

Model-inversion control to enforce tunable Duffing-like acoustical response on an Electroacoustic resonator at low excitation levels

E de Bono, M
 Morell, Manuel Collet, Emmanuel Gourdon, Alireza Ture Savadkoohi, C
 H Lamarque, M Ouisse

▶ To cite this version:

E de Bono, M Morell, Manuel Collet, Emmanuel Gourdon, Alireza Ture Savadkoohi, et al.. Modelinversion control to enforce tunable Duffing-like acoustical response on an Electroacoustic resonator at low excitation levels. Journal of Sound and Vibration, 2023, 10.1016/j.jsv.2023.118070 . hal-04470707

HAL Id: hal-04470707 https://hal.science/hal-04470707

Submitted on 21 Feb 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Model-inversion control to enforce tunable Duffing-like acoustical response on an Electroacoustic resonator at low excitation levels

E. De Bono* Univ Lyon, CNRS, École Centrale de Lyon, LTDS, UMR5513, 69130 Ecully, France.	
M. Morell Univ Lyon, ENTPE, École Centrale de Lyon, CNRS, LTDS, UMR5513, 69518 Vaulx-en-Velin, France.	
M. Collet Univ Lyon, CNRS, École Centrale de Lyon, LTDS, UMR5513, 69130 Ecully, France.	
E. Gourdon, A. Ture Savadkoohi, and C. H. Lamarque Univ Lyon, ENTPE, École Centrale de Lyon, CNRS, LTDS, UMR5513, 69518 Vaulx-en-Velin, France.	
M. Ouisse SUPMICROTECH, Université de Franche-Comté, CNRS, institut FEMTO-ST, F-25000 Besançon, France.	
The electroacoustic resonator is an efficient electro-active device for noise attenuation in enclosed cavities or acoustic waveguides. It is made of a loudspeaker (the actuator) and one or more microphones (the sensors). So far, the desired acoustic behaviour, expressed in terms of a linear-time-invariant relationship between sound pressure and vibrational motion (the acoustical impedance), has been more efficiently achieved by a model-inversion strategy which is implemented by driving the electrical current in the loudspeaker coil, based upon the measured pressure. The corrector transfer function is defined in the Laplace domain and digitally executed by the classical infinite-impulse-response technique, though a state-space representation could be employed. In this work, we are interested in enforcing a nonlinear behaviour at low sound excitation levels, where the electroacoustic resonator would normally behave as a linear-time-invariant system. Hence, in order to transform its acoustical response from linear to nonlinear, the model-inversion technique must be reformulated in time domain. The state-space representation of the relationship between the input measured pressure and the output electrical current gives the right perspective and the solution to this problem. We provide the conception of this model-inversion control algorithm capable of transforming a linear-time-invariant acoustical response to potentially any causal acoustical response of the electroacoustic resonator. Such control strategy is tested by targeting a Duffing acoustical response with tunable parameters. Both numerical simulations and experimental tests in quasi-open field validate the approach. The results provided in this contribution open the doors for conceiving non-conventional absorbers which can exploit nonlinear phenomena for noise mitigation even at low excitation amplitudes.	

I. Introduction

The wave-control by treating the boundaries of propagative domains is a large area of research encompassing all fields from electromagnetics to solid mechanics and acoustics. In acoustics, a typical boundary treatment problem is the room modal damping, where the objective is to damp the acoustic modes in an enclosed cavity. Morse [1] recognized the normal surface impedance as the quantity characterizing the acoustic behaviour of a locally reacting boundary, in its *linear regime*. It is defined as the ratio of Laplace transform of the local sound pressure and the normal velocity: $Z_s s$ psvs, where s is the Laplace variable, set to j ω (where j $\sqrt{-1}$) in the stationary regime. However, a generic boundary might present non-locally reacting, non-linear or even time-variant acoustical response, and can be characterized by a general operator $\mathcal{L}\{p\mathbf{x}, t, \mathbf{ux}, t, t\}$ 0, relating sound pressure p and the surface displacement **u** in the physical coordinates \mathbf{x} , t. In case of locally-reacting and linear time-invariant (LTI) behaviour of the boundary, the

^{*}Post-doctoral researcher, LTDS École Centrale de Lyon, emanueledeb88hotmail.it.

implicit general operator $\mathcal{L}\{\bullet\}$ degenerates to a LTI relationship between local sound pressure pt and normal velocity vt, 44 whose Laplace or Fourier transform leads to the definition of the normal surface impedance: $p_s - Z_s svs = 0$. 45 Though the linear regime is valuable only below a certain threshold of the involved energy, both in acoustics and solid 46 mechanics the problem of noise and vibration mitigation has been mostly tackled by LTI means. In solid mechanics, the 47 Tuned-Vibration-Absorber (TVA) [2], consists of a resonator attached to the main structure, properly tuned with the 48 resonance of the primary structure (supposed linear). Nevertheless, since mistuned TVA might increase the vibration 49 level of the primary structure, *adaptive* TVAs [2] have been developed with controllable or adjustable parameters, as 50 well as active TVAs. The active TVAs, thanks to an active force on the mass, can provide broader bandwidth, and when 51 the active element fails, they can still function as passive vibration absorbers (fail-safe). 52 The resonance principle of energy capture is also exploited in sound mitigation by the Helmholtz or quarter-wavelength 53 resonators, which are equivalent to TVAs in solid mechanics. Their main drawback is the fact that the equivalent 54 acoustical stiffness term is related to the air compressibility in their acoustic cavity. Hence, to target lower frequencies, 55 larger volumes of air are required, limiting their implementation when confronted with space and weight strict 56 specifications, as in aeronautics for example [3]. Also the Helmholtz and quarter-wavelength resonators have found some 57 evolution by *adaptive* solutions for coping with tunability requirements [3]. Other classical passive acoustic resonators 58 are membranes, which are also exploited in (electro)-active devices, such as the so-called Electroacoustic Resonators 59 (ER). As in the active TVA, a control force is applied to the mass of the ER which can modify its response to the acoustic 60 excitation. Most commonly used technology for the ER is the loudspeaker, where the dynamics of the speaker membrane 61 is altered by the Lorentz/Laplace control force. From the seminal idea of Olson and May [4], the ER concept has given 62 rise to various strategies, such as electrical-shunting [5], direct-impedance control [6] and self-sensing [7]. In order to 63 overcome the low-flexibility drawback of electrical shunting techniques, minimize the number of sensors, meanwhile 64 avoiding to get involved into the electrical-inductance modelling of the loudspeaker, a pressure-based current-driven 65 architecture proved to achieve the best absorption performances in terms of both bandwidth and tunability [8]. It employs 66 one or more pressure sensors (microphones) nearby the speaker, and a model-inversion technique to target the desired 67 impedance by controlling the electrical current in the speaker coil. Its efficiency has been demonstrated for room-modal 68 equalization [9], sound transmission mitigation in waveguides [10], [11], and even non-reciprocal propagation [12]. 69 In solid mechanics, it has long been tried to overcome the limits of linear TVA by exploiting non-linear (typically 70 Duffing type) resonators [13], [14]. In early 21st century, it has been demonstrated that the coupled dynamics of 71 the linear main structure and nonlinear absorber, can feature a special phenomenon: the Targeted Energy Transfer 72 (TET) where vibrational energy is transferred from the linear host structure to the nonlinear absorber in a one-way 73 and irreversible fashion [15], [16]. A widely used device presenting TET is the Nonlinear-Energy-Sink (NES) [17]. 74 The NES is largely studied in solid mechanics, in its different forms, such as pure cubic [16] or non-smooth [18]. In 75 acoustics, the potentialities of nonlinear sound absorption have been explored in [19] for designing Helmholtz resonators 76 in the nonlinear regime, or in [20], where TET was achieved from a linear acoustic cavity to a weakly-coupled thin 77 visco-elastic membrane which behaves as a Duffing resonator. As the linear ones, passive nonlinear absorbers are not 78 easily tunable for targeting different bandwidths. Moreover, they usually need high-energy threshold in order to trigger 79 the nonlinear behaviour. An electro-active nonlinear absorber might overcome these limitations, by *transforming* the 80 mechano-acoustical dynamics of the loudspeaker from linear to nonlinear, while keeping the same external excitation 81 levels. In order to do that, in [21], an additional microphone was placed inside the ER back-cavity, such that to retrieve a 82 measurement directly proportional to the diaphragm displacement at low frequencies. The nonlinear behaviour was then induced by defining an electrical current (the controller) which comprises a "linear" (i_L) and a "nonlinear" (i_{NL}) 84 contribution separately. While i_L is in charge of inverting the loudspeaker own dynamics and enforcing the linear part 85 of the target dynamics, i_{NL} is in charge of enforcing the nonlinear term, proportional to the cubic pressure inside the 86 back-cavity of the EA. To apply this strategy, attention must be put in the recursive definition of the "linear" term i_L in 87 its digital implementation. In the classical Infinite-Impulse-Response (IIR) recursive scheme [22], the controller at 88 each time step is defined based upon its value at the previous time steps. Hence, in order for i_L to correctly accomplish 89 the model-inversion and the "linear" dynamics targeting, in the IIR scheme, i_L should never be mixed up with i_{NL} in 90 [21]. The nonlinear behaviour accomplished by this device, manifesting itself in the *hardening* or *softening* spring 91 effects, is mildly evident in [21] as a small enlargement of the bandwidth with respect to the purely linear control. 92 The great achievement of [21] though, was to be able of *adding* a nonlinear term to the LTI dynamics of the EA, at 93 relatively low excitation levels. This was accomplished by increasing the gain multiplying the sensed pressure in the 94 back-cavity, which was however limited by important stability constraints. Moreover, difficulties would arise for this 95 strategy, based upon the separation of the *linear* (i_L) and *nonlinear* (i_{NL}) contributions, if it should be implemented to 96 target multi-degree-of-freedom (MDOF) nonlinear dynamics. 97

In this paper we write the model-inversion control problem to transform the acoustical response of the electroacoustic 98 resonator (ER) from LTI to potentially any causal locally-reacting response (nonlinear and/or time-variant), in the same 99 pressure-based, current-driven architecture of [8], without additional sensors to estimate the motion of the speaker 100 membrane. For non-LTI target dynamics, the control problem must be written in time domain. The state-space 101 representation gives the right perspective to formulate the algorithm. In the algorithm proposed here, the non-LTI 102 dynamics is integrated by a numerical scheme at each time step, in order to retrieve the target state-vector from the 103 sensed variable (the sound pressure). The computed target state-vector is hence inserted in the model of the ER system 104 to get the electrical current (the controller) capable of enforcing the desired dynamics. In this contribution, the control 105 algorithm is implemented to achieve a Duffing-like acoustical behaviour, with tunable parameters. The novelty of this 106 contribution consists in presenting a control technique capable of enforcing linear as well as nonlinear dynamics, as it is 107 not conceived from a convolution filter, moreover without requiring additional displacement sensors. The innovation 108 stays indeed in employing a Runge-Kutta-like scheme for integrating in real-time the target dynamics, and synthesizing 109 a model inversion controller in real time. This work opens the doors to investigate the potentialities of various non-LTI 110 absorbers, and to the *inverse design* of ad-hoc non-LTI operators for the scope of wave control at low excitation levels. 111 In Section II, the model-inversion strategy is outlined for a general non-LTI target acoustical response. In Section III, 112 the approach is numerically validated by simulating the acoustical response of the controlled system in open-field, for 113 both linear and nonlinear (Duffing) target dynamics. In Section IV, the strategy is implemented on an experimental 114 prototype, and measurements in a quasi-open field are carried out to validate the achievement of a tunable Duffing-like 115 response of the ER at low excitation levels. Finally, in Section V, we give the conclusions and future developments. 116

