
HAL Id: hal-04470647
https://hal.science/hal-04470647

Submitted on 21 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Monadic Second-Order Version of Tarski’s Geometry
of Solids

Patrick Barlatier, Richard Dapoigny

To cite this version:
Patrick Barlatier, Richard Dapoigny. A Monadic Second-Order Version of Tarski’s Geometry of Solids.
Logic and Logical Philosophy, 2023, 33 (1), pp.55-99. �10.12775/LLP.2023.019�. �hal-04470647�

https://hal.science/hal-04470647
https://hal.archives-ouvertes.fr


Logic and Logical Philosophy
Volume 33 (2024), 55–99
DOI: 10.12775/LLP.2023.019

Patrick Barlatier and Richard Dapoigny

A Monadic Second-Order Version
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Abstract. In this paper, we are concerned with the development of a gen-
eral set theory using the single axiom version of Leśniewski’s mereology.
The specification of mereology, and further of Tarski’s geometry of solids
will rely on the Calculus of Inductive Constructions (CIC). In the first,
part we provide a specification of Leśniewski’s mereology as a model for
an atomless Boolean algebra using Clay’s ideas. In the second part, we in-
terpret Leśniewski’s mereology in monadic second-order logic using names
and develop a full version of mereology referred to as CIC-based Monadic
Mereology (λ-MM) allowing an expressive theory while involving only two
axioms. In the third part, we propose a modeling of Tarski’s geometry
of solids relying on λ-MM. It is intended to serve as a basis for spatial
reasoning. All parts have been proved using a translation in type theory.

Keywords: mereology; monadic second-order logic; geometry of solids;
calculus of inductive constructions; theorem prover; type theory

1. Introduction

In this paper, we revisit the formalization (Dapoigny and Barlatier, 2015)
in a theorem prover of the logical system of Stanisław Leśniewski (1916)
and extend it to Tarski’s geometry of solids (1956a). A challenging prob-
lem is to minimize the set of axioms while enhancing expressiveness, by
using a specification in a theorem prover (i.e., Coq) which will formally
establish the consistency of the formalism. While set theory is the pre-
dominant axiomatic system that serves as a foundation for mathematics,
its models reject sets containing the so-called urelements, i.e., elements
of sets that are not themselves sets. Furthermore, it cannot account for
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proper classes; that is entities that are not members of another entity.
Therefore, some more elaborate set theories have been put forward as
more expressive extensions such as von Neumann-Bernays-Gödel set the-
ory, Morse-Kelley set theory or Tarski-Grothendieck set theory. While
the first two are conservative extensions of Zermelo-Fraenkel set theory
the latter is not. In a quite different way, Leśniewski’s mereology can
also be considered as a “set” theory since we can express distributive as
well as collective classes. We will show in a first part of the paper that a
model of mereology1 using set theory and formulated within type theory,
is able to provide an expressive theory in which proper classes can be
expressed as well as sets.

Among approaches that have been proposed in the last century, the
most prominent foundations for a formal theory of part-whole relations
have been Leśniewski’s mereology (1916) and the calculus of individuals
(Leonard and Goodman, 1940). Mereology is a theory which encapsu-
lates three levels, a higher-order classical logic, a calculus of names and a
part-of theory) while the formal framework of (Leonard and Goodman,
1940) known as the calculus of individuals is a nominalistic theory that
has been shown to be equivalent to a monadic second-order language us-
ing the discreteness relation as its only predicate. While these theories
are quite similar, Leonard and Goodman claim that Leśniewski’s system
is “rather inaccessible, lacks many useful definitions, and is set forth in
the language of an unfamiliar logical doctrine and in words rather than
symbols”. More recent works have pointed out that these arguments
fall short and many axiomatic basis have been investigated (see, e.g.,
Lejewski, 1967; Clay, 1974; Sobociński, 1984; Cocchiarella, 2001, to cite
a few) showing that Leśniewski’s approach bears more richness than
the calculus of individuals to provide a sound and expressive axiomatic
system (see Simons, 1987, p. 71). Furthermore, students of Leśniewski
have extended the set of definitions in mereology, e.g., with overlap and
discreteness. Clay (1974) has proposed a different approach from that
of Goodman whose purpose was to adapt Leśniewski’s mereology to set
theory while at the same preserving its second level, Leśniewski’s ontol-
ogy (LO) which supports mereology. With respect to other theories, we
get the uniformity of classes due to names (it means that there is no
conceptual distinction in nature between class and set).

