ | Assaf et al [8] | Thiré* $^{*}[45]$ | Férey $^{+}[27]$ | This work |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Confluence | $\boldsymbol{x}$ | $\boldsymbol{J}^{\ddagger}$ | $\boldsymbol{x}$ | $\boldsymbol{x}$ | $\boldsymbol{\checkmark}$ |
| Soundness | $\boldsymbol{x}^{\dagger}$ | $\boldsymbol{x}^{\dagger}$ | $\boldsymbol{x}^{\dagger}$ | $\boldsymbol{\checkmark}$ | $\boldsymbol{\checkmark}$ |
| Conservativity | $\boldsymbol{x}$ | $\boldsymbol{x}$ | $\boldsymbol{x}$ | $\boldsymbol{x}$ | $\boldsymbol{\Omega}^{\star}$ |

$\dagger$ : The translation function is ill-defined (see the discussion in Section 9).
$\ddagger$ : Requires matching modulo ACU. $\star$ : Only in a restricted form.
*: Also handles other cumulative type systems. +: Also supports universe polymorphism.
Table 1 Comparison with previous encodings
even more serious regarding conservativity, the property dual to soundness and which ensures that the encoding cannot prove more theorems than the encoded system. Indeed, none of the previous proposals have provided a proof of this fact, which is nevertheless essential to ensure that a proof checked by Dedukti is indeed correct in the original system.

One of the challenges in proving conservativity is that all known proof methods rely on confluence - which is moreover also essential to establish subject reduction. However, the combination of impredicativity, cumulativity and product covariance has proven difficult to be expressed in a confluent way in Dedukti. Indeed, almost all previous encodings have not succeeded in proving this property. A notable exception is the impressive work of Assaf et al [8], which however relies on matching modulo ACU (assocativity-cumutativity with unit) a form of matching that is much less efficient and harder to implement than pure syntactical matching. For instance, the addition of ACU matching to the DкСнеск implementation doubled the size of the kernel [21] (see also the discussion by Blanqui [15]).

In this work we address this unsatisfying state of affairs by giving an encoding of the cumulative calculus of constructions, featuring cumulativity with product covariance, that we show to satisfy the necessary metaproperties to be used in practice.

Contrary to the previous proposals, our encoding does not require non-left-linear rewrite rules, which not only are less efficient but also make confluence proofs much harder [33]. Our proof of confluence then relies on a sophisticated combination of classical results and techniques [36, 39], and automated checkers developed by the rewriting community [30, 28, 38].

With the confluence of our encoding in hand, we proceed to show soundness. In order to fix the problem with the translation function made in previous attempts, we contribute an adaptation of the technique of Winterhalter et al [47] and Oury [40] in which the welltypedness of the translation is stated and proved in terms of an inverse translation function. The direct translation function can then be extracted from our constructive proof of soundness.

We finish by showing that our encoding satisfies a restricted form of conservativity, namely only for so-called object terms. We argue that, in the encoding, these are the only terms that one writes in practice, and therefore that this restricted result is sufficient.

## Outline of the paper

We start in Sections 2 and 3 by recalling the definitions of Dedukti and of the variant of the calculus of constructions we consider. We then proceed in Section 4 to present the theory used in our encoding, and in Section 5 by proving its desirable properties - in particular its confluence. We define the translation function we use in Section 6, and in Sections 7 and 8 we establish the soundness and conservativity of our encoding respectively. We finish by discussing related work in Section 9, before concluding in Section 10. The proofs not given in the main body of the text can be found in the technical appendix at the end of the paper.

## Supplementary material

We provide an artifact containing supplementary data used in some of our proofs [20].

| EmptyCtх | ExtCtх | Var |
| :--- | :--- | :--- |
| $\frac{\Gamma \vdash A: \text { Type }}{\Gamma, x: A \vdash}$ |  |  |$\quad x: A \in \Gamma \frac{\Gamma \vdash}{\Gamma \vdash x: A} \quad c: A \in \Sigma \frac{\Gamma \vdash}{\Gamma \vdash c: A}$



Figure 1 Typing rules of Dedukti

## 2 Dedukti

We assume an underlying set $c, d, \ldots \in \mathcal{C}$ of constants, $x, y, z \ldots \in \mathcal{V}$ of variables and $\mathrm{A}, \mathrm{B}, \mathrm{t}, \mathrm{u}, \ldots \in \mathcal{M}$ of metavariables equipped with an arity (a natural number). The metaterms of Dedukti [27] are defined by the following grammar.
$\hat{\Lambda}_{\mathrm{dk}} \ni t, u, A, B, \ldots::=x|c|$ Type $\mid$ Kind $|(x: A) \rightarrow B| \lambda x: A . t|t u| \mathrm{t}\left\{t_{1}, \ldots, t_{\text {arity }(\mathrm{t})}\right\}$
A metavariable application is written $\mathrm{t}\left\{t_{1}, \ldots, t_{k}\right\}$ when $\operatorname{arity}(\mathrm{t})=k$, or just t when $\operatorname{arity}(\mathrm{t})=0$. The metaterms Type and Kind are called sorts and referred to by the letter $s$. We write $(x: A) \rightarrow B$ for the dependent function type, and whenever $x$ does not appear free in $B$ we write $A \rightarrow B$ instead. We define $\mathrm{fv}(t)$ as the set of free variables of $t$ and $\mathrm{mv}(t)$ as the set of metavariables of $t$. When no ambiguity can arise, we allow ourselves to also write $t, u, A, B$ for variables. We adopt the convention of writing constants names in blue font.

A substitution $\theta$ is a finite set of pairs $t / x$ or $\left(x_{1} \ldots x_{k} \cdot t\right) / \mathrm{t}$, where $k=\operatorname{arity}(\mathrm{t})$. We write $t[\theta]$ for the application of a substitution $\theta$ to a metaterm $t$. The main cases of its definition are $x[\theta]=t$ when $t / x \in \theta$, and $t\left\{u_{1}, \ldots, u_{k}\right\}[\theta]=t\left[u_{1}[\theta] / x_{1}, \ldots, u_{k}[\theta] / x_{k}\right]$ when $\left(x_{1} . . x_{k} . t\right) / t \in \theta$-see for instance Férey [27] for the complete definition. A rewrite system $\mathcal{R}$ is a set of rewrite rules, which are pairs of the form $t \longmapsto u$ where $t$ is of the form $c t_{1} \ldots t_{k}$ and $\mathrm{fv}(t)=\mathrm{fv}(u)=\varnothing$ and $\mathrm{mv}(u) \subseteq \mathrm{mv}(t)$ and all occurrences of metavariables in $t$ are of the form $\mathrm{t}\left\{x_{1}, \ldots, x_{k}\right\}$ with $x_{1} \ldots x_{k}$ pairwise disjoint (known as the pattern condition [37]). When convenient, a rule can be given a name $\alpha$, in which case we write $t \stackrel{\alpha}{\longmapsto} u$.

Metavariables are useful in order to define the notion of rewrite rules. However, apart from this they will have no use for us, and in particular typing will only be defined for metaterms without metavariables. Because of this, we define the set of Dedukti terms $\Lambda_{\mathrm{dk}}$ as the metaterms $t$ satisfying $\operatorname{mv}(t)=\varnothing$. Given that terms will be the main object of study, from now on we adopt the convention that the letters $t, u, A, B, \ldots$ refer to terms, unless they explicitly appear inside of a rewrite rule-for instance, as in $c t_{1} . . t_{k} \longmapsto u$.

We write $\longrightarrow_{\mathcal{R}}$ for the closure under context and substitution of $\mathcal{R}$, and $\longrightarrow_{\beta \mathcal{R}}$ for $\longrightarrow_{\beta} \cup \longrightarrow_{\mathcal{R}}$ where $\longrightarrow_{\beta}$ is the usual $\beta$-reduction. We then write $\longrightarrow_{\beta \mathcal{R}}^{*}$ for its transitive closure, and $\equiv_{\beta \mathcal{R}}$ for its reflexive-symmetric-transitive closure, usually called conversion or definitional equality. Most of the time $\mathcal{R}$ is clear from the context, allowing us to write just $\longrightarrow$ for $\longrightarrow_{\beta \mathcal{R}}$ and $\equiv$ for $\equiv_{\beta \mathcal{R}}$. We then say that the underlying rewrite system is confluent when, for all terms $t, u, v$, if $u{ }^{*} \longleftarrow t \longrightarrow^{*} v$ then $u \longrightarrow^{*} w^{*} \longleftarrow v$ for some term $w$.


Figure 2 Typing rules for CC

A context $\Gamma$ is a finite sequence of entries of the form $x: A$. A signature $\Sigma$ is a (possibly infinite) sequence of entries of the form $c: A$. One central notion in Dedukti is that of theory, which is a pair $\mathbb{T}=\left(\Sigma_{\mathbb{T}}, \mathcal{R}_{\mathbb{T}}\right)$ where $\Sigma_{\mathbb{T}}$ is a signature and all constants appearing in $\mathcal{R}_{\mathbb{T}}$ are declared in $\Sigma_{\mathbb{T}}$. Theories are used in Dedukti to define the object logics in which we work (for instance, predicate logic). Given a theory $\mathbb{T}$, the typing rules of Dedukti are given in Figure 1, where the signature $\Sigma$ and the conversion relation $\equiv$ are the ones defined by the theory $\mathbb{T}$. Whenever $\mathbb{T}$ is not clear from the context, we write $\mathbb{T} \triangleright \Gamma \vdash t: A$.

A signature entry $c: A$ is valid in $\mathbb{T}$ when $\mathbb{T} \triangleright \cdot \vdash A: s$ for some sort $s$. A theory $\mathbb{T}$ is said to be well typed when each entry $c: A \in \Sigma_{\mathbb{T}}$ is valid in $\left(\Sigma^{\prime}, \mathcal{R}^{\prime}\right)$, where $\Sigma^{\prime}$ is the prefix of $\Sigma_{\mathbb{T}}$ preceding $c: A$, and $\mathcal{R}^{\prime}$ is the restriction of $\mathcal{R}_{\mathbb{T}}$ to rules only containing constants in $\Sigma^{\prime}$.

## 3 The Cumulative Calculus of Constructions with Product Covariance

We recall the definition of the cumulative calculus of constructions with product covariance [35, 31]. It can be seen as the underlying cumulative type system [34, 10] of the CoQ proof assistant [42], omitting the sorts Set and SProp. Its syntax is given by the following grammar.

$$
\Lambda_{\text {СС }} \quad t, u, A, B::=x|n| \Pi x: A . B|\lambda x: A . t| t u
$$

Here we have made the choice of representing universes directly by a natural number $n$. The universe that is commonly referred to as Prop then corresponds to 0, whereas Type ${ }_{n}$ corresponds to $n+1$, allowing us to manipulate them in a more uniform way. The typing rules are then given in Figure 2, and are parametrized by the following axiom and rule functions, as they are known in the pure type system literature [9].

$$
\begin{array}{ll}
\mathfrak{A}: \mathbb{N} \rightarrow \mathbb{N} & \mathfrak{R}: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N} \\
\mathfrak{A}(0):=2 & \mathfrak{R}(n, 0):=0 \\
\mathfrak{A}(1+n):=2+n & \mathfrak{R}(n, 1+m):=\max \{n, 1+m\}
\end{array}
$$

- Remark 1. We choose to follow the implementation of CoQ in placing 0 (Prop) in the universe $2\left(\mathrm{Type}_{1}\right)$. Some presentations choose instead to place it in $1\left(\mathrm{Type}_{0}\right)$ [35], a technical change that would have no impact in the strategy developed in this paper.

Compared with type systems that do not feature cumulativity, the conversion rule for CC does not only allow to exchange two types $A$ and $B$ when they are convertible, but also to coerce a term from type $A$ to $B$ when the latter is a subtype of the former. This subtyping relation, written $A \subseteq B$, is defined in the base case as $A \subseteq B$ when $A \equiv B$, or $n \subseteq m$ when $n \leqslant m$. The second rule allows us for instance to coerce a type $\Gamma \vdash A: 0$ to $\Gamma \vdash A: 1$. Then, what one calls product covariance is the rule allowing to deduce $\Pi x: C . A \subseteq \Pi x: C . B$ from $A \subseteq B$, which lets us for instance to coerce a function $\Gamma \vdash_{\mathrm{cc}} f:$ Nat $\rightarrow 0$ to $\Gamma \vdash_{\mathrm{cc}} f:$ Nat $\rightarrow 1$.

## 4 Introducing the theory $\mathbb{T}_{\text {cc }}$

We now introduce the Dedukti theory $\mathbb{T}_{\text {cc }}$ we will use in our encoding. We build it incrementally in order to motivate as best as possible the choices we have made.

Our first step is declaring a type $\mathfrak{S}$ along with constants 0 and S for zero and successor, allowing us to represent the CC sort $n$ by the Dedukti term $S^{n} 0$ - which from now on we write $\underline{n}$. We then define many auxiliary constants that will be useful later, such as addition + , truncated predecessor $P$, and also constants $\mathfrak{A}$ and $\mathfrak{R}$ to represent the functions $\mathfrak{A}$ and $\mathfrak{R}$ from the definition of CC. We declare the associated rewrite rules so that they have the expected computational behavior, such as $\underline{n}+\underline{m} \longrightarrow^{*} \underline{n+m}, \underline{n} \vee \underline{m} \longrightarrow^{*} \underline{\max \{n, m\}}$, etc.

$$
\begin{aligned}
& \mathfrak{S}: \text { Type } \quad \mathfrak{A}: \mathfrak{S} \rightarrow \mathfrak{S} \quad P: \mathfrak{S} \rightarrow \mathfrak{S} \quad-: \mathfrak{S} \rightarrow \mathfrak{S} \rightarrow \mathfrak{S} \quad \text { (infix) } \\
& 0: \mathfrak{S} \quad \mathfrak{A} 0 \longmapsto \mathrm{~S}(\mathrm{~S} 0) \quad \mathrm{P} 0 \longmapsto 0 \quad \mathrm{l}_{1}-0 \longmapsto l_{1} \\
& \mathrm{~S}: \mathfrak{S} \rightarrow \mathfrak{S} \quad \mathfrak{A}(\mathrm{S} \mathrm{l}) \longmapsto \mathrm{S}(\mathrm{~S} \mathrm{l}) \quad \mathrm{P}(\mathrm{~S} \mathrm{l}) \longmapsto 1 \quad l_{1}-\left(\mathrm{S}_{2}\right) \longmapsto\left(\mathrm{Pl} \mathrm{l}_{1}\right)-l_{2} \\
& +: \mathfrak{S} \rightarrow \mathfrak{S} \rightarrow \mathfrak{S} \text { (infix) } \quad \vee: \mathfrak{S} \rightarrow \mathfrak{S} \rightarrow \mathfrak{S} \text { (infix) } \quad \mathfrak{R}: \mathfrak{S} \rightarrow \mathfrak{S} \rightarrow \mathfrak{S} \\
& 0+l_{2} \longmapsto 1_{2} \quad 0 \vee l_{2} \longmapsto l_{2} \quad \Re l_{1} 0 \longmapsto 0 \\
& 1_{1}+0 \longmapsto l_{1} \quad \quad l_{1} \vee 0 \longmapsto l_{1} \quad \Re l_{1}\left(S l_{2}\right) \longmapsto l_{1} \vee\left(S l_{2}\right) \\
& \left(S l_{1}\right)+l_{2} \longmapsto S\left(l_{1}+l_{2}\right) \quad\left(\mathrm{Sl}_{1}\right) \vee\left(\mathrm{S}_{2}\right) \longmapsto \mathrm{S}\left(\mathrm{l}_{1} \vee \mathrm{l}_{2}\right) \\
& l_{1}+\left(S l_{2}\right) \longmapsto S\left(l_{1}+l_{2}\right)
\end{aligned}
$$

Using $\mathfrak{S}$ we can then encode the universes of CC. This is done by declaring a constant U , such that the inhabitants of $\mathrm{U}_{\underline{n}}$ can then be thought of as codes for the types of CC in $n$. The decoding function El then maps each such code to the Dedukti type of its elements.

$$
\mathrm{U}:(l: \mathfrak{S}) \rightarrow \text { Type } \quad\left(\text { written } \mathrm{U}_{l}\right) \quad \mathrm{El}:(l: \mathfrak{S}) \rightarrow \mathrm{U}_{l} \rightarrow \text { Type } \quad\left(\text { written } \mathrm{El}_{l}\right)
$$

Next we add constants to represent the codes inhabiting such universes. Because in CC each universe $n$ inhabits $\mathfrak{A}(n)$, we add a constant $u$ mapping each $l: \mathfrak{S}$ to its code in $\mathrm{U}_{(\mathfrak{A} l)}$. An associated rewrite rule then ensures that $u_{l}$ decodes to the type $U_{l}$ as expected.

$$
\mathrm{u}:(l: \mathfrak{S}) \rightarrow \mathrm{U}_{(\mathfrak{A} l)} \quad\left(\text { written } \mathrm{u}_{l}\right) \quad \mathrm{El}_{(-)} \mathrm{u}_{1} \longmapsto \mathrm{U}_{1}
$$

A similar story happens for the function type: we add a constant $\pi$ mapping a code $a: \mathrm{U}_{l_{a}}$ and a family of codes $b: \mathrm{El}_{l_{a}} a \rightarrow \mathrm{U}_{l_{b}}$ to a code in $\mathrm{U}_{\left(\Re l_{a} l_{b}\right)}$, so that if $a$ represents $A$ and $b$ represents $B$, then the result represents the CC type $\Pi x: A . B$. However, for reasons that will become clear later, our constant also allows us to decompose the sorts $l_{a}$ and $l_{b}$ into a common factor $l_{0}$ to which we apply offsets $l_{1}$ and $l_{2}$. In order to equate different decompositions of $l_{a}$ and $l_{b}$, we also add a rewrite rule which removes two successors of $l_{1}$ and $l_{2}$ and compensates it by adding one in $l_{0}$. Finally, we add a rewrite rule defining the elements of $\pi_{l_{1}, l_{2}}^{l_{0}} a \lambda x . b$ as the DEDUKTI functions from the elements of $a$ to the ones of $b$.

$$
\begin{aligned}
& \pi:\left(l_{0} l_{1} l_{2}: \mathfrak{S}\right) \rightarrow\left(A: \mathrm{U}_{\left(l_{0}+l_{1}\right)}\right) \\
& \rightarrow\left(B: \mathrm{El}_{\left(l_{0}+l_{1}\right)} A \rightarrow \mathrm{U}_{\left(l_{0}+l_{2}\right)}\right) \rightarrow \mathrm{U}_{\left(\Re\left(l_{0}+l_{1}\right)\left(l_{0}+l_{2}\right)\right)} \quad \quad \quad\left(\text { written } \pi_{l_{1}, l_{2}}^{l_{0}}\right) \\
& \pi_{\left(\mathrm{S} 1_{1}\right),\left(\mathrm{S} 1_{2}\right)}^{1_{0}} \mathrm{AB} \xrightarrow{\pi_{\mathrm{S}}} \pi_{1_{1}, l_{2}}^{\left(\mathrm{S} 1_{0}\right)} \mathrm{A} \mathrm{~B} \\
& \mathrm{El}_{(-)}\left(\pi_{1_{1}, l_{2}}^{0_{2}} \mathrm{~A} \lambda x: \mathrm{C} \cdot \mathrm{~B}\{x\}\right) \longmapsto\left(x: \mathrm{El}_{\left(1_{0}+l_{1}\right)} \mathrm{A}\right) \rightarrow \mathrm{El}_{\left(1_{0}+l_{2}\right)} \mathrm{B}\{x\}
\end{aligned}
$$

The theory given until this point is a representation of CC without cumulativity, and straightforwardly applies well-known techniques from previous Dedukti encodings [19, 17]. The interesting part is for the encoding of cumulativity. The main insight of our proposal comes from the following simple result regarding the relation $\subseteq$. In the following, given a context $\Delta=x_{1}: B_{1} \ldots x_{k}: B_{k}$, let us write $\Delta \Rightarrow A$ for the CC term $\Pi x_{1}: B_{1} \ldots x_{k}: B_{k} . A$.

- Lemma 2 (Case analysis of $\subseteq$ ). If $A \subseteq B$ then either $A \equiv B$ or $A \longrightarrow \longrightarrow^{*} \Delta \Rightarrow n$ and $B \longrightarrow^{*} \Delta \Rightarrow m$ for some context $\Delta$ and natural numbers $n, m$ with $n \leqslant m$.

Therefore, in order to simulate CC's cumulativity it suffices to add a lift $\uparrow$ allowing the coercion of terms from a type $\Delta \Rightarrow n$ to $\Delta \Rightarrow n+1$. However, to be able to state the type of $\uparrow$ we first need to have an internal representation for types of the form $\Delta \Rightarrow n$ in Dedukti. We do this by first defining a type for telescopes whose canonical elements are either the empty telescope $\bullet$, or the extension $A_{l} \triangleleft \lambda x . D$ of a telescope $D$ with a code $A$ in universe $\mathrm{U}_{l}$. We can then define a function $\Rightarrow$ that computes a DeDukti type corresponding to $\Delta \Rightarrow n$.

$$
\begin{aligned}
& \text { Tele : Type } \quad \Rightarrow \text { : Tele } \rightarrow \mathfrak{S} \rightarrow \text { Type (infix) } \\
& \text { - : Tele } \\
& \triangleleft(l: \mathfrak{S}) \rightarrow\left(A: \mathrm{U}_{l}\right) \rightarrow\left(\mathrm{El}_{l} A \rightarrow \text { Tele }\right) \quad\left(\mathrm{A}_{1_{2}} \triangleleft \lambda x: \ldots . \mathrm{D}\{x\}\right) \Rightarrow \mathrm{l}_{1} \stackrel{\Rightarrow}{\Rightarrow}\left(x: \mathrm{El}_{1_{2}} \mathrm{~A}\right) \rightarrow \mathrm{D}\{x\} \Rightarrow \mathrm{l}_{1} \\
& \rightarrow \text { Tele (infix, written } l_{\wedge} \text { ) }
\end{aligned}
$$

With these definitions in place we can finally give the definition of $\uparrow .{ }^{1}$
\| $\uparrow:(l: \mathfrak{S}) \rightarrow(D:$ Tele $) \rightarrow(D \Rightarrow l) \rightarrow(D \Rightarrow(\mathrm{~S} l)) \quad\left(\right.$ written $\left.\uparrow_{l}\right)$
Because in CC the applications of cumulativity are silent, the main challenge in the encoding is to ensure that different Dedukti representations of the same CC term are convertible. The pioneering work of Assaf [4] first identified that, in a setting without product covariance, it suffices to add the following full reflection equations-here and in the rest of the article we write $\uparrow \frac{m}{n} D t$ as a notation for $\uparrow_{\underline{m-1}} D\left(\ldots\left(\uparrow_{\underline{n}} D t\right) \ldots\right)$ when $n \leqslant m$.

$$
\begin{aligned}
& \pi_{\underline{1+n}, \underline{m}}^{0}\left(\uparrow_{\underline{\underline{n}}} \cdot a\right)(\lambda x . b) \equiv \uparrow_{\underline{\Re}(1+n, m)}^{\mathfrak{R}(n, m)} \bullet\left(\pi_{\underline{n}, \underline{m}}^{0} a(\lambda x . b)\right) \\
& \pi_{\underline{n}, \underline{1+m}}^{0} a\left(\lambda x . \uparrow_{\underline{m}} \bullet b\right) \equiv \uparrow_{\underline{\Re}(n, 1+m)}^{\frac{\mathfrak{R}(n, m)}{}} \bullet\left(\pi_{\underline{n}, \underline{m}}^{0} a(\lambda x . b)\right)
\end{aligned}
$$

The main difficulty in implementing these as rewrite rules is that the multistep lift $\uparrow \frac{m}{n}$ is just a notation which computes the correct number of lifts $\uparrow$ to be inserted only for a given concrete choice of $n$ and $m$. For instance, if $n>m>0$ in the second equation then no lifts should be inserted in the right hand side, whereas if $n>m=0$ then we must insert $n-1$ lifts.