II. Model-inversion control concept

In this section we provide the general concept of model-inversion control, from which the strategy to transform 118 the ER dynamics from LTI to generic non-LTI, stems from. For convenience, we formulate the problem directly in 119 the case of our ER, but it could be easily translated to other kinds of control systems. The model-inversion approach 120 starts with the definition of a desired target behaviour [23], which in our case is the acoustical response of the ER as a 121 general (possibly non-LTI) operator relating sound pressure on the speaker diaphragm, and vibrational motion of the ER 122 mass. In state-space it can be written as: $\mathbf{x}_d t$ $f_d \mathbf{x}_d t$, $p_d t$, t, where f_d is the N-order differential operator of the desired 123 dynamics, \mathbf{x}_{dt} is the *desired* state-vector comprising the displacement and its time derivatives up to the order N - 1, 124 and $p_d t$ is the *desired* sound-pressure. To achieve such target behaviour, the model-inversion approach synthesizes the 125 control variable (in our case the electrical current *it*) based upon the assumption of the system model. In our case the 126 model is the relationship between sound pressure, control force applied on the ER mass, and vibrational motion of ER 127 mass: pt $g_m \mathbf{x}t$, it, where g_m is the system-model differential operator, $\mathbf{x}t$ is the actual ER state-vector, and the control 128 force is expressed as function of the electrical current *it* as it pilots the electromagnetic force produced in the speaker 129 coil. The two equations are grouped together in Eq. (1). 130

$$\int \mathbf{x}_{\mathbf{d}t} \ f_d \mathbf{x}_{\mathbf{d}t}, p_d t, t, \tag{1a}$$

117

$$\left(pt \ g_m \mathbf{x}t, it. \right)$$
(1b)

In our case, $g_m \bullet$ is a LTI differential operator, while $f_d \bullet$ can be a non-LTI differential operator. The controller, i.e. the electrical current *it*, which is capable of *transforming* the ER dynamics from Eq. (1b) to Eq. (1a), is the solution of the system of Eq.s (1), for **x**t **x**_dt and pt $p_d t$.

The architecture at disposal allows to estimate the actual pt by one or more microphones, hence in Eq. (1) we can take $p_dt pt$.

Let us first consider the case of a more familiar LTI target operator $f_d \bullet$. In this case, both Eq. (1a) and Eq. (1b) are LTIs systems, and can be rewritten in matrix notation:

$$\int \mathbf{x_d} t \ A \mathbf{x_d} t \ B p t, \tag{2a}$$

$$\begin{pmatrix} pt \ C_1 \mathbf{x}t \ C_2 \mathbf{x}t \ D_1 it,
\end{cases}$$
(2b)

where A, B, C_1 , C_2 and D_1 are constant matrices. In order to find the control output *it* as function of the input *pt*, we simply have to impose *xt* x_dt . By doing so, Eq. (2b) can be rewritten in the classical form of state-space LTI systems: ¹³⁹

$$pt C \mathbf{x}_{\mathbf{d}} t D i t, \tag{3}$$

with $C_1 - C_1 B^{-1} C_1 A_2$ and $D_1 - C_1 B^{-1} D_1$. From Eq.s (2a) and (3) we are used to get the corrector transfer ¹⁴⁰ function between the input *pt* and the output *it*, in the Laplace variable *s*: ¹⁴¹

$$Hs \ \frac{is}{ps} \ D^{-1}1 - CsI - A^{-1}B.$$
(4)

Observe that if we compute the state-space representation of the filter Hs, we would retrieve the system of Eq.s (2). This observation provides an interesting interpretation of state-space representations, from a *model-inversion* perspective: the first equation of the state space representation would describe the target dynamics, and the second one the system model. 143

For its digital implementation, the corrector transfer function Hs is transformed in the discrete Laplace space z ¹⁴⁶ by a zero-order-holder (zoh) or Tustin transform [22]. Such transformations allow to approximate the convolution ¹⁴⁷ integral *it* ${}^{t}_{0}Htpt - \tau d\tau$ by a finite sum of lower rectangles (zoh) or trapezoids (Tustin), hence to obtain the controller *it* at each time step. This is the classical convolution approach, for the design of the model-inversion control as in [8]. ¹⁴⁹

A non-LTI target dynamics does not allow the passage to the Laplace domain and the direct definition of the corrector *Hs.* Nevertheless, the state-space representation of Eq.s (1), allows for another solution to enforce possibly non-LTI desired dynamics in a LTI system. For clarity, the system of equations is rewritten in Eq.s (5) to specify that the target dynamics can be non-LTI, while the system model is LTI and can, therefore, be directly *inverted*.

$$\left(\mathbf{x}_{\mathbf{d}} \quad f_d \mathbf{x}_{\mathbf{d}} t, p t, t, \right)$$
(5a)

150

159

160

166

167

168

169

$$\left(pt \ C_1 \mathbf{x}t \ C_2 \mathbf{x}t \ D_1 it. \right)$$
(5b)

At each time step t_n of the digital implementation, we can retrieve the target state-vector $\mathbf{x}_d t_{n1}$ based upon the measured pressure pt_n , by solving Eq. (5a) thanks to a numerical scheme. Then, we impose $\mathbf{x}_{t_{n1}} \mathbf{x}_d t_{n_1}$ in Eq. (5b), in order to retrieve it_{n_1} . The digital implementation strategy just proposed, essentially consists of two steps, illustrated below:

1) Evaluate $\mathbf{x}_{\mathbf{d}} t_n$ $f_d \mathbf{x}_{\mathbf{d}} t_n$, pt_n , t_n , from the measured pressure pt_n and the state vector $\mathbf{x}_{\mathbf{d}} t_n$ estimated at the previous time step. Then, inject the controller *it*_n obtained by *inverting* Eq. (5b):

$$it_n \quad D_1^{-1} pt_n - C_1 \mathbf{x}_{\mathbf{d}} t_n - C_2 \mathbf{x}_{\mathbf{d}} t_n. \tag{6}$$

2) Apply an integration scheme to $\mathbf{x}_{\mathbf{d}}t_n$, $f_d\mathbf{x}_{\mathbf{d}}t_n$, pt_n , t_n and estimate the target state vector $\mathbf{x}_{\mathbf{d}}t_{n1}$ for the next step. Such control algorithm will be labelled as Real-Time-Integration (RTI) to differentiate it from the IIR implementation of the convolution-based algorithms. Notice that the RTI allows to *transform* the system acoustical dynamics (given by the relationship between pt and $\mathbf{x}t$) from LTI to non-LTI, while classical convolution-algorithms do not permit the modification of the nature (LTI or non-LTI) of the original system.

Fig. 1 shows the block diagram of the two-steps control algorithm described above. The z^{-1} block in Fig. 1 follows the symbolism of the Simulink toolbox of Matlab to indicate that the desired state vector, computed at time step t_n , is employed in the controller *i* at the next time step t_n 1.

Different choices can be made for the integration scheme employed to solve Eq. (5a). For example, a proper Runge-Kutta 170 scheme of fourth order (RK4) would require the pressure p to be measured at the multiple instants t_n , t_n , h_2 and t_n , h_2 , h_2 and h_2 , h_2 and h_2 , h_3 , h_4 and h_2 , h_3 and h_3 , h_4 and h_3 , h_4 and h_3 and h_4 and h_3 and h_4 and h_4 and h_3 and h_4 a 171 with h being the time step of the integration. In order to do that, the acquisition rate (control input) should be twice 172 the sampling frequency of the digital control output (*it* and *pt* should have different sampling frequencies). Calling 173 f_s 1T_s the maximum sampling frequency of our digital control, a proper RK4 integration scheme can be obtained by 174 considering h $2T_s$. This way, the acquisition sampling rate would be set to f_s , while the controller rate would be $f_s 2$. 175 The numerical integration scheme employed in this contribution, presents a fixed sampling rate for both the input p176 and the output i of the control, with integration step h T_s . This choice, does not allow to implement a proper RK4 177 integration scheme, as the sound pressure p is unknown at the intermediate stages. Nevertheless, the pressure p can 178 be considered as constant at the intermediate steps of integration of Eq. (5a), while the increments of the unknown 179 vector $\mathbf{x}_{\mathbf{d}}$ can be computed following the typical RK4 scheme. In this case, we cannot speak of a proper RK algorithm, 180 but of a RK-like scheme. Nonetheless, thanks to a high sampling rate of 50 kHz, keeping the pressure unchanged at 181 the intermediate stages of the RK scheme does not threaten the accuracy of integration, while allowing to acquire the 182 pressure signals at the fastest rate. In the following sections, the accuracy of such integration scheme is assessed by 183 comparison with the results and errors of classical IIR convolution algorithms, both numerically and experimentally. 184

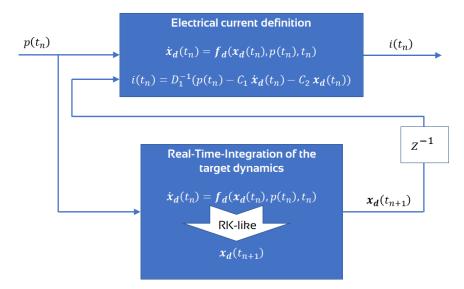


Fig. 1 Block diagram of the two-steps control algorithm.

Observe also that, as for any digital implementation, this control entails a physiological time-delay τ between the input and output [24], meaning that in Eq. (6) a $pt_n - \tau$ is actually taken into account, and not pt_n . In the next section, we numerically simulate the implementation of such control algorithm applied on an ER, in an open-field acoustic environment.

III. Numerical validation

In this section we simulate the implementation of the RTI digital control algorithm described in Section II, on an ER 190 placed in an open-field environment. So, let us first describe the physical problem. An open-field environment means 191 that the ER is placed on the boundary of a semi-infinite domain. An incident sound wave impacts the ER diaphragm and 192 a reflected wave is produced, as illustrated in Fig. 2. Hence, there is *no-coupling* between the ER and the surrounding, 193 i.e. the acoustic field is composed by the superposition of incident and reflected propagating plane waves, which 194 do not interact with each other except at the ER diaphragm. This simplified context allows to analyse the response 195 of the controlled ER alone, without any *coupling* effects with external acoustic modes, the latter being a critical as-196 pect especially for nonlinear resonators, and deserves a dedicated discussion which will be carried out in a following paper. 197

In Fig. 2, the ER is placed on the boundary $\partial\Omega$ of a 2-dimensional (2D) semi-infinite acoustic domain Ω . On the ER interface with the semi-infinite domain an incident plane wave p impacts on the ER with an incidence angle θ . Consequently, a reflected plane wave field p^- is produced at the interface. The relationship between the ER displacement and the incident and reflected sound pressure waves, is given by the linearised conservation of momentum [25]:

$$-\rho_0 ut \ \partial_x px, y, t, \quad \text{on } x \ 0 \tag{7}$$

where ρ_0 is the static air-density, *ut* is the displacement of the ER, the upper dot indicating the time derivative, and px, y, t is the sound pressure. The sound pressure px, y, t can be written in terms of incident p and reflected p^- plane waves:

$$px, y, t \quad px\cos\theta - c_0 t, y\sin\theta - c_0 t \quad p^- x\cos\theta \quad c_0 t, y\sin\theta - c_0 t.$$
(8)

Hence, Eq. (7) becomes:

$$ut \quad \frac{\cos\theta}{\rho_0 c_0} (\partial_t p t - \partial_t p^- t)$$

$$\Rightarrow ut \quad \frac{\cos\theta}{\rho_0 c_0} (p t - p^- t),$$
(9)

206

189

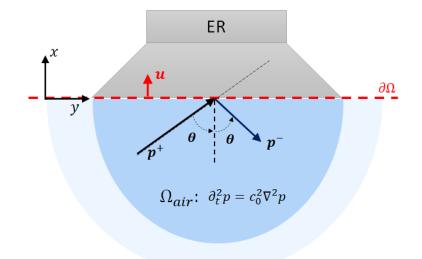


Fig. 2 ER interfacing with a semi-infinite acoustic domain.