1 In the following part of the paper, the term “mereology” will refer to
Leśniewski’s mereology.
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The usual approach has been to reduce mereology to some set-based
axiomatic version (e.g., Classical Extensional Mereology) that is cen-
tered only on one binary predicate which stands for the relation “being
a part of” (see, e.g., Varzi, 1996; Casati and Varzi, 1999; Tsai, 2015).
However, this choice has generated multiple issues from the theoreti-
cal side such as the dispute about Weak Supplementation (see Cotnoir,
2021), the development of versions that are weaker than mereology (see
Pietruszczak, 2005, 2020), or that are not elementarily axiomatizable
(see Pietruszczak, 2015). In the above approaches, authors have blurred
the formal specification of ε in LO on which mereology relies and have
lost a great part of its expressive power. Furthermore, they have lost
the concept of a collection and the link between collection and (collec-
tive) class. We depart from this assumption and argue following Tarski
(1956b) and Clay (1974) that mereology (including LO) is a model for
a Boolean algebra without zero consisting of nominal variables and the
composition of the el function with the ε relation (the so-called part-
of relation). Every mereological structure can be transformed into a
complete Boolean lattice by adding the zero element (its non-existence
is a consequence of axioms for mereology). Alternatively, every complete
Boolean lattice can be turned into a mereological structure by deleting
the zero element. We will show that a mereological theory involving
appropriate functions, each one composed with the ε relation, has many
benefits. For that purpose, we propose a set-based model of mereology
using the Calculus of Inductive Constructions. More precisely, we extend
several works such as Clay’s one (1974) using characteristic functions and
monadic second-order logic from (Clay, 1974; Smirnov, 1987) to build
a set-based translation of mereology in a restricted subsystem of CIC
denoted λ-MM. Since LO corresponds to a version of higher-order logic
with arbitrary finite types, the lower part of λ-MM will map a fragment
of LO limited to useful definitions using definitional comprehension (see
next subsection for details).

Whereas the decidability of mereological theories has already been
investigated, it put strong limitations on expressiveness (see Tsai, 2013).
Having a decidable model is crucial if one expects to extend it with e.g.,
topology or geometry in order to take in account the spatial fragment
of formal ontologies. To summarize, the present approach consists in a
specification of most lemmas and theorems of Leśniewski’s ontology and
mereology, while the first layer is substituted by the logic of type theory.
The theoretical basis will be the support for an interactive or automatic
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proof search. The complete model expressed in Coq (partly solved with
automated theorem provers using CoqHammer), will result in a library
which can be reused in the future for several purposes.

Tarski (1956a) then developed among others, a geometry of solids
based on Leśniewski’s mereology. We will exploit λ-MM to axiomatize
a geometrical theory without points. Our first version (Dapoigny and
Barlatier, 2015) relied on the different approach in which Leśniewski’s
systems were directly expressed in type theory through a shallow em-
bedding using the five axioms of mereology. The present approach fo-
cuses on a strongest theoretical model while at the same time relying on
few axioms. In addition, the conceptualization is rather more elaborate
through applying some ideas of Jaśkowski. Finally, a small application
example is set forth.

In section 2, we briefly summarize Leśniewski’s systems (LO and
mereology). Starting from basic properties of sets in mathematics we go
on to translate a fragment of LO and the basic axiom of mereology in λ-
MM in section 3, while in section 4 we detail the full system of mereology
λ-MM. In section 5 we apply the above system to investigate a version
of Tarski’s geometry of solids and discuss a basic extension. Finally, the
conclusion summarizes and motivates important results together with
their possible extension.

2. Overview on Leśniewski’s mereology

In the early 20th century, Leśniewski proposed a generalized two-valued
propositional calculus (called protothetic) based on a single primitive,
the equivalence construct. This logical system was the support of a
second level called Leśniewski’s Ontology (LO), and of the third level
(mereology) (see Leśniewski, 1916), whose purpose was the description
of the world with collective classes2.

2.1. Leśniewski’s ontology

LO can be characterized as a general theory dealing with the logical
relationships between names (ε). The logical support of LO corresponds
to the distributive interpretation of classes (like sets). It consists of (i) a

2 A collective class does not require the unintuitive distinction between an indi-
vidual and a totality.
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primitive category N (i.e., names), (ii) a proposition forming function,
i.e., the copula ε, which connects two variables in category N without
imposing a type distinction between them, (iii) a single axiom controlling
the behavior of terms in N , (iv) ontological definitions and (v) a rule for
ontological extensionality. It results in a single axiom:

∀Aa
(
A ε a ↔

(
∃B(B εA) ∧

∀CD((C εA ∧ D εA)→ C εD) ∧ ∀C(C εA→ C ε a)
))