[^0]If only we could have more information about $n$ and $m$ when applying the rule, we would be able to calculate the correct amount of lifts. Thankfully, because the sorts of $a$ and $b$ can be decomposed with the rule $\pi_{\mathrm{S}}$, we know that for any $\pi \underline{n_{0}}, \underline{n_{2}}$ a $a x$. $b$ in normal form we must have either $n_{1}=0$ or $n_{2}=0$. We can then proceed with a disjunction of cases, where in each situation we have enough information to apply the right number of lifts.

Note that in order to state the last rule we also define an auxiliary constant $\Uparrow$ which given a sort $l$, lifts a type from $\mathrm{U}_{0}$ to $\mathrm{U}_{l}$. The following proposition then ensures that we have correctly implemented Assaf's full reflection equations.

- Proposition 3 (Simulation of Assaf's full reflection rules). We have the following conversions.

$$
\left.\begin{array}{rl}
\pi_{\underline{1+n}, \underline{m}}^{0}\left(\uparrow_{l} \bullet a\right)(\lambda x: C . b) & \equiv \uparrow \frac{\mathfrak{\Re}(1+n, m)}{\mathfrak{R}(n, m)}
\end{array}\left(\pi_{\underline{n}, \underline{m}}^{0} a(\lambda x: C . b)\right)\right)
$$

Proof. By a disjunction of cases in which each case corresponds to one of the rules $\uparrow_{\pi}^{i}$.

- Remark 4. We note that these rules are also very similar to the ones identified by Assaf et al [8]. However they also differ in a crucial way by avoiding the use of non-left-linearity and matching modulo ACU, which render confluence proofs much harder and are less efficient.

The rules given until now would ensure the uniqueness of codes for a version of CC with "simple" cumulativity. However, in a setting with product covariance we also need to ensure that $\uparrow$ properly commutes with abstraction and application. We therefore add the following two rules, which are variants of similar equations first identified by Thiré [45] and Férey [27].

$$
\begin{aligned}
& \uparrow_{1}\left(-(-) \triangleleft \lambda x: \_. \mathrm{D}\{x\}\right) \lambda x: \mathrm{A} . \mathrm{t}\{x\} \stackrel{{ }_{\lambda}}{\longmapsto} \lambda x: \mathrm{A} \cdot \uparrow_{1} \mathrm{D}\{x\} \mathrm{t}\{x\} \\
& \uparrow_{1}\left(-(-) \triangleleft \lambda x: \_. \mathrm{D}\{x\}\right) \mathrm{t} \mathrm{u} \stackrel{\uparrow \Theta}{\rightleftarrows} \uparrow_{1} \mathrm{D}\{\mathrm{u}\}(\mathrm{t} \mathrm{u})
\end{aligned}
$$

We now have almost finished presenting the theory $\mathbb{T}_{\text {cc }}$. The final step is adding the following rule explaining the relationship between the elements of $\uparrow_{l} \bullet A$ and the ones of $A$, which as expected should be the same. Here we have purposely avoided the expected rule $\mathrm{El}_{\left(\mathrm{S}_{1}\right)}\left(\uparrow_{(-)} \bullet \mathrm{A}\right) \longmapsto \mathrm{El}_{1} \mathrm{~A}$ used in some previous proposals $[5,45]$. This subtle difference is essential in order to allow the critical pairs between $\uparrow_{\pi}^{i}$ and $\mathrm{El}_{\pi}$ to close. We add a similar rule for $\uparrow$, but once again we annotate El with $l_{2}-l_{1}$ instead of 0 in order to ensure that critical pairs all close. Finally, we need a last rule similar to $\mathrm{El}_{\uparrow}$ ensuring the uniqueness of telescope representations, which will be key when proving the injectivity of $\Rightarrow$.

$$
\mathrm{El}_{1}\left(\uparrow_{-} \bullet \mathrm{A}\right) \stackrel{{ }_{\mathrm{El}}^{2}}{\rightleftarrows} \mathrm{El}_{(\mathrm{P} 1)} \mathrm{A}
$$

$$
\mathrm{El}_{1_{2}}\left(\Uparrow_{1_{1}} \mathrm{~A}\right) \xrightarrow{\Uparrow_{\mathrm{El}}} \mathrm{El}_{\left(1_{2}-1_{1}\right)} \mathrm{A}
$$

$$
\left(\uparrow_{-} \bullet A\right)_{1} \triangleleft D \stackrel{\uparrow_{\Perp}}{\rightleftarrows} A_{(P 1)} \subset D
$$

$$
\begin{aligned}
& \pi_{(S 1), 0}^{0}\left(\uparrow \_\bullet A\right) B \stackrel{\uparrow^{1}}{\stackrel{1}{\rightleftarrows}} \pi_{1,0}^{0} A B
\end{aligned}
$$

$$
\begin{aligned}
& \Uparrow:(l: \mathfrak{S}) \rightarrow\left(A: \mathrm{U}_{0}\right) \rightarrow \mathrm{U}_{l} \quad\left(\text { written } \Uparrow_{l}\right) \\
& \pi_{\left(\mathrm{S} 1_{2}\right), 0}^{\left(\mathrm{S} 1_{1}\right)}\left(\uparrow_{-} \bullet \mathrm{A}\right) \mathrm{B} \stackrel{\uparrow^{3}}{\longrightarrow} \uparrow_{\left(\mathrm{S}\left(1_{1}+1_{2}\right)\right)} \bullet\left(\pi_{1_{2}, 0}^{\left(\mathrm{S} 1_{1}\right)} \mathrm{AB}\right) \\
& \pi_{1_{2}, 0}^{\left(\mathrm{S}\left(\mathrm{~S} 1_{1}\right)\right)} \mathrm{A}\left(\lambda x: \mathrm{C} \cdot \uparrow \_\bullet \mathrm{B}\{x\}\right) \stackrel{\uparrow^{4}}{\rightleftarrows} \pi_{\left(\mathrm{S} 1_{2}\right), 0}^{\left(\mathrm{S} 1_{1}\right)} \mathrm{A}(\lambda x: \mathrm{C} . \mathrm{B}\{x\}) \\
& \pi_{0,\left(\mathrm{~S} 1_{2}\right)}^{1_{1}} \mathrm{~A}\left(\lambda x: \mathrm{C} . \uparrow_{-} \bullet \mathrm{B}\{x\}\right) \stackrel{\uparrow^{5}}{\rightleftarrows} \uparrow_{\left(1_{1}+1_{2}\right)} \bullet\left(\pi_{0,1_{2}}^{1_{1}} \mathrm{~A}(\lambda x: \mathrm{C} . \mathrm{B}\{x\})\right) \\
& \pi_{1,0}^{\left(\mathrm{S}{ }_{0}\right)} \mathrm{A}\left(\lambda x: \mathrm{C} . \uparrow_{-} \bullet \mathrm{B}\{x\}\right) \stackrel{\uparrow_{\pi}^{6}}{\longleftrightarrow} \Uparrow_{(\mathrm{S} 1)}\left(\pi_{(\mathrm{S} 1), 0}^{0} \mathrm{~A}(\lambda x: \mathrm{C} . \mathrm{B}\{x\})\right)
\end{aligned}
$$

## 5 Basic properties of $\mathbb{T}_{\text {cc }}$

With the definition of the theory $\mathbb{T}_{\mathrm{cc}}$ in place, we now show that it satisfies the basic properties one expects, which will be essential for proving soundness and conservativity later. The first of them is the fact the the theory $\mathbb{T}_{\mathrm{cc}}$ is well-typed, in the sense defined in Section 2.

- Proposition 5 (Well-typedness of $\mathbb{T}_{\mathrm{cc}}$ ). The theory $\mathbb{T}_{\mathrm{cc}}$ is well typed.

Proof. Checked automatically with LAMBDAPI-see the artifact [20] for more details.

### 5.1 Confluence

Unlike all previous proposals, our theory $\mathbb{T}_{c c}$ only makes use of left-linear rules. By preventing the use of non-left-linearity, which interacts very badly with higher-order rewriting, we have made a first step for proving confluence. Yet, confluence still does not come for free. In order to show it, we split $\beta \mathcal{R}_{\text {cc }}$ into subsystems $\beta \mathcal{R}_{1}$ and $\mathcal{R}_{2}$, allowing us to apply different techniques for showing their confluence. Note that the union $\beta \mathcal{R}_{1} \cup \mathcal{R}_{2}$ is not disjoint: the rule $\uparrow_{\mathrm{El}}$, needed for closing critical pairs in both subsystems, is shared between them.

$$
\mathcal{R}_{1}:=\left\{\uparrow_{@}, \uparrow_{\lambda}, \uparrow_{\mathbf{\bullet}}, \Rightarrow_{\bullet}, \Rightarrow_{\mathbf{\downarrow}}, \uparrow_{\mathrm{El}}\right\}
$$

$$
\mathcal{R}_{2}:=\mathcal{R}_{\mathrm{cc}} \backslash\left\{\uparrow_{@}, \uparrow_{\lambda}, \uparrow_{\mathbf{\bullet}}, \Rightarrow_{\bullet}, \Rightarrow_{\mathbf{\bullet}}\right\}
$$

The hardest part of our proof is showing the confluence of $\beta \mathcal{R}_{1}$, for two main reasons. First, even though all critical pairs of $\beta \mathcal{R}_{1}$ close (as shown in Figure 4), because the $\beta$ rule is non-normalizing on untyped terms, we cannot apply Newman's Lemma to reduce proving confluence to local confluence. Second, because the critical pairs are neither trivial [39] nor development closed [46], we cannot apply the classical criteria that avoid the use of termination. Thankfully, it turns out that we can still employ the well-known technique of showing that orthogonal rewriting with $\beta \mathcal{R}_{1}$ satisfies the diamond property-the proof can be found in the appendix. Confluence of $\beta \mathcal{R}_{1}$ then follows from this as a simple corollary.

- Corollary 6. $\beta \mathcal{R}_{1}$ is confluent.
- Remark 7. Alternatively, one can show the confluence of $\beta \mathcal{R}_{1}$ by applying a recent criterion by Dowek, Férey, Jouannaud and Liu [22, Theorem 38]. However, the proof we give is more elementary as it relies neither on orthogonal critical pairs nor on decreasing diagrams, and therefore we believe that it is accessible to a wider audience.

We can then move to the proof of confluence of $\mathcal{R}_{2}$, which relies on termination.

- Lemma 8. $\mathcal{R}_{2}$ is strongly normalizing.

Proof. We translate from $\mathcal{R}_{2}$ into the first-order rewrite system $\hat{\mathcal{R}}_{2}$ obtained by forgetting about binders: $\lambda x: A . t$ is translated into $\hat{\lambda} A^{\prime} t^{\prime}$ and $\Pi x: A . B$ is translated into $\hat{\Pi} A^{\prime} B^{\prime}$, where $A^{\prime}, B^{\prime}, t^{\prime}$ are the translations of $A, B, t$. For instance, the rule $\uparrow_{\pi}^{4}$ is translated into the rule $\pi_{1_{2}, 0}^{(\mathrm{S}}{ }^{\left.\left(S 1_{1}\right)\right)} \mathrm{A}\left(\hat{\lambda} \mathrm{C}\left(\uparrow_{-} \bullet \mathrm{B}\right)\right) \longmapsto \pi_{\left(\mathrm{S} 1_{2}\right), 0}^{\left(\mathrm{S} 1_{1}\right)} \mathrm{A}(\hat{\lambda} C B)$. We can easily show that this interpretation preserves reduction sequences, therefore we reduce SN of $\mathcal{R}_{2}$ to the one of $\hat{\mathcal{R}}_{2}$. The latter can be shown with the use of the first-order termination checker AProVE [1, 28], and the proof can be verified by the formally certified tool CeTA [2, 43]-see the artifact [20].

- Proposition 9. $\mathcal{R}_{2}$ is confluent.

Proof. We use the tools $\mathrm{CSI}^{\text {ho }}[3,38]$ and SOL [30] to verify that all critical pairs of $\mathcal{R}_{2}$ are joinable - see the artifact [20] for details-so by Mayr and Nipkow's critical pair criterion [36, Theorem 4.7] we conclude that $\mathcal{R}_{2}$ is locally confluent. Together with Lemma 8, this gives the confluence of $\mathcal{R}_{2}$ by applying Newman's Lemma.

Putting everything together, we obtain the confluence of $\beta \mathcal{R}_{\mathrm{cc}}$.

- Theorem 10. $\beta \mathcal{R}_{\mathrm{cc}}$ is confluent.

Proof. By Corollary 6 and Proposition 9 we have the confluence of $\beta \mathcal{R}_{1}$ and $\mathcal{R}_{2}$, and moreover the rewrite systems are left-linear and there are no critical pairs between them. Therefore, we conclude the confluence of their union by applying Van Oostrom and Raamsdonk's orthogonal combinations criterion [39, Theorem 3.13].

We obtain the following useful corollary, which we implicitly use in the rest of the article.

- Corollary 11 (Injectivity of undefined symbols). If c is a constant that does not appear in the head of a rewrite rule, then $c t_{1} \ldots t_{k} \equiv c u_{1} \ldots u_{k}$ implies $t_{i} \equiv u_{i}$ for $i=1 . . k$.


### 5.2 Subject reduction

We start with subject reduction for $\beta$. Because we have already shown confluence of $\beta \mathcal{R}_{\mathrm{cc}}$, we obtain directly the injectivity of function types: if $(x: A) \rightarrow B \equiv\left(x: A^{\prime}\right) \rightarrow B^{\prime}$ then $A \equiv A^{\prime}$ and $B \equiv B^{\prime}$. This is sufficient in order to ensure that $\beta$ satisfies subject reduction.

- Proposition $12\left(\mathrm{SR}_{\beta}\right)$. If $\Gamma \vdash t: A$ and $t \longrightarrow \beta t^{\prime}$ then $\Gamma \vdash t^{\prime}: A$.

Proof. Follows from the injectivity of function types [13, Lemma 31].
Moving to subject reduction for $\mathcal{R}_{\mathrm{cc}}$, the first point we realize is that this property does not hold unconditionally. For instance, the rule
$\pi_{0,1_{2}}^{\left(\mathrm{S}_{1}\right)}\left(\uparrow_{-} \bullet \mathrm{A}\right) \mathrm{B} \longmapsto \pi_{0,\left(\mathrm{~S} 1_{2}\right)}^{1_{1}} \mathrm{AB}$
only preserves typing if $S\left(l_{1}[\theta] \vee\left(l_{1}[\theta]+l_{2}[\theta]\right)\right) \equiv l_{1}[\theta] \vee S\left(l_{1}[\theta]+l_{2}[\theta]\right)$, yet both sides are already in normal form. Nevertheless, this is actually not a problem because whenever $l_{1}$ and $l_{2}$ are substituted by terms of the form $\underline{n}$ for some $n \in \mathbb{N}$ then we see that the equation holds. Starting from this insight, we now show that subject reduction holds in a restricted form, which turns out to be sufficient for our needs.

We say that a term is guarded when all occurrences of $\Uparrow$ are of the form $\Uparrow_{\underline{n}}$ and all occurrences of $\pi$ are of the form $\pi \underline{\underline{n_{0}}, \underline{n_{2}}}$ for some $n, n_{0}, n_{1}, n_{2} \in \mathbb{N}$. The set of guarded terms satisfies the following basic stability properties.

- Proposition 13 (Stability of guarded terms under substitution and reduction).

1. If $t, u$ are guarded then $t[u / x]$ is guarded.
2. If $t$ is guarded and $t \longrightarrow t^{\prime}$ then $t^{\prime}$ is guarded.

We can now show that $\mathcal{R}_{c c}$ satisfies subject reduction for guarded terms.

- Proposition $14\left(\mathrm{SR}_{\mathcal{R}_{c c}}\right)$. If $t$ is guarded and $\Gamma \vdash t: A$ and $t \longrightarrow \mathcal{R}_{c c} t^{\prime}$ then $\Gamma \vdash t^{\prime}: A$.

Proof. We use Lambdapi to automatically verify that the rules preserve typing (the correctness of this verification relies on the confluence of the rewrite system [41, 14], which we have by Theorem 10). The verification succeeds for all rules $l \longmapsto r \in \mathcal{R}_{\text {cc }}$, except for those which do not preserve typing unconditionally. For these cases, Lambdapi reports conversion constraints on the substitution $\theta$ under which $\Gamma \vdash l[\theta]: A$ implies $\Gamma \vdash r[\theta]: A$.

1. Case $\Uparrow_{\text {El }}$. Preserves typing if $1_{2}[\theta]-1_{2}[\theta] \equiv 0$. But by inversion of typing of the left-hand side we also get $1_{1}[\theta] \equiv 1_{2}[\theta]$, so the rule preserves typing whenever $1_{1}[\theta]-1_{1}[\theta] \equiv 0$.
2. Case $\uparrow_{\pi}^{2}$. Preserves typing if $S\left(l_{1}[\theta] \vee\left(1_{1}[\theta]+1_{2}[\theta]\right)\right) \equiv 1_{1}[\theta] \vee S\left(l_{1}[\theta]+1_{2}[\theta]\right)$.
3. Case $\uparrow_{\pi}^{3}$. Preserves typing if $\left(1_{1}[\theta]+l_{2}[\theta]\right) \vee l_{1}[\theta] \equiv 1_{1}[\theta]+l_{2}[\theta]$ and $\mathrm{S}\left(\mathrm{l}_{1}[\theta]+\mathrm{l}_{2}[\theta]\right) \vee \mathrm{l}_{1}[\theta] \equiv \mathrm{S}\left(\mathrm{l}_{1}[\theta]+\mathrm{l}_{2}[\theta]\right)$.
4. Case $\uparrow_{\pi}^{4}$. Preserves typing if $S\left(l_{1}[\theta]+l_{2}[\theta]\right) \vee l_{1}[\theta] \equiv S\left(\left(l_{1}[\theta]+l_{2}[\theta]\right) \vee l_{1}[\theta]\right)$.
5. Case $\uparrow_{\pi}^{5}$. Preserves typing if $1_{1}[\theta] \vee S\left(1_{1}[\theta]+l_{2}[\theta]\right) \equiv S\left(l_{1}[\theta]+l_{2}[\theta]\right)$ and $\Re l_{1}[\theta]\left(l_{1}[\theta]+l_{2}[\theta]\right) \equiv 1_{1}[\theta]+l_{2}[\theta]$.

Because $t$ is guarded, it follows that $l_{1}[\theta]$ is a concrete sort in case 1 , and both $l_{1}[\theta]$ and $l_{2}[\theta]$ are concrete sorts in the other cases, so the result follows from the fact that these equations all hold for natural numbers.

- Corollary $15\left(\mathrm{SR}_{\beta \mathcal{R}_{\mathrm{cc}}}\right)$. If $t$ is guarded and $\Gamma \vdash t: A$ and $t \longrightarrow{ }^{*} t^{\prime}$ then $\Gamma \vdash t^{\prime}: A$.
- Remark 16. Corollary 15 guarantees that the usual type inference algorithm for Dedukti [41] is sound when $\Gamma$ and $t$ are guarded. Indeed, by inspection on its definition, if the inputs $\Gamma$ and $t$ are guarded then only guarded terms are ever reduced.


## 6 The translation function

Defining a Dedukti encoding usually requires specifying a translation function from the syntax of the source system to the one of the framework. However, whereas cumulativity is implicit in CC, in Dedukti it is made explicit by the use of a lift ( $\uparrow$ ). Therefore, when translating a CC term, the translation function needs to figure out when to insert such lifts, even though the initial term contains no information about cumulativity. To handle this, a first idea could be to define this function only for well-typed CC terms and use typing to retrieve the missing information. However, it is not clear how to define such a function in a unique and well-founded way-see the discussion is Section 9 for a detailed discussion.

To solve this problem, we adapt the approach of Winterhalter et al [47] of relying instead on an inverse translation function $|-|$, defined from a subset of the syntax of the framework to the syntax of CC. Because the syntax of Dedukti is more explicit than the one of CC, this function can be straightforwardly defined by structural induction. Then, we can use it to state and prove soundness and conservativity. Finally, the direct translation function can then be recovered as the underlying algorithm of our constructive proof of soundness.

We start by carving out a subset of Dedukti's syntax over which we define $|-|$. These are the object terms and object contexts, defined by the following grammars, and where $n, m$ ranges over natural numbers and $G$ ranges over arbitrary guarded terms.

$$
\begin{aligned}
\Lambda_{o} & \ni, u, A, B::=x\left|\lambda x: \mathrm{El}_{\underline{n}} A . t\right| \mathrm{u}_{\underline{n}}\left|\pi_{\underline{n}, \underline{m}}^{0} A \lambda x: G \cdot B\right| \uparrow_{\underline{n}} G t \mid t u \\
\operatorname{Ctx}_{o} & \ni
\end{aligned}
$$

The inverse translation function can then defined by structural induction over object terms and contexts, by the following clauses.

$|x|:=x$
$\left|\mathrm{u}_{\underline{n}}\right|:=n$
$\left|\lambda x: \mathrm{El}_{\underline{n}} A . t\right|:=\lambda x:|A| \cdot|t|$
$\left|\pi_{\underline{n}, \underline{m}}^{0} A(\lambda x: G \cdot B)\right|:=\Pi x:|A| \cdot|B|$
$\left|\uparrow_{\underline{n}} G t\right|:=|t|$
$|t u|:=|t||u| \quad$ ( $t u$ not of previous forms)

Crucially, object terms are all guarded, ensuring that whenever they are well typed then their reducts also are. In addition, object terms are stable under substitution, which moreover commutes with $|-|$, two basic properties that will be essential to our proofs.

Proposition 17 (Basic properties of $\Lambda_{o}$ and $|-|$ ).

1. If $t \in \Lambda_{o}$ then $t$ is guarded.
2. If $t, u \in \Lambda_{o}$ then $t[u / x] \in \Lambda_{o}$ and $|t|[|u| / x]=|t[u / x]|$.

## 7 Soundness

Our proof of soundness requires multiple intermediate steps. The first of them is showing the injectivity modulo lifting of El (Proposition 34) and the injectivity of $\Rightarrow$ (Proposition 35), two technical results that will be essential for the subsequent parts. However, for space reasons, we give these proofs in the appendix.

Then, we can move to the proof of coherence, the central auxiliary result needed for soundness, ensuring that any two different Dedukti representations of the same CC term must be convertible. The actual statement of the theorem is however a bit more intricate.