where c_0 is the sound speed, pt and p^-t are the incident and reflected fields at the interface, with the y dependence dismissed because we are interested in the *local reaction*. Let us now write our ER model equation, according to the Single-Degree-of-Freedom (SDOF) approximation of the loudspeaker mechano-acoustical dynamics:

$$M_{a0}ut R_{a0}ut K_{a0}ut pt - \frac{Bl}{S_e} it,$$
(10)

where M_{a0} , R_{a0} and K_{a0} are the acoustical mass, resistance and stiffness of the loudspeaker in open circuit, while Bl 210 is the force factor (magnetic field times the coil length) and S_{e} is the equivalent piston area, of the ER [26]. Observe 211 that we have labelled pt the sound pressure applied on the speaker membrane, supposed to be uniform (independent of 212 y) at sufficiently low frequencies respect to the dimensions of the speaker diaphragm. By definition of a *locally-reacting* 213 boundary, the sound pressure can be considered uniform on each element of the (discretized) boundary [3, 27, 28], so 214 that the behaviour of locally-reacting boundaries can be described by their *local impedance*. This is true for wavelengths 215 sufficiently larger than the lateral size of the boundary element. Moreover, in the experimental EA prototype employed 216 in Section IV, the pressure input around the speaker is averaged, making the *local impedance* assumption effective up to 217 around 2 kHz [11, 12, 29] in the average sense. Clearly, at higher frequencies, the average locality fails and spillover 218 effects might arise. This drawback, along with the time delay of the digital control, limits the controllability of our ER 219 [24]. At sufficiently low frequencies, then, on the speaker interface $py, t \approx pt \ p^{-}t$. 220 In Fig. 3, the SDOF model is illustrated in terms of the mechanical parameters $\bullet_{m0} \bullet_{a0} S_e$. 221

Defining the state-space vector $\mathbf{x}t$ *ut*, *ut*, Eq. (5b) rewrites:

$$pt \ R_{a0}, \ M_{a0} \ \mathbf{x}t \ K_{a0}, \ 0 \ \mathbf{x}t \ \frac{Bl}{S_e} \ it, \tag{11}$$

222

where we can recognize the matrices C_1 , C_2 and D_1 of Eq. (5b), and *it* is obtained at each time step by the algorithm 223 defined in Section II. As we know, our control aims at targeting a specific operator relating local sound pressure pt 224 (input) and membrane vibration (actuator response xt). Nevertheless, the local sound pressure *pt* depends, in turn, 225 upon the system response itself **xt**, according to the external acoustic environment where the ER is placed. In the 226 Laplace/Fourier domain, it is the so-called radiation impedance [26], which operates like an acoustic feedback on the 227 boundary [24]. This equation defines the acoustical environment where the ER is placed. Observe that such relationship 228 cannot be retrieved by our ER local sensors, hence it cannot directly affect the target operator synthesis. To properly 229 assess and predict the performances of any acoustical device by numerical simulations, though, such equation should 230 be taken into account in the problem simulation. This means that the control input *pt* should not be considered as an 231 independent term (as it were a source, as it is done in [21]), but it should be written in terms of the system response \mathbf{x}_t , 232 the latter providing the scattering of sound waves. Indeed, Eq. (11) describes a so-called non-ideal system [30], in the 233

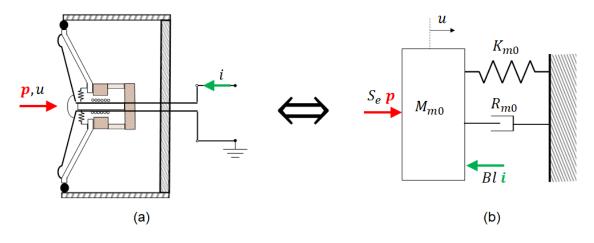


Fig. 3 Sketch of the ER (a) and its SDOF piston-mode model (b) employed in the control synthesis.

sense that the local sound pressure pt depends upon the response of the system itself **x***t*. In an open-field environment, the relationship between pt and **x***t* is given by Eq.s (8) and (9), i.e.: 234

$$pt \ 2pt - 0, \ \rho_0 c_0 \cos\theta \ \mathbf{x}t. \tag{12}$$

Hence, inserting Eq. (12) in Eq. (11), we obtain the following equation relating the source term pt and the state vector xt:

$$2pt \left[R_{a0} \; \frac{\rho_0 c0}{\cos \theta}, \; M_{a0} \right] \mathbf{x}t \left[K_{a0}, \; 0 \right] \mathbf{x}t \; \frac{Bl}{S_e} \; it. \tag{13}$$

For what explained above concerning the *non-ideality* of the system, the assumption of [21] of *pt* as a fixed source 238 term in simulations, is incorrect. In an open field environment simulation, since the incident and scattered fields do not 239 interact with each other (except at the interface with the boundary), we can fix pt at all instants (as a known source term) 240 and find the time-evolution of xt by numerically solving Eq. (13) at each time step t_n . The electrical current it_n in Eq. 241 (13) is retrieved at the previous time step from Eq. (6). Once the state vector at the next time step xt_{n1} is known, the 242 total sound pressure pt_{n1} is computed from Eq. (12) (where p is known at all instants). Hence, pt_{n1} can be fed into the 243 control algorithm of Fig. 1, to find the controller it_{n1} , and the recursive simulation goes on. Notice that a time-delay τ 244 can also be simulated, by taking into account $pt_n - \tau$ in the control Eq. (6). 245

A. Linear target dynamics

In order to compare the performances of the RTI versus the classical IIR algorithm, let us first consider a linear SDOF target dynamics (as in [8, 10–12, 24]). The desired behaviour is described by: 249

$$M_{ad}u_dt R_{ad}u_dt K_{ad}u_dt pt, (14)$$

where M_{ad} , R_{ad} and K_{ad} are the desired acoustic mass, resistance and stiffness of the ER target acoustical dynamics, and $u_d t$ is the corresponding desired displacement. In Fig. 4, the target SDOF dynamics is illustrated in terms of the mechanical parameters $\bullet_{md} \bullet_{ad} S_e$.

In [8] the desired mass and stiffness are defined in terms of the open-circuit values $M_{ad} \ \mu_M M_{a0}$ and $K_{ad} \ \mu_K K_{a0}$, 253 and the resistance is represented as a fraction of $\rho_0 c_0$. The desired resonance frequency can then be expressed in terms 254 of the open-circuit one $f_d \ \sqrt{\frac{\mu_K}{\mu_M}} f_0$, with $f_0 \ \frac{1}{2\pi} \sqrt{\frac{K_{a0}}{M_{a0}}}$. In what follows, the open-circuit acoustical mass, resistance and 255 stiffness of the ER are taken equal to $M_{a0} \ 0.392 \text{ kg.m}^{-2}$, $R_{a0} \ 194 \text{ Pa.s.m}^{-1}$ and $K_{a0} \ 4.25 \times 10^6 \text{ Pa.m}^{-1}$ respectively, 256 which brings an $f_0 \approx 525$ Hz. These values are the same as the ones identified for the experimental prototype analysed in Section IV. 258

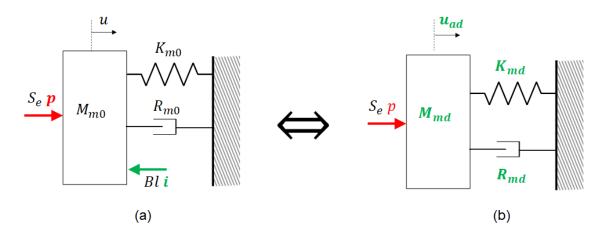


Fig. 4 Sketches of the SDOF model of the ER (a) and of the target SDOF LTI resonator (b).

In this section, the open-field problem in case of normal incidence is simulated in time by a RK4 algorithm, both in case of IIR and RTI control algorithms. For harmonic incident waves pt, the reflection and hence absorption $\alpha_n \omega$ coefficients spectra can be retrieved by taking the Discrete-Fourier-Transform (DFT) of the incident and reflected signals.

In Fig. 5 the time histories of the reflected pressure p^{-t} , electrical current *it*, and ER velocity for harmonic incident 262 pressure pt at 500 Hz and amplitude 1 Pa, are presented in case of IIR and RTI control strategies. The time histories for 263 IIR and RTI are indistinguishable. In Fig. 6, we show the normal absorption coefficients $\alpha_n \omega$ retrieved computing 264 the DFT of the incident and reflected pressures signals, in case of IIR and RTI control implementation, as well as the 265 curve of $\alpha_n \omega$ obtained directly from the Frequency-Response-Functions (FRFs) of the ER acoustic mobility. The FRFs 266 though, are here evaluated by taking the Tustin transform [22] of the discrete corrector Hz in order to obtain Hs, so that 267 the transfer function Hs (i.e. $Hj\omega$) be equivalent to Hz in the sense described in [22]. The target acoustic dynamics has 268 $\mu_M \mu_K$ 1 and $R_{at} \rho_0 c_0$. 269

The two implementation strategies (IIR or RTI) look equivalent both in Fig. 5 and 6. Fig. 6 shows that the RK4 algorithm employed for the simulation of the normal incidence problem in time domain, produces a phase-shift due to numerical errors, which grows up in frequency. Indeed, such a phase shift is present independently of delayed or perfectly synchronized controllers, as showed in Fig. 6. Therefore, the loss of acoustical passivity displayed by $\alpha_n \omega$ from 2 kHz and above, is related to truncation errors of the numerical scheme, which is more important as the frequency increases, for a fixed time resolution. In the simulation result of Fig. 6b, the time delay has been considered equal to 2×10^{-5} seconds as in [8].

B. Duffing-type target dynamics

Once the equivalence of the RTI algorithm with the classical IIR one, has been numerically demonstrated, we can now investigate on the implementation of a cubic (Duffing-type) target dynamics, as the one in Eq. (15): 280

$$pt \ M_{ad}u_dt \ R_{ad}u_dt \ K_{ad}(u_dt \ \beta_{NL}u_d^3 t), \tag{15}$$

where the coefficient β_{NL} multiplies the cubic of the target displacement $u_d^3 t$, and has therefore the dimensions of m^{-2} .

Fig. 7 shows the SDOF model of the ER employed by the model inversion strategy described in Section II, to target a SDOF Duffing resonator sketched on Fig. 7b.

Same open field problem is considered with normally incident harmonic sound wave $pt p_0 \sin \Omega t$. The frequency Ω 2006 of the harmonic signal pt is varied in order to get the spectra.

The time-histories, along with its DFTs in case of $\mu_M \ \mu_K \ 1$, $R_{at} \ \rho_0 c_0$ and $\beta_{NL} \ 1 \times 10^{13} \text{ m}^{-2}$ are reported in Fig. 8 and Fig. 9, for incident harmonic pressure wave with $\Omega \ 2\pi700$ Hz. Fig. 8a clearly shows a multi-harmonic response

278

283

284 285

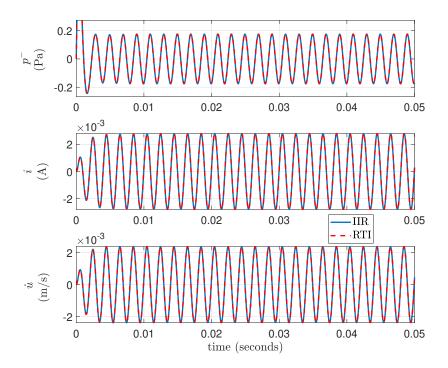


Fig. 5 Simulated time histories of ER velocity ut, reflected pressure p^-t and electrical current signals it, for harmonic normally-incident pressure wave pt of amplitude 1 Pa at 500 Hz, in case of IIR (in solid blue) and RTI (in dashed red) controller implementations.