The first conjunction of the right side of the equivalence prevents A from
being an empty term, the second conjunction states the uniqueness of A
while the latter refers to a kind of convergence (anything which is A is
also an a). Any well-formed expression can be assigned to exactly one
category, one of two primitive categories (truth values or N) or to one
of a potentially infinite number of categories that are a combination of
the two primitive categories. Only two constant names are introduced
through definitions, i.e., the empty name (Λ) defined as the contradictory
name and the universal name (V ). Many relations are then introduced
in LO such as name inclusion with three forms, i.e., weak inclusion (⊂),
strong inclusion (@) and partial inclusion (4), nominal negation (neg),
nominal conjunction (∩), nominal disjunction (∪):

∀ab(a ⊂ b ↔ ∀A(A ε a→ A ε b))
∀ab(a @ b ↔ ∃A(A ε a) ∧ ∀A(A ε a→ A ε b))

∀ab(a4 b ↔ ∃A(A ε a ∧A ε b))
∀Aa(A ε neg a ↔ (A εA ∧ ¬ A ε a))

∀Aab(A ε a ∩ b ↔ (A εA ∧ A ε a ∧ A ε b))
∀Aab(A ε a ∪ b ↔ (A εA ∧ A ε a ∨ A ε b))

In Leśniewski’ systems, definitions are not meta-theoretical abbre-
viations, but rather introduce new symbols into the object language
(they are part of the language itself). More precisely each definition
should follow meta-rules to be well-formed. Two kinds of definitions are
involved, i.e., “protothetic” definitions which introduce functions that
generate propositions and “ontological” ones which introduce functions
that generate names:

∀x1, ..., xn(φ(x1, ..., xn) ↔ ψ(x1, ..., xn))
∀A, x1, ..., xn(A ε ϕ(x1, ..., xn) ↔ A εA ∧ ψ(A, x1, ..., xn))
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where A ε A ∧ ψ(...) stands for the name to be constrained. It provides
two information, (i) a propositional expression which requires the copula
whose argument is the new defined type and (ii) an equivalence between
this type and a given propositional expression.

LO relies on a single category N for names. A singular name (i.e.,
singleton) always occurs as the first argument of ε while the second
argument is a name. A formula like A εA is a predicate proving that A
is a singular name. As a consequence, two equalities are introduced, one
for singular names called singular eq and another for name referred to
as weak eq.

2.2. Mereology

Mereology built on LO introduces a few axioms which are not deducible
from logical principles. It introduces collective classes, the name-forming
functions “class of”, “part of” and “element of” relations together with
their properties. The most usual formalization introduces a mereological
entity called “part” as a primitive. Mereology is developed on new prim-
itive functions of which the most important is that of class, denoted kl.
Two name forming functions are required, i.e., pt (for “part of”) and el
(for “element of”) which all belong to the category of functions taking an
argument in N and returning a value in N . It must be underlined that
the returned name with the kl function is always a singular name while
for the el function, it is a name. While the original theory starts with
the pt primitive (i.e., proper part), it is also possible to start from the el
(part) which is less restrictive. Axioms (A1) and (A2) assert respectively
that the relation pt is asymmetric and transitive:

∀PQ(P ε ptQ → ¬ Q ε ptP ) (A1)
∀PQR((P ε ptQ ∧ Q ε ptR) → P ε ptR) (A2)

Then, two definitions are needed. They introduce respectively the func-
tions el and kl:

∀PQ(P ε elQ ↔ (P ε P ∧ (P = Q ∨ P ε ptQ))) (D1)
∀Pa(P ε kl a ↔ P ε P ∧ ∀Q(Q ε a → Q ε elP ) ∧

∀Q(Q ε elP → ∃CD(C ε a ∧ D ε elC ∧ D ε elQ)))
(D2)

The term P = Q stands for the equality between singular names. Defi-
nition (D2) says that P is a collective class of objects a if and only if (i)
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P is an object, (ii) every a is an element of P and (iii) for any Q, if Q is
an element of P , then some element of Q is an element of some a.

∀PQa((P ε kl a ∧ Q ε kl a) → P = Q) (A3)
∀Pa(P ε a → ∃Q(Q ε kl a)) (A4)

Whereas axiom (A3) states the uniqueness of classes, axiom (A4) asserts
that if some object is an a, then some object is the class of objects a. It
has been shown that using any function of mereology (e.g., el), mereology
can be formalized with a single axiom (see Lejewski, 1963; Sobociński,
1984). We will consider the single axiom with el as the primitive term
referred to as (M) and inferentially equivalent to the four axioms above:

∀AB
(
A ε elB ↔

(
A εA ∧ B εB ∧

(
B ε elB → ∀ab(B ε a ∧

∀C(C ε b ↔ ∀D(D ε a → D ε elC) ∧
∀D(D ε elC → ∃EF (E ε a ∧ F ε elD ∧ F ε elE)))
→ A ε el b)

))) (M)

The semantics of (M) is equivalent to four assumptions: (i) every indi-
vidual is element of itself, (ii) if two individuals are element of each other,
then they are identical, (iii) the relation el built with ε is transitive and
(iv) if an individual is element of a name, this name corresponds to an
individual.