- Theorem 18 (Coherence). Let $t_{1}, t_{2} \in \Lambda_{o}$ with $\Gamma \vdash t_{1}: A_{1}$ and $\Gamma \vdash t_{2}: A_{2}$. If $\left|t_{1}\right|=\left|t_{2}\right|$ then at least one of the following holds:
(1) $t_{1} \equiv t_{2}$
(2) $\Gamma \vdash \uparrow \frac{m}{\underline{n}} D t_{2}: D \Rightarrow \underline{m}$ and $t_{1} \equiv \uparrow \frac{m}{\underline{n}} D t_{2}$ for some $D$ guarded
(3) $\Gamma \vdash \uparrow \frac{\bar{m}}{\underline{m}} D t_{1}: D \Rightarrow \underline{m}$ and $t_{2} \equiv \uparrow \underline{\frac{m}{n}} D t_{1}$ for some $D$ guarded

Proof. The proof is by induction on $t_{1}$ and $t_{2}$, following the definition of $|-|$. We first treat the cases in which $t_{1}$ or $t_{2}$ is of the form $\uparrow_{\underline{n}} D u$. Then, for the other cases the definition of
 and $t_{2}$ of the same form.

We illustrate the case where $t_{1}=u_{1} v_{1}$ and $t_{2}=u_{2} v_{2}$. By inversion we have $\Gamma \vdash u_{i}:(x:$ $\left.A_{i}\right) \rightarrow B_{i}$ and $\Gamma \vdash v_{i}: A_{i}$. By the i.h. applied to $u_{1}$ and $u_{2}$, we have three cases to consider:
(a) $u_{1} \equiv u_{2}$. We thus get $A_{1} \equiv A_{2}$ and $B_{1} \equiv B_{2}$. Looking at the induction hypothesis on $v_{1}$ and $v_{2}$, in all cases we must have $v_{1} \equiv v_{2}$. Indeed, if we are in cases (2) or (3) then we get $A_{1} \equiv D \Rightarrow \underline{p}$ and $A_{2} \equiv D \Rightarrow \underline{q}$, but together with $A_{1} \equiv A_{2}$ this implies $p=q$, meaning that no lifts are inserted between $v_{1}$ and $v_{2}$. We thus conclude that $t_{1} \equiv t_{2}$.
(b) $\Gamma \vdash \uparrow \frac{m}{n} D u_{2}: D \Rightarrow \underline{m}$ and $u_{1} \equiv \uparrow \frac{m}{n} D u_{2}$. Now, $\left(x: A_{1}\right) \rightarrow B_{1} \equiv D \Rightarrow \underline{m}$, so by Lemma 36 we have $D \longrightarrow \longrightarrow^{*} a_{l} \triangleleft \lambda x: C . D^{\prime}$ with $\mathrm{El}_{l} a \equiv A_{1}$ and $B_{1} \equiv D^{\prime} \Rightarrow \underline{m}$. Moreover, we also get that $\mathrm{El}_{l} a \equiv A_{2}$ and $B_{2} \equiv D^{\prime} \Rightarrow \underline{n}$. We are again in a situation where $v_{1}$ and $v_{2}$ share a type, so by the same arguments as in case (a) the i.h. gives $v_{1} \equiv v_{2}$. Therefore,

$$
t_{1}=u_{1} v_{1} \equiv\left(\uparrow \underline{\frac{m}{n}}\left(a_{l} \triangleleft \lambda x: C . D^{\prime}\right) u_{2}\right) v_{2} \equiv \uparrow \frac{m}{\underline{n}} D^{\prime}\left[v_{2} / x\right]\left(u_{2} v_{2}\right)=\uparrow \underline{\frac{m}{n}} D^{\prime}\left[v_{2} / x\right] t_{2}
$$

For typing, we have $\Gamma \vdash t_{2}: B_{2}\left[v_{2} / x\right]$ so by conversion we have $\Gamma \vdash t_{2}: D^{\prime}\left[v_{2} / x\right] \Rightarrow \underline{n}$ and thus $\Gamma \vdash \uparrow \underline{\underline{m}} \underline{\underline{n}} D^{\prime}\left[v_{2} / x\right] t_{2}: D^{\prime}\left[v_{2} / x\right] \Rightarrow \underline{m}$.
(c) $\Gamma \vdash \uparrow \frac{m}{\underline{n}} D u_{1}: D \Rightarrow \underline{m}$ and $u_{2} \equiv \uparrow \frac{m}{n} D u_{1}$. Symmetric to case (b).

With coherence in hand, we can show that the conversion relation of CC can be reflected by the inverse translation function into the framework. As an intermediate lemma, we first need to show that individual reduction steps of CC can be simulated in Dedukti.

- Lemma 19 (Simulation of reduction steps). Let $t \in \Lambda_{o}$ with $\Gamma \vdash t: A$ and $|t| \longrightarrow u$ for some $u \in \Lambda_{\mathrm{cc}}$. Then, there is some $t^{\prime} \in \Lambda_{o}$ such that $\left|t^{\prime}\right|=u$ and $t \longrightarrow{ }^{*} t^{\prime}$.

Proof. By induction on $t$, following the definition of $\Lambda_{o}$. Almost all cases are either impossible, or follow by applying the i.h. to the subterm being reduced. The only interesting case is when $t=t_{1} t_{2}$ and the reduction happens in the head. Then, the only possibility is that $t_{1}=\uparrow_{n_{k}} D_{k}\left(\ldots\left(\uparrow_{n_{1}} D_{1} v\right) \ldots\right)$ with $v=\lambda x: C . s$ and $|t|=(\lambda x:|C| .|s|)\left|t_{2}\right| \longrightarrow|s|\left[\left|t_{2}\right| / x\right]$. If $k=0$ then the result is immediate, as $t$ is a $\beta$ redex. Otherwise, by typing constraints and Proposition 35 we can see that we have $D_{1} \equiv \ldots \equiv D_{k}$ and $n_{i+1}=n_{i}+1$ for $i=1 . . k-1$, so by confluence we have some common reduct $D_{0}$ of all of them so that $t_{1} \longrightarrow * \uparrow_{\underline{n_{k}}}^{n_{1}} D_{0} v$. Then, by inversion of typing, $v$ has both types $D_{0} \Rightarrow \underline{n_{1}}$ and $(x: C) \rightarrow A^{\prime}$ for some $A^{\prime}$, hence by uniqueness of types we have $D_{0} \Rightarrow \underline{n_{1}} \equiv(x: C) \rightarrow A^{\prime}$, which by Lemma 36 implies $D_{0} \longrightarrow{ }^{*} C^{\prime}{ }_{l}{ }^{\triangleleft} \lambda x: B . D^{\prime}$ for some $C^{\prime}, l, B, D^{\prime}$. Abbreviating $C^{\prime}{ }_{l} \triangleleft \lambda x: B . D^{\prime}$ as $D_{0}^{\prime}$,

$$
t \longrightarrow \longrightarrow^{*} \uparrow \frac{n_{k}}{\underline{n_{1}}} D_{0}^{\prime}(\lambda x: C . s) t_{2} \longrightarrow^{*}\left(\lambda x: C . \uparrow \underline{\frac{n_{k}}{n_{1}}} D^{\prime} s\right) t_{2} \longrightarrow \uparrow \underline{\underline{n_{k}}} D^{\prime}\left[t_{2} / x\right] s\left[t_{2} / x\right]
$$

and we indeed have $\uparrow \frac{n_{k}}{n_{1}} D^{\prime}\left[t_{2} / x\right] s\left[t_{2} / x\right] \in \Lambda_{o}$, with $\left|\uparrow \underline{n_{k}} D^{\prime}\left[t_{2} / x\right] s\left[t_{2} / x\right]\right|=|s|\left[\left|t_{2}\right| / x\right]$.

- Proposition 20 (Reflection of type conversion). Let $A, B \in \Lambda_{o}$ with $\Gamma \vdash A: \mathrm{U}_{\underline{n}}$ and $\Gamma \vdash B: \mathrm{U}_{\underline{m}}$. If $|A| \equiv|B|$ then $\mathrm{El}_{\underline{n}} A \equiv \mathrm{El}_{\underline{m}} B$.

Proof. Take $k:=\max \{n, m\}$; we have $\Gamma \vdash \uparrow \frac{k}{n} \bullet A: \mathrm{U}_{\underline{k}}$ and $\Gamma \vdash \uparrow \underline{\underline{k}} \stackrel{\underline{k}}{ } \cdot B: \mathrm{U}_{\underline{k}}$ and $\left|\uparrow \frac{k}{n} \bullet A\right|=|A| \equiv|B|=\left|\uparrow \frac{k}{m} \bullet B\right|$. By confluence we have $\left|\uparrow \underline{\frac{k}{n}} \bullet A\right| \longrightarrow \longrightarrow^{*} C \longleftarrow\left|\uparrow \frac{k}{m} \bullet B\right|$ for some $C$. By iterating Lemma 19 with subject reduction, we get $\uparrow \underline{\underline{k}} \stackrel{A}{{ }^{*}} \longrightarrow^{*} A^{\prime}$ and $\uparrow \underline{\frac{k}{m}} \bullet B \longrightarrow^{*} B^{\prime}$ and $\left|A^{\prime}\right|=C=\left|B^{\prime}\right|$ for some $A^{\prime}$ and $B^{\prime}$. We also have $\Gamma \vdash A^{\prime}: \mathrm{U}_{\underline{k}}$ and $\Gamma \vdash B^{\prime}: \mathrm{U}_{\underline{k}}$, so by Theorem 18 we get $A^{\prime} \equiv B^{\prime}-$ note that because $A^{\prime}$ and $B^{\prime}$ have the same type, there can be no lifts between them. Therefore, we have $\uparrow \frac{k}{n} \bullet A \equiv \uparrow \frac{k}{m} \bullet B$ and thus we conclude $\mathrm{El}_{\underline{n}} A \equiv \mathrm{El}_{\underline{k}}\left(\uparrow \frac{k}{n} \bullet A\right) \equiv \mathrm{El}_{\underline{k}}\left(\uparrow \frac{k}{\underline{m}} \bullet B\right) \equiv \mathrm{El}_{\underline{m}} B$.

We now have almost all auxiliary results needed for showing soundness. As a last step, we only need the following two easy lemmas.

- Lemma 21 (Computing the El of a translation). Let $A \in \Lambda_{o}$ with $\mathrm{El}_{l} A$ well typed.

1. If $|A|=n$ then $\mathrm{El}_{l} A \longrightarrow{ }^{*} \mathrm{U}_{\underline{n}}$.
2. If $|A|=\Pi x: A_{1} \cdot A_{2}$ then $\mathrm{El}_{l} \bar{A} \longrightarrow^{*}\left(x: \mathrm{El}_{n_{1}} A_{1}^{\prime}\right) \rightarrow \mathrm{El}_{n_{2}} A_{2}^{\prime}$ with $\left|A_{i}^{\prime}\right|=A_{i}$.

Proof. By definition of $|-|$ and typing constraints.

- Lemma 22 (Telescope translation). Let $A_{1}, A_{2} \in \Lambda_{o}$ with $\Gamma \vdash A_{i}: \mathrm{U}_{\underline{n_{i}}}$. If $\left|A_{i}\right|=\Delta \Rightarrow m_{i}$ for some $m_{1} \leqslant m_{2}$, then we have $\mathrm{El}_{\underline{n_{i}}} A_{i} \equiv D \Rightarrow \underline{m_{i}}$ for some guarded $\bar{D}$ with $\Gamma \vdash D$ : Tele.

Proof. By induction on $\Delta$.

- Theorem 23 (Soundness). If $\Gamma \vdash_{\mathrm{cc}} t$ : A then we have $\Gamma^{\prime} \vdash t^{\prime}: \mathrm{El}_{\underline{n}} A^{\prime}$ for some $\Gamma^{\prime} \in \mathrm{Ctx}_{o}$ and $t^{\prime}, A^{\prime} \in \Lambda_{o}$ and $n \in \mathbb{N}$ with $\left\|\Gamma^{\prime}\right\|=\Gamma$ and $\left|t^{\prime}\right|=t$ and $\left|A^{\prime}\right|=A$.

Proof. We instead show the following two points, which together imply the theorem.

- If $\Gamma \vdash_{\mathrm{cc}}$ then $\Gamma^{\prime} \vdash$ for some $\Gamma^{\prime} \in \mathrm{Ctx}_{o}$ with $\left\|\Gamma^{\prime}\right\|=\Gamma$.
- If $\Gamma \vdash_{\mathrm{cc}} t: A$ and $\Gamma^{\prime} \vdash$ for some $\Gamma^{\prime} \in \mathrm{Ctx}_{o}$ with $\left\|\Gamma^{\prime}\right\|=\Gamma$ then $\Gamma^{\prime} \vdash t^{\prime}: \mathrm{El}_{\underline{n}} A^{\prime}$ for some $n \in \mathbb{N}$ and $A^{\prime}, t^{\prime} \in \Lambda_{o}$ with $\left|A^{\prime}\right|=A$ and $\left|t^{\prime}\right|=t$.

We prove them by induction on the derivation of $\Gamma \vdash_{c c}$ or $\Gamma \vdash_{c c} t: A$, and illustrate here one of the interesting cases.

- Case

$$
A \subseteq B \frac{\stackrel{\substack{\mathrm{Conv} \\ \Gamma \vdash_{\mathrm{cc}} t: A}}{\Gamma \vdash^{\mathrm{cc}}} \boldsymbol{} t: B}{{ }_{\mathrm{cc}} B: n}
$$

By induction hypothesis we have $\Gamma^{\prime} \vdash t^{\prime}: \mathrm{El}_{\underline{m}} A^{\prime}$ and $\Gamma^{\prime} \vdash B^{\prime}: \mathrm{U}_{\underline{n}}$ with $\left|t^{\prime}\right|=t,\left|A^{\prime}\right|=A$ and $\left|B^{\prime}\right|=B$ (using Lemma 21 for the second derivation). By inversion we obtain $\Gamma^{\prime} \vdash A^{\prime}: \mathrm{U}_{\underline{m}}$. We now use Lemma 2 to split $A \subseteq B$ into two cases:
= $A \equiv B$. We have $\left|A^{\prime}\right| \equiv\left|B^{\prime}\right|$ so by Proposition 20 we conclude $\mathrm{El}_{\underline{m}} A^{\prime} \equiv \mathrm{El}_{\underline{n}} B^{\prime}$, and thus $\Gamma^{\prime} \vdash t^{\prime}: \mathrm{El}_{\underline{n}} B^{\prime}$.
$=A \longrightarrow^{*} \Delta \Rightarrow p$ and $B \longrightarrow^{*} \Delta \Rightarrow q$ with $p \leqslant q$. We apply Lemma 19 on $A^{\prime}$ to get some $A^{\prime \prime}$ such that $\left|A^{\prime \prime}\right|=\Delta \Rightarrow p$ and $A^{\prime} \longrightarrow^{*} A^{\prime \prime}$. Similarly, we get $B^{\prime \prime}$ with $\left|B^{\prime \prime}\right|=\Delta \Rightarrow q$ and $B^{\prime} \longrightarrow^{*} B^{\prime \prime}$. We can then apply Lemma 22 to obtain a guarded term $D$ such that $\Gamma^{\prime} \vdash D$ : Tele and $\mathrm{El}_{\underline{m}} A^{\prime \prime} \equiv D \Rightarrow \underline{p}$ and $\mathrm{El}_{\underline{n}} B^{\prime \prime} \equiv D \Rightarrow \underline{q}$. We can now conclude with $\Gamma^{\prime} \vdash \uparrow \frac{q}{\underline{p}} D t: \mathrm{El}_{\underline{\underline{n}}} B^{\prime}$.

## 8 Conservativity

Now that we have seen that our encoding is sound, we can move to the proof of conservativity. The usual statement of conservativity (using direct translation functions [ - ]: $\Lambda_{\mathrm{cc}} \rightarrow \Lambda_{\mathrm{dk}}$ and $\left.\llbracket-\rrbracket: \mathrm{Ctx}_{\mathrm{cc}} \rightarrow \mathrm{Ctx}_{\mathrm{dk}}\right)$ would say that, given $\Gamma, A$ satisfying $\Gamma \vdash_{\mathrm{cc}} A: n$, if $\llbracket \Gamma \rrbracket \vdash t: \mathrm{El}_{\underline{n}}[A]$ then we have $\Gamma \vdash_{\mathrm{cc}} t^{\prime}: A$ for some $t^{\prime}$. When rephrasing this statement with the inverse translation function $|-|$, the full conservativity property would then assert that, for $\Gamma \in \mathrm{Ctx}{ }_{o}$ and $A \in \Lambda_{o}$ with $\|\Gamma\| \vdash|A|: n$, if $\Gamma \vdash t: \mathrm{El}_{\underline{n}} A$ then $\|\Gamma\| \vdash{ }_{\mathrm{cc}} t^{\prime}:|A|$ for some $t^{\prime}$.

In the following, we instead show conservativity for object terms, a restricted form of conservativity in which the witness $t$ of the typing judgment $\Gamma \vdash t: \mathrm{El}_{\underline{n}} A$ is required to be an object term. We argue that this is enough because in practice the object terms are the only ones a user of the encoding (or an automatic translator) would write. Nevertheless, it should be possible to strengthen our result to obtain full conservativity, as discussed in the conclusion.

The first step in our proof is showing that $|-|$ preserves definitional equality. This is however not immediate, because $|-|$ does not preserve reduction steps. Fortunately, we can define an auxiliary function $|-|^{\bullet}$ extending $|-|$ that satisfies this property. We start by defining the extended object terms $\Lambda_{o}^{\bullet}$ which will be used as the domain of $|-|^{\bullet}$. Here we write $G, G^{\prime}$ for any guarded terms, and $n, n_{0}, n_{1}, n_{2}$ for any natural numbers.
$\Lambda_{o}^{\bullet} \ni$

$$
\begin{gathered}
t, u, A, B::=x|(x: A) \rightarrow B| \lambda x: A . t\left|\mathrm{U}_{\underline{n}}\right| \mathrm{El}_{G} A \mid \mathrm{u}_{\underline{n}} \\
\left|\pi_{\underline{n_{0}}, \underline{n_{2}}} A \lambda x: G \cdot B\right| \uparrow_{G} G^{\prime} t\left|\Uparrow_{\underline{n}} t\right| t u
\end{gathered}
$$

The function $|-|^{\bullet}$ is then defined by the following clauses.

$$
|(x: A) \rightarrow B|^{\bullet}:=\Pi x:|A|^{\bullet} \cdot|B|^{\bullet}
$$

$$
|\lambda x: A . t|^{\bullet}:=\lambda x:|A|^{\bullet} \cdot|t|^{\bullet}
$$

$$
\left|\pi_{\underline{n_{1}}, \underline{n_{2}}}^{n_{2}} A(\lambda x: G . B)\right|^{\bullet}:=\Pi x:|A|^{\bullet} .|B|^{\bullet}
$$

$$
|t u|^{\bullet}:=|t|^{\bullet}|u|^{\bullet} \quad(t u \text { not of previous forms })
$$

We can show that $|-|^{\bullet}$ satisfies many desirable properties, among them being the preservation of reduction steps and thus also of definitional equality by $|-|^{\bullet}$.

- Lemma 24 (Basic properties of $\Lambda_{o}^{\bullet}$ and $|-|^{\bullet}$ ).

1. $\Lambda_{o}^{\bullet}$ is a superset of $\Lambda_{o}$, and $|-|^{\bullet}$ restricts to $|-|$ in $\Lambda_{o}$.
2. If $t \in \Lambda_{o}^{\bullet}$ then $t$ is guarded.
3. If $t, u \in \Lambda_{o}^{\bullet}$ then $t[u / x] \in \Lambda_{o}^{\bullet}$ and $|t|^{\bullet}\left[|u|^{\bullet} / x\right]=|t[u / x]|^{\bullet}$.
4. If $t \in \Lambda_{o}^{\bullet}$ and $t \longrightarrow \longrightarrow^{*} u$ then $u \in \Lambda_{o}^{\bullet}$ and $|t|^{\bullet} \longrightarrow{ }^{*}|u|^{\bullet}$.
5. If $t, u \in \Lambda_{o}^{\bullet}$ and $t \equiv u$ then $|t|^{\bullet} \equiv|u|^{\bullet}$.

Using these basic properties, we can now show conservativity.

- Theorem 25 (Conservativity for object terms). Let $\Gamma \in \mathrm{Ctx}_{o}$ and $A \in \Lambda_{o}$ with $\|\Gamma\| \vdash_{\mathrm{cc}}|A|: n$ for some $n$. If $\Gamma \vdash t: \mathrm{El}_{\underline{n}} A$ with $t$ an object term, then we have $\|\Gamma\| \vdash_{\mathrm{cc}}|t|:|A|$.

Proof. We instead show the following claim.
$\triangleright$ Claim 26. Let $\Gamma \vdash t: A$ with $\Gamma \in \mathrm{Ctx}_{o}$ and $\|\Gamma\| \vdash_{\mathrm{cc}}$. If $t$ is an object term, then there exists $A^{\prime} \in \Lambda_{o}^{\bullet}$ with $A \equiv A^{\prime}$ and $\|\Gamma\| \vdash_{\mathrm{cc}}|t|:\left|A^{\prime}\right|^{\bullet}$.

First note that this implies the statement of the theorem. Indeed, by the claim we have $\|\Gamma\| \vdash_{\mathrm{cc}}|t|:|B|^{\bullet}$ for some $B \in \Lambda_{o}^{\bullet}$ with $B \equiv \mathrm{El}_{\underline{n}} A$. Therefore $|B|^{\bullet} \equiv|A|^{\bullet}=|A|$, so we conclude $\|\Gamma\| \vdash_{\mathrm{cc}}|t|:|A|$ by the conversion rule.

We proceed with the proof of the claim, by induction on $t$, following the definition of $\Lambda_{o}$. We illustrate the interesting case of $\lambda$-abstraction: $t=\lambda x: \mathrm{El}_{\underline{n}} A_{1} \cdot u$. By inversion we have $\Gamma \vdash A_{1}: \mathrm{U}_{\underline{n}}$ and $\Gamma, x: \mathrm{El}_{\underline{n}} A_{1} \vdash u: A_{2}$ for some $A_{2}$ with $A \equiv\left(x: \mathrm{El}_{\underline{n}} A_{1}\right) \rightarrow A_{2}$. By i.h. we thus have $\|\Gamma\| \vdash_{c c}\left|A_{1}\right|:\left|B_{1}\right|^{\bullet}$ with $B_{1} \equiv \mathrm{U}_{\underline{n}}$. Therefore, we have $\left|B_{1}\right|^{\bullet} \equiv n$, so by conversion we can derive $\|\Gamma\| \vdash_{c c}\left|A_{1}\right|: n$, and so $\|\Gamma\|, x:\left|A_{1}\right| \vdash_{c c}$. By i.h. once more, we have $\|\Gamma\|, x:\left|A_{1}\right| \vdash_{\mathrm{cc}}|u|:\left|B_{2}\right|$ for some $B_{2}$ with $B_{2} \equiv A_{2}$. We can thus derive $\|\Gamma\| \vdash_{\mathrm{cc}} \lambda x:\left|A_{1}\right| \cdot|u|:\left|\left(x: \mathrm{El}_{\underline{n}} A_{1}\right) \rightarrow B_{2}\right|^{\bullet}$ and $A \equiv\left(x: \mathrm{El}_{\underline{n}} A_{1}\right) \rightarrow B_{2}$.

## 9 Related work

The first attempt to encode CC in Dedukti dates back to the work of Assaf. He first identified the full-reflection equations (discussed in Section 4) in earlier work studying a variant of the calculus of constructions with explicit cumulativity [4]. There, cumulativity is made explicit by a family of lifts $\uparrow_{i}: \mathrm{U}_{i} \rightarrow \mathrm{U}_{i+1}$, which are sufficient in his setting because the theory considered lacks product covariance.