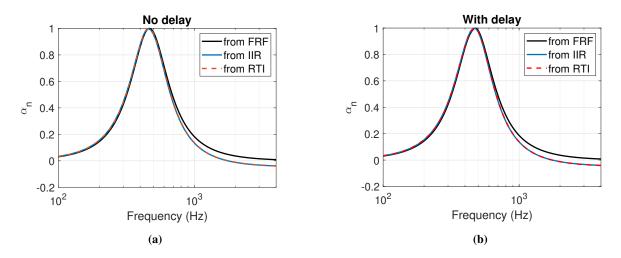


Fig. 6 Simulated normal absorption coefficients obtained directly in frequency domain from $H_j\omega$ (in black) compared with the values obtained by the IIR (in blue) and RTI (in dashed red) time implementations of the controller. In (a) no time delay is assumed, while in (b) a time delay of 2×10^{-5} seconds is considered. The target impedance operator is set with values: $\mu_M \ \mu_K \ 1$ and $R_{at} \ \rho_0 c_0$.

of the ER, due to the electrical current. In Fig. 8b the third harmonic (at 2100 700 × 3 Hz), typical of the Duffing resonator response [30], is evident. Moreover, Fig. 8 presents the simulation results in case of time delay τ 0 and τ 2 × 10⁻⁵ seconds simulated in the digital control implementation. Fig. 9 zooms the velocity time histories in the stationary regime and the DFT around the fundamental frequency. From Fig. 9, the effect of time delay is clearly visible in detaching the actual velocity *u* from the desired one *u_d*, both in the time history and in the frequency spectrum.

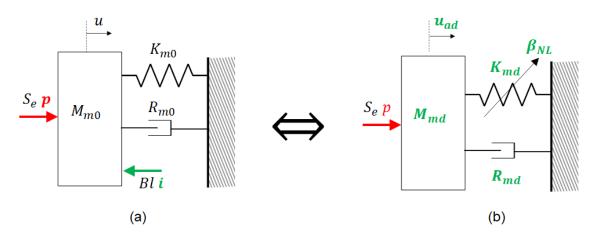


Fig. 7 Sketches of the SDOF model of the ER (on the left) and of the target SDOF Duffing resonator (on the right).

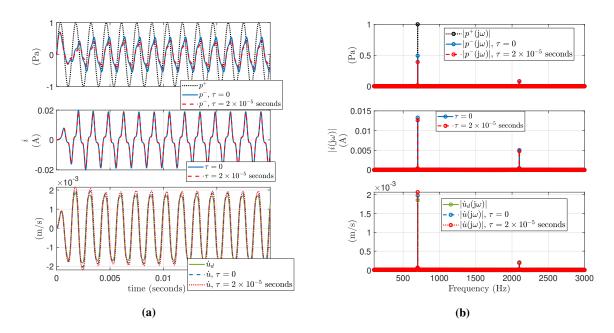


Fig. 8 Time histories (a) and DFTs amplitudes (b) of incident p and reflected p^- pressures, electrical current *it*, target u_d and actual u velocities, in case of Duffing desired dynamics of the ER. The excitation p is at 700 Hz. Both synchronous (τ 0) and delayed (τ 2 × 10⁻⁵ seconds) simulation results, are showed.

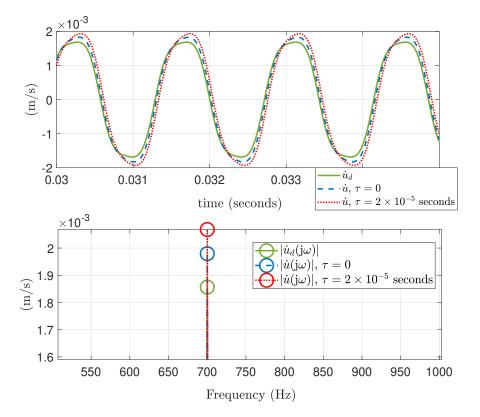


Fig. 9 Time history zoom in the stationary regime (top) and DFTs amplitudes zoom at the fundamental harmonic 700 Hz (bottom), of target u_d and actual u velocities, in case of Duffing desired dynamics of the ER. Both synchronous (τ 0) and delayed (τ 2 × 10⁻⁵ seconds) simulation results, are showed.

Fig. 10 shows the spectra of the Fundamental and Third harmonics of the ER responses, in terms of the amplitudes of 295 the target displacement $u_d j\omega$, of the actual displacement $u j\omega$ and of the electrical current $i j\omega$. The desired displacement 296 fundamental-harmonic spectrum is compared to the Harmonic-Balance analytical solution at the first order (relative to a 297 1-term solution expansion, see Appendix B). The slight difference between the analytical solution and the numerical one 298 is due to the errors in the numerical integration of Eq. (13). Notice the residual peak around f_0 in the plot of $|u|\omega|$ in 299 Fig. 10. This is due to the difficulty to fully cancel out the ER open circuit dynamics. Such residual peak is present even 300 in case of linear target dynamics, especially when $f_d \neq f_0$, as showed in [24], and its main cause is the time delay. In the 301 zoomed area in Fig. 10, we spot a jump corresponding to the superharmonic resonance at about 3 times the primary 302 nonlinear resonance frequency relative to the *fundamental* harmonics. 303

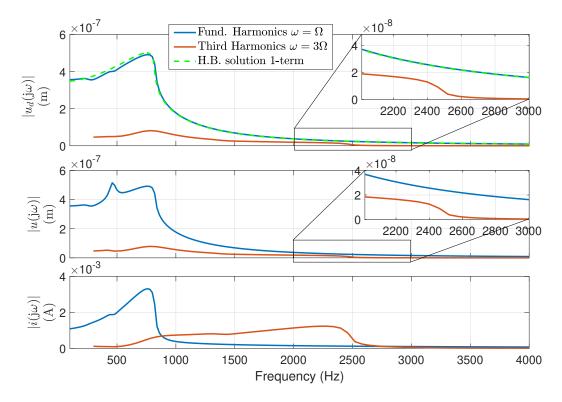


Fig. 10 Fundamental and third Harmonics of the desired displacement amplitude $|u_d j\omega|$, and actual displacement amplitude $|u j\omega|$, in case of Duffing desired dynamics of the ER (with $\mu_M \ \mu_K \ 1$, $R_{at} \ \rho_0 c_0$ and $\beta_{NL} \ 1 \times 10^{13} \ m^{-2}$). The target displacement fundamental harmonics are compared to the Harmonic-Balance 1-term analytical solution. The zoom of $|u_d j\omega|$ and $|u j\omega|$ is around the secondary jump.

Fig.s 11 and 12 show the fundamental harmonics of ER response, with varying target dynamics parameters or 304 excitation amplitude. The ER response is given in terms of the ratio between electrical current and pressure amplitudes, 305 as well as mobility (defined as $u_j\Omega p_j\Omega$) at the fundamental harmonics. Default values are μ_M μ_K 1, R_{at} $\rho_0 c_0$, 306 β_{NL} 1 × 10¹³ m⁻² and p_0 1 Pa. The huge value of the nonlinear coefficient β_{NL} is needed for the target dynamics to 307 display its nonlinear behaviour at low excitation amplitudes. The higher β_{NL} is, the lower excitation levels are necessary 308 to trigger the same nonlinear phenomena. Fig. 11a shows the effect of the variation of the nonlinear coefficient β_{NL} , 309 while Fig. 11b shows the effect of varying the excitation amplitude p_0 . The typical "hardening spring" effect of 310 Duffing-type oscillators with positive cubic nonlinearities [30], is evident and accentuated as higher the nonlinear 311 coefficient or the excitation amplitude. The effect of varying the reactive and resistance terms in the ER desired 312 dynamics, is illustrated in Fig. 12, showing that the jump moves toward higher frequencies for higher values of μ_K/μ_M , 313 while a lower quality factor decreases the peak, hence smoothing the jump. These simulations demonstrate the tunability 314 of the RTI control strategy also in case of a non-linear (Duffing) target dynamics achieved by the RTI algorithm exposed 315 in Section II. 316

Fig. 13 shows the responses in a *quasi-stationary* regime realized by a swept sine excitation of 5 seconds with frequency varying between 300 and 1400 Hz in the *increasing* or *decreasing* sense. The target parameters are set to $\mu_M \mu_K$ 1 and ³¹⁸

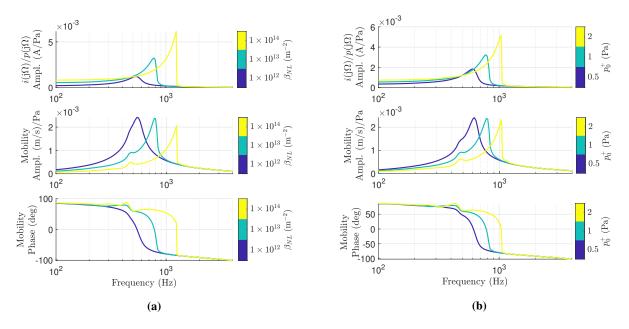


Fig. 11 Amplitude of the fundamental harmonics of the simulated stationary responses of the ER to harmonic excitation p, in terms of electrical current and acoustic mobility, in case of varying β_{NL} (a) and p_0 (b).

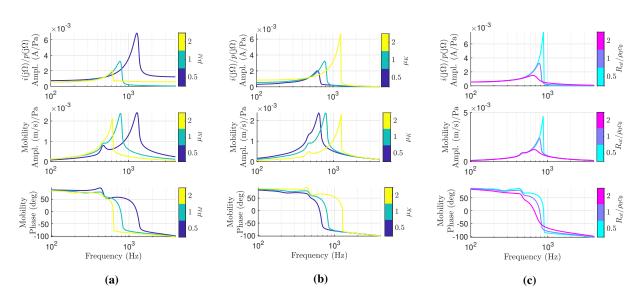


Fig. 12 Amplitude of the fundamental harmonics of the simulated stationary responses of the ER to harmonic excitation p, in terms of electrical current and acoustic mobility, in case of varying μ_M (a), μ_K (b) and R_{at} (c).

 R_{at} $\rho_0 c_0 4$. This simulation demonstrates another typical behaviour of nonlinear systems, i.e. the dependence upon 319 the initial conditions. In particular, a cubic stiffness term realizes two possible stable responses in certain frequency 320 ranges. Depending upon the frequency variation sense, the Duffing resonator initial response will be on the upper or the 321 lower branch [30], jumping to the other stable response at higher or lower frequencies, respectively. In Fig. 13, the EA 322 response is provided in terms of auto-power-spectral-densities (auto-PSDs) of desired velocity U_d , electrical current I 323 and actual velocity U, divided by the auto-PSD of sound pressure P in front of the speaker diaphragm. The choice to 324 present PSDs instead of pure FFTs, is firstly due to the non-stationary character of the chirp excitation. Moreover, we 325 divided the auto-PSDs by the sound pressure auto-PSD in order to retrieve analogous quantities of transfer functions, 326 which are typically employed for linear responses, but which lose their significance in case of multi-harmonic field. 327

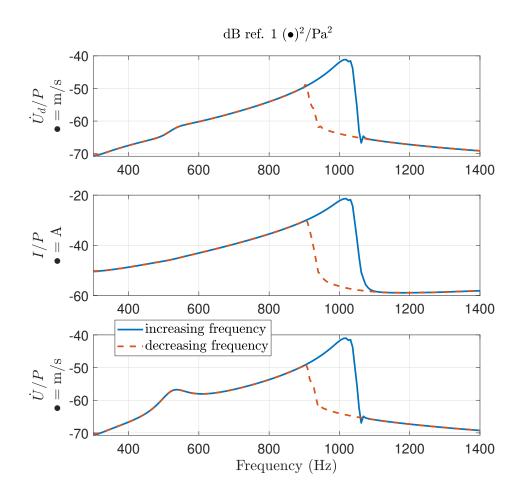


Fig. 13 ER simulated responses in terms of auto-PSDs divided by sound pressure auto-PSD, in case of chirp excitation *p*, with frequency increasing (solid blue) and decreasing (dashed red) between 300 and 1400 Hz.