3. Basic foundations

3.1. The monadic second-order translation

Following the idea of Clay (1969, 1974), i.e., using two axioms, we will be
able to prove that mereology which relies on the part relation coincides
with the model of a boolean algebra with its zero-deleted. We modify
his work with a complete specification of characteristic functions in CIC
and extend it with many relations composed with ε (proper part-of,
collective class, collection, sub-collection, extern to, relative complement,
etc.). Then we complete the synthesis by extending the works of Smirnov
(1987) and Cocchiarella (2001) (which are limited to LO), to the full
version of mereology and provide a monadic second order translation
in Coq. This choice relies on the fact that monadic second order logic
theory of sets is decidable (this is a consequence of the theory of atomic
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boolean algebras which has a recursive set of decidable completions (see,
e.g., Makowsky, 2004)).

Leśniewski’s version of LO corresponds to a version of higher-order
logic with arbitrary finite types, and the lower part of λ-MM will map a
limited subsystem of LO restricted to first-order construct using defini-
tional comprehension. More precisely, to construct a usable definition for
the ε relation, characteristic functions are of interest. They are functions
defined on a set Σ that indicates membership of an element in a subset
S of Σ, having the value true for all elements of S and the value false for
those that are not in S. They make it possible to translate statements
about sets to statements about functions. They will be at the heart
of definitions as will be shown hereafter, i.e., we will specifically use
characteristic functions to convert definitions into usable lemmas.

The specification of λ-MM includes all boolean connectives, first-
order quantification and quantification over unary predicates. We as-
sume a standard way for building the second-order one-place predicate
calculus. Object variables are described with capital letters, while vari-
ables that refer to sets will use lowercase letters. The formulation of
the monadic second-order language is based on a relational two-sorted
language in which X and a range over the respective disjoint sets of
objects and of second-order variables. More specifically, variables X, Y ,
Z denote objects while variables a, b, c denote sets of objects and are
constrained to be names through typing (as a special case, variables A,
B, C, etc. denote individual names). Atomic formulas belong to the
sort B of boolean propositions. Complex formulas are constructed in
a standard way using propositional binary connectives (i.e., ∈, ∨, =)
and quantifiers binding predicate variables. Formulae for the monadic
second-order language, denoted φ, are given according to the following
syntax:

Terms τ ::= X | true | false
MSL formulae φ ::= τ = τ | τ ∈ a | φ ∨ φ | ¬ φ | ∃X φ(X) | ∃a φ(a)

Formulae are closed under disjunction, negation and quantification over
first or second-order variables. Other connectives are defined on the
basis of classical equivalences. For example, universal quantification is
derived from the existential form with: ∀A φ ↔ ¬ ∃A ¬ φ, implication
φ → ψ, from ¬ φ ∨ ψ, etc. Notice that binary predicate symbols
may occur in formulae, however, only the unary ones may be quantified
over. All formulae are interpreted in the standard set-based model of
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names, where V denote the universe of objects that are restricted to
names. Individual name variables A, B, . . . range over objects X, Y ,
. . . such that each individual name corresponds unambiguously to a
given singleton, A = {X} and predicate variables range over sets of
objects a, b, . . . ⊆ V .3 All formulas in the following are restricted to
quantification over objects or set of objects, i.e., names.

3.2. The calculus of inductive constructions

We will begin by demonstrating that type theory is sufficiently expressive
to replace protothetic. A qualitative measure relative to the Calculus of
Inductive Constructions (CIC) which is, with some variants, the one
implemented in the Coq theorem prover can be drawn. First we have to
prove that CIC is at least as expressive as Church Simple Type Theory
(STT) (see Church, 1940). Whereas STT has variables ranging over
functions, together with binders for them, System F supports a mech-
anism of universal quantification over types which results in variables
ranging over types, and binders for them. It yields that generic data
types such as list, trees, etc. can be encoded. It follows that system F
is more expressive than STT. Furthermore, CIC adds universes to the
system F, which leads to an improvement of its consistency strength.
Adding dependent types in CIC enhances the computational power but
does not affect its consistency strength. As a result, the expressive power
of CIC is higher than STT. Then, we have to prove that STT is at least
as expressive as protothetic. In protothetic, quantification is allowed
on propositional variables and variables of propositional functions to
any degree. Propositional type theory, first studied in (Henkin, 1963;
Kaminski and Smolka, 2008), is the restriction of simple type theory to
a single base type that is interpreted as the set of two truth values4.
It follows that protothetic is equivalent to a propositional type theory.
Now, if we consider LO which extends protothetic, all symbols of LO
can be substituted with variables that can be quantified, then LO is
equivalent in expressive power to STT. It yields that protothetic as a
sub-theory of LO is at most as expressive as STT. Combining the two
claims, we derive that CIC is at least as expressive as protothetic. It
turns out that using Coq’s classical logic is justified.