These ideas were then employed in encoding a class of cumulative type systems (CTSs) in Dedukti [5], containing in particular the type system CC. In order to handle product covariance, he proposed the use of $\eta$-expansion at translation time: for instance, a variable $f:$ Nat $\rightarrow 0$ would be translated at type Nat $\rightarrow 1$ as $\lambda x . \uparrow_{\underline{0}}(f x)$. This however turned out to invalidate conservativity, as observed by Thiré [45, Example 6.6].

Moreover, as mentioned in the introduction, the translation functions used by Assaf for stating and proving soundness turn out to be ill-defined. He mutually defines functions $[-]_{\Gamma}$ and $[-]_{\Gamma \vdash C}$ and $\llbracket-\rrbracket$, and among their defining clauses he states $[t]_{\Gamma \vdash C}:=\lambda x:$ $\llbracket A \rrbracket .[t x]_{\Gamma, x: A \vdash B}$ if $C \equiv \Pi x: A . B$ and $t$ has a principal type convertible to $\Pi x: A . B^{\prime}$ with $B^{\prime} \subsetneq B$. However, the term $A$ is only determined up to conversion, yet the function is defined over unquontiented terms, and the preservation of conversion is only shown at a later stage. Worse, because $A$ is recovered using typing information, it might not be structurally smaller than $t$, and no well-founded order is given to justify the recursive call of $\llbracket-\rrbracket$ on $A$.

Regarding confluence, Assaf actually relies in his presentation on an axiomatization of the conversion relation required for the encoding. Because in Dedukti the conversion must be implemented by rewrite rules, each instantiation of his encoding then also needs to provide a rewrite system correctly implementing these equational axioms. In the particular case of CC, Assaf provides rules for implementing them, yet they are not confluent since some critical pairs are not joinable. This problem was later fixed in his joint work with Dowek, Jouannaud and Liu [8], though it required the use of rewriting modulo ACU, which is less efficient and harder to implement than pure syntactic matching. The problems with soundness and conservativity remained unaddressed.

Some years after the work of Assaf, the problem regained attention and new encodings were proposed by Thiré [45], also supporting a class of CTSs, and Férey [27], also supporting universe polymorphism. Starting from Thiré's observation that $\eta$-expanding at translation time breaks conservativity, they decided to instead rely on a generalized cast operator mapping a term $t: \mathrm{El}_{l_{a}} a$ to ${ }_{l_{a}}^{l_{b}} \uparrow{ }_{a}^{b} e t: \mathrm{El}_{l_{b}} b$, where $e$ is a term witnessing the inclusion of $a$ in $b$. Unfortunately, the use of a multi-step lift then required non-left-linear rules to ensure that two consecutive casts can be composed or that identity casts can be removed. Despite the impressive work of Férey on confluence criteria for non-left-linear systems [26], they were unable to show the confluence of their encodings.

The translation function employed by Thiré unfortunately inherited the issue of Assaf's function, as it also makes recursive calls on terms obtained through typing information without giving a decreasing measure. The proposal of Férey uses however a different technique, and instead defines the translation function over typing derivations. Finally, conservativity is only stated as a conjecture for both of the encodings.

## 10 Conclusion

In this work we have given an encoding of CC in Dedukti satisfying the necessary properties for being used in practice, solving a longstanding open problem. Our proof of confluence combines many confluence criteria and heavily uses the automated tools developed by the community. Yet, at the present moment, none of the available tools are able to fully show our result by themselves. Proving the confluence of our system automatically can thus be an interesting challenge for the next generation of today's confluence checkers.

Our work has also identified a problem with the definition of the translation function in some previous attempts at encoding CC in Dedukti. To solve this issue, we have then contributed an adaptation of the technique of Winterhalter et al [47] in which soundness is instead stated and proved using an inverse translation function.

Regarding conservativity, we have proven a restricted form concerning only object terms. Even though we believe that for practical needs our result is sufficient, we conjecture that full conservativity can be obtained by adapting the logical relations technique of Assaf [6]. Alternatively, we could modify our encoding and employ the technique described by Felicissimo [23], which allows for easy conservativity proofs at the cost of increasing the amount of type annotations in the syntax. There is already ongoing work on removing these annotations by incorporating bidirectional typing into Dedukti [24], yet the encoding presented here would not be covered by the presently available framework.

Finally, we believe that our work can be a starting point for incorporating CoQ's universepolymorphism. Among previous work, only Férey considers the combination of CC with universe polymorphism. Combining his ideas with ours is a promising direction to explore.

## Acknowledgements

The authors would like to thank François Thiré and Yoan Géran for helpful remarks about a first draft, and Gaspard Férey, Jean-Pierre Jouannaud, Frédéric Blanqui and Gilles Dowek for informative discussions around the subject of this paper.

## —— References

1 AProVE. URL: https://aprove.informatik.rwth-aachen.de/.
2 CeTA. URL: http://cl-informatik.uibk.ac.at/software/ceta/.
3 CSIho. URL: http://cl-informatik.uibk.ac.at/software/csi/ho/.
4 Ali Assaf. A calculus of constructions with explicit subtyping. In 20th International Conference on Types for Proofs and Programs (TYPES 2014), volume 39, 2014.
5 Ali Assaf. A framework for defining computational higher-order logics. These, École polytechnique, September 2015. URL: https://pastel.archives-ouvertes.fr/tel-01235303.
6 Ali Assaf. Conservativity of Embeddings in the lambda Pi Calculus Modulo Rewriting. In Thorsten Altenkirch, editor, 13th International Conference on Typed Lambda Calculi and Applications (TLCA 2015), volume 38 of Leibniz International Proceedings in Informatics (LIPIcs), pages 31-44, Dagstuhl, Germany, 2015. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TLCA.2015.31, doi:10.4230/LIPIcs.TLCA.2015.31.
7 Ali Assaf, Guillaume Burel, Raphaël Cauderlier, David Delahaye, Gilles Dowek, Catherine Dubois, Frédéric Gilbert, Pierre Halmagrand, Olivier Hermant, and Ronan Saillard. Dedukti: a logical framework based on the $\lambda \Pi$-calculus modulo theory. Unpublished, 2016.
8 Ali Assaf, Gilles Dowek, Jean-Pierre Jouannaud, and Jiaxiang Liu. Untyped Confluence In Dependent Type Theories. working paper or preprint, April 2017. URL: https://hal.inria. fr/hal-01515505.
9 Hendrik Pieter Barendregt, Wil Dekkers, and Richard Statman. Lambda calculus with types. Cambridge University Press, 2013.
10 Bruno Barras. Auto-validation d'un systeme de preuves avec familles inductives. These de doctorat, Université Paris, 7, 1999.
11 Bruno Barras and Benjamin Gregoire. On the role of type decorations in the calculus of inductive constructions. volume 3634, pages 151-166, 08 2005. doi:10.1007/11538363_12.
12 M. Bezem, J.W. Klop, R. de Vrijer, and Terese. Term Rewriting Systems. Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 2003. URL: https: //books.google.fr/books?id=7QQ5u-4tRUkC.
13 Frédéric Blanqui. Théorie des types et réécriture. (Type theory and rewriting). PhD thesis, University of Paris-Sud, Orsay, France, 2001. URL: https://tel.archives-ouvertes.fr/ tel-00105522.
14 Frédéric Blanqui. Type safety of rewrite rules in dependent types. In 5th International Conference on Formal Structures for Computation and Deduction, 2020.
15 Frédéric Blanqui. Encoding type universes without using matching modulo AC. In Proceedings of the 7th International Conference on Formal Structures for Computation and Deduction, Leibniz International Proceedings in Informatics 228, 2022.
16 Frédéric Blanqui. Hol-light library in coq. URL: https://github.com/Deducteam/ coq-hol-light.
17 Frédéric Blanqui, Gilles Dowek, Emilie Grienenberger, Gabriel Hondet, and François Thiré. A modular construction of type theories. Logical Methods in Computer Science, Volume 19, Issue 1, February 2023. URL: http://dx.doi.org/10.46298/lmcs-19(1:12)2023, doi: 10.46298/lmcs-19(1:12)2023.

18 Valentin Blot, Gilles Dowek, and Thomas Traversié. An Implementation of Set Theory with Pointed Graphs in Dedukti. In LFMTP 2022 - International Workshop on Logical

Frameworks and Meta-Languages : Theory and Practice, Haïfa, Israel, August 2022. URL: https://inria.hal.science/hal-03740004.
19 Denis Cousineau and Gilles Dowek. Embedding pure type systems in the lambda-pi-calculus modulo. In Simona Ronchi Della Rocca, editor, Typed Lambda Calculi and Applications, pages 102-117, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.
20 Deducteam. An encoding of impredicativity, cumulativity and product covariance in the logical framework dedukti. URL: https://github.com/Deducteam/cc-in-dk.
21 Deducteam. Pull request for ACU matching in DkCheck. URL: https://github.com/ Deducteam/Dedukti/pull/219.
22 Gilles Dowek, Gaspard Férey, Jean-Pierre Jouannaud, and Jiaxiang Liu. Confluence of leftlinear higher-order rewrite theories by checking their nested critical pairs. Mathematical Structures in Computer Science, 32(7):898-933, 2022. doi:10.1017/S0960129522000044.
23 Thiago Felicissimo. Adequate and Computational Encodings in the Logical Framework Dedukti. In Amy P. Felty, editor, 7th International Conference on Formal Structures for Computation and Deduction (FSCD 2022), volume 228 of Leibniz International Proceedings in Informatics (LIPIcs), pages 25:1-25:18, Dagstuhl, Germany, 2022. Schloss Dagstuhl - LeibnizZentrum für Informatik. URL: https://drops.dagstuhl.de/opus/volltexte/2022/16306, doi: 10.4230/LIPIcs.FSCD. 2022.25.

24 Thiago Felicissimo. Generic bidirectional typing for dependent type theories, 2023. arXiv: 2307.08523.

25 Thiago Felicissimo, Frédéric Blanqui, and Ashish Kumar Barnawal. Translating Proofs from an Impredicative Type System to a Predicative One. In Bartek Klin and Elaine Pimentel, editors, 31st EACSL Annual Conference on Computer Science Logic (CSL 2023), volume 252 of Leibniz International Proceedings in Informatics (LIPIcs), pages 19:1-19:19, Dagstuhl, Germany, 2023. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https: //drops.dagstuhl.de/opus/volltexte/2023/17480, doi:10.4230/LIPIcs.CSL.2023.19.
26 Gaspard Férey and Jean-Pierre Jouannaud. Confluence in non-left-linear untyped higher-order rewrite theories. In Proceedings of the 23rd International Symposium on Principles and Practice of Declarative Programming, PPDP '21, New York, NY, USA, 2021. Association for Computing Machinery. doi:10.1145/3479394.3479403.
27 Gaspard Férey. Higher-Order Confluence and Universe Embedding in the Logical Framework. These, Université Paris-Saclay, June 2021. URL: https://tel.archives-ouvertes.fr/ tel-03418761.
28 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, and Stephan Falke. Automated termination proofs with aprove. In Rewriting Techniques and Applications: 15th International Conference, RTA 2004, Aachen, Germany, June 3-5, 2004. Proceedings 15, pages 210-220. Springer, 2004.
29 Yoan Géran. Mathématiques inversées de Coq. 2021. URL: https://inria.hal.science/ hal-04319183.
30 Makoto Hamana. How to prove your calculus is decidable: Practical applications of secondorder algebraic theories and computation. Proc. ACM Program. Lang., 1(ICFP), aug 2017. doi:10.1145/3110266.
31 Hugo Herbelin. Type inference with algebraic universes in the calculus of inductive constructions. Unpublished. Available at: pauillac. inria. fr/ herbelin/publis/univalgcci. pdf, 2005.

32 Gabriel Hondet and Frédéric Blanqui. Encoding of Predicate Subtyping with Proof Irrelevance in the Lambdapi-Calculus Modulo Theory. In Ugo de'Liguoro, Stefano Berardi, and Thorsten Altenkirch, editors, 26th International Conference on Types for Proofs and Programs (TYPES 2020), volume 188 of Leibniz International Proceedings in Informatics (LIPIcs), pages 6:1-6:18, Dagstuhl, Germany, 2021. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https: //drops.dagstuhl.de/opus/volltexte/2021/13885, doi:10.4230/LIPIcs.TYPES.2020.6.
33 Jan Willem Klop. Combinatory reduction systems. PhD thesis, Rijksuniversiteit Utrecht, 1963.

34 Marc Lasson. Réalisabilité et paramétricité dans les systèmes de types purs. Theses, Ecole normale supérieure de lyon-ENS LYON, November 2012. URL: https://theses.hal.science/ tel-00770669.
35 Zhaohui Luo. An extended calculus of constructions. PhD thesis, University of Edinburgh, 1990.

36 Richard Mayr and Tobias Nipkow. Higher-order rewrite systems and their confluence. Theoretical computer science, 192(1):3-29, 1998.
37 Dale Miller. A logic programming language with lambda-abstraction, function variables, and simple unification. Journal of logic and computation, 1(4):497-536, 1991.
38 Julian Nagele, Bertram Felgenhauer, and Aart Middeldorp. CSI: New evidence - a progress report. In Leonardo de Moura, editor, Proceedings of the 26th International Conference on Automated Deduction (CADE-26), volume 10395 of Lecture Notes in Artificial Intelligence, pages 385-397, 2017. doi:10.1007/978-3-319-63046-5_24.
39 Vincent Oostrom and Femke Raamsdonk. Weak orthogonality implies confluence: The higher-order case. In Gerhard Goos, Juris Hartmanis, Anil Nerode, and Yu. V. Matiyasevich, editors, Logical Foundations of Computer Science, volume 813, pages 379-392. Springer Berlin Heidelberg, Berlin, Heidelberg, 1994. Series Title: Lecture Notes in Computer Science. URL: http://link.springer.com/10.1007/3-540-58140-5_35, doi:10.1007/3-540-58140-5_35.
40 Nicolas Oury. Extensionality in the calculus of constructions. In Theorem Proving in Higher Order Logics: 18th International Conference, TPHOLs 2005, Oxford, UK, August 22-25, 2005. Proceedings 18, pages 278-293. Springer, 2005.
41 Ronan Saillard. Type checking in the Lambda-Pi-calculus modulo: theory and practice. PhD thesis, Mines ParisTech, France, 2015.
42 The Coq Development Team. Typing rules for Coq. URL: https://coq.inria.fr/doc/V8. 16. 1/refman/language/cic.html\#id6.
43 René Thiemann and Christian Sternagel. Certification of termination proofs using ceta. In International Conference on Theorem Proving in Higher Order Logics, pages 452-468. Springer, 2009.

44 François Thiré. Sharing a library between proof assistants: Reaching out to the HOL family. In Frédéric Blanqui and Giselle Reis, editors, Proceedings of the 13th International Workshop on Logical Frameworks and Meta-Languages: Theory and Practice, LFMTP@FSCD 2018, Oxford, UK, 7th July 2018, volume 274 of EPTCS, pages 57-71, 2018. doi:10.4204/EPTCS.274.5.
45 François Thiré. Interoperability between proof systems using the logical framework Dedukti. PhD thesis, ENS Paris-Saclay, 2020.
46 Vincent Van Oostrom. Developing developments. Theoretical Computer Science, 175(1):159181, 1997.
47 Théo Winterhalter, Matthieu Sozeau, and Nicolas Tabareau. Eliminating Reflection from Type Theory. In CPP 2019-8th ACM SIGPLAN International Conference on Certified Programs and Proofs, pages 91-103, Lisbonne, Portugal, January 2019. ACM. URL: https: //hal.science/hal-01849166, doi:10.1145/3293880. 3294095.

## A Basic metaproperties of Dedukti

In the following, let us write $\Gamma \sqsubseteq \Gamma^{\prime}$ when $\Gamma$ is a subsequence of $\Gamma^{\prime}$. We recall the following basic metaproperties of Dedukti.

## - Proposition 27 (Basic metaproperties of Dedukti).

Weakening If $\Gamma \sqsubseteq \Gamma^{\prime}$ and $\Gamma^{\prime} \vdash$ and $\Gamma \vdash t: A$ then $\Gamma^{\prime} \vdash t: A$.
Substitution If $\Gamma, x: B, \Gamma^{\prime} \vdash t: A$ and $\Gamma \vdash u: B$ then $\Gamma, \Gamma^{\prime}[u / x] \vdash t[u / x]: A[u / x]$.
For all the following points, suppose that the underlying theory is well typed.

$$
\begin{aligned}
& \mathfrak{S}: \text { Type } \quad \mathfrak{A}: \mathfrak{S} \rightarrow \mathfrak{S} \quad \text { P : } \mathfrak{S} \rightarrow \mathfrak{S} \quad-: \mathfrak{S} \rightarrow \mathfrak{S} \rightarrow \mathfrak{S} \quad \text { (infix) } \\
& 0: \mathfrak{S} \quad \mathfrak{A} 0 \longmapsto \mathrm{~S}(\mathrm{~S} 0) \quad \mathrm{P} 0 \longmapsto 0 \quad 1_{1}-0 \longmapsto 1_{1} \\
& \mathrm{~S}: \mathfrak{S} \rightarrow \mathfrak{S} \quad \mathfrak{A}(\mathrm{S} 1) \longmapsto \mathrm{S}(\mathrm{~S} 1) \quad \mathrm{P}(\mathrm{~S} 1) \longmapsto 1 \quad l_{1}-\left(\mathrm{S}_{2}\right) \longmapsto\left(\mathrm{P} l_{1}\right)-1_{2} \\
& +: \mathfrak{S} \rightarrow \mathfrak{S} \rightarrow \mathfrak{S} \text { (infix) } \quad \vee: \mathfrak{S} \rightarrow \mathfrak{S} \rightarrow \mathfrak{S} \text { (infix) } \quad \mathfrak{R}: \mathfrak{S} \rightarrow \mathfrak{S} \rightarrow \mathfrak{S} \\
& 0+l_{2} \longmapsto l_{2} \quad 0 \vee l_{2} \longmapsto 1_{2} \quad \text { R } l_{1} 0 \longmapsto 0 \\
& \begin{array}{ll}
1_{1}+0 \longmapsto 1_{1} & 1_{1} \vee 0 \longmapsto 1_{1} \\
\left(\mathrm{~S} 1_{1}\right)+\mathrm{l}_{2} \longmapsto \mathrm{~S}\left(\mathrm{l}_{1}+\mathrm{l}_{2}\right) & \left(\mathrm{S} \mathrm{l}_{1}\right) \vee\left(\mathrm{S} 1_{2}\right) \longmapsto \mathrm{S}\left(\mathrm{l}_{1} \vee 1_{2}\right)
\end{array} \\
& l_{1}+\left(\mathrm{S}_{2}\right) \longmapsto \mathrm{S}\left(\mathrm{l}_{1}+\mathrm{l}_{2}\right) \\
& \mathrm{U}:(l: \mathfrak{S}) \rightarrow \text { Type } \quad\left(\text { written } \mathrm{U}_{l}\right) \quad \mathrm{u}:(l: \mathfrak{S}) \rightarrow \mathrm{U}_{(\mathfrak{A} l)} \quad\left(\text { written } \mathrm{u}_{l}\right) \\
& \mathrm{El}:(l: \mathfrak{S}) \rightarrow \mathrm{U}_{l} \rightarrow \text { Type } \quad\left(\text { written } \mathrm{El}_{l}\right) \quad \mathrm{El}_{(-)} \mathrm{u}_{1} \longmapsto \mathrm{U}_{1} \\
& \pi:\left(l_{0} l_{1} l_{2}: \mathfrak{S}\right) \rightarrow\left(A: \mathrm{U}_{\left(l_{0}+l_{1}\right)}\right) \\
& \left.\rightarrow\left(B: \mathrm{El}_{\left(l_{0}+l_{1}\right)} A \rightarrow \mathrm{U}_{\left(l_{0}+l_{2}\right)}\right) \rightarrow \mathrm{U}_{\left(\Re\left(l_{0}+l_{1}\right)\left(l_{0}+l_{2}\right)\right)} \quad \text { (written } \pi_{l_{1}, l_{2}}^{l_{0}}\right) \\
& \mathrm{El}_{\left(\_\right)}\left(\pi_{1_{1}, 1_{2}}^{1_{0}} \mathrm{~A} \lambda x: \mathrm{C} \cdot \mathrm{~B}\{x\}\right) \stackrel{\pi_{\mathrm{S}}}{\longmapsto}\left(x: \mathrm{El}_{\left(1_{0}+1_{1}\right)} \mathrm{A}\right) \rightarrow \mathrm{El}_{\left(1_{0}+1_{2}\right)} \mathrm{B}\{x\} \\
& \pi_{\left(\mathrm{S} \mathrm{l}_{1}\right),\left(\mathrm{S} \mathrm{l}_{2}\right)}^{\mathrm{l}_{0}} \mathrm{AB} \longmapsto \pi_{\mathrm{l}_{1}, 1_{2}}^{\left(\mathrm{S} \mathrm{l}_{\mathrm{l}}\right)} \text { A B } \\
& \text { Tele : Type } \quad \Rightarrow \text { : Tele } \rightarrow \mathfrak{S} \rightarrow \text { Type (infix) } \\
& \text { - : Tele } \\
& \text { 4 }:(l: \mathfrak{S}) \rightarrow\left(A: \mathrm{U}_{l}\right) \rightarrow\left(\mathrm{El}_{l} A \rightarrow \text { Tele }\right) \\
& \rightarrow \text { Tele (infix, written } l \triangleleft) \\
& \uparrow:(l: \mathfrak{S}) \rightarrow(D: \text { Tele }) \rightarrow(D \Rightarrow l) \rightarrow(D \Rightarrow(\mathrm{~S} l)) \quad\left(\text { written } \uparrow_{l}\right) \\
& E l_{1}\left(\uparrow_{-} \bullet A\right) \stackrel{\uparrow_{\mathrm{El}}}{\longmapsto} \mathrm{El}_{(\mathrm{P}} \mathrm{l}_{1)} \mathrm{A}
\end{aligned}
$$

$$
\begin{aligned}
& \uparrow_{1}\left(\ldots\left(\_\right) \triangleleft \lambda x: \ldots . \mathrm{D}\{x\}\right) \lambda x: \mathrm{A} . \mathrm{t}\{x\} \stackrel{\uparrow \lambda}{\longmapsto} \lambda x: \mathrm{A} \cdot \uparrow_{1} \mathrm{D}\{x\} \mathrm{t}\{x\}
\end{aligned}
$$