IV. Experimental validation

328

In this Section, the RTI algorithm is experimentally implemented to target a linear (in Section IV.A) and a nonlinear 329 dynamics (in Section IV.B) of the ER. Signal acquisition and control implementation are operated by a D-Space 330 MicroLabBox DS1202 hardware. The system is described in Fig. 14: the pressure p on the speaker diaphragm, 331 estimated by four microphones around the membrane, after being digitally converted by the Analogue-Digital-Converter 332 (ADC), is fed into a *programmable* digital signal processor (DSP) where the output of the control is computed at each 333 time step. The Howland current pump [31] allows to enforce the electrical current *i* in the speaker coil independently of 334 the voltage at the loudspeaker terminals. It consists of an operational amplifier, two input resistors R_i , two feedback 335 resistors R_f , and a current sense resistor R_s . The resistance R_d and capacitance C_f constitutes the compensation circuit 336 to ensure stability with the grounded load [32]. 337

The ER prototype employed for the experimental validation is photographed in Fig. 15a. It consists of a central 338 speaker with four corner microphones used to retrieve the averaged pressure on the speaker. The back-case accommodates 339 the analogical electronic card interfacing with the D-Space. The test-bench to measure pressure and velocity on the 340 speaker diaphragm is illustrated in Fig. 15b. An external acoustic source excites the ER, whose dynamics is retrieved in 341 terms of sound pressure (by an external Brüel and Kjaer microphone) and normal velocity at the centre of the speaker 342 diaphragm (by a Laser-Doppler-Velocimeter LDV). The noise source is placed on a caoutchouc basis in order to isolate 343 it from the heavy mass basis, where the rest of the equipment is placed. Fig. 16 is a sketch of the entire experimental 344 setup. It comprises the ER system with its power supply and digital communication with the DSPACE, the external 345 microphone and LDV, and the external noise source (a loudspeaker). The DSPACE communicates with a computer 346 where the digital control is defined and where the measurements data can be retrieved (through the Simulink toolbox of 347

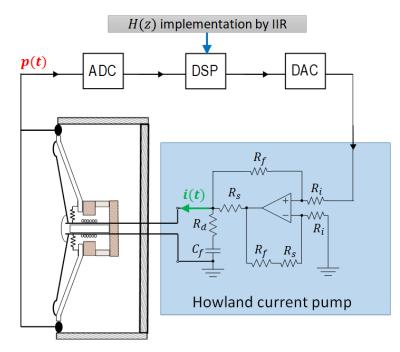
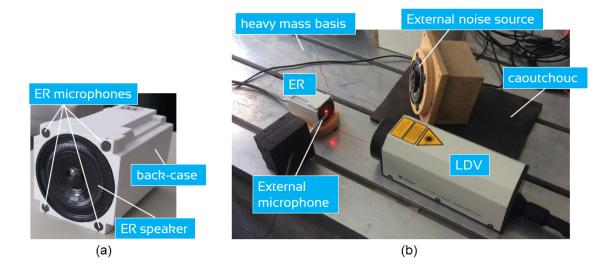


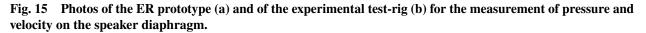
Fig. 14 Sketch of the ER architecture.

Matlab). The channels of the DSPACE have been differentiated between those concerning the control algorithm (C.I. and C.O. for control-input and control-output), and those employed for measuring the performance (M.I. and M.O. for measurement-inputs and measurement-output). 350

The acoustic environment cannot be rigorously defined as *open-field*, nevertheless the coupling with the acoustic modes of the (large) room where the test is carried out, is sufficiently weak to be able to retrieve the response of an acoustic Duffing resonator alone, with low influence of the acoustic environment.

The parameters of the loudspeaker SDOF model employed for the model-inversion algorithm, are reported in Table 1. They have been estimated by impedance measurements in different configurations, as reported in [29].





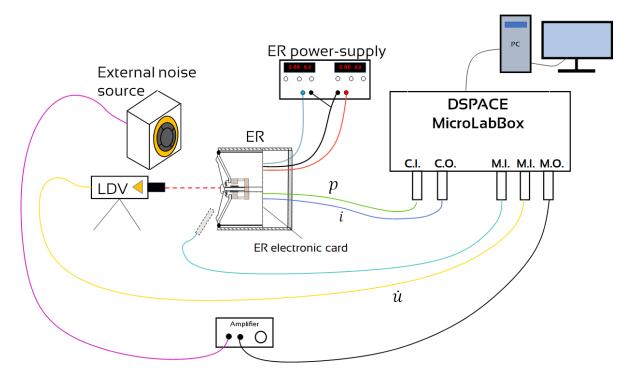


Fig. 16 Sketch of the entire experimental setup.

Thiele-Small parameters	M_{a0}	R_{a0}	K_{a0}	BlS_d
Units	kg.m ⁻²	Pa.s.m ⁻¹	Pa.m ⁻¹	Pa.A ⁻¹
Values	0.392	194	4.25×10^6	191

Table 1 Thiele-Small parameters of the ER.

A. The Linear target dynamics

As already done numerically, we prove, also experimentally, the equivalence of the RTI and classical IIR convolution 357 algorithms to target LTI mechano-acoustical dynamics. In order to check the reliability of the RTI control strategy in 358 following the linear target dynamics of Eq. (14) in a transient evolution, a first test has been conducted by triggering an 359 external sound source, emitting a pure sine at 500 Hz, after 3 seconds. Fig. 17 shows the time histories of pressure, 360 electrical current *it* and target and measured velocities (u_d and *ut* respectively) on the speaker diaphragm. The target 361 SDOF parameters are chosen as $\mu_M \mu_K$ 1 and $R_{at} \rho_0 c_0$. The results obtained by the IIR implementation are reported in 362 Fig. 17a, while the RTI outcomes are given in Fig. 17b. Notice how the RTI technique allows to immediately follow the 363 target velocity in the same way as the classical IIR. The dephasing between u_d and u_t mostly depends upon the inevitable 364 time delay in the digital control implementation of the controller [24], which seems to be unaffected by the control 365 algorithm employed (it looks the same in both IIR and RTI), other than the model-uncertainties in the control synthesis. 366

356

In Fig. 18a, the normalized mobility transfer function is plotted in amplitude and phase, along with the coherence 367 for $\mu_M \mu_K$ 1 and $R_{at} \rho_0 c_0$ in the frequency range 100-3000 Hz, for both IIR and RTI techniques. The mobility is also 368 plotted in case of μ_M 1, μ_K 2 and R_{at} $\rho_0 c_0$ in Fig. 18b. Observe in Fig. 18b that both the IIR and RTI algorithms are 369 equally incapable to fully cancel out the original speaker dynamics at f_0 , mainly because of time delay [24]. Hence, a 370 residual peak is present around f_0 Hz. The loudspeaker mode employed for the model inversion is the one around f_0 , 371 while an additional loudspeaker mode (not taken into account in the model inversion) appears around 2000 Hz. Fig. 19a 372 shows the auto-PSDs of desired $U_d \omega$ and actual $U \omega$ velocity in case of $\mu_M \mu_K$ 1 and $R_{at} \rho_0 c_0$, while Fig. 19b shows 373 the corresponding percentage error, for both the IIR and RTI control strategies. The percentage error on the velocity 374 auto-PSD is defined as: 375

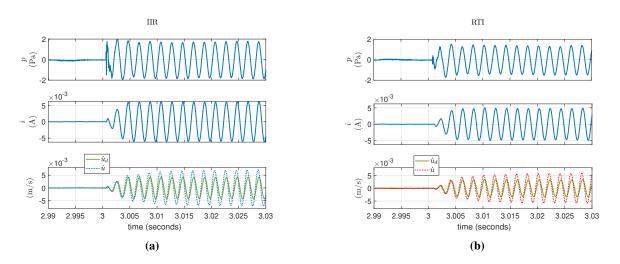


Fig. 17 Time histories of pressure pt, electrical current *it* and desired and measured velocities (u_d and ut respectively) on the speaker diaphragm, when an external sound source emitting a pure sine at 500 Hz, is activated after t 3 seconds. A linear SDOF dynamics of the ER with $\mu_M \ \mu_K \ 1$ and $R_{at} \ \rho_0 c_0$ is targeted either by the IIR (a) or by the RTI (b) implementation strategy.

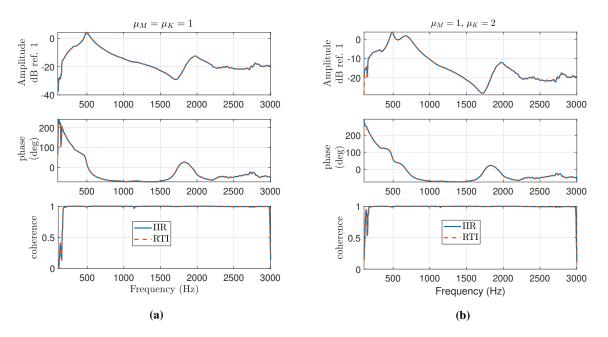


Fig. 18 Mobility (b) obtained by targeting a linear SDOF dynamics of the ER with $\mu_M \ \mu_K \ 1$ and $R_{at} \ \rho_0 c_0$ (a) and $\mu_M \ 1, \mu_K \ 2$ and $R_{at} \ \rho_0 c_0$ (b) by either the IIR (solid blue line) or the RTI (dashed red line).

$$\epsilon_U \omega \quad \frac{|U\omega - U_d\omega|}{U_d\omega}.$$
(16)

Observe that the spectrum of $\epsilon_U \omega$ is exactly the same for both the RTI and the IIR control algorithms, as expected by the mobility plots of Fig. 18. Apart from the low-frequency region of weak coherence (check Fig. 18), the percentage error stays below 1% at all frequencies except around the speaker own resonance of the controlled mode (500 Hz) and around the additional uncontrolled mode of the speaker (nearby 2000 Hz). The cause of the IIR lost of performance at the speaker own resonance is due to the physiological time delay of the digital control system, as it has been demonstrated in [24]. The error around 2000 Hz is due to the presence of an additional mode of the speaker which has not been

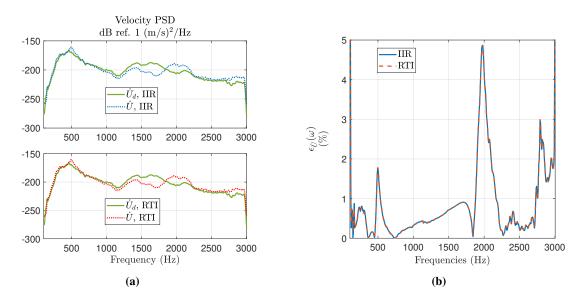


Fig. 19 Auto-PSDs of desired U_d and actual U velocity (a), and corresponding error percentage (b), obtained by targeting a linear SDOF dynamics of the ER with $\mu_M \ \mu_K \ 1$ and $R_{at} \ \rho_0 c_0$ by either the IIR or the RTI.