3 For readability, we shall use capital letters for names that are known to be
individual names and lower case letters otherwise.

4 Notice that CIC uses the Curry-Howard isomorphism.
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In CIC, it is known that proof irrelevance, propositional completeness
and the law of excluded middle are all endorsed by the boolean model.
The type of propositions Prop will be restricted to boolean values using
the classical library of Coq to support classical logic. The representa-
tion relies on inductive types that are algebraic types with constructors
able to define data structures. A basic type object provides us with a
decidable equality over objects through the classical library. Then, N is
defined as an inductive type that is a subset of the type object and whose
constructor Caract requires proved objects. The type N corresponds to
the set of values generated by constructor functions (e.g., the smallest set
that is stable by functions). Notice that N cannot be defined as a simple
type since a type is not able to represent a set (all its elements should be
of the same type). Using CIC notation, the defined inductive type has
name N while its constructor has the (indexed) type between braces:

Definition 3.1. Ind(N : Type) { Caract: (object → Prop) → N }

The main benefit of such a definition is that any construct having the
type N needs only to provide the argument of N , i.e., (object → Prop)
according to its expected properties. In the type theory, all variables re-
side either in object or in N for data and in Prop for truth values. Let us
mention that with the above assumptions, we do not follow Leśniewski’s
rules of definition since they are expressed with the rules of type theory.

3.3. Formalizing definitions and lemmas

The LO translation only requires names but many lemmas or definitions
use objects to state an equivalence with a boolean algebra without zero.
For any set a, we define a characteristic function as a predicate χ which,
given element X such that χ(a,X) is true if and only if object X belongs
to the set a:
Definition 3.2. χ(a : N, X : object) : Prop :=

(let(f) := a in f X) a X = True

It is nothing other than the type-theoretical translation of the asser-
tion: X ∈ a which will be denoted In a X in the following. The rep-
resentation of the set-based characteristic function relies on a construct
that checks whether a given object X appears in a and assumes that the
returned result is true. Given a and b having type N , set inclusion and
set equality are defined as usual:
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Definition 3.3.
set incl (a b :N ) : Prop := ∀ X :object, In a X → In b X

Definition 3.4.
set eq (a b :N ) : Prop := ∀ X :object, In a X ↔ In b X

At the interface between set theory and mereology, singletons play a
crucial role (see Hamkins and Kikuchi, 2016; Lewis, 1991). We introduce
the singleton function which maps every object X to its associated set,
singleton(X). In all the remaining part of the paper we will use ι as
a symbol to denote the singleton function à la Russell. To prove that
an object a is a singleton we have to feed the Caract constructor with a
function which for all object a′ returns the right truth value:

match eqobject dec a a’ with
| left h ⇒ True
| right h ⇒ False
end

In summary, names are sets of objects while a singular name is a single-
ton set. Assuming basic axioms of set theory, the following equivalence
rule can be easily derived:

Lemma 3.1. ∀X Y : object. In Y (ι X) ↔ X = Y

The set-based interpretation of individuals is given by the following
definition, with a a given name which denotes a second-order variable:

Definition 3.5. Individual(a : N) := ∃X : object. set eq ι(X) a

From this definition we can easily infer that any individual is a singleton:

Lemma 3.2. ∀X : object. Individual(ιX)

The set equality between individuals can be easily shown to reduce
to an equality between objects X and Y such that ∃ X. set eq a ι(X)
and ∃ Y. set eq b ι(Y ).