$\pi_{(\mathrm{S} 1), 0}^{0}\left(\uparrow \_\mathrm{A}\right) \mathrm{B} \stackrel{\uparrow_{\pi}^{1}}{\rightleftarrows} \pi_{1,0}^{0} \mathrm{AB} \quad \Uparrow:(l: \mathfrak{S}) \rightarrow\left(A: \mathrm{U}_{0}\right) \rightarrow \mathrm{U}_{l} \quad\left(\right.$ written $\left.\Uparrow_{l}\right)$
$\pi_{0, l_{2}}^{\left(\mathrm{S}_{1}\right)}\left(\uparrow_{-} \bullet \mathrm{A}\right) \mathrm{B} \stackrel{\uparrow_{\pi}^{2}}{\stackrel{1}{\rightleftarrows}} \pi_{0,\left(\mathrm{~S} \mathrm{l}_{2}\right)}^{\mathrm{l}_{1}} \mathrm{~A} \mathrm{~B}$
$\Uparrow_{0} \mathrm{~A} \longmapsto \mathrm{~A}$
$\Uparrow_{(S 1)} A \longmapsto \uparrow_{l} \bullet\left(\Uparrow_{1} A\right)$
$\pi_{1_{2}, 0}^{\left(\mathrm{S}\left(\mathrm{S} 1_{1}\right)\right)} \mathrm{A}\left(\lambda x: \mathrm{C} \cdot \uparrow_{-} \bullet \mathrm{B}\{x\}\right) \stackrel{\uparrow_{\pi}^{4}}{\rightleftarrows} \pi_{\left(\mathrm{S} 1_{2}\right), 0}^{\left(\mathrm{S} 1_{1}\right)} \mathrm{A}(\lambda x: \mathrm{C} . \mathrm{B}\{x\})$
$\pi_{0,\left(\mathrm{~S} 1_{2}\right)}^{1_{1}} \mathrm{~A}\left(\lambda x: \mathrm{C} . \uparrow_{-} \bullet \mathrm{B}\{x\}\right) \stackrel{\uparrow_{\pi}^{5}}{\stackrel{ }{\rightleftarrows}} \uparrow_{\left(1_{1}+1_{2}\right)} \bullet\left(\pi_{0,1_{2}}^{1_{1}} \mathrm{~A}(\lambda x: \mathrm{C} . \mathrm{B}\{x\})\right)$
$\pi_{1,0}^{(\mathrm{S} 0)} \mathrm{A}\left(\lambda x: \mathrm{C}_{.} \uparrow_{-} \bullet \mathrm{B}\{x\}\right) \stackrel{\uparrow_{\pi}^{6}}{\rightleftarrows} \Uparrow_{(\mathrm{S} \mathrm{1})}\left(\pi_{(\mathrm{S} 1), 0}^{0} \mathrm{~A}(\lambda x: \mathrm{C} . \mathrm{B}\{x\})\right)$

Figure 3 Definition of the theory $\mathbb{T}_{\mathrm{CC}}=\left(\Sigma_{\mathrm{cc}}, \mathcal{R}_{\mathrm{cc}}\right)$



Figure 4 Critical pairs of $\mathcal{R}_{1}$

Validity If $\Gamma \vdash t: A$ then either $A=\mathbf{K i n d}$ or $\Gamma \vdash A: s$ for some sort $s$
For all the following points, suppose furthermore that $\beta \mathcal{R}$ is confluent.
Subject reduction for $\beta$ If $\Gamma \vdash t: A$ and $t \longrightarrow \beta t^{\prime}$ then $\Gamma \vdash t^{\prime}: A$.
Uniqueness of types If $\Gamma \vdash t: A$ and $\Gamma \vdash t: B$ then $A \equiv B$
Inversion of constant applications If $c:\left(x_{1}: A_{1}\right) \rightarrow . . \rightarrow\left(x_{k}: A_{k}\right) \rightarrow B \in \Sigma$ and $\Gamma \vdash$ $c u_{1} . . u_{k}: B^{\prime}$ then we have $\Gamma \vdash u_{i}: A_{i}\left[u_{j} / x_{j}\right]_{j=1 . . i-1}$ for $i=1 . . k$ and $B^{\prime} \equiv B\left[u_{j} / x_{j}\right]_{j=1 . . k}$

Proof. We refer to the literature [13, 27, 41] for detailed proofs - even if there the definition of the typing system is not exactly the same, the proofs for the variant used here are straightforward adaptions of their proofs.

## B Basic metaproperties of CC

We recall the following basic properties of CC.

- Proposition 28 (Basic properties of CC).

Church-Rosser If $t \equiv u$ then $t \longrightarrow \longrightarrow^{*} v^{*} \longleftarrow u$ for some $v$
Weakening If $\Gamma \sqsubseteq \Gamma^{\prime}$ and $\Gamma^{\prime} \vdash$ and $\Gamma \vdash t: A$ then $\Gamma^{\prime} \vdash t: A$
Substitution If $\Gamma \vdash t: A$ and $\Gamma, x: A, \Gamma^{\prime} \vdash u: B$ then $\Gamma, \Gamma^{\prime}[t / x] \vdash u[t / x]: B[t / x]$
Validity If $\Gamma \vdash t: A$ then $\Gamma \vdash A: s$ for some sort $s$
Subject Reduction If $\Gamma \vdash t: A$ and $t \longrightarrow t^{\prime}$ then $\Gamma \vdash t^{\prime}: A$
Proof. See for instance [5], [11] or [34].

## C Omitted proofs of Section 4

- Lemma 2 (Case analysis of $\subseteq$ ). If $A \subseteq B$ then either $A \equiv B$ or $A \longrightarrow \longrightarrow^{*} \Delta \Rightarrow n$ and $B \longrightarrow * \Delta \Rightarrow$ for some context $\Delta$ and natural numbers $n, m$ with $n \leqslant m$.

Proof. By induction on the definition of $\subseteq$.

- Cases Sub and Eq: Trivial.
- Case Trans : By i.h. we consider four cases :
- Subcase $A \equiv B$ and $B \equiv C$ : Then $A \equiv C$.
- Subcase $A \equiv B$ and $B \longrightarrow^{*} \Delta \Rightarrow n$ and $C \longrightarrow^{*} \Delta \Rightarrow m$ with $n \leqslant m$ : By confluence we have $A \longrightarrow{ }^{*} P^{*} \longleftarrow \Delta \Rightarrow n$. It is easy to see that $P$ must be of the form $\Delta^{\prime} \Rightarrow n$ for some reduct $\Delta^{\prime}$ of $\Delta$. Therefore, we also have $C \longrightarrow^{*} \Delta^{\prime} \Rightarrow m$.
- Subcase $A \longrightarrow^{*} \Delta \Rightarrow n$ and $B \longrightarrow^{*} \Delta \Rightarrow m$ with $n \leqslant m$ and $B \equiv C$ : Symmetric to the previous one.
= Subcase $A \longrightarrow \longrightarrow^{*} \Delta \Rightarrow n$ and $B \longrightarrow^{*} \Delta \Rightarrow m$ with $n \leqslant m$, and $B \longrightarrow^{*} \Delta^{\prime} \Rightarrow n^{\prime}$ and $C \longrightarrow^{*} \Delta^{\prime} \Rightarrow m^{\prime}$ with $n^{\prime} \leqslant m^{\prime}$ : By confluence, we have $\Delta \Rightarrow m \longrightarrow \longrightarrow^{*} \longleftarrow \Delta^{\prime} \Rightarrow n^{\prime}$. It is easy to see that $P$ is of the form $\Delta^{\prime \prime} \Rightarrow m$ for some reduct $\Delta^{\prime \prime}$ of $\Delta$ and $\Delta^{\prime}$, and that $m=n^{\prime}$. Hence we get $A \longrightarrow \longrightarrow^{*} \Rightarrow n$ and $C \longrightarrow^{*} \Delta^{\prime \prime} \Rightarrow m^{\prime}$ with $n \leqslant m=n^{\prime} \leqslant m^{\prime}$.
- Case ProdCov : By i.h. we consider two subcases
- Subcase $A \equiv B$ : Then we also have $\Pi x: C . A \equiv \Pi x: C . B$
= Subcase $A \longrightarrow^{*} \Delta \Rightarrow n$ and $B \longrightarrow^{*} \Delta \Rightarrow m$ with $n \leqslant m$ : Then by taking $\Delta^{\prime}:=x:$ $C, \Delta$ we have $\Pi x: C . A \longrightarrow \longrightarrow^{*} \Delta^{\prime} \Rightarrow m$ and $\Pi x: C . B \longrightarrow{ }^{*} \Delta^{\prime} \Rightarrow m$ with $n \leqslant m$.
- Proposition 3 (Simulation of Assaf's full reflection rules). We have the following conversions.

$$
\begin{gather*}
\pi_{\underline{1+n}, \underline{m}}^{0}\left(\uparrow_{l} \bullet a\right)(\lambda x: C . b) \equiv \uparrow \frac{\underline{\mathfrak{R}(1+n, m)}}{\frac{\mathfrak{R}(n, m)}{}} \bullet\left(\pi_{\underline{\underline{n}}, \underline{m}}^{0} a(\lambda x: C . b)\right)  \tag{1}\\
\pi_{\underline{n}, \underline{0}, \underline{1+m}} a\left(\lambda x: C . \uparrow_{l} \bullet b\right) \equiv \uparrow \frac{\uparrow \underline{R}(n, 1+m)}{\underline{R}(n, m)} \bullet\left(\pi_{\underline{n}, \underline{m}}^{0} a(\lambda x: C . b)\right) \tag{2}
\end{gather*}
$$

Proof. Each statement is shown separately, by a disjunction of cases in which each case corresponds to one of the rules involving $\uparrow$ and $\pi$.

1. $=m=0$ : Then the identity follows directly from the rule $\uparrow \frac{1}{\pi}$.
$=1+n \leqslant m$ (which implies $m \neq 0$ ) : Then we have $m=k+1+n$ for some $k \in \mathbb{N}$ and

$$
\begin{aligned}
\pi_{\underline{1+n}, \underline{k+1+n}}^{0}\left(\uparrow_{l} \bullet a\right)(\lambda x: C . b) & \equiv \pi_{\underline{\underline{0}, \underline{k}}}^{\frac{1+n}{}}\left(\uparrow_{l} \bullet a\right)(\lambda x: C . b) \\
& \equiv \pi_{\underline{\underline{0}}, \underline{1+k}} a(\lambda x: C . b) \quad\left(b y \uparrow_{\pi}^{2}\right) \\
& \equiv \pi_{\underline{n}, \underline{\underline{m}}}^{0} a(\lambda x: C . b)
\end{aligned}
$$

$=1+n>m>0$ : Then we have $n \geqslant m$ and thus $n=k+m$ for some $k \in \mathbb{N}$ and

$$
\begin{aligned}
\pi_{\underline{\underline{1}+k+m}, \underline{m}}^{0}\left(\uparrow_{l} \bullet a\right)(\lambda x: C . b) & \equiv \pi_{\underline{1+k}, \underline{\underline{m}}}\left(\uparrow_{l} \bullet a\right)(\lambda x: C . b) \\
& \equiv \uparrow_{\underline{k+m}} \bullet\left(\pi_{\underline{k}, \underline{0}}^{m} a(\lambda x: C . b)\right) \quad\left(\text { by } \uparrow_{\pi}^{3}\right) \\
& \equiv \uparrow_{\underline{n}} \bullet\left(\pi_{\underline{n}, \underline{m}}^{0} a(\lambda x: C . b)\right)
\end{aligned}
$$

2.     - $m \geqslant n$ : Then we have $m=k+n$ for some $k \in \mathbb{N}$ and

$$
\begin{aligned}
\pi_{\underline{n}, \underline{1+m}}^{0} a\left(\lambda x: C . \uparrow_{l} \bullet b\right) & =\pi_{\underline{n}, \underline{1+k+n}}^{0} a\left(\lambda x: C \cdot \uparrow_{l} \bullet b\right) \\
& \equiv \pi_{\underline{0}, \underline{1+k}} a\left(\lambda x: C \cdot \uparrow_{l} \bullet b\right) \\
& \equiv \uparrow_{\underline{n+k}} \bullet\left(\pi_{\underline{0}, \underline{k}} a(\lambda x: C . b)\right) \quad \quad\left(\text { by } \uparrow_{\pi}^{5}\right) \\
& \equiv \uparrow_{\underline{m}} \bullet\left(\pi_{\underline{n}, \underline{m}}^{0} a(\lambda x: C . b)\right)
\end{aligned}
$$

= $m<n$ with $m=0$ : Then we have $n=1+k$ for some $k \in \mathbb{N}$ and

$$
\begin{aligned}
\pi_{\underline{n}, \underline{1}}^{0} a\left(\lambda x: C \cdot \uparrow_{l} \bullet b\right) & =\pi_{\underline{1}+k, \underline{1}}^{0} a\left(\lambda x: C . \uparrow_{l} \bullet b\right) \\
& \equiv \pi_{\underline{\underline{k}}, \underline{0}}^{\underline{1}} a\left(\lambda x: C . \uparrow_{l} \bullet b\right) \\
& \equiv \Uparrow_{\underline{1+k}}\left(\pi_{\underline{1}+k, \underline{0}}^{0} a(\lambda x: C . b)\right) \quad\left(\text { by } \uparrow_{\pi}^{6}\right) \\
& \equiv \Uparrow_{\underline{n}}\left(\pi_{\underline{n}, \underline{0}}^{0} a(\lambda x: C . b)\right) \\
& \equiv \uparrow_{\underline{n}}^{\underline{0}} \bullet\left(\pi_{\underline{n}, \underline{0}}^{0} a(\lambda x: C . b)\right)
\end{aligned}
$$

= $m<n$ with $m>0$ : Then we have $m=1+k$ for some $k \in \mathbb{N}$ and $n=m+1+k^{\prime}$ for some $k^{\prime} \in \mathbb{N}$ and

$$
\begin{aligned}
\pi_{\underline{n}, \underline{1+m}}^{0} a\left(\lambda x: C . \uparrow_{l} \bullet b\right) & =\pi_{\underline{2}+k+k^{\prime}, 2+k}^{0} a\left(\lambda x: C \cdot \uparrow_{l} \bullet b\right) \\
& \equiv \pi_{\underline{k^{\prime}, \underline{0}}}^{2+k} a\left(\lambda x: C \cdot \uparrow_{l} \bullet b\right) \\
& \equiv \pi_{\underline{1+k}}^{\underline{1+k^{\prime}, \underline{0}}} a(\lambda x: C . b) \\
& \equiv \pi_{\underline{n}, \underline{m}}^{0} a(\lambda x: C . b)
\end{aligned} \quad\left(\mathrm{by} \uparrow_{\pi}^{4}\right)
$$

## D Omitted proofs of Section 5

## D. 1 Confluence of $\beta \mathcal{R}_{1}$

Given a rewrite system $\mathcal{R}$, the orthogonal rewriting relation $\Longrightarrow_{\beta \mathcal{R}}[22,27]$ (also known as developments or multi-step reduction [12]) is defined over metaterms by the following inference rules, where we write $\theta \Longrightarrow \theta^{\prime}$ as an abbreviation for $\operatorname{dom}(\theta)=\operatorname{dom}\left(\theta^{\prime}\right)$ and for all $\vec{x} . t / \mathrm{t} \in \theta$ and $\vec{x} . t^{\prime} / \mathrm{t} \in \theta^{\prime}$ we have $t \Longrightarrow t^{\prime}$.

$$
\begin{array}{lll}
\text { VAR } \\
x \Longrightarrow x & \begin{array}{l}
\text { CONST }
\end{array} & \begin{array}{l}
\text { Sort }
\end{array}
\end{array} \begin{aligned}
& \text { META } \\
& c \Longrightarrow s \\
& s \Longrightarrow t_{i}^{\prime}
\end{aligned} \text { for all } i
$$

## App

$$
\frac{t \Longrightarrow t^{\prime} \quad u \Longrightarrow u^{\prime}}{t u \Longrightarrow t^{\prime} u^{\prime}}
$$

## Abs

$\frac{A \Longrightarrow A^{\prime} \quad t \Longrightarrow t^{\prime}}{\lambda x: A . t \Longrightarrow \lambda x: A^{\prime} \cdot t^{\prime}}$
Fun

$$
\frac{A \Longrightarrow A^{\prime} \quad B \Longrightarrow B^{\prime}}{(x: A) \rightarrow B \Longrightarrow\left(x: A^{\prime}\right) \Longrightarrow B^{\prime}}
$$

$\operatorname{RED}_{\beta}$

$$
\frac{t \Longrightarrow t^{\prime} \quad u \Longrightarrow u^{\prime}}{(\lambda x: A . t) u \Longrightarrow t^{\prime}\left[u^{\prime} / x\right]}
$$

Orthogonal rewriting satisfies the following well-known properties-see [27, Lemma 3.1.2] and [27, Lemma 3.1.6] for the proofs.

- Proposition 29. We have $\longrightarrow \beta \mathcal{R}_{1} \subseteq \Longrightarrow{ }_{\beta} \mathcal{R}_{1} \subseteq \longrightarrow_{\beta \mathcal{R}_{1}}^{*}$, hence $\longrightarrow{ }_{\beta}^{*} \mathcal{R}_{1}$ and $\Longrightarrow{ }_{\beta}^{*} \mathcal{R}_{1}$ are equal.
- Proposition 30. If $t \Longrightarrow_{\beta \mathcal{R}} t^{\prime}$ and $\theta \Longrightarrow_{\beta \mathcal{R}} \theta^{\prime}$ then $t[\theta] \Longrightarrow_{\beta \mathcal{R}} t^{\prime}\left[\theta^{\prime}\right]$.

In the following, recall that a rule $l \longmapsto r$ overlaps $l^{\prime} \longmapsto r^{\prime}$ when some non-metavariable subterm of $l$ unifies with $l^{\prime}$.

- Proposition 31. $\Longrightarrow_{\beta \mathcal{R}_{1}}$ satisfies the diamond property.

Proof. Given $t, u, v$ with $u \Longleftarrow t \Longrightarrow v$ we show that there is $w$ with $u \Longrightarrow w \Longleftarrow v$. The proof is by induction on $t \Longrightarrow u$ and $t \Longrightarrow v$. The only interesting cases is when $t \Longrightarrow u$ (or dually, $t \Longrightarrow v$ ) is derived with rule $\operatorname{RED}_{\mathcal{R}}$, in which case we have $t=l[\theta]$ for some $l \longmapsto r \in \mathcal{R}_{1}$ and $u=r\left[\theta^{\prime}\right]$ with $\theta \Longrightarrow \theta^{\prime}$. There are then three possibilities regarding $t \Longrightarrow v$.

- If all applications of RED in $t \Longrightarrow v$ occur inside the substitution $\theta$, then because $l$ is linear we have $v=l\left[\theta^{\prime \prime}\right]$ with $\theta \Longrightarrow \theta^{\prime \prime}$. By i.h. we have $\theta^{\prime} \Longrightarrow \theta^{\prime \prime \prime} \Longleftarrow \theta^{\prime \prime}$ for some $\theta^{\prime \prime \prime}$, and thus $u=r\left[\theta^{\prime}\right] \Longrightarrow r\left[\theta^{\prime \prime \prime}\right] \Longleftarrow l\left[\theta^{\prime \prime}\right]=v$.
- If $t \Longrightarrow v$ starts with an application of $\operatorname{RED}_{\mathcal{R}}$ using the same rule as the one applied in $t \Longrightarrow u$, then we have $v=r\left[\theta^{\prime \prime}\right]$ with $\theta \Longrightarrow \theta^{\prime \prime}$. By i.h. we have $\theta^{\prime} \Longrightarrow \theta^{\prime \prime \prime} \Longleftarrow \theta^{\prime \prime}$ for some $\theta^{\prime \prime \prime}$, and thus $u=r\left[\theta^{\prime}\right] \Longrightarrow r\left[\theta^{\prime \prime \prime}\right] \Longleftarrow r\left[\theta^{\prime \prime}\right]=v$.
- If RED is applied in $t \Longrightarrow v$ with a rule $l^{\prime} \longmapsto r^{\prime}$ overlapped by $l \longmapsto r$, we consider all such possible cases (which correspond to the critical pairs in Figure 4).
- Case $\uparrow_{@}$ overlaps $\uparrow_{\lambda}$.
$\uparrow_{l}\left(-\left(\_\right)^{\wedge} \lambda x: C . D\right)(\lambda x: A . t) u \xrightarrow{2} \Longrightarrow \uparrow_{l^{\prime}} D^{\prime}\left[u^{\prime} / x\right]\left(\left(\lambda x: A^{\prime} \cdot t^{\prime}\right) u^{\prime}\right)$
$\left(\lambda x: A^{\prime \prime} \cdot \uparrow l^{\prime \prime} D^{\prime \prime} t^{\prime \prime}\right) u^{\prime \prime}====================\Rightarrow \uparrow l^{\prime \prime \prime} D^{\prime \prime \prime}\left[u^{\prime \prime \prime} / x\right] t^{\prime \prime \prime}\left[u^{\prime \prime \prime} / x\right]$
$=$ Case $\uparrow_{\lambda}$ overlaps $\uparrow_{\star}$.

= Case $\uparrow$ @ overlaps $\uparrow$.

$=$ Case $\Rightarrow$, overlaps $\uparrow$ 。

$$
\begin{aligned}
& \left(\left(\uparrow_{l_{1}} \bullet A\right)_{l_{0}} \triangleleft \lambda x: C . D\right) \Rightarrow l \Longrightarrow\left(x: \mathrm{El}_{l_{0}^{\prime}}\left(\uparrow_{l_{1}^{\prime}} \bullet A^{\prime}\right)\right) \rightarrow D^{\prime} \Rightarrow l^{\prime} \\
& \begin{array}{ccc}
X \Longrightarrow & X^{\prime} \\
\downarrow & i . h . & \downarrow \\
\vdots \\
X^{\prime \prime} & ====\Rightarrow X^{\prime \prime \prime}
\end{array} \\
& \left(A^{\prime \prime}{ }_{\left(\mathrm{P} l_{0}^{\prime \prime}\right)} \downarrow \lambda: C^{\prime \prime} . D^{\prime \prime}\right) \Rightarrow l^{\prime \prime}=============\Rightarrow\left(x: \mathrm{El}_{\left(\mathrm{P} 1_{0}^{\prime \prime \prime}\right)} A^{\prime \prime \prime}\right) \rightarrow D^{\prime \prime \prime} \Rightarrow l^{\prime \prime \prime}
\end{aligned}
$$

- Remark 32. In a first read, one can have the impression that the above proof always applies when all critical pairs close in at most one step. This is not the case, and it crucially relies on the fact that all orthogonal critical pairs are simple, ensuring two facts. First, at most one rule in $t \Longrightarrow v$ can be overlapped by $l \longmapsto r$ in $t \Longrightarrow u$. Second, if a rule $l \longmapsto r$ in $t \Longrightarrow u$ overlaps an a rule $l^{\prime} \longmapsto r^{\prime}$ in $t \Longrightarrow v$, then no rule in $t \Longrightarrow u$ is overlapped by $l^{\prime} \longmapsto r^{\prime}$.
- Corollary 6. $\beta \mathcal{R}_{1}$ is confluent.


## E Omitted proofs of Section 7

## E. 1 Injectivity

We start with the following generalization of Assaf's full reflection equations, used in the proof of the injectivity of El modulo lifting. From now on, let us write $\left(\uparrow_{-} D\right)^{k} t$ for $\uparrow_{l_{1}} D\left(\ldots\left(\uparrow_{l_{k}} D t\right) \ldots\right)$ where the $l_{1}, \ldots, l_{k}$ can be any terms.