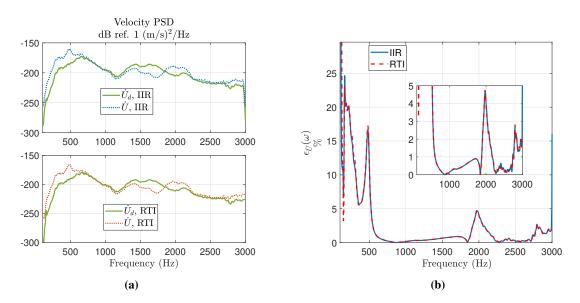


Fig. 20 Auto-PSDs of desired U_d and actual U velocity (a), and corresponding error percentage (b), obtained by targeting a linear SDOF dynamics of the ER with $\mu_M = 1$, $\mu_K = 2$ and $R_{at} = \rho_0 c_0$ by either the IIR or the RTI.

taken into account in the model-inversion control. In Fig. 20a, it is showed the velocity auto-PSD reached by both IIR 382 and RTI, for target parameters μ_M 1 and μ_K 2, which means a target frequency $f_d = \sqrt{2} f_0 \approx 740$ Hz. Moving f_d away 383 from f_0 , causes an increase in the residual pick around the original resonance frequency, and consequently a higher 384 percentage error (about 17%) around f_0 , as showed in Fig. 20b. Such error which, as commented above, is due to the 385 residual speaker dynamics when $f_d \neq f_0$, will appear also in case of Duffing-like target dynamics, as it also entails a 386 shift of the resonance frequency because of nonlinearity. The percentage error ϵ_U falls below 1% soon after f_0 , and 387 reaches about 5% at 2000 Hz because of the additional speaker mode. We highlight here that the RTI control algorithm 388 we propose in this contribution, demonstrates to not add any additional error in its experimental implementation for 389 linear target dynamics with respect to widely employed IIR control algorithms. Recent works have demonstrated that a 390 control exploiting also a microphone inside the back-cavity of the ER, is able to increase the robustness of the control 391 and significantly reduce the residual pick at f_0 for linear target dynamics [33]. 392 In Appendix A, the target parameters of Eq. 14 are modified in order to assess the equivalence between the IIR and the RTI approaches in tuning the linear target dynamics parameters. 394 Once assessed the reliability of the RTI algorithm in the linear case, as equivalent to the classically accepted IIR strategy, let us now verify, experimentally, its potential to enforce nonlinear mechano-acoustical dynamics on the ER. 396

397

B. The Duffing-type target dynamics

As in the numerical simulations, here we experimentally target the Duffing-type mechano-acoustical dynamics of 398 Eq. (15). As for the linear case, the performance of the RTI is first proved in the transient regime. Hence, an external 399 sound source emitting a pure sine at 700 Hz is triggered after 3 seconds, and the response of the ER is reported in terms 400 of measured pressure, current and velocity in Fig. 21. Fig. 22a displays a zoom in the stationary regime of the time 401 signals. The electrical current clearly shows the presence of higher harmonics, which bring about the multi-harmonic 402 response of the ER diaphragm as it appears in the plot of the measured ut. Fig. 22b shows the Fast-Fourier-Transform 403 (FFT) of the time signals. The system responds with a secondary resonance (related to the free oscillations) at 3 times 404 the excitation frequency as common of Duffing resonators. Observe how the measured velocity u detaches from the 405 target one u_d in exactly the same way as in the simulations of Fig. 9, when a time delay τ was simulated in the algorithm. 406 For the reader to visualize the importance of time delay in the response of our ER with a Duffing-like target dynamics, 407 we report, in Fig. 23, the comparison between simulated and measured velocity. Notice how the experimental signal 408 follows the simulated trend, apart from some measurement noise and physiological differences due to the uncertainties 409 of the speaker model employed in the simulations. As for LTI target behaviour [24], time delay is the main responsible 410 for the errors also when targeting Duffing-like dynamics. 411

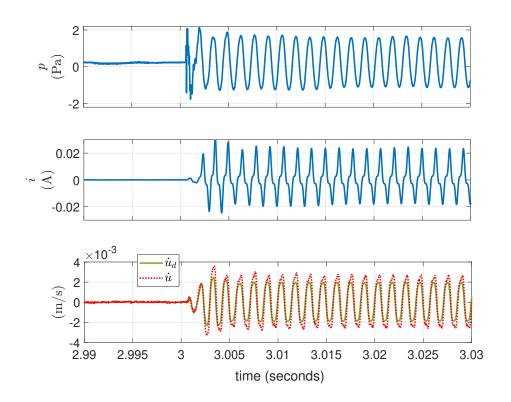


Fig. 21 Time histories of pressure *pt*, electrical current *it*, target and measured velocities (u_d and *ut* respectively) on the speaker diaphragm. An external sound source emitting a pure sine at 700 Hz, is activated after *t* 3 seconds. The linear target SDOF dynamics of the ER has $\mu_M \ \mu_K \ 1$, $R_{at} \ \rho_0 c_0$ and $\beta_{NL} \ 1 \times 10^{13} \text{ m}^{-2}$.

In Fig. 24 the auto-PSDs of pressure (P) on the speaker diaphragm, of electrical current (I) and of velocity (U) are ⁴¹² plotted, comparing the Open-Circuit (O.C.) performance to the cases of control with linear or Duffing target dynamics. ⁴¹³

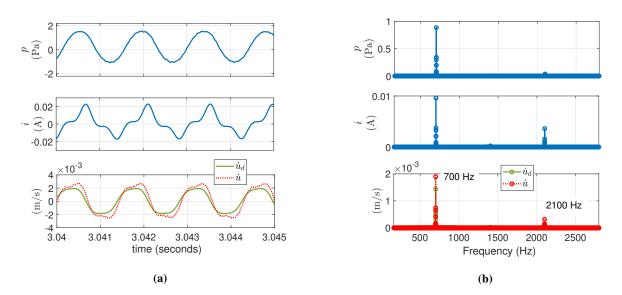


Fig. 22 Zoom (a) of Fig. 21 in the stationary regime, and its DFT (b).

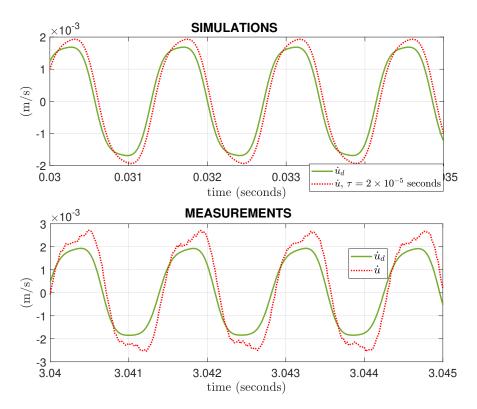


Fig. 23 Simulated (top) and measured (bottom) time histories of desired (solid green) and actual (dotted red) velocities on the speaker diaphragm excited by an external sound source emitting a pure sine at 700 Hz. The simulated response considers a time delay in the control of $\tau 2 \times 10^{-5}$. The linear target SDOF dynamics of the ER has $\mu_M \mu_K 1$, $R_{at} \rho_0 c_0$ and $\beta_{NL} 1 \times 10^{13}$ m⁻².

The auto-PSDs are retrieved from a swept sine excitation with frequency increasing between 100 and 3000 Hz in 414 10 seconds. The "jump" phenomenon due to the cubic function of *ut* in the restoring force of the spring, typical of 415 the Duffing resonator, clearly appears at about 890 Hz. Observe also that the dynamics at the original (open-circuit) 416

resonance of the ER (around 500 Hz) is not totally cancelled out by the model-inversion control, in case of Linear 417 as well as Duffing-like target dynamics. Notice that the pressure auto-PSDs in Fig. 24 are almost the same for each 418 configuration, demonstrating that the nonlinear behaviour is achieved thanks to the control and is not naturally triggered 419 in the speaker by high excitation levels. The target SDOF resonator parameters are M_{at} M_{a0} , K_{at} K_{a0} and R_{at} $\rho_0 c_0$, 420 while the cubic term in the Duffing case is multiplied by a β_{NL} 1 × 10¹³ m⁻². Notice also the jump phenomenon of the 421 superharmonic resonance at about 2670 Hz, which is exactly 3 times the primary nonlinear resonance frequency relative 422 to the *fundamental* harmonics. This is the so-called *superharmonic resonance* [30] already found in the numerical 423 simulations (see Fig. 10), which is evident in the electrical current plot, and slightly in the velocity spectrum. Observe 424 that the velocity on the speaker diaphragm is also affected by the afore-mentioned additional loudspeaker mode at about 425 2000 Hz. 426

Fig. 25a shows the auto-PSDs of desired U_d and actual U velocity in case of $\mu_M \ \mu_K \ 1$, $R_{at} \ \rho_0 c_0$ and $\beta_{NL} \ 1 \times 10^{13}$ m⁻², with the corresponding error ϵ_U plotted in Fig. 25b. As mentioned in Section IV.A, the shift of the target resonance entails a high error around the open-circuit mode f_0 , with the error increasing as more the target resonance is shifted away from f_0 . Here, due to the nonlinearity, the resonance is moved above 900 Hz, and the percentage error reaches almost 30%. However, the jump is perfectly followed by the actual velocity spectrum, and the error stays below 1% from 670 to 1900 Hz.

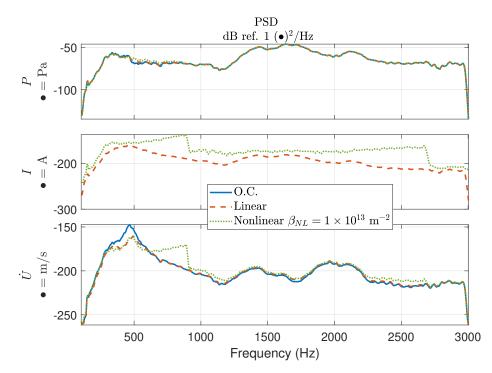


Fig. 24 Auto-PSDs of pressure, electrical current and velocity between 100 and 3000 Hz, in case of open circuit (O.C.) loudspeaker (solid blue), Linear with $\mu_M \ \mu_K \ 1$ and $R_{at} \ \rho_0 c_0$ (dashed red) and Duffing with $\beta_{NL} \ 1 \times 10^{13}$ m⁻² (dotted green) target dynamics.

In the following, either the target dynamics parameters or the excitation amplitude have been varied in order to 433 identify typical Duffing-resonator responses and experimentally validate the tunability of such nonlinear system. The 434 ER responses are presented in terms of auto-PSDs of target velocity, electrical current and actual velocity, divided by the 435 auto-PSD of sound pressure. The reason for that choice is that the transfer functions typically employed to characterize 436 linear responses, lose their significance in case of multi-harmonic field. The PSDs ratio provides a form of function which 437 is the closest to the transfer function, allowing us to compare the experimental trends to the numerical ones. Nevertheless, 438 the PSDs ratio does not distinguish between fundamental and higher harmonics, as it was possible in numerical 439 simulations. To separate incident and scattered fields and retrieve the fundamental and higher harmonics separately, a 440 dedicated experimental setup should be conceived, which will be the subject of another contribution of this article series, 441 where both acoustical passivity (in the sense given by [24]) and absorptive performance of this Duffing-like resonator 442

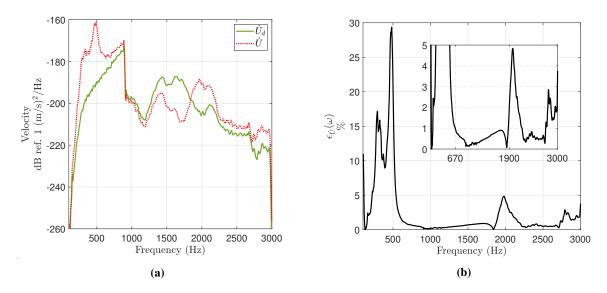


Fig. 25 In (a), the auto-PSDs of the target U_d and measured U velocity, in case of $\mu_M \ \mu_K \ 1$ and $R_{at} \ \rho_0 c_0$. In (b), the corresponding percentage error spectrum.

will be investigated. Indeed, the experimental test-rig employed in this work, does not allow to separate the incident field from the multi-harmonic scattered field. Moreover, the *fundamental* harmonic waves are not physically uncoupled by the *non-fundamental* ones as the acoustic environment of the test-bench is non-perfectly *open*, hence a multi-harmonic scattered field entails also a multi-harmonic excitation field. Nevertheless, even supposing to achieve perfect anechoicity around the experimental setup, the LDV closely facing the ER, as well as the sound source itself, might introduce a field scattered back to the ER speaker. The problem of separation of incident and scattered fields in nonlinear acoustic absorbers requires non-trivial strategies to solve the multi-harmonic scattering problem, as presented in [34, 35] for example.