Lemma 3.3. ∀X Y : object. set eq ι(X) ι(Y )↔ X = Y

Proof. In the first case, applying definition 3.4, substituting the re-
spective indicator functions and by transitivity, X = Y . In the second
case, rewriting equality and applying reflexivity solves the goal. a

We can extend the definition of the indicator function to a functional
structure φ(a) which construct a name with the general form, in which
S(ι(X), a) denotes a sentence expressing an appropriate property for φ(a):
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Definition 3.6. φ(a) : N := Caract (fun X :object ⇒ S(ι(X), a)

For a generic structure In (φ a)X with φ a any expression involving
the set a as a free variable and an object variable X, as an indicator
function that is true only if X belongs to φ a, we can show that the
following theorem holds:

Theorem 3.1. ∀ a : N. ∀X : object. In (φ a)X ↔ η(ιX) (φ a)

Proof. From lemma 3.2 the right member becomes: Individual(ιX) ∧
In (φ a) X. Since X denotes an object, we can substitute In(φ a) X in
the right member with incl (ιX)(φ a). Then, using definition 3.9, it is
easily rewritten as η (ιX) (φ a) a

All definitions will be designed according this scheme. In other words,
any definition describes the properties that an object X should fulfill to
be a member of the set of objects5 which are set up by the defined
function φ.

3.4. Formalizing the LO translation

The signature for the first part of λ-MM has the following structure:

PLO =<SLO, ΣLO> with :
SLO ={Prop,N}
ΣLO =

η : N → N → Prop
Λ : N
V : N
singular eq : N → N → Prop
weak eq : N → N → Prop
weakInclusion : N → N → Prop
neg : N → N

n disjunction : N → N → Prop
n conjunction : N → N → Prop

Several authors have explored Leśniewski’s logic of names and have
proved that it is reducible to a monadic second-order version (see, among

5 That is, a member of the corresponding name.
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others, Smirnov, 1987; Cocchiarella, 2001). They restrict their versions
to non-creative definitions by adding existentials. However, CIC defi-
nitions are submitted to rules that constrain each definition to be in-
stantiated in each of its occurrences in lemmas or theorems; therefore
no existentials are required. First we need to prove that the mapping
translates Leśniewski’s single axiom for the fragment of LO into a theo-
rem of λ-MM. Due to space limitations, we only provide proof sketches
for significant theorems.

Definitions of the universe V of names and the empty name are re-
spectively such that:

Definition 3.7. V := Caract (fun s:object ⇒ True).

Definition 3.8. Λ := Caract (fun s:object ⇒ False).

from which we can easily derive:

Lemma 3.4. ∀ a : N. incl a V

The eta (η) relation between set variables provides the counterpart
of the ε construct between names:

Definition 3.9. η (A b :N ) : Prop := Individual A ∧ incl A b.

Among the consequences of definition 3.9, we can mention equality
between names, which is:

Lemma 3.5. ∀A ,B : N. ηA B ∧ ηB A↔ set eq A B

Proof. For the first implication, by unfolding definition 3.9 we get two
inclusions, incl a b and incl a b that should be both satisfied and using
twice definition 3.3 results in 3.4 as expected. The second implication is
similar. a

According to these assumptions, the single axiom of Leśniewski’s on-
tology becomes a theorem in λ-MM. Its proof requires a set of lemmas
from Clay’s work (we only supply relevant lemmas) leading to the fol-
lowing results. Firstly, unfolding definition 3.9 and using the reflexivity
of inclusion, we obtain:

Lemma 3.6. ∀A : N. ηA A ↔ Individual A

Secondly, by lemma 3.6 and definition 3.9, we get:

Lemma 3.7. ∀A b : N. ηA b → ηA A
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Using the distributivity of set eq on inclusion, symmetry of set eq
and definition 3.9 we have:

Lemma 3.8. ∀A b C : N. ηA b ∧ ηC A → ηC b

By set eq, lemmas 3.7, 3.6, distributivity of set eq over inclusion,
symmetry and transitivity of set eq and with definition 3.9 we obtain:

Lemma 3.9. ∀A b C D : N. ηA b ∧ ηC A ∧ ηD A→ ηC D

Using a lemma about singletons we have:

Lemma 3.10. ∀ a : N. X : object. η(ιX) a↔ In a X

From definition 3.9, lemma 3.10 and singleton equality, we get:

Lemma 3.11. ∀a : N.X : object. (∀AB : N. η Aa ∧ η B a → ηAB) ∧
In a X → ∀ Y : object. In a Y → X = Y

From lemmas 3.11 and 3.7, symmetry of set eq, distributivity of
set eq on inclusion, some lemmas about singletons and unfolding defini-
tions 3.3, 3.4 and 3.9, we get:

Lemma 3.12. ∀A b c : N. ηA b ∧ (∀D : N. ηD b → ηD c) ∧
(∀ E F : N. ηE b ∧ ηF b → ηE F ) → ηA c

Using lemmas 3.7, 3.8, 3.9 and 3.12 we obtain:

Theorem 3.2. ∀A b : N. ηA b ↔ ∃ C : N. ηC A ∧
(∀D : N. ηD A → ηD b) ∧
(∀C D : N. ηC A ∧ ηDA → ηC D)

The single axiom of LO has been proved in λ-MM without any ax-
iomatic assumptions other than the usual set-based axioms. Then many
lemmas are proved and we only give the following which states the equiv-
alence between set equality and equivalence of names:

Lemma 3.13. ∀ a b : N.set eq a b ↔ (∀A : N,ηA a↔ ηA b).