- Lemma 33 (Generalized full reflection). For all $k_{1}, k_{2}, n_{1}, n_{2} \in \mathbb{N}$ we have
$\pi_{\underline{k_{1}+n_{1}}, \underline{k_{2}+n_{2}}}^{0}\left(\left(\uparrow_{-}\right)^{k_{1}} A\right)\left(\lambda x: C \cdot\left(\uparrow_{-}\right)^{k_{2}} B\right) \equiv \uparrow \frac{\mathfrak{R}\left(n_{1}+k_{1}, n_{2}+k_{2}\right)}{\mathfrak{R}\left(n_{1}, n_{2}\right)} \bullet\left(\pi_{\underline{n_{1}}, \underline{n_{2}}}^{0} A(\lambda x: C . B)\right)$
Proof. By induction on $k_{1}+k_{2}$, using Proposition 3.
In the following, we use the greek letter $\rho$ to refer to rewrite sequences $t \longrightarrow \longrightarrow^{*} u$. Given a rewrite sequence $\rho$, we write $\hbar \rho$ for the first rewrite rule applied in the head in $\rho$ or $\hbar \rho=\perp$ if no step takes place at the head, and we write $\# \rho$ for the total number of rewrite steps in $\rho$. For instance, if $\rho$ denotes the sequence
$\mathrm{El}_{l}\left(\left(\lambda x . \uparrow_{l^{\prime}} \bullet x\right) \mathrm{u}_{\underline{\underline{0}}}\right) \longrightarrow \mathrm{El}_{l}\left(\uparrow_{l^{\prime}} \bullet \mathrm{u}_{\underline{0}}\right) \longrightarrow \mathrm{El}_{(\mathrm{P} l)} \mathrm{u}_{\underline{0}} \longrightarrow \mathrm{U}_{\underline{0}}$
then we have $\# \rho=3$ and $\hbar \rho=\mathrm{El}_{\uparrow}$, which is the rule applied in the middle.
We can now show that the constant El is injective modulo the insertion of some lifts.
- Proposition 34 (Injectivity of El modulo lifting). If $\mathrm{El}_{l_{1}} A_{1} \equiv \mathrm{El}_{l_{2}} A_{2}$, where both sides are guarded and well typed, then there are natural numbers $k_{1}, k_{2}$ such that
(1) $A_{1} \equiv\left(\uparrow_{-} \bullet\right)^{k_{1}} A_{0}$ and $A_{2} \equiv\left(\uparrow_{-} \bullet\right)^{k_{2}} A_{0}$ for some term $A_{0}$.
(2) $\mathrm{S}^{k_{1}} l_{0} \equiv l_{1}$ and $\mathrm{S}^{k_{2}} l_{0} \equiv l_{2}$ for some term $l_{0}$.

Proof. First note that, under the hypotheses of the lemma, (1) implies (2). Indeed, by applying confluence multiple times we obtain a term $A^{\prime}$ with $A_{1} \longrightarrow^{*}\left(\uparrow_{\_}\right)^{k_{1}} A^{\prime}$ and $A_{2} \longrightarrow^{*}\left(\uparrow_{-}\right)^{k_{2}} A^{\prime}$, and by subject reduction and inversion of typing we get $\Gamma \vdash A^{\prime}: \mathrm{U}_{l_{1}^{\prime}}$ with $\mathrm{S}^{k_{1}} l_{1}^{\prime} \equiv l_{1}$, and $\Gamma \vdash A^{\prime}: \mathrm{U}_{l_{2}^{\prime}}$ with $\mathrm{S}^{k_{2}} l_{2}^{\prime} \equiv l_{2}$. Therefore, by uniqueness of typing and injectivity of U we have $l_{1}^{\prime} \equiv l_{2}^{\prime}$, and so $l_{1} \equiv \mathrm{~S}^{k_{1}} l_{1}^{\prime}$ and $l_{2} \equiv \mathrm{~S}^{k_{2}} l_{1}^{\prime}$.

We now proceed to show that the hypotheses imply (1), however when applying the i.h. we also obtain (2) for free. By confluence we have $\mathrm{El}_{l_{1}} A_{1} \longrightarrow^{*} B * \longleftarrow \mathrm{El}_{l_{2}} A_{2}$ for some $B$. Let us to refer to the reduction sequence $\mathrm{El}_{l_{1}} A_{1} \longrightarrow^{*} B$ by $\rho_{1}$ and to $\mathrm{El}_{l_{2}} A_{2} \longrightarrow^{*} B$ by $\rho_{2}$. We show the result by induction on $\# \rho_{1}+\# \rho_{2}$, and by case analysis on $\hbar \rho_{1}$ and $\hbar \rho_{2}$.

- Case $\hbar \rho_{1}=\mathrm{El}_{\uparrow}$. Then $\rho_{1}$ is of the form

$$
\mathrm{El}_{l_{1}} A_{1} \longrightarrow{ }^{*} \mathrm{El}_{l_{1}^{\prime}}\left(\uparrow_{l_{1}^{\prime \prime}} \bullet A_{1}^{\prime}\right) \longrightarrow \mathrm{El}_{\left(\mathrm{P} l_{1}^{\prime}\right)} A_{1}^{\prime}{\xrightarrow{\rho_{1}^{\prime}} *}_{*} B
$$

Note that we have $\# \rho_{1}^{\prime}+\# \rho_{2}<\# \rho_{1}+\# \rho_{2}$, therefore we can apply the i.h. to deduce that for some term $A_{0}$ and natural numbers $k_{1}, k_{2}$ we have $A_{1}^{\prime} \equiv(\uparrow \bullet \bullet)^{k_{1}} A_{0}$ and $A_{2} \equiv\left(\uparrow_{-} \bullet\right)^{k_{2}} A_{0}$. We therefore have $A_{1} \equiv\left(\uparrow_{-} \bullet\right)^{\left(k_{1}+1\right)} A_{0}$ as required.

- Case $\hbar \rho_{1}=\mathrm{El}_{\Uparrow}$. Then $\rho_{1}$ is of the form

$$
\mathrm{El}_{l_{1}} A_{1} \longrightarrow * \mathrm{El}_{l_{1}^{\prime}}\left(\Uparrow_{\underline{n}} A_{1}^{\prime}\right) \longrightarrow \mathrm{El}_{\left(l_{1}^{\prime}-\underline{n}\right)} A_{1}^{\prime} \xrightarrow{\rho_{1}^{\prime}} * B
$$

where the first argument $\Uparrow$ must be a concrete sort, because it is a reduct of a guarded term. Note that we have $\# \rho_{1}^{\prime}+\# \rho_{2}<\# \rho_{1}+\# \rho_{2}$, therefore we can apply the i.h. to deduce that for some term $A_{0}$ and natural numbers $k_{1}, k_{2}$ we have $A_{1}^{\prime} \equiv\left(\uparrow_{-}\right)^{k_{1}} A_{0}$ and $A_{2} \equiv\left(\uparrow_{-}\right)^{k_{2}} A_{0}$. Because $n$ is concrete, we have $\Uparrow_{\underline{n}} A_{1}^{\prime} \longrightarrow^{*}\left(\uparrow_{-}\right)^{n} A_{1}^{\prime}$. Therefore, we have $A_{1} \equiv\left(\uparrow_{-} \bullet\right)^{k_{1}^{\prime}} A_{0}$ by taking $k_{1}^{\prime}=k_{1}+n$.

The cases $\hbar \rho_{2}=\mathrm{El}_{\uparrow}$ and $\hbar \rho_{2}=\mathrm{El}_{\Uparrow}$ are symmetric to the above. Note that if $\hbar \rho_{1}$ and $\hbar \rho_{2}$ are both different from $\mathrm{El}_{\uparrow}$ and $\mathrm{El}_{\uparrow}$, then we must have $\hbar \rho_{1}=\hbar \rho_{2}$. Therefore, to conclude the proof it suffices to consider the following three cases:

- Case $\hbar \rho_{1}=\hbar \rho_{2}=\perp$. Immediate.
- Case $\hbar \rho_{1}=\hbar \rho_{2}=\mathrm{El}_{\mathrm{u}}$. For $i=1,2$ we can decompose $\rho_{i}$ as

$$
\mathrm{El}_{l_{i}} A_{i} \longrightarrow{ }^{*} \mathrm{El}_{l_{i}^{\prime}} \mathrm{u}_{l_{i}^{\prime \prime}} \longrightarrow \mathrm{U}_{l_{i}^{\prime \prime}} \longrightarrow * B
$$

By injectivity of U we have $l_{1}^{\prime \prime} \equiv l_{2}^{\prime \prime}$, so by taking $A_{0}=\mathrm{u}_{l_{1}^{\prime \prime}}$ and $k_{1}=k_{2}=0$ we conclude.

- Case $\hbar \rho_{1}=\hbar \rho_{2}=\mathrm{El}_{\pi}$. For $i=1,2$ we can decompose $\rho_{i}$ as

where the first arguments of $\pi$ must be concrete sorts because these are reducts of guarded terms. In the following, we write $\delta$ for either $a$ or $b$. Then it must be the case that $B$ is of the form $\left(x: B^{a}\right) \rightarrow B^{b}$ and that we can decompose $\rho_{1}^{\prime}$ and $\rho_{2}^{\prime}$ into $\rho_{1}^{a}, \rho_{1}^{b}, \rho_{2}^{a}, \rho_{2}^{b}$ given by

$$
\mathrm{El}_{\left(\underline{m_{1}}+\underline{n_{1}^{\delta}}\right)} A_{1}^{\delta} \xrightarrow{\rho_{1}^{\delta}} * B^{\delta} * \stackrel{\rho_{2}^{\delta}}{\longleftrightarrow} \mathrm{El}_{\left(\underline{\left(m_{2}\right.}+\underline{n_{2}^{\delta}}\right)} A_{2}^{\delta}
$$

We have $\# \rho_{1}^{\delta}+\# \rho_{2}^{\delta}<\# \rho_{1}+\# \rho_{2}$, therefore by i.h. we deduce that for some terms $A_{0}^{\delta}, l_{0}^{\delta}$ and natural numbers $k_{1}^{\delta}, k_{2}^{\delta}$ we have
(a) $A_{1}^{\delta} \equiv\left(\uparrow_{-}\right)^{k_{1}^{\delta}} A_{0}^{\delta}$ and $A_{2}^{\delta} \equiv\left(\uparrow_{-} \bullet\right)^{k_{2}^{\delta}} A_{0}^{\delta}$
(b) $\underline{m_{1}}+\underline{n_{1}^{\delta}} \equiv \mathrm{S}^{k_{1}^{\delta}} l_{0}^{\delta}$ and $\underline{m_{2}}+\underline{n_{2}^{\delta}} \equiv \mathrm{S}^{k_{2}^{\delta}} l_{0}^{\delta}$

Because $\underline{m_{1}}+n_{1}^{\delta} \longrightarrow^{*} m_{1}+n_{1}^{\delta}$, by confluence it follows that $l_{0}^{\delta}$ also reduces to a concrete sort $p^{\delta} \in \mathbb{N}$. We therefore have $m_{1}+n_{1}^{\delta}=k_{1}^{\delta}+p^{\delta}$ and $m_{2}+n_{2}^{\delta}=k_{2}^{\delta}+p^{\delta}$. Together with the equations from (a), this allows us to show the following for $i=1,2$.

$$
\begin{aligned}
& A_{i} \equiv \pi_{\underline{n_{i}^{a}}, \underline{n_{i}^{b}}}^{m_{i}} A_{i}^{a} \lambda x: C_{i} \cdot A_{i}^{b} \equiv \pi_{\underline{m_{i}+n_{i}^{a}}, \underline{m_{i}+n_{i}^{b}}}^{0} A_{i}^{a} \lambda x: C_{i} . A_{i}^{b} \\
& \equiv \pi \underline{k_{i}^{a}+p^{a}, k_{i}^{b}+p^{b}}\left(\left(\uparrow_{-} \bullet\right)^{k_{i}^{a}} A_{0}^{a}\right)\left(\lambda x: C_{i} \cdot\left(\uparrow_{-} \bullet\right)^{k_{i}^{b}} A_{0}^{b}\right) \\
& \equiv \uparrow_{\mathfrak{R}\left(p^{a}, p^{b}\right)}^{\mathfrak{R}\left(p^{a}+k_{i}^{a}, p^{b}+k_{i}^{b}\right)} \bullet\left(\pi_{p^{a}, p^{b}}^{0} A_{0}^{a}\left(\lambda x: C_{i} \cdot A_{0}^{b}\right)\right)
\end{aligned}
$$

where the last equation follows from Lemma 33. It suffices now to show that $C_{1} \equiv C_{2}$. To see this, note that by typing constraints we must have $C_{i} \equiv \mathrm{El}_{\underline{m_{i}+n_{i}^{a}}} A_{i}^{a}$ and thus

$$
C_{i} \equiv \mathrm{El}_{\underline{k_{i}^{a}+p^{a}}}\left(\left(\uparrow_{-} \bullet\right)^{k_{i}^{a}} A_{0}^{a}\right) \equiv \mathrm{El}_{\underline{p^{a}}} A_{0}^{a}
$$

where the right-hand side does not depend on $i$.

The injectivity of El modulo lifting is then used to establish the injectivity of $\Rightarrow$.

- Proposition 35 (Injectivity of $\Rightarrow$ ). If $D_{1} \Rightarrow l_{1} \equiv D_{2} \Rightarrow l_{2}$ and both sides are well typed and guarded, then $D_{1} \equiv D_{2}$ and $l_{1} \equiv l_{2}$.

Proof. By confluence there is some term $B$ such that $D_{1} \Rightarrow l_{1} \longrightarrow^{*} B{ }^{*} \longleftarrow D_{2} \Rightarrow l_{2}$. Let us refer to the reduction $D_{1} \Rightarrow l_{1} \longrightarrow^{*} B$ by $\rho_{1}$ and to the reduction $D_{2} \Rightarrow l_{2} \longrightarrow^{*} B$ by $\rho_{2}$. We show the result by induction on $\# \rho_{1}$. We proceed with a case analysis on $\hbar \rho_{1}$, which by inspection must be equal to $\hbar \rho_{2}$.

- Case $\hbar \rho_{1}=\hbar \rho_{2}=\perp$. It follows that $B=D_{0} \Rightarrow l_{0}$ for some $D_{0}, l_{0}$ with $D_{1} \longrightarrow{ }^{*} D_{0}{ }^{*} \longleftarrow$ $D_{2}$ and $l_{1} \longrightarrow{ }^{*} l_{0}{ }^{*} \longleftarrow D_{2}$.
- Case $\hbar \rho_{1}=\hbar \rho_{2}=\Rightarrow_{*}$. For $i=1,2$, we can decompose $\rho_{i}$ as

$$
D_{i} \Rightarrow l_{i} \longrightarrow * * l_{i}^{\prime} \longrightarrow \mathrm{U}_{l_{i}^{\prime}} \longrightarrow^{*} B
$$

So we have $D_{1} \equiv \bullet D_{2}$, and from $\mathrm{U}_{l_{1}^{\prime}} \equiv \mathrm{U}_{l_{2}^{\prime}}$ we deduce $l_{1}^{\prime} \equiv l_{2}^{\prime}$ and thus $l_{1} \equiv l_{1}^{\prime} \equiv l_{2}^{\prime} \equiv l_{2}$. - Case $\hbar \rho_{1}=\hbar \rho_{2}=\Rightarrow_{4}$. For $i=1,2$ we can decompose $\rho_{i}$ as

$$
D_{i} \Rightarrow l_{i} \longrightarrow^{*}\left(A_{i l_{i}^{\prime \prime} \triangleleft} \lambda x: C_{i} \cdot D_{i}^{\prime}\right) \Rightarrow l_{i}^{\prime} \longrightarrow\left(x: \mathrm{El}_{l_{i}^{\prime \prime}} A_{i}\right) \rightarrow D_{i}^{\prime} \Rightarrow l_{i}^{\prime} \longrightarrow{ }^{*} B
$$

In the last reduction sequence there can be no other steps in the head, so we must have $B$ of the form $(x: P) \rightarrow Q$ with $\mathrm{El}_{l_{1}^{\prime \prime}} A_{1} \longrightarrow \longrightarrow^{*} P^{*} \longleftarrow \mathrm{El}_{l_{2}^{\prime \prime}} A_{2}$ and

$$
D_{1}^{\prime} \Rightarrow l_{1}^{\prime} \xrightarrow{\rho_{1}^{\prime}} * Q^{*} \longleftarrow D_{2}^{\prime} \Rightarrow l_{2}^{\prime}
$$

where $\# \rho_{1}^{\prime}<\# \rho_{1}$. Therefore, by i.h. we deduce $D_{1}^{\prime} \equiv D_{2}^{\prime}$ and $l_{1}^{\prime} \equiv l_{2}^{\prime}$. Moreover, by inversion of typing in $A_{i} l_{i}^{\prime \prime} \lambda x: C_{i} . D_{i}^{\prime}$ we get $C_{i} \equiv \mathrm{El}_{l_{i}^{\prime \prime}} A_{i}$ and thus $C_{1} \equiv C_{2}$. Finally, by applying Proposition 34 with $\mathrm{El}_{l_{1}^{\prime \prime}} A_{1} \equiv \mathrm{El}_{l_{2}^{\prime \prime}} A_{2}$ we get $A_{1} \equiv\left(\uparrow \uparrow_{-} *\right)^{k_{1}} A_{0}$ and $A_{2} \equiv\left(\uparrow \_\right)^{k_{2}} A_{0}$ and $l_{1}^{\prime \prime} \equiv \mathrm{S}^{k_{1}} l_{0}$ and $l_{2}^{\prime \prime} \equiv \mathrm{S}^{k_{2}} l_{0}$ for some terms $A_{0}, l_{0}$ and natural numbers $k_{1}, \bar{k}_{2}$. Therefore, we conclude

$$
\begin{aligned}
D_{1} \equiv A_{1} l_{1}^{\prime \prime}\left(\lambda x: C_{1} \cdot D_{1}^{\prime}\right) & \equiv\left(\left(\uparrow_{-} \bullet\right)^{k_{1}} A_{0}\right)_{\left(\mathrm{S}^{k_{1}} l_{0}\right)^{\triangleleft}}\left(\lambda x: C_{2} \cdot D_{2}^{\prime}\right) \\
& \equiv A_{0} l_{0} \triangleleft\left(\lambda x: C_{2} \cdot D_{2}^{\prime}\right) \\
& \equiv\left(\left(\uparrow_{-} \bullet\right)^{k_{2}} A_{0}\right)_{\left(\mathrm{S}^{k_{2}} l_{0}\right)} \downarrow\left(\lambda x: C_{2} \cdot D_{2}^{\prime}\right) \\
& \equiv A_{2} l_{2}^{\prime \prime}\left(\lambda x: C_{2} \cdot D_{2}^{\prime}\right) \equiv D_{2}
\end{aligned}
$$

## E. 2 Coherence

We first need the following technical lemma, allowing to decompose a telescope $D$ when $D \Rightarrow l$ is convertible to a function type.

- Lemma 36 (Telescope decomposition). If $D \Rightarrow l \equiv(x: P) \rightarrow Q$ then $D \longrightarrow^{*} A_{l^{\prime}} \lambda x: C \cdot D^{\prime}$ for some $A, l^{\prime}, C, D^{\prime}$ with $P \equiv \mathrm{El}_{l^{\prime}} A$ and $Q \equiv D^{\prime} \Rightarrow l$.

Proof. By confluence, we have $D \Rightarrow l \longrightarrow^{*} B^{*} \longleftarrow(x: P) \rightarrow Q$. We must have $B$ of the form $\left(x: P^{\prime}\right) \rightarrow Q^{\prime}$ with $P^{\prime} \equiv P$ and $Q^{\prime} \equiv Q$, and we can decompose $D \Rightarrow l \longrightarrow^{*} B$ as

$$
D \Rightarrow l \longrightarrow \longrightarrow^{*}\left(A_{l^{\prime} \triangleleft} \lambda x: C \cdot D^{\prime}\right) \Rightarrow l^{\prime \prime} \longrightarrow\left(x: \mathrm{El}_{l^{\prime}} A\right) \rightarrow D^{\prime} \Rightarrow l^{\prime \prime} \longrightarrow{ }^{*}\left(x: P^{\prime}\right) \rightarrow Q^{\prime}
$$

We thus have $D \longrightarrow^{*} A_{l^{\prime} \triangleleft} \lambda x: C . D^{\prime}$ and $\mathrm{El}_{l^{\prime}} A \equiv P^{\prime} \equiv P$ and $D^{\prime} \Rightarrow l \equiv Q^{\prime} \equiv Q$.

- Theorem 18 (Coherence). Let $t_{1}, t_{2} \in \Lambda_{o}$ with $\Gamma \vdash t_{1}: A_{1}$ and $\Gamma \vdash t_{2}: A_{2}$. If $\left|t_{1}\right|=\left|t_{2}\right|$ then at least one of the following holds:
(1) $t_{1} \equiv t_{2}$
(2) $\Gamma \vdash \uparrow \frac{m}{n} D t_{2}: D \Rightarrow \underline{m}$ and $t_{1} \equiv \uparrow \frac{m}{\underline{n}} D$ t for some $D$ guarded
(3) $\Gamma \vdash \uparrow \frac{m}{n} D t_{1}: D \Rightarrow \underline{m}$ and $t_{2} \equiv \uparrow \frac{m}{n} D t_{1}$ for some $D$ guarded

Proof. The proof is by induction on $t_{1}$ and $t_{2}$, following the definition of $|-|$.

- Case $t_{1}=\uparrow_{\underline{n}} D u$. By inversion of typing, uniqueness of type and injectivity of function types, we have $\Gamma \vdash D$ : Tele and $\Gamma \vdash u: D \Rightarrow \underline{n}$. By i.h. on $u$ and $t_{2}$, we have three cases to consider.
(a) $u \equiv t_{2}$. By confluence, $u$ and $t_{2}$ have a common reduct $w$. Using subject reduction we know $w$ has both types $D \Rightarrow \underline{n}$ and $A_{2}$ so by uniqueness of type, we know $D \Rightarrow \underline{n} \equiv A_{2}$ so we can conclude that $\Gamma \vdash t_{2}: D \Rightarrow \underline{n}$ and thus that $\Gamma \vdash \uparrow_{\underline{n}} D t_{2}: D \Rightarrow(\mathrm{~S} \underline{n})$. Knowing that $t_{1} \equiv \uparrow_{\underline{n}} D t_{2}$ by congruence, we conclude.
(b) $\Gamma \vdash \uparrow \frac{m^{\prime}}{\underline{n}^{\prime}} D^{\prime} t_{2}: D^{\prime} \Rightarrow \underline{m^{\prime}}$ and $u \equiv \uparrow \frac{m^{\prime}}{n^{\prime}} D^{\prime} t_{2}$. Similarly to above, we can show $D \Rightarrow \underline{n} \equiv D^{\prime} \Rightarrow \underline{m^{\prime}}$ by confluence, subject reduction and uniqueness of type. By injectivity of $\Rightarrow$ (Proposition 35) we get $D \equiv D^{\prime}$ and $\underline{n} \equiv \underline{m^{\prime}}$ which means $n=m^{\prime}$ given that they are concrete. So $t_{1}=\uparrow_{\underline{n}} D u \equiv \uparrow_{\underline{n}} D\left(\uparrow_{\underline{n}^{\prime}}^{\underline{n}} D t_{2}\right)=\uparrow_{\frac{1+n}{\underline{n}^{\prime}}} D t_{2}$ by folding notations. Finally, we have $\Gamma \vdash t_{2}: D^{\prime} \Rightarrow \underline{n^{\prime}}$, so by conversion we get $\Gamma \vdash t_{2}: D \Rightarrow \underline{n^{\prime}}$ and thus $\Gamma \vdash \uparrow \frac{1+n}{\underline{n^{\prime}}} D t_{2}: D \Rightarrow \underline{1+n}$.
(c) $\Gamma \vdash \uparrow \frac{m^{\prime}}{\underline{n^{\prime}}} D^{\prime} u: D^{\prime} \Rightarrow \underline{m^{\prime}}$ and $t_{2} \equiv \uparrow \underline{m^{\prime}} D^{\prime} u$. This gives us in particular that $\Gamma \vdash u: \bar{D}^{\prime} \Rightarrow \underline{n^{\prime}}$ so by uniqueness of type we get $D \Rightarrow \underline{n} \equiv D^{\prime} \Rightarrow \underline{n^{\prime}}$ and thus $D \equiv D^{\prime}$ and $n=n^{\prime}$. If $m^{\prime}=n$ then we have $t_{2} \equiv u$ so we proceed as in case (a), otherwise $m^{\prime} \geqslant 1+n$ so we can conclude with $t_{2} \equiv \uparrow \frac{m^{\prime}}{\underline{n}} D u=\uparrow \frac{m^{\prime}}{\underline{1+n}} D\left(\uparrow_{\underline{n}} D u\right)=\uparrow \frac{m^{\prime}}{\underline{1+n}} D t_{1}$ and $\Gamma \vdash \uparrow \frac{m^{\prime}}{\underline{1+n}} D t_{1}: D \Rightarrow \underline{m^{\prime}}$.