450

As done in the numerical simulations, we plot the dependency of the frequency response upon the excitation 451 amplitude in Fig. 26b. Since, as said before, it was not possible to separate experimentally the incident from the scattered 452 fields, we refer in Fig. 26b to the variation of the external acoustic source signal (the voltage at the external loudspeaker 453 terminals), and not to the variation of the incident pressure field amplitude p_0 (as in the numerical simulations of Fig. 454 11b). This is also the reason for which a direct superposition between numerical simulations and measurements is 455 not possible, as we miss the information about the incident pressure field corresponding to the external source signal. 456 Nonetheless, by halving and doubling the external source signal, we can verify the trends showed in Fig. 11b. As the 457 excitation increases, the resonance frequency moves toward higher frequencies and the jump sharpens, as expected. As 458 in simulations, the effect of increasing the external excitation is similar to the one of augmenting β_{NL} , the latter being 459 showed in Fig. 26a. Notice how in case of β_{NL} 1 × 10¹⁴ m⁻², the resonance moves toward 2000 Hz, where another 460 speaker mode resonates, affecting the spectrum shape of the ER responses. 461

In the following figures, we demonstrate the ability to tune each of the term in the target Duffing resonator dynamics, 462 by our RTI control. Fig. 27 experimentally proves the tunability of the Duffing dynamics by varying the target mass, 463 linear stiffness and resistance terms. Apart from the expected behaviours in accordance with the simulations, some 464 unexpected resonances occur in case of μ_M 0.5. Observe that, in case of linear desired dynamics and IIR algorithm, a 465 lower target mass has been associated with lower level of acoustical passivity [24] after the target resonance, due to time 466 delay. The effect of combining non-passive behaviours of fundamental harmonics on the one hand, with the higher 467 harmonics produced by the nonlinearity on the other, is hard to predict at the present moment, but is likely to be behind 468 these unexpected jumps at 1355 and 1776 Hz. Indeed, these unpredicted trends are present only in case of the lowest 469 value of μ_M , suggesting the involvement of acoustical non-passivity. Proper formulations of both acoustical passivity 470 and absorptive performances for nonlinear resonators, could be tackled when the full multi-harmonic scattering problem 471 will be solved by ad-hoc test-rigs as the ones presented in [34, 35]. Finally, in Fig. 28 we experimentally verify the 472 double-branch solution of Duffing-like resonators, as done numerically in Fig. 13. Fig. 28 shows the responses in a 473 quasi-stationary regime realized by a chirp excitation of 30 seconds with frequency varying between 100 and 3000 Hz 474

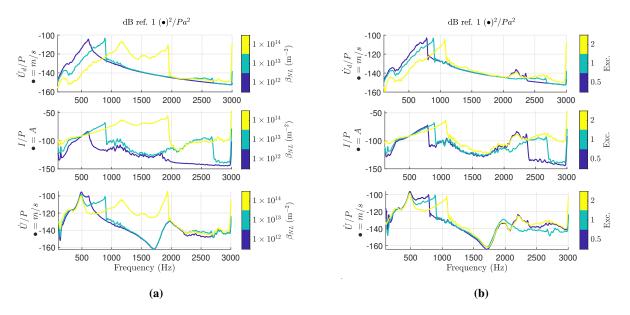


Fig. 26 Auto-PSDs of target velocity, electrical current and actual velocity, divided by the auto-PSD of pressure, for varying β_{NL} (a) and excitation amplitude (b).

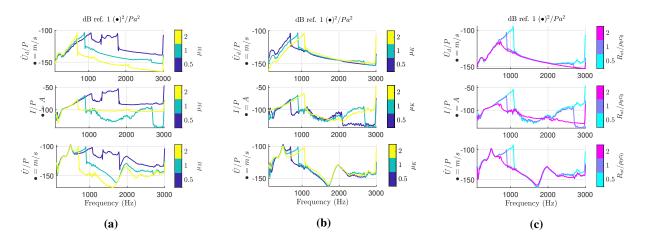


Fig. 27 auto-PSDs of target velocity, electrical current and actual velocity, divided by the auto-PSD of pressure, for varying μ_M (a), μ_K (b) and R_{at} (c).

in the *increasing* or *decreasing* sense. As expected, by varying the frequency in decreasing sense, both the fundamental and secondary jumps shift toward lower frequencies.

475

476

480

Fig.s 26, 27 and 28, demonstrate that the RTI algorithm for the first time exposed in this contribution, is capable to reproduce a tunable Duffing-like behaviour of the ER at low excitation levels, without the need of additional displacement sensors. 477

V. Conclusions

This paper has proposed the enlargement of the model-inversion technique to control the impedance of an Electroacoustic Resonator, toward non-*Linear-Time-Invariant* target dynamics, based upon the sole measurement of the pressure on the speaker diaphragm. As the measurement of the electroacoustic resonator diaphragm displacement *ut* was not available, a Duffing-type response could not be achieved by simply inserting the cubic power of *ut* in the controller (as proposed in [21]), and an alternative strategy had to be devised. Via representation of the model-inversion control in the state-space, and by interpreting the state-vector of the controller as the state-vector of the target dynamics, we have 485

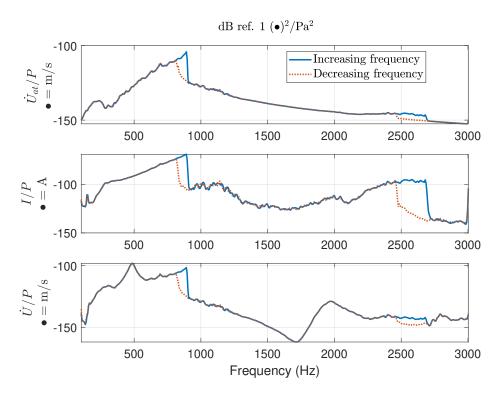


Fig. 28 PSDs of target velocity, electrical current and actual velocity, divided by the PSD of pressure, for *forward* or *backard* linear variation of frequency in the chirp excitation. The terms of the target dynamics are fixed as $\mu_M \ \mu_K \ 1$, $R_{at} \ \rho_0 c_0$ and $\beta_{NL} \ 1 \times 10^{13} \ m^{-2}$.

proposed an alternative algorithm capable of targeting *Linear-Time-Invariant* as well as non-*Linear-Time-Invariant* responses. Clearly, the possibility to exploit a measurement of the motion of the speaker (such as by a microphone in the back cavity as in [21] and [33]) in our Real-Time-Integration control scheme, might allow to reduce the problems of residual original dynamics. Nevertheless, compared to [21], which still relies on an Infinite-Impulse-Response convolution scheme, our Real-Time-Integration control strategy has already demonstrated significantly higher tunability (a large range of resonator parameters have been spanned) and performances, despite not disposing of the additional displacement feedback.

In order to validate our Real-Time-Integration control strategy, it has been tested first for linear target dynamics, 494 demonstrating its equivalence with respect to classical convolution-based correctors. Then, it has been tested against 495 target Duffing-type dynamics with hardening behaviour. In order to retrieve the response of the nonlinear system 496 uncoupled from external acoustic modes, the control algorithm has been simulated in an open-field external acoustic 497 environment, by solving the non-ideal problem, such it is the open-field response of the Electroacoustic Resonator, 498 where the sound pressure cannot be considered as a known term. After the numerical validation, our control has 499 been experimentally tested on a prototype of electroacoustic resonator, in a quasi-open field acoustic environment, 500 reproducing the expected trends and demonstrating the tunability of the control in varying all parameters of the Duffing 501 target response. Since in case of linear target dynamics the Real-Time-Integration algorithm is totally equivalent 502 to the Infinite-Impulse-Response, the former can be considered as a natural extension of the latter, opening up the 503 model-inversion concept to nonlinear target dynamics. Some unexpected additional resonances have been found in 504 the experimental campaign in case of low target mass. Being aware of the role of the target mass in the acoustical 505 passivity [24] right in the same frequency range as the unexpected resonances, authors have reasons to believe that 506 the loss of acoustical passivity is behind such unexpected behaviour of the nonlinear resonator after the fundamental 507 jump. The experimental campaign will continue toward the investigation of both passivity and absorptive performances 508 of our non-Linear-Time-Invariant absorbers, by an ad-hoc conceived test-rig, as the ones proposed in [34], [35], to 509 fully characterize the multi-harmonic scattering field. Numerical and experimental analyses are foreseen to verify the 510 Nonlinear Energy Sink capabilities of our electro-active resonator, as well as its optimization, in a *coupled* environment, 511

as done in [36]. Future contributions will analyse the enforcing of other non-*Linear-Time-Invariant* responses of interest. The preliminary results presented in this contribution have indeed opened the doors toward nonlinear programmable boundaries also in acoustics and at low excitation levels, encouraging the cutting edge research in the inverse problem of nonlinear absorbers design for noise suppression and acoustic waves control.

A. Comparing IIR and RTI in linear target dynamics tuning

Below we report the mobilities of the ER controlled by both the IIR and the RTI control strategies with linear target dynamics. In Fig. 30 both the target mass and stiffness are equally varied to half (Fig. 29a) and twice (Fig. 29b) the open circuit values. Fig. 30 and 31 show the single variation of the target mass and stiffness respectively, while Fig. 32 shows the variation of the target resistance term. These results demonstrate the total equivalence of the two strategies IIR and RTI to achieve tunable linear target dynamics. 521

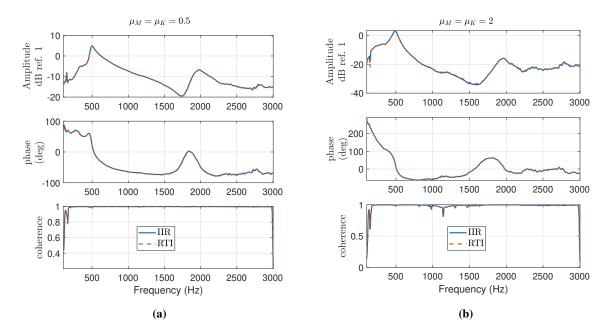


Fig. 29 Mobility obtained by targeting a linear SDOF dynamics of the ER with $\mu_M \ \mu_K \ 0.5$ (a) and $\mu_M \ \mu_K \ 2$ (a), and $R_{at} \ \rho_0 c_0$, by either the IIR (solid blue line) or the RTI (dashed red line).

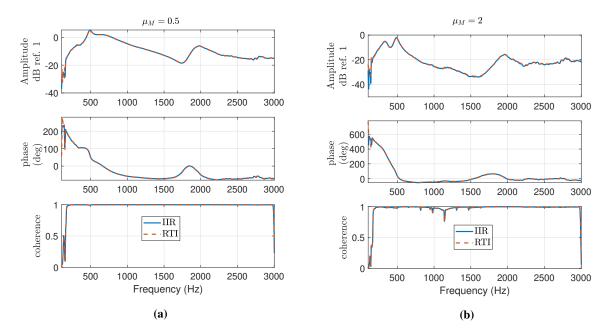


Fig. 30 Mobility obtained by targeting a linear SDOF dynamics of the ER with μ_M 0.5 (a) and μ_M 2 (a), μ_K 1 and R_{at} $\rho_0 c_0$, by either the IIR (solid blue line) or the RTI (dashed red line).

