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SELF SUPER RESOLUTION FOR HEPATIC VESSEL CT SEGMENTATION

Vincent Jaouen, Ziqiao Wang, Pierre-Henri Conze, Dimitris Visvikis

UMR 1101 INSERM LaTIM, IMT Atlantique, UBO, Brest, France

ABSTRACT

Computed tomography (CT) images are often reconstructed
into anisotropic voxelized volumes. This leads to coarser
and often inconsistent delineations across slices, which are
nevertheless used as 3D ground truth for deep segmentation
model training and performance reports. Recently, deep self-
supervised super resolution (SSR) was proposed to improve
through-plane resolution in brain MR images without the
need of calibrated training data (i.e pairs of low resolution
/ high resolution images). In this work, we study whether
SSR can be useful to improve segmentation accuracy of hep-
atic vessels from abdominal CT scans using deep learning.
Results on the public IRCADb dataset suggest that SSR can
improve segmentation performances not only in terms of
volumetric overlaps (Dice similarity), but also using more
relevant topology preserving evaluation metrics (clDice).

Index Terms— Super resolution, self-supervised learn-
ing, vascular segmentation, hepatic vessels, anisotropy

1. INTRODUCTION

Accurate hepatic vessel segmentation from abdominal CT
images can assist in the diagnosis of liver diseases (e.g.
cirrhosis, hepatic fibrosis, liver cancer) and is required for
surgical planning [1]. It is however a challenging task due
to various factors including high morphological complexity
of the hepatic network, low contrast between vessels and
surrounding tissues, limited resolution, noise and artifacts.
These challenges make manual delineations tedious, inaccu-
rate and time-consuming [2]. Automated vessel segmentation
is therefore an active field of study in medical image analysis.

Among major research directions, careful curation and
pre-processing of input data is generally considered a criti-
cal aspect for the improvement of segmentation performances
in deep image segmentation [3]. For instance, conventional
image enhancement with vesselness filters [4] was recently
shown to improve deep liver vessel segmentation results [5].

In clinical routine, abdominal CT scans are typically re-
constructed into anisotropic volumes of variable in-plane to
through-plane sampling ratios (e.g. sub-millimeter axial in-
plane versus 2 to 4 mm through-plane resolution [6]). Due
to the nature of the vascular network, we hypothesize that
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(a) 3rd order interpolation (b) SSR

Fig. 1. Effect of isotropic resampling on a coronal CT slice
around the liver (IRCADb dataset, Patient #19, initial voxel
spacing 0.7×0.7×4 mm3). Compared to third order spline in-
terpolation (left), self super resolution using SMORE (right)
better recovers fine details and increases sharpness.

increasing image resolution can be a relevant preprocessing
strategy to better preserve the complex geometry and topol-
ogy of main vessels and ramifications. In this work, we study
whether enhancing images through a self super resolution
method (SSR) (i.e. relying only on the CT volume itself for
training) enables to improve segmentation performances.

2. RELATED WORKS

Current state of the art single image super resolution methods
generally require curated external supervised training data
with predetermined downsampling factors to learn a map-
ping between the LR and HR spaces using e.g. deep residual
networks [7]. However, obtaining such training data may
be difficult, as through-plane spacings ratios are generally
variable in CT imaging, subjecting methods to domain shift
between training and deployment conditions.

Recently, Zhao et al. proposed Synthetic Multi-Orientation
Resolution Enhancement (SMORE), a SSR approach for
anisotropic brain MRI volumes [8]. SMORE does not require
any outside training data, as a LR to HR mapping is learned
directly on the 3D volume itself.
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Fig. 2. Reconstructed vasculature using a nnUNet segmenta-
tion model with and without SSR (IRCADb dataset, Patient
#19).

3. METHOD

Let {xLR, yLR} be a low-resolution (LR) CT image-label pair
having thick through-plane spacing along the last dimension,
i.e. a resolution of rx × ry × rz mm3, with voxel spacing
rz > rx and where ry = rx for simplicity. We hypothesize
that {xLR, yLR} is a downsampled version of an unobserved
high-resolution (HR) image-label pair {xHR, yHR} of superior
resolution rx×rx×rx mm3. Our objective is to recover xHR,
which is a typical single image super resolution problem [9].

We first use a forward degradation model on the 2D HR
slices to mimick the acquisition protocol, taking into consid-
eration both aliasing due to sampling in the slice direction and
blur. In practice it is done through downsampling followed
by upsampling and blurring. An enhanced deep super resolu-
tion model (EDSR, [10]) is then trained to learn the mapping
between degraded LR and HR patch pairs. Once trained, the
model is applied to LR orientations (here sagittal and coronal,
without loss of generality). Finally, a unique HR isotropic
volume is reconstructed by merging volumes upsampled by
SSR in the frequency domain through Fourier burst accumu-
lation [11] (Fig. 1b).

4. EXPERIMENTS AND RESULTS

The method was implemented using PyTorch and Kornia [12]
and evaluated using the IRCADb dataset constituted of 20 an-
notated liver CT images [6]. We used the first 10 patients for
training and the remaining 10 for testing. Every image was
self super resolved under a joint ℓ1 and edge-based (Sobel
loss) training objective, as in [8]. We then fed the training
images to a 3D full resolution nn-UNet model [3] for 1000
epochs using 5-fold cross validation and ensembling. Results
were compared to those obtained without pre-processing on

the LR images, all else being equal. We thus used in both
cases the full nn-UNet pre-processing pipeline in ”CT” mode,
i.e. resampling based on the median voxel sampling in the
set, automatic Hounsfield unit clipping. Evaluation was per-
formed using conventional volumetric overlaps with the Dice
criterion, but also using the centerlineDice (clDice) metric
[13] that focuses on vessel connectedness by measuring the
intersection between the segmentation mask and its skeleton.
clDice was recently shown to more faithfully account for hep-
atic vessel segmentation [14]

Fig. 2 shows a typical segmentation result obtained in a
patient of the test set, with much better preservation of smaller
scale ramifications of the vasculature using SSR. This visual
observation were confirmed quantitatively in Table 1 report-
ing a modest global improvement in terms of Dice (0.69±0.07
vs. 0.68±0.07) but more sensible improvements using the
more relevant clDice metric (0.65±0.07 vs. 0.62±0.09). As
expected, patients with highest voxel anisotropy (e.g. patients
18, 19) benefited most from the SSR stage.

Table 1. Quantitative scores (IRCADb test set)
Patient clDice Dice

LR SSR LR SSR
11 0.67 0.75 0.74 0.78
12 0.56 0.57 0.63 0.63
13 0.60 0.63 0.73 0.73
14 0.57 0.52 0.55 0.55
15 0.70 0.71 0.67 0.74
16 0.68 0.66 0.76 0.75
17 0.77 0.77 0.79 0.76
18 0.52 0.67 0.64 0.66
19 0.50 0.58 0.55 0.59
20 0.66 0.70 0.72 0.70

Mean 0.62 0.65 0.68 0.69
Std Dev 0.09 0.07 0.07 0.07

5. CONCLUSION

In this work, we have shown that self super resolution can
be used to improve deep learning-based hepatic vessel seg-
mentation performance in abdominal CT images. Although
improvement with respect to the conventional Dice metric
is modest, visual results and topology preserving metrics
demonstrate the soundness of the proposed approach for fine
scale preservation of network-like structures. Future research
will focus on studying other imaging modalities, better eval-
uation metrics and dedicated loss functions for image self
super resolution.
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