The case $t_{2}=\uparrow_{\underline{n}} D v$ is symmetric to the one above, therefore, in the following, we consider $t_{1}$ and $t_{2}$ not headed by $\uparrow$, in which case the definition of $|-|$ impose that they have the same head structure. Moreover, when applying the induction hypothesis, the proofs for the cases (b) and (c) are almost always symmetric, so we only give the proofs for case (c) when they are not symmetric.

- Case $t_{1}=x=t_{2}$. Trivial.
- Case $t_{1}=\mathrm{u}_{\underline{n}}=t_{2}$. Trivial.
- Case $t_{1}=\pi_{\underline{n_{1}}, \underline{m_{1}}}^{\underline{0}} A_{1}\left(\lambda x: C_{1} \cdot B_{1}\right), t_{2}=\pi_{\underline{n_{2}}}^{0}, \underline{m_{2}} A_{2}\left(\lambda x: C_{2} \cdot B_{2}\right)$. By inversion we know that $A_{1}$ and $\overline{A_{2}}$ are well typed, of type $\overline{\mathrm{U}_{\underline{n_{1}}}}$ and $\mathrm{U}_{\underline{n_{2}}}$ respectively. We also know that $B_{1}$ and $B_{2}$ are well typed-of type $\mathrm{U}_{\underline{m_{1}}}$ and $\mathrm{U}_{\underline{m_{2}}}$ respectively-but in a priori different contexts: $\Gamma, x: \mathrm{El}_{\underline{n_{1}}} A_{1}$ and $\Gamma, x: \mathrm{El}_{\underline{n_{2}}} A_{2}$ (we exploited here inversion and injectivity to conclude that $C_{i} \equiv \mathrm{El}_{\underline{n_{i}}} A_{i}$ ). We thus first apply induction hypothesis on $A_{1}$ and $A_{2}$ :
(a) $A_{1} \equiv A_{2}$. We can thus deduce that $\mathrm{U}_{\underline{n_{1}}} \equiv \mathrm{U}_{\underline{n_{2}}}$ and thus that $n_{1}=n_{2}$, which also implies $C_{1} \equiv \mathrm{El}_{n_{1}} A_{1} \equiv \mathrm{El}_{n_{2}} A_{2} \equiv C_{2}$. Using context conversion, we type both $B_{1}$ and $B_{2}$ in context $\Gamma, x: \mathrm{El}_{\underline{n_{1}}} A_{1}$ and thus apply induction hypothesis on them:
(a) $B_{1} \equiv B_{2}$. We deduce $m_{1}=m_{2}$ and we can thus conclude $\pi_{\underline{n_{1}}, \underline{m_{1}}}^{0} A_{1}\left(\lambda x: C_{1} \cdot B_{1}\right) \equiv$ $\pi_{\underline{n_{2}}, \underline{m_{2}}}^{0} A_{2}\left(\lambda x: C_{2} \cdot B_{2}\right)$.
(b) $\Gamma, x: \mathrm{El}_{\underline{n_{1}}} A_{1} \vdash \uparrow \frac{p^{\prime}}{\underline{q}^{\prime}} D^{\prime} B_{2}: D^{\prime} \Rightarrow \underline{p^{\prime}}$ and $B_{1} \equiv \uparrow \frac{p^{\prime}}{\underline{q}^{\prime}} D^{\prime} B_{2}$. Since $\Gamma, x: \mathrm{El}_{\underline{n_{1}}} A_{1} \vdash B_{2}$ : $\mathrm{U}_{\underline{m_{2}}}$ we get $D^{\prime} \Rightarrow \underline{q}^{\prime} \equiv \mathrm{U}_{\underline{m_{2}}}$ which by confluence means that $D^{\prime} \equiv$ and $q^{\prime}=m_{2}$. We thus have $\Gamma, x: \mathrm{El}_{\underline{n_{1}}} A_{1} \vdash \uparrow \frac{p^{\prime}}{\underline{q}^{\prime}} D^{\prime} B_{2}: \mathrm{U}_{\underline{p^{\prime}}}$ and $\Gamma, x: \mathrm{El}_{\underline{n_{1}}} A_{1} \vdash B_{1}: \mathrm{U}_{\underline{m_{1}}}$ so $p^{\prime}=m_{1}$. Therefore, we get $B_{1} \equiv \uparrow \frac{m_{1}}{m_{2}} \bullet B_{2}$. Together with $C_{1} \equiv C_{2}$ and $A_{1} \equiv A_{2}$ and Lemma 33, we can show $t_{1} \equiv \uparrow \xlongequal{\underline{\mathfrak{R}\left(n_{1}, m_{1}\right)} \mathfrak{( n _ { 1 } , m _ { 2 } )}} \bullet t_{2}$. Finally, it is easy to see that $\Gamma \vdash \uparrow \frac{\mathfrak{R}\left(n_{1}, m_{1}\right)}{\underline{\mathfrak{R}\left(n_{1}, m_{2}\right)}} \bullet t_{2}: \bullet \underline{\mathfrak{R}\left(n_{1}, m_{1}\right)}$.
(b) $\Gamma \vdash \uparrow \frac{p}{q} D A_{2}: D \Rightarrow \underline{p}$ and $A_{1} \equiv \uparrow \frac{p}{q} D A_{2}$. Since $\Gamma \vdash A_{1}: \mathrm{U}_{{\underline{n_{1}}}}$ we deduce $\mathrm{U}_{n_{1}} \equiv D \Rightarrow \underline{p}$ which means that $D \equiv$ and $p=n_{1}$. Since $\Gamma \vdash A_{2}: \mathrm{U}_{\underline{n_{2}}}$ we also get that $q=n_{2}$. Hence we have $A_{1} \equiv \uparrow \underline{\underline{n_{1}}} \cdot A_{2}$ and thus $\mathrm{El}_{\underline{n_{1}}} A_{1} \equiv \mathrm{El}_{\underline{n_{1}}}\left(\uparrow \frac{n_{1}}{\underline{n_{2}}} \bullet A_{2}\right) \equiv \mathrm{El}_{\underline{n_{2}}} A_{2}$. We can thus apply our induction hypothesis on $\bar{B}_{1}$ and $B_{2}$ :
(a) $B_{1} \equiv B_{2}$. We obtain $m_{1}=m_{2}$, thus by combining $C_{1} \equiv C_{2}$ and $A_{1} \equiv \uparrow \underline{n_{1}} \stackrel{n_{1}}{\underline{n_{2}}}$ and Lemma 33, we can show $t_{1} \equiv \uparrow \frac{\mathfrak{\Re ( n _ { 1 } , m _ { 1 } )}}{\mathfrak{\Re}\left(n_{2}, m_{1}\right)}$, $t_{2}$, and moreover it is easy to see that $\Gamma \vdash \uparrow \frac{\mathfrak{R}\left(n_{1}, m_{1}\right)}{\underline{\Re}\left(n_{2}, m_{1}\right)} \bullet t_{2}: \Rightarrow \underline{\mathfrak{R}\left(n_{1}, m_{1}\right)}$.
(b) $\Gamma \vdash \uparrow \underline{p^{\prime}} D^{q^{\prime}} D^{\prime}: D^{\prime} \Rightarrow \underline{p^{\prime}}$ and $B_{1} \equiv \uparrow \frac{p^{\prime}}{\underline{q}^{\prime}} D^{\prime} B_{2}$. As before, we obtain $B_{1} \equiv \uparrow \frac{m_{1}}{m_{2}} \bullet B_{2}$, so by combining $C_{1} \equiv C_{2}$ and $A_{1} \equiv \uparrow \frac{n_{2}}{n_{1}} \bullet A_{2}$ and Lemma 33, we can show $t_{1} \equiv \uparrow \uparrow \frac{\mathfrak{R}\left(n_{1}, m_{1}\right)}{\mathfrak{R}\left(n_{2}, m_{2}\right)} \bullet t_{2}$, and we indeed have $\Gamma \vdash \uparrow \frac{\mathfrak{R}\left(n_{1}, m_{1}\right)}{\mathfrak{R}\left(n_{2}, m_{2}\right)} \bullet t_{2}: \Rightarrow \underline{\mathfrak{R}\left(n_{1}, m_{1}\right) .}$
(c) $\Gamma \vdash \uparrow \frac{\overline{p^{\prime}}}{q^{\prime}} D^{\prime} B_{1}: D^{\prime} \Rightarrow \underline{p^{\prime}}$ and $B_{2} \equiv \uparrow \frac{p^{\prime}}{q^{\prime}} D^{\prime} B_{1}$. As before, we obtain $B_{2} \equiv \uparrow \frac{m_{2}}{\underline{m_{1}}} \bullet B_{1}$, so by combining $C_{1} \equiv C_{2}$ and $A_{1} \equiv \uparrow \frac{n_{1}}{n_{2}} \bullet A_{2}$ and Lemma 33, we can show $t_{1} \equiv$ $\left.\uparrow \underline{\mathfrak{R}\left(n_{1}, m_{1}\right)} \stackrel{\mathfrak{R}\left(n_{2}, m_{1}\right)}{\mathfrak{\Re}} \stackrel{0}{\underline{n_{2}}, \underline{m_{1}}} A_{2}\left(\lambda x: C_{2} \cdot B_{1}\right)\right)$ and $t_{2} \equiv \uparrow \frac{\mathfrak{\Re}\left(n_{2}, m_{2}\right)}{\mathfrak{R}\left(n_{2}, m_{1}\right)} \bullet\left(\pi \underline{\underline{n_{2}}, \underline{m_{1}}} A_{2}\left(\lambda x: C_{2} \cdot B_{1}\right)\right)$. If $\overline{\mathfrak{R}\left(n_{2}, m_{2}\right)}=\mathfrak{R}\left(n_{1}, m_{1}\right)$ then it follows that $\overline{t_{1} \equiv t_{2}}$. Otherwise, suppose wlog that $\mathfrak{R}\left(n_{2}, m_{2}\right)>\mathfrak{R}\left(n_{1}, m_{1}\right)$, the other case being symmetric. Then we conclude $t_{2} \equiv \uparrow \underline{\underline{R}\left(n_{1}, m_{1}\right)} \stackrel{\mathfrak{R}\left(n_{2}, m_{2}\right)}{ } t_{1}$ and it is easy to see that $\Gamma \vdash \uparrow \frac{\mathfrak{R}\left(n_{1}, m_{1}\right)}{\mathfrak{R}\left(n_{2}, m_{2}\right)} \bullet t_{1}: \Rightarrow \underline{\mathfrak{R}\left(n_{1}, m_{1}\right)}$.
- Case $t_{1}=u_{1} v_{1}$ and $t_{2}=u_{2} v_{2}$. By inversion we have $\Gamma \vdash u_{i}:\left(x: A_{i}\right) \rightarrow B_{i}$ and $\Gamma \vdash v_{i}: A_{i}$. We first apply induction hypothesis on $u_{1}$ and $u_{2}$ :
(a) $u_{1} \equiv u_{2}$. We thus get $A_{1} \equiv A_{2}$ and $B_{1} \equiv B_{2}$. Looking at the induction hypothesis on $v_{1}$ and $v_{2}$, in all cases we must have $v_{1} \equiv v_{2}$. Indeed, if we are in cases (2) or (3) then we get $A_{1} \equiv D \Rightarrow \underline{p}$ and $A_{2} \equiv D \Rightarrow \underline{q}$, but together with $A_{1} \equiv A_{2}$ this implies $p=q$, meaning that no lifts are inserted between $v_{1}$ and $v_{2}$. We thus conclude that $t_{1} \equiv t_{2}$.
(b) $\Gamma \vdash \uparrow \frac{m}{\underline{n}} D u_{2}: D \Rightarrow \underline{m}$ and $u_{1} \equiv \uparrow \underline{m} \underline{n} D u_{2}$. Now, $\left(x: A_{1}\right) \rightarrow B_{1} \equiv D \Rightarrow \underline{m}$, so by Lemma 36 we have $D \longrightarrow \longrightarrow^{*} a_{l} \downarrow x: C . D^{\prime}$ with $\mathrm{El}_{l} a \equiv A_{1}$ and $B_{1} \equiv D^{\prime} \Rightarrow \underline{m}$. Moreover, we also get that $\mathrm{El}_{l} a \equiv A_{2}$ and $B_{2} \equiv D^{\prime} \Rightarrow \underline{n}$. We are again in a situation where $v_{1}$ and $v_{2}$ share a type, so by the same arguments as in case (a) the i.h. gives $v_{1} \equiv v_{2}$. Therefore, we have

$$
t_{1}=u_{1} v_{1} \equiv\left(\uparrow \underline{\frac{m}{n}}\left(a_{l} \triangleleft \lambda x: C . D^{\prime}\right) u_{2}\right) v_{2} \equiv \uparrow \frac{m}{n} D^{\prime}\left[v_{2} / x\right]\left(u_{2} v_{2}\right)=\uparrow \underline{\frac{m}{n}} D^{\prime}\left[v_{2} / x\right] t_{2}
$$

For typing, we have $\Gamma \vdash t_{2}: B_{2}\left[v_{2} / x\right]$ so by conversion we have $\Gamma \vdash t_{2}: D^{\prime}\left[v_{2} / x\right] \Rightarrow \underline{n}$ and thus $\Gamma \vdash \uparrow \underline{m} \underline{\underline{n}} D^{\prime}\left[v_{2} / x\right] t_{2}: D^{\prime}\left[v_{2} / x\right] \Rightarrow \underline{m}$.

- Case $t_{1}=\lambda x: \mathrm{El}_{\underline{n_{1}}} A_{1} . u_{1}$ and $t_{2}=\lambda x: \mathrm{El}_{\underline{n_{2}}} A_{2} . u_{2}$. By inversion we have $\Gamma \vdash A_{i}: \mathrm{U}_{\underline{n_{i}}}$ and $\Gamma, x: \mathrm{El}_{\underline{n_{i}}} \overline{A_{i} \vdash} u_{i}: B_{i}$. We first show $\mathrm{El}_{\underline{n_{1}}} A_{1} \equiv \mathrm{El}_{\underline{n_{2}}} A_{2}$ by applying induction hypothesis on $A_{1}$ and $A_{2}$ :
(a) $A_{1} \equiv A_{2}$. Immediate.
(b) $\Gamma \vdash \uparrow \frac{p}{q} D A_{2}: D \Rightarrow \underline{p}$ and $A_{1} \equiv \uparrow \frac{p}{\underline{q}} D A_{2}$. Since $\Gamma \vdash A_{1}: \mathrm{U}_{\underline{n_{1}}}$ we get $\mathrm{U}_{\underline{n_{1}}} \equiv$ $D \Rightarrow \underline{p}$ which entails $D \equiv$ and $p=n_{1}$. Similarly, $q=n_{2}$. Therefore, $\mathrm{El}_{n_{1}} \overline{A_{1}} \equiv$ $\mathrm{El}_{\underline{n_{1}}}\left(\uparrow \underline{n_{1}}, A_{2}\right) \equiv \mathrm{El}_{\underline{n_{2}}} A_{2}$ which is the wanted result.
We now have $\Gamma, x: \mathrm{El}_{\underline{n_{1}}} A_{1} \vdash u_{i}: B_{i}$ and can thus apply the i.h. on $u_{1}$ and $u_{2}$ :
(a) $u_{1} \equiv u_{2}$. We conclude $t_{1} \equiv t_{2}$.
(b) $\Gamma, x: \mathrm{El}_{\underline{n_{1}}} A_{1} \vdash \uparrow \frac{p}{q} D u_{2}: D \Rightarrow \underline{p}$ and $u_{1} \equiv \uparrow \frac{p}{\underline{q}} D u_{2}$. Let us define $D^{\prime}:=A_{2} \underline{n_{2}} \uparrow(\lambda x$ : $\left.\mathrm{El}_{\underline{n_{2}}} A_{2} \cdot \bar{D}\right)$. We have

$$
\left.\left.\begin{array}{rl}
t_{1}=\lambda x: \mathrm{El}_{\underline{n_{1}}} A_{1} \cdot u_{1} & \equiv \lambda x: \mathrm{El}_{\underline{n_{2}}} A_{2} \cdot \uparrow \underline{\frac{p}{q}} D u_{2} \\
& \equiv \uparrow \frac{p}{q}\left(A_{2} \underline{n_{2}}\right. \\
\triangleleft
\end{array}\left(\lambda x: \mathrm{El}_{\underline{n_{2}}} A_{2} \cdot D\right)\right) \lambda x: \mathrm{El}_{\underline{n_{2}}} A_{2} \cdot u_{2}\right)
$$

As for the typing, we have $\Gamma, x: \mathrm{El}_{\underline{n_{2}}} A_{2} \vdash u_{2}: D \Rightarrow \underline{q}$ so $\Gamma \vdash t_{2}:\left(x: \mathrm{El}_{\underline{n_{2}}} A_{2}\right) \rightarrow$ $D \Rightarrow \underline{q}$ so by conversion $\Gamma \vdash t_{2}: D^{\prime} \Rightarrow \underline{q}$ hence we conclude $\Gamma \vdash \uparrow \frac{p}{\underline{q}} D^{\prime} t_{2}: D^{\prime} \Rightarrow \underline{p}$.

## E. 3 Soundness

- Lemma 21 (Computing the El of a translation). Let $A \in \Lambda_{o}$ with $\mathrm{El}_{l} A$ well typed.

1. If $|A|=n$ then $\mathrm{El}_{l} A \longrightarrow{ }^{*} \mathrm{U}_{\underline{n}}$.
2. If $|A|=\Pi x: A_{1} \cdot A_{2}$ then $\mathrm{El}_{l} A \longrightarrow *\left(x: \mathrm{El}_{\underline{n_{1}}} A_{1}^{\prime}\right) \rightarrow \mathrm{El}_{\underline{n_{2}}} A_{2}^{\prime}$ with $\left|A_{i}^{\prime}\right|=A_{i}$.

Proof. For the first part, note that by definition of $|-|$, if $|A|=n$ then $A$ is of the form $\uparrow_{\underline{n_{1}}} D_{1}\left(\ldots\left(\uparrow_{\underline{n_{k}}} D_{k} u_{\underline{n}}\right) \ldots\right)$ for some $k$. By typing constraints we can then deduce $D_{i} \equiv \bullet$ for all $i$, which by confluence gives $D_{i} \longrightarrow * *$ We conclude $\mathrm{El}_{l} A \longrightarrow^{*} \mathrm{El}_{l}\left(\left(\uparrow_{-}\right)^{k} \mathrm{u}_{\underline{n}}\right) \longrightarrow{ }^{*} \mathrm{U}_{\underline{n}}$.

For the second part, by definition of $|-|$, if $|A|=\Pi x: A_{1} \cdot A_{2}$ then we must have $A$ of the form $\uparrow_{n_{1}} D_{1}\left(\ldots\left(\uparrow_{n_{k}} D_{k}\left(\pi_{\underline{n_{1}}, \underline{n_{2}}}^{0} A_{1}^{\prime} \lambda x: P . A_{2}^{\prime}\right)\right) \ldots\right)$ with $\left|A_{i}^{\prime}\right|=A_{i}$. By inversion of typing, we must have $D_{i} \equiv \bullet$ for all $i$, which by confluence gives $D_{i} \longrightarrow * *$. We then conclude $\mathrm{El}_{l} A \longrightarrow \longrightarrow^{*} \mathrm{El}_{l}\left(\left(\uparrow_{-}\right)^{k}\left(\pi_{\underline{n_{1}}, \underline{n_{2}}}^{0} A_{1}^{\prime} \lambda x: P . A_{2}^{\prime}\right)\right) \longrightarrow \longrightarrow^{*}\left(x: \mathrm{El}_{\underline{n_{1}}} A_{1}^{\prime}\right) \rightarrow \mathrm{El}_{\underline{n_{2}}} A_{2}^{\prime}$.

- Lemma 22 (Telescope translation). Let $A_{1}, A_{2} \in \Lambda_{o}$ with $\Gamma \vdash A_{i}: \mathrm{U}_{n_{i}}$. If $\left|A_{i}\right|=\Delta \Rightarrow m_{i}$ for some $m_{1} \leqslant m_{2}$, then we have $\mathrm{El}_{\underline{n_{i}}} A_{i} \equiv D \Rightarrow \underline{m_{i}}$ for some guarded $\bar{D}$ with $\Gamma \vdash D$ : Tele.

Proof. We prove this by induction on $\Delta$.

- $\Delta=\cdot$. In this case $\left|A_{i}\right|=m_{i}$, so by Lemma 21 we get $\mathrm{El}_{n_{i}} A_{i} \equiv \mathrm{U}_{m_{i}} \equiv \bullet \underline{m_{i}}$.
- $\Delta=x: B, \Delta^{\prime}$. We have $\left|A_{i}\right|=\Pi x: B . \Delta^{\prime} \Rightarrow m_{i}$, so by Lemma 21 we get $\mathrm{El}_{\underline{n_{i}}} \overline{A_{i}} \longrightarrow^{*}(x:$ $\left.\mathrm{El}_{\underline{p_{i}}} B_{i}\right) \rightarrow \mathrm{El}_{\underline{q_{i}}} A_{i}^{\prime}$ with $\left|B_{i}\right|=B$ and $\left|A_{i}^{\prime}\right|=\Delta^{\prime} \Rightarrow m_{i}$. By inversion of typing we have $\Gamma \vdash B_{i}: \mathrm{U}_{\underline{p_{i}}}$ and because $\left|B_{1}\right|=\left|B_{2}\right|$ then Proposition 20 gives $\mathrm{El}_{\underline{p_{1}}} B_{1} \equiv \mathrm{El}_{\underline{p_{2}}} B_{2}$. By inversion of typing once more and conversion in context, we get $\Gamma, x \overline{:} \mathrm{El}_{\underline{p_{1}}} B_{1} \vdash A_{i}^{\prime}: \mathrm{U}_{q_{i}}$. Now we can apply the i.h. to obtain a guarded $D$ satisfying $\Gamma, x: \mathrm{El}_{\underline{p_{1}}} B_{1} \vdash D:$ Tele and $\mathrm{El}_{\underline{q_{i}}} A_{i}^{\prime} \equiv D \Rightarrow m_{i}$. By taking $D^{\prime}:=B_{1 \underline{p_{1}}} \backslash x: \mathrm{El}_{\underline{p_{1}}} B_{1} . D$ we can now show $\Gamma \vdash D^{\prime}:$ Tele and $\mathrm{El}_{\underline{n_{i}}} A_{i} \equiv\left(x: \mathrm{El}_{\underline{p_{1}}} B_{1}\right) \rightarrow D \Rightarrow m_{i} \equiv D^{\prime} \stackrel{p_{1}}{\Rightarrow} m_{i}$ as required.
- Theorem 23 (Soundness). If $\Gamma \vdash_{\mathrm{cc}} t$ : A then we have $\Gamma^{\prime} \vdash t^{\prime}: \mathrm{El}_{\underline{n}} A^{\prime}$ for some $\Gamma^{\prime} \in \mathrm{Ctx}_{o}$ and $t^{\prime}, A^{\prime} \in \Lambda_{o}$ and $n \in \mathbb{N}$ with $\left\|\Gamma^{\prime}\right\|=\Gamma$ and $\left|t^{\prime}\right|=t$ and $\left|A^{\prime}\right|=A$.