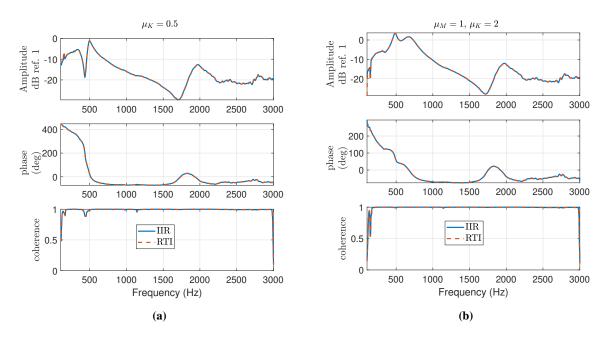


Fig. 31 Mobility obtained by targeting a linear SDOF dynamics of the ER with $\mu_K 0.5$ (a) and $\mu_K 2$ (a), $\mu_M 1$ and $R_{at} \rho_0 c_0$, by either the IIR (solid blue line) or the RTI (dashed red line).

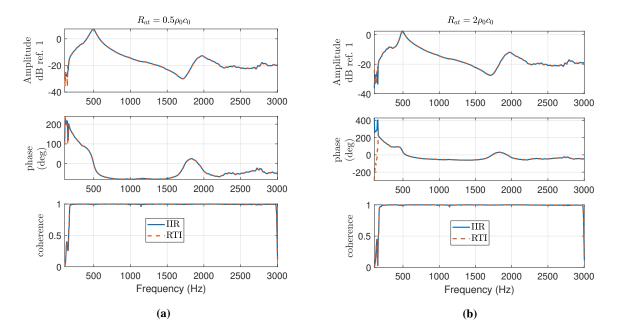


Fig. 32 Mobility obtained by targeting a linear SDOF dynamics of the ER with R_{at} $0.5\rho_0c_0$ (a) and R_{at} $2\rho_0c_0$ (a), and μ_M μ_K 1, by either the IIR (solid blue line) or the RTI (dashed red line).

B. Harmonic Balance 1-term solution of the Duffing dynamics in open field.

In this section, we develop the analytical solution of the Duffing target dynamics in open field, obtained by the Harmonic Balance (HB) method with 1-term expansion [30]. Inserting Eq. (9) in (15) in open field, we get the target dynamics equation in open field:

$$2pt \ M_{ad}u_dt \ R_{ad} \ \rho_0 c_0 u_dt \ K_{ad}(u_dt \ \beta_{NL} u_d^3 t).$$
(17)

The excitation pt is taken as an harmonic function $pt p_0 \cos\Omega t$. In the HB method, the 1-term expansion solution to Eq. (17) is assumed as:

$$u_d t A_1 \cos\Omega t \varphi A_1 \cos\phi, \tag{18}$$

with $\phi \ \Omega t \ \varphi$, hence the excitation term can be written as:

$$pt \ p_0 \cos\phi - \varphi. \tag{19}$$

Substituting Eq.s (18) and (19) in Eq. (17), and exploiting the trigonometric identity $\cos^3 \phi$ 143 $\cos \phi \cos 3\phi$, we get:

$$2p_{0}\cos\varphi\cos\phi\,\sin\varphi\sin\phi\,-\Omega^{2}M_{ad}A_{1}\cos\phi-R_{ad}\,\rho_{0}c_{0}\Omega A_{1}\sin\phi$$

$$K_{ad}A_{1}\cos\phi\,\frac{3}{4}K_{ad}\beta_{NL}A_{1}^{3}\cos\phi$$

$$\frac{1}{4}K_{ad}\beta_{NL}A_{1}^{3}\cos3\phi.$$
(20)

Neglecting the third harmonic term $\cos 3\phi$ and equating the coefficients of $\cos \phi$ and $\sin \phi$ on the left-hand-side (lhs) and right-hand-side (rhs) of Eq. (20), we get the following 2 equations:

$$\cos\varphi \ \frac{A_1}{2p_0} [-\Omega^2 M_{ad} \ K_{ad} (\frac{3}{4}\beta_{NL}A_1^2 \ 1)], \tag{21a}$$

$$\sin\varphi - \frac{A_1}{2p_0} R_{ad} \rho_0 c_0 \Omega. \tag{21b}$$

Squaring and summing up Eq.s (21a) and (21b), a quadratic equation in Ω^2 is obtained, with coefficients depending upon A_1 . By quadratic formula, ΩA_1 , i.e. the amplitude spectrum of the 1-term expansion of $u_d t$, is retrieved. This solution is plotted in Fig. 10, comparing it to the fundamental harmonics of the DFT of the time integration of Eq. (17).

References 537 [1] P. M. Morse, Some aspects of the theory of room acoustics, The Journal of the Acoustical Society of America 11 (1939) 56–66. 538 [2] J. Q. Sun, M. R. Jolly, , M. A. t. Norris, Passive, adaptive and active tuned vibration absorbers—a survey, Journal of Vibration and Acoustics, Transactions of the ASME 117(B) (1995) 234–242. 539

- [3] X. Ma, Z. Su, Development of acoustic liner in aero engine: a review, Science China Technological Sciences (2020) 1–14.
- [4] H. F. Olson, E. G. May, Electronic Sound Absorber, Journal of the Acoustical Society of America 25 (1953) 1130–1136.
- [5] A. J. Fleming, D. Niederberger, S. O. Moheimani, M. Morari, Control of resonant acoustic sound fields by electrical shunting of a loudspeaker, IEEE Transactions on Control Systems Technology 15 (2007) 689–703.
- [6] M. Furstoss, D. Thenail, M. Galland, Surface impedance control for sound absorption: direct and hybrid passive/active strategies, Journal of Sound and Vibration 203 (1997) 219–236.

528

533

[7]	D. J. Leo, D. K. Limpert, Self-sensing technique for active acoustic attenuation, in: Collection of Technical Papers - AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, volume 4, American Institute of Aeronautics and Astronautics, Reston, Virigina, 1999, pp. 2603–2610. URL: http://arc.aiaa.org/doi/10.2514/6.1999-1530. doi:10.2514/6.1999-1530.	547 548 549 550
[8]	E. Rivet, S. Karkar, H. Lissek, Broadband Low-Frequency Electroacoustic Absorbers Through Hybrid Sensor-/Shunt-Based Impedance Control, IEEE Transactions on Control Systems Technology 25 (2017) 63–72.	551 552
[9]	E. T. JL. Rivet, Room Modal Equalisation with Electroacoustic Absorbers, Ph.D. thesis, EPFL, 2016. URL: https://infoscience.epfl.ch/record/222866.doi:10.5075/EPFL-THESIS-7166.	553 554
[10]	R. Boulandet, H. Lissek, S. Karkar, M. Collet, G. Matten, M. Ouisse, M. Versaevel, Duct modes damping through an adjustable electroacoustic liner under grazing incidence, Journal of Sound and Vibration 426 (2018) 19–33.	555 556
[11]	K. Billon, E. De Bono, M. Perez, E. Salze, G. Matten, M. Gillet, M. Ouisse, M. Volery, H. Lissek, J. Mardjono, Others, In flow acoustic characterisation of a 2D active liner with local and non local strategies., Applied Acoustics 191 (2022) 108655.	557 558
[12]	S. Karkar, E. De Bono, M. Collet, G. Matten, M. Ouisse, E. Rivet, Broadband Nonreciprocal Acoustic Propagation Using Programmable Boundary Conditions: From Analytical Modeling to Experimental Implementation, Physical Review Applied 12 (2019) 054033.	559 560 561
[13]	R. E. Roberson, Synthesis of a nonlinear dynamic vibration absorber, Journal of the Franklin Institute 254 (1952) 205–220.	562
[14]	I. N. Jordanov, B. I. Cheshankov, Optimal design of linear and non-linear dynamic vibration absorbers, Journal of Sound and Vibration 123 (1988) 157–170.	563 564
[15]	S. Aubry, G. Kopidakis, A. M. Morgante, G. P. Tsironis, Analytic conditions for targeted energy transfer between nonlinear oscillators or discrete breathers, Physica B: Condensed Matter 296 (2001) 222–236.	565 566
[16]	A. F. Vakakis, O. V. Gendelman, L. A. Bergman, D. M. McFarland, G. Kerschen, Y. S. Lee, Nonlinear targeted energy transfer in mechanical and structural systems, volume 156, Springer Science & Business Media, 2008.	567 568
[17]	A. F. Vakakis, Inducing passive nonlinear energy sinks in vibrating systems, J. Vib. Acoust. 123 (2001) 324-332.	569
[18]	CH. Lamarque, O. V. Gendelman, A. Ture Savadkoohi, E. Etcheverria, Targeted energy transfer in mechanical systems by means of non-smooth nonlinear energy sink, Acta mechanica 221 (2011) 175–200.	570 571
[19]	V. Alamo Vargas, E. Gourdon, A. Ture Savadkoohi, Nonlinear softening and hardening behavior in Helmholtz resonators for nonlinear regimes, Nonlinear Dynamics 91 (2018) 217–231.	572 573
[20]	B. Cochelin, P. Herzog, PO. Mattei, Experimental evidence of energy pumping in acoustics, Comptes Rendus Mecanique 334 (2006) 639–644.	574 575
[21]	X. Guo, H. Lissek, R. Fleury, Improving Sound Absorption Through Nonlinear Active Electroacoustic Resonators, Physical Review Applied 13 (2020) 014018.	576 577
[22]	G. C. Goodwin, S. F. Graebe, M. E. Salgado, Control System Design, volume 27, Prentice Hall New Jersey, 2007.	578
[23]	S. Devasia, Should model-based inverse inputs be used as feedforward under plant uncertainty?, IEEE Transactions on Automatic Control 47 (2002) 1865–1871.	579 580
[24]	E. De Bono, M. Collet, G. Matten, S. Karkar, H. Lissek, M. Ouisse, K. Billon, T. Laurence, M. Volery, Effect of time delay on the impedance control of a pressure-based, current-driven Electroacoustic Absorber, Journal of Sound and Vibration (2022) 117201.	581 582 583
[25]	P. Filippi, A. Bergassoli, D. Habault, J. P. Lefebvre, Acoustics: basic physics, theory, and methods, Academic press, London NW1 7DX, UK, 1998.	584 585
[26]	L. L. Beranek, T. Mellow, Acoustics: Sound Fields and Transducers, Academic Press, Oxford OX5 1GB, UK, 2012. doi:10.1016/C2011-0-05897-0.	586 587
[27]	U. Ingard, Noise reduction analysis, Jones & Bartlett Publishers, 2009.	588
[28]	S. W. Rienstra, Fundamentals of duct acoustics, Von Karman Institute Lecture Notes (2015).	589

[29]	E. De Bono, Electro-active boundary control for noise mitigation: local and advective strategies, Ph.D. thesis, Université de Lyon, 2021.	590 591
[30]	A. H. Nayfeh, D. T. Mook, Nonlinear oscillations, John Wiley & Sons, 2008.	592
[31]	R. A. Pease, A Comprehensive Study of the Howland Current Pump A Comprehensive Study of the Howland Current Pump Applications for the Howland Current Pump AN-1515, Most 29 (2008) 12.	593 594
[32]	J. Steele, T. Green, Tame those versatile current source circuits, Electronic Design 61 (1992).	595
[33]	M. Volery, X. Guo, H. Lissek, Robust direct acoustic impedance control using two microphones for mixed feedforward-feedback controller, Acta Acustica 7 (2023) 2.	596 597
[34]	H. Bodén, One-sided multi-port techniques for characterisation of in-duct samples with nonlinear acoustic properties, Journal of Sound and Vibration 331 (2012) 3050–3067.	598 599
[35]	M. Volpe, R. Côte, S. Bellizzi, Experimental methods for characterization of one port nonlinear acoustic systems: application to sound absorbers, in: Forum Acusticum, 2020, pp. 1307–1314.	600 601
[36]	R. Bellet, B. Cochelin, P. Herzog, PO. Mattei, Experimental study of targeted energy transfer from an acoustic system to a nonlinear membrane absorber, Journal of Sound and Vibration 329 (2010) 2768–2791.	602 603