Basic definitions introduced below form the foundations of λ-MM.
They are respectively: singular equality, weak equality, weak inclusion,
nominal negation, nominal disjunction, nominal conjunction, minimal
and maximal existence.

Definition 3.10. singular eq (A B:N ) := η A B ∧ η B A

Definition 3.11. weak eq (a b :N ) := ∀ A : N . η A a ↔ η A b
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Definition 3.12. weakInclusion (a b :N ) := ∀ A : N . η A a → η A b

Definition 3.13. neg (a :N ) : N :=
Caract(fun X : object ⇒ (Individual (ι X) ∧ ¬(η (ι X) a)))

Definition 3.14. n disjunction (a b:N ) : N :=
Caract (fun X : object ⇒ (η (ι X) a ∨ η (ι X) b))

Definition 3.15. n conjunction (a b :N ) : N :=
Caract (fun X : object ⇒ (η (ι X) a ∧ η (ι X) b))

Definition 3.16. exists at least (a : N ) := ∃ A, η A a

Definition 3.17. exists at most (a :N ) := ∀ B C, η B a ∧ η C a →
η B C

In the following, weak inclusion will be replaced with the symbol
⊆ if no confusion results. Since λ-MM is derived from a subsystem
of LO, including the above axiom, then it stands as a model for the
boolean algebra. More than an hundred of lemmas are inferred from
these definitions.

3.5. The Boolean model of mereology

PM =<SM , ΣM , AxM> with :
SM = SLO

ΣM = ΣLO ∪ { el : N → N }
AxM =

1) ∀XY. X ¬ Y ↔ (In V X ∧ In V Y ∧ (Y ¬ Y →
(∀ β α. incl α V ∧ incl β V ∧ In α Y ∧ (∀ Z. In β Z ↔
((∀W. In α W → W ¬ Z) ∧
(∀W. W ¬ Z → ∃ ST. In α S ∧ T ¬ W ∧ T ¬ S)))→
∃L. set eq β (ιL) ∧ X ¬ L)))
2) ∃XY. ¬(X = Y )

All proofs for stating the equivalence between a boolean algebra without
zero and the unique formula (M) for mereology (see subsection 2.2) are
given in appendix A. We start with two axioms about a boolean algebra.
The first one stands for a boolean algebra with zero deleted established in
Clay’s work (1969) while the second one assumes that the boolean lattice
includes at least two elements. We first show that we can prove that the
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relation ¬ which generates this algebra is a partial order. Then, as pro-
posed in (Clay, 1974), we assume the following type theoretical definition
which defines el as a function depending on the partial order relation:
Definition 3.18. el (a :N ) : N := Caract (fun X : object ⇒

(Individual a ∧ ∃ Y Z :object, In (ι A) Y ∧
In a Z ∧ Y ¬ Z )).

However, el is a function and it is its composition with the η relation
which gives rise to what is usually called the “part of” relation in theories
such as Classical Extensional Mereology (see, e.g., Varzi, 1996; Casati and
Varzi, 1999; Cotnoir and Bacon, 2012). More generally, we will show that
other functions can be composed with η in the same way, e.g., part, class,
etc. This aspect is appealing since instead of having properties of a single
relation, the composition offers both the properties of the η relation and
those of the function. The adopted notation in the remaining part of the
paper will comply with the following syntax: η<arg1> (φ<arg2>) in
which <argi> denote name arguments and ηφ stands for the compound
relation. We are now able to demonstrate that the el function such
defined satisfies axiom (M). Therefore, mereology which relies on a single
axiom has a boolean model without zero. This result has several impacts.
First, it establishes the soundness of the model. Second, provided that
we work on finite sets of names (as it is the case in most applications),
the monadic version is decidable and can generate usable algorithms.