Proof. We instead show the following two points, which together imply the theorem.

- If $\Gamma \vdash{ }_{\mathrm{cc}}$ then $\Gamma^{\prime} \vdash$ for some $\Gamma^{\prime} \in \mathrm{Ct} \mathrm{x}_{o}$ with $\left\|\Gamma^{\prime}\right\|=\Gamma$.
- If $\Gamma \vdash_{\mathrm{cc}} t: A$ and $\Gamma^{\prime} \vdash$ for some $\Gamma^{\prime} \in \mathrm{Ctx}_{o}$ with $\left\|\Gamma^{\prime}\right\|=\Gamma$ then $\Gamma^{\prime} \vdash t^{\prime}: \mathrm{El}_{\underline{n}} A^{\prime}$ for some $n \in \mathbb{N}$ and $A^{\prime}, t^{\prime} \in \Lambda_{o}$ with $\left|A^{\prime}\right|=A$ and $\left|t^{\prime}\right|=t$.

We prove them by induction on the derivation of $\Gamma \vdash_{\mathrm{cc}}$ or $\Gamma \vdash_{\mathrm{cc}} t: A$.

- Case

EmptyCtx

$$
\overline{\cdot \vdash_{\mathrm{cc}}}
$$

The empty context in the target works.

- Case

$$
\frac{\begin{array}{l}
\text { ЕхтСтх } \\
\Gamma \vdash_{\mathrm{cc}}
\end{array} \quad \Gamma \vdash_{\mathrm{cc}} A: n}{\Gamma, x: A \vdash_{\mathrm{cc}}}
$$

By induction hypothesis we get $\Gamma^{\prime}$ with $\left|\Gamma^{\prime}\right|=\Gamma$ and $\Gamma^{\prime} \vdash$. Then by i.h. again we have $\Gamma^{\prime} \vdash A^{\prime}: \mathrm{El}_{\underline{m}} B$ with $\left|A^{\prime}\right|=A$ and $|B|=n$, so by Lemma 21 we get $\Gamma^{\prime} \vdash A^{\prime}: \mathrm{U}_{\underline{n}}$. Thus $\Gamma^{\prime} \vdash \mathrm{El}_{\underline{n}} A^{\prime}$ : Type and we can conclude $\Gamma^{\prime}, x: \mathrm{El}_{\underline{n}} A^{\prime} \vdash$.

- Case

$$
(x: A) \in \Gamma \frac{\Gamma^{\mathrm{VAR}}}{\Gamma \vdash_{\mathrm{cc}}} \underset{\mathrm{cc}}{ } x: A
$$

Assuming $\Gamma^{\prime} \vdash$ and $\left\|\Gamma^{\prime}\right\|=\Gamma$, we know that $(x: A) \in\left\|\Gamma^{\prime}\right\|$ meaning there exists some $A^{\prime}$ and $n$ such that $\left(x: \mathrm{El}_{\underline{n}} A^{\prime}\right) \in \Gamma^{\prime}$ and $\left|A^{\prime}\right|=A$. We thus conclude with $\Gamma^{\prime} \vdash x: \mathrm{El}_{\underline{n}} A^{\prime}$.

- Case

$$
\begin{aligned}
& \text { SORT } \\
& \frac{\Gamma \vdash_{c c}}{\Gamma \vdash_{c c} n: \mathfrak{A}(n)}
\end{aligned}
$$

Follows because we have $\Gamma^{\prime} \vdash \mathrm{u}_{\underline{n}}: \mathrm{El}_{\underline{\mathfrak{A}^{2}(n)}} \underline{\mathrm{u}_{\mathfrak{A}(n)}}$ with $\left|\mathrm{u}_{\underline{n}}\right|=n$ and $\left|\mathrm{u}_{\underline{\mathfrak{A}(n)}}\right|=\mathfrak{A}(n)$.

- Case

$$
\frac{\stackrel{\mathrm{PI}}{\Gamma} \vdash_{\mathrm{cc}} A: n \quad \Gamma, x: A \vdash_{\mathrm{cc}} B: m}{\Gamma \vdash_{\mathrm{cc}} \Pi x: A . B: \mathfrak{R}(n, m)}
$$

By i.h. and Lemma 21 we have $\Gamma^{\prime} \vdash A^{\prime}: \mathrm{U}_{\underline{n}}$ and $\left|A^{\prime}\right|=A$. Therefore we have $\Gamma^{\prime}, x: \mathrm{El}_{\underline{\underline{n}}} A^{\prime} \vdash$, so by i.h. and Lemma 21 again we obtain $\Gamma^{\prime}, x: \mathrm{El}_{\underline{\underline{n}}} A^{\prime} \vdash B^{\prime}: \mathrm{U}_{\underline{m}}$ with $\left|B^{\prime}\right|=B$. We then derive $\Gamma^{\prime} \vdash \pi_{\underline{n}, \underline{m}}^{0} A^{\prime}\left(\lambda x: \mathrm{El}_{\underline{\underline{n}}} A^{\prime} . B^{\prime}\right): \mathrm{El}_{\underline{\mathfrak{A}(\mathfrak{R}(n, m))}} \underline{u}_{\underline{\mathfrak{R}(n, m)}}$ to conclude. - Case

$$
\frac{\stackrel{L}{\mathrm{LAM}}_{\mathrm{cc}} A: n \quad \Gamma, x: A \vdash_{\mathrm{cc}} t: B}{\Gamma \vdash_{\mathrm{cc}} \lambda x: A . t: \Pi x: A . B}
$$

By i.h. and Lemma 21 we have $\Gamma^{\prime} \vdash A^{\prime}: \mathrm{U}_{\underline{n}}$ and $\left|A^{\prime}\right|=A$. Therefore we have $\Gamma^{\prime}, x: \mathrm{El}_{\underline{\underline{n}}} A^{\prime} \vdash$, so by i.h. we get $\Gamma^{\prime}, x: \mathrm{El}_{\underline{\underline{n}}} A^{\prime} \vdash t^{\prime}: \mathrm{El}_{\underline{m}} B^{\prime}$ for some $m$ and with $\left|t^{\prime}\right|=t$ and $\left|B^{\prime}\right|=B$. By inversion, we then deduce $\Gamma^{\prime}, x: \overline{\mathrm{El}}_{\underline{n}} A^{\prime} \vdash B^{\prime}: \mathrm{U}_{\underline{m}}$. We can now show $\Gamma^{\prime} \vdash \lambda x: \mathrm{El}_{\underline{\underline{n}}} A^{\prime} . t^{\prime}:\left(x: \mathrm{El}_{\underline{\underline{n}}} A^{\prime}\right) \rightarrow \mathrm{El}_{\underline{m}} B^{\prime}$ and because its type is convertible to $\mathrm{El}_{\mathfrak{R}(n, m)}\left(\pi_{\underline{n}, \underline{m}}^{0} A^{\prime}\left(\lambda x: \mathrm{El}_{\underline{n}} A^{\prime} . B^{\prime}\right)\right)$, which is well typed, we conclude by applying the conversion rule.

- Case

$$
\frac{\operatorname{APP}_{\Gamma \vdash_{\mathrm{cc}} t: \Pi x: A . B \quad \Gamma \vdash_{\mathrm{cc}} u: A}^{\Gamma \vdash_{\mathrm{cc}} t u: B[u / x]}}{\frac{1}{}}
$$

By induction hypothesis we have $\Gamma^{\prime} \vdash t^{\prime}: \mathrm{El}_{\underline{p}} C^{\prime}$ and $\Gamma^{\prime} \vdash u^{\prime}: \mathrm{El}_{\underline{q}} A^{\prime}$ for some $t^{\prime}, C^{\prime}, u^{\prime}, A^{\prime}$ with $\left|t^{\prime}\right|=t$ and $\left|C^{\prime}\right|=\Pi x: A . B$ and $\left|u^{\prime}\right|=u$ and $\left|A^{\prime}\right|=\bar{A}$. By Lemma 21 we get $\Gamma^{\prime} \vdash t^{\prime}:\left(x: \mathrm{El}_{\underline{n}} A^{\prime \prime}\right) \rightarrow \mathrm{El}_{\underline{m}} B^{\prime}$ for some $A^{\prime \prime}, B^{\prime}$ with $\left|A^{\prime \prime}\right|=A$ and $\left|B^{\prime}\right|=B$, and inversion of typing gives $\Gamma^{\prime} \vdash A^{\prime \prime}: \mathrm{U}_{\underline{n}}$ and $\Gamma^{\prime}, x: \mathrm{El}_{\underline{\underline{n}}} A^{\prime \prime} \vdash B^{\prime}: \mathrm{U}_{\underline{m}}$. We also have $\Gamma^{\prime} \vdash A^{\prime}: \mathrm{U}_{\underline{q}}$, so because $\left|A^{\prime}\right|=\left|A^{\prime \prime}\right|$ we can apply Proposition 20 to get $\mathrm{El}_{\underline{n}} A^{\prime \prime} \equiv \mathrm{El}_{\underline{q}} A^{\prime}$. So we have $\bar{\Gamma}^{\prime} \vdash u^{\prime}: \mathrm{El}_{\underline{n}} A^{\prime \prime}$, and therefore $\Gamma^{\prime} \vdash t^{\prime} u^{\prime}:\left(\mathrm{El}_{\underline{m}} B^{\prime}\right)\left[u^{\prime} / x\right]$. Since $m$ is concrete, this type is in fact $E l_{\underline{m}}^{-} B^{\prime}\left[u^{\prime} / x\right]$, and Proposition 17 ensures that $\left|B^{\prime}\left[u^{\prime} / x\right]\right|=B[u / x]$.

- Case

$$
A \subseteq B \frac{\stackrel{\substack{\mathrm{Conv} \\ \Gamma \vdash_{\mathrm{cc}} t: A}}{\Gamma \vdash_{\mathrm{cc}} B: n}}{\Gamma \vdash_{\mathrm{cc}} t: B}
$$

By induction hypothesis we have $\Gamma^{\prime} \vdash t^{\prime}: \mathrm{El}_{\underline{m}} A^{\prime}$ and $\Gamma^{\prime} \vdash B^{\prime}: \mathrm{U}_{\underline{n}}$ with $\left|t^{\prime}\right|=t,\left|A^{\prime}\right|=A$ and $\left|B^{\prime}\right|=B$ (using Lemma 21 for the second derivation). By inversion we obtain $\Gamma^{\prime} \vdash A^{\prime}: \mathrm{U}_{\underline{m}}$. We now use Lemma 2 to split $A \subseteq B$ into two cases:

- $A \equiv B$. We have $\left|A^{\prime}\right| \equiv\left|B^{\prime}\right|$ so by Proposition 20 we conclude $\mathrm{El}_{\underline{m}} A^{\prime} \equiv \mathrm{El}_{\underline{n}} B^{\prime}$, and thus $\Gamma^{\prime} \vdash t^{\prime}: \mathrm{El}_{\underline{n}} B^{\prime}$.
= $A \longrightarrow^{*} \Delta \Rightarrow p$ and $B \longrightarrow^{*} \Delta \Rightarrow q$ with $p \leqslant q$. We apply Lemma 19 on $A^{\prime}$ to get some $A^{\prime \prime}$ such that $\left|A^{\prime \prime}\right|=\Delta \Rightarrow p$ and $A^{\prime} \longrightarrow^{*} A^{\prime \prime}$. Similarly, we get $B^{\prime \prime}$ with $\left|B^{\prime \prime}\right|=\Delta \Rightarrow q$ and $B^{\prime} \longrightarrow{ }^{*} B^{\prime \prime}$. We can then apply Lemma 22 to obtain a guarded term $D$ such that $\Gamma^{\prime} \vdash D:$ Tele and $\mathrm{El}_{\underline{m}} A^{\prime \prime} \equiv D \Rightarrow \underline{p}$ and $\mathrm{El}_{\underline{n}} B^{\prime \prime} \equiv D \Rightarrow \underline{q}$. We can now conclude with $\Gamma^{\prime} \vdash \uparrow \frac{q}{\underline{p}} D t: \mathrm{El}_{\underline{n}} B^{\prime}$.


## F Omitted proofs of Section 8

- Theorem 25 (Conservativity for object terms). Let $\Gamma \in \mathrm{Ctx}_{o}$ and $A \in \Lambda_{o}$ with $\|\Gamma\| \vdash_{\mathrm{cc}}|A|: n$ for some $n$. If $\Gamma \vdash t: \mathrm{El}_{\underline{n}} A$ with $t$ an object term, then we have $\|\Gamma\| \vdash_{\mathrm{cc}}|t|:|A|$.

Proof. We instead show the following claim.
$\triangleright$ Claim 37. Let $\Gamma \vdash t: A$ with $\Gamma \in \mathrm{Ctx}_{o}$ and $\|\Gamma\| \vdash_{\mathrm{cc}}$. If $t$ is an object term, then there exists $A^{\prime} \in \Lambda_{o}^{\bullet}$ with $A \equiv A^{\prime}$ and $\|\Gamma\| \vdash_{\mathrm{cc}}|t|:\left|A^{\prime}\right|^{\bullet}$.

First note that this implies the statement of the theorem. Indeed, by the claim we have $\|\Gamma\| \vdash_{\mathrm{cc}}|t|:|B|^{\bullet}$ for some $B \in \Lambda_{o}^{\bullet}$ with $B \equiv \mathrm{El}_{\underline{n}} A$. Therefore $|B|^{\bullet} \equiv|A|^{\bullet}=|A|$, so we conclude $\|\Gamma\| \vdash_{\mathrm{cc}}|t|:|A|$ by the conversion rule.

We proceed with the proof of the claim, by induction on $t$, following the definition of $\Lambda_{o}$.

- Case $t=x$. By inversion we have $x: \mathrm{El}_{\underline{\underline{n}}} B \in \Gamma$ with $A \equiv \mathrm{El}_{\underline{n}} B$. Therefore we have $x:|B| \in\|\Gamma\|$, so by the variable rule we get $\|\Gamma\| \vdash_{\mathrm{cc}} x:|B|$ and so $\|\Gamma\| \vdash_{\mathrm{cc}} x:\left|E l_{\underline{n}} B\right|^{\bullet}$.
- Case $t=\mathrm{u}_{\underline{m}}$. Then by inversion we have $A \equiv \mathrm{U}_{\underline{\mathfrak{A}(m)}}$, and we can easily show $\|\Gamma\| \vdash_{\mathrm{cc}} m$ : $\left|\mathrm{U}_{\underline{\mathfrak{A}(m)}}\right|^{\bullet}$.
- Case $t=\lambda x: \mathrm{El}_{\underline{n}} A_{1} . u$. By inversion we have $\Gamma \vdash A_{1}: \mathrm{U}_{\underline{n}}$ and $\Gamma, x: \mathrm{El}_{\underline{n}} A_{1} \vdash u: A_{2}$ for some $A_{2}$ with $A \equiv\left(x: \mathrm{El}_{\underline{n}} A_{1}\right) \rightarrow A_{2}$. By i.h. we thus have $\|\Gamma\| \vdash_{\text {cc }}\left|A_{1}\right|:\left|B_{1}\right|^{\bullet}$ with $B_{1} \equiv \mathrm{U}_{\underline{n}}$. Therefore, we have $\left|B_{1}\right|^{\bullet} \equiv n$, so by conversion we can derive $\|\Gamma\| \vdash_{\mathrm{cc}}\left|A_{1}\right|: n$, and so $\|\Gamma\|, x:\left|A_{1}\right| \vdash_{\mathrm{cc}}$. By i.h. once more, we have $\|\Gamma\|, x:\left|A_{1}\right| \vdash_{\mathrm{cc}}|u|:\left|B_{2}\right|^{\bullet}$ for some $B_{2}$ with $B_{2} \equiv A_{2}$. We can thus derive $\|\Gamma\| \vdash_{\mathrm{cc}} \lambda x:\left|A_{1}\right| \cdot|u|:\left|\left(x: \mathrm{El}_{\underline{n}} A_{1}\right) \rightarrow B_{2}\right|^{\bullet}$ and $A \equiv\left(x: \mathrm{El}_{\underline{n}} A_{1}\right) \rightarrow B_{2}$.
- Case $t=u v$. By inversion of typing we have $\Gamma \vdash u:\left(x: A_{1}\right) \rightarrow A_{2}$ and $\Gamma \vdash v: A_{1}$ and $A \equiv A_{2}[v / x]$. By i.h. we thus have $\|\Gamma\| \vdash_{c c}|u|:|B|^{\bullet}$ with $B \equiv\left(x: A_{1}\right) \rightarrow A_{2}$, and $\|\Gamma\| \vdash_{\text {cc }}|v|:|C|^{\bullet}$ with $C \equiv A_{1}$. Using confluence multiple times, it follows that $B \longrightarrow^{*}\left(x: A_{1}^{\prime}\right) \rightarrow A_{2}^{\prime}$ and $C \longrightarrow{ }^{*} A_{1}^{\prime}$ for some $A_{1}^{\prime} \equiv A_{1}$ and $A_{2}^{\prime} \equiv A_{2}$. Therefore $\|\Gamma\| \vdash_{\mathrm{cc}}|u|: \Pi x:\left|A_{1}^{\prime}\right|^{\bullet} .\left|A_{2}^{\prime}\right|^{\bullet}$ and $\|\Gamma\| \vdash_{\mathrm{cc}}|v|:\left|A_{1}^{\prime}\right|^{\bullet}$, allowing us to deduce $\|\Gamma\| \vdash_{\mathrm{cc}}|v|:$ $\left|A_{2}^{\prime}[v / x]\right| \cdot$ and such that $A \equiv A_{2}[v / x] \equiv A_{2}^{\prime}[v / x]$.
- Case $t=\uparrow_{\underline{m}} D u$. By inversion we have $\Gamma \vdash u: D \Rightarrow \underline{m}$ and $A \equiv D \Rightarrow \underline{m+1}$. By i.h. we get $\|\Gamma\| \vdash_{\mathrm{cc}}|u|:|B|^{\bullet}$ with $B \equiv D \Rightarrow \underline{m}$. By confluence we have $B \longrightarrow^{*} P^{*} \longleftarrow D \Rightarrow \underline{m}$, and because $B$ is in the domain of $|-|^{\bullet}$ then so is $P$, and because it is also a reduct of $D \Rightarrow \underline{m}$ it follows that it must be of the form

$$
\left(x_{1}: A_{1}\right) \rightarrow . . \rightarrow\left(x_{k}: A_{k}\right) \rightarrow \mathrm{U}_{\underline{m}}
$$

Therefore we have $|B|^{\bullet} \longrightarrow{ }^{*} \Pi x_{1}:\left|A_{1}\right|^{\bullet} . . x_{k}:\left|A_{k}\right|^{\bullet} . m$ and thus $\|\Gamma\| \vdash_{c c}|u|: \Pi x_{1}:$ $\left|A_{1}\right|^{\bullet} . . x_{k}:\left|A_{k}\right|^{\bullet} . m$. Because this type is well typed, it is easy to see that $\Pi x_{1}:\left|A_{1}\right|^{\bullet} \ldots x_{k}$ : $\left|A_{k}\right|^{\bullet} . m+1$ also is, and thus by rule Cumul we get $\|\Gamma\| \vdash_{\mathrm{cc}}|u|: \Pi x_{1}:\left|A_{1}\right|^{\bullet} . . x_{k}:\left|A_{k}\right|^{\bullet} . m+1$. Now we conclude by noticing that if $D \Rightarrow \underline{m} \longrightarrow^{*}\left(x_{1}: A_{1}\right) \rightarrow . . \rightarrow\left(x_{k}: A_{k}\right) \rightarrow \mathrm{U}_{\underline{m}}$, then it must be the case that $D \Rightarrow \underline{m+1} \longrightarrow^{*}\left(x_{1}: A_{1}\right) \rightarrow . . \rightarrow\left(x_{k}: A_{k}\right) \rightarrow \mathrm{U}_{\underline{m+1}}$.

- Case $t=\pi_{\underline{p}, \underline{q}}^{0} A_{1}\left(\lambda x: C \cdot A_{2}\right)$. By inversion we have $\Gamma \vdash A_{1}: \mathrm{U}_{\underline{p}}$ and $\Gamma, x: \mathrm{El}_{\underline{p}} A_{1} \vdash$ $A_{2}: \mathrm{U}_{\underline{q}}$ with $A \equiv \mathrm{U}_{\underline{\Re}(p, q)}$. So by i.h. we have $\|\Gamma\| \vdash_{c c}\left|A_{1}\right|:\left|A_{1}^{\top}\right| \cdot$ with $A_{1}^{\prime} \equiv \overline{\mathrm{U}}_{\underline{p}}$, so $\left|A_{1}^{\prime}\right|^{\bullet} \equiv p$ and by the conversion rule we get $\|\Gamma\| \vdash_{\mathrm{cc}}\left|A_{1}\right|: p$ and so $\|\Gamma\|, x:\left|A_{1}\right| \vdash_{c c}$. By the i.h. once more, we also have $\|\Gamma\|, x:\left|A_{1}\right| \vdash_{\mathrm{cc}}\left|A_{2}\right|:\left|A_{2}^{\prime}\right|^{\bullet}$ with $A_{2}^{\prime} \equiv \mathrm{U}_{\underline{q}}$, thus $\left|A_{2}^{\prime}\right|^{\bullet} \equiv q$ and by the conversion rule we have $\|\Gamma\|, x:\left|A_{1}\right| \vdash_{\mathrm{cc}}\left|A_{2}\right|: q$. Therefore, we can derive $\|\Gamma\| \vdash \Pi x:\left|A_{1}\right| \cdot\left|A_{2}\right|: \mid \mathrm{U}_{\underline{\mathfrak{R}(p, q)}} \cdot{ }^{\bullet}$ and we indeed have $A \equiv \mathrm{U}_{\underline{\Re(p, q)}}$.


[^0]:    ${ }^{1}$ Note that our lift is single-step, in contrast with some previous encodings [5, 45, 27] which employed a multi-step lift, taking a type $A: \mathrm{U}_{l_{1}}$ to $\uparrow_{l_{1}}^{l_{2}} \bullet t: \mathrm{U}_{l_{2}}$. The avoidance of the multi-step lift is essential in order to prevent its associated non-left-linear rules, such as $\uparrow_{1}^{l} D t \longmapsto t$.