4. Modeling λ-MM
4.1. Formalizing minimal mereology

PmM = <SmM , ΣmM , AxmM> with :
SmM = SM

ΣM = ΣM ∪ {pt : N → N, kl : N → N}
AxmM = AxM

To get a basic version of λ-MM, we provide the proper part (pt) and the
class (kl) functions specified as axioms in (Leśniewski, 1916). They are
built with characteristic functions:
Definition 4.1. pt (A :N ) : N := Caract (fun X :object ⇒

(Individual (ι X) ∧ η (ι X)(el A) ∧
¬(set eq A (ι X))))
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Definition 4.2. kl (a :N ) : N := Caract (fun X :object ⇒
(Individual (ι X) ∧
(∀ B, η B a → η B (el (ι X))) ∧
(∀ B, η B (el (ι X)) → ∃ C D, η C a ∧
η D (el C ) ∧ η D (el B))))

For all values of X which satisfy right-hand sides of the definitions,
we build the respective sets ptA and kl a. Let us consider a collective
class. If a denotes “books in my library” and kl a the class of “books in
my library”, in ηA (kl a) A is an alias for “my library”. The following
three assertions must be true. First, A is the name of a single object that
stands for “my library”. Second, everything that is a book in my library
is an element in my library. Finally, let D be an element of my library,
e.g., a library shelf (meaning the books that are on it), then we have to
find E which is among books in my library and such that some element
on the library shelf is element of E. If E stands for the Encyclopedia
Britannica whose volumes are on the library shelf, then the third volume
is both an element of D and E.

A collective class only exists through its elements therefore it cannot
be empty. Furthermore, the concept of collective class is not entirely
resolved by its definition and more specifically, its uniqueness must be
proved. Another problem relates to Russell’s antinomy (a set corre-
sponds to any propositional function). We can observe that if a given
object A is (one of) an a, i.e., ηA a, then the class of a’s must exist:
if Francis Drake is a hero, then the class of heroes is existent. These
important theorems can be derived in λ-MM. Firstly, by lemmas 3.7
and 3.9, we obtain:

Lemma 4.1. ∀AB c. ηA B ∧ ηB c→ ηA c

By kl definition and substitution of a with (ι A), the name of a class
is always a singular name, i.e., a singleton:

Lemma 4.2. ∀A b. ηA kl b→ Individual A

Moreover, rewriting η(ιA)(kl a) in the left member of the class defi-
nition (kl), we have:

Lemma 4.3. ∀A a. ηA (kl a)→ ∃B. ηB a

Now, by lemma A.17, we obtain:

Lemma 4.4. ∀AB. ηA elB → Individual B
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The following lemmas are consequences of the collective class defini-
tion. Firstly, unfolding the kl definition, we get:

Lemma 4.5. ∀AB a. ηA (kl a)→ ηB a→ ηB (el a)

Secondly, using el and kl indicator functions with lemma 3.1 we have:

Lemma 4.6. ∀AB c. ηA(kl c)→ ηB(elA)→ ∃DE. ηD c ∧
ηE(elD) ∧ ηE(elB)

From lemmas 3.7, 3.6 and A.5 we have that if a name is something,
then it is an element of itself. This result departs from what is usually
true of distributive classes assuming that a class never belongs to itself:

Lemma 4.7. ∀A b. ηA b→ ηA (elA)

From lemma A.5 we have that if a name exists, then the relation el
built with η is reflexive:

Lemma 4.8. ∀A. ηAA→ ηA (elA)

By lemma 4.8 we have that any collective class name corresponds to
an individual name:

Lemma 4.9. ∀ a. η(kl a) (kl a) → η(kl a) (el(kl a))

Lemma 4.10. ∀AB C. ηA(elB) ∧ set eq B C → ηA(elC)

Proof. Using lemma 4.4, substituting In b A with incl (ιA) b and
inclusion of singletons with objects equality, then unfolding η, Individual
and set eq definitions and last, by applying theorem A.2. a

Applying theorem 3.1 in el definition, by lemmas 3.3, 3.1 and A.3,
we have that the relation el built with η is asymmetric:

Lemma 4.11. ∀AB. ηA (elB) ∧ ηB (elA)→ set eq A B

By lemmas 3.6 and 4.8 we get:

Lemma 4.12. ∀A. Individual A→ ηA (elA)

By unfolding definition 4.2, then applying lemmas 4.7, 4.12 and fi-
nally unfolding η definition, we obtain that any individual name is the
class of its elements:

Lemma 4.13. ∀A a. ηA a → ηA (kl(elA))
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From theorem A.5 and lemma 4.13 we obtain that if A is an element
of B, then B is the class of elements of itself:

Lemma 4.14. ∀AB. ηA (elB)→ ηB (kl(elB))

From definitions of η, incl, Individual, el and applying lemma 3.1,
theorem A.2 together with lemmas on singletons we get that the part-of
relation el, built with η, is transitive:

Theorem 4.1. ∀AB C. ηA (elB) ∧ ηB(elC)→ ηA (elC)

Unfolding pt’s definition, and using lemmas 4.10 and 4.12, we get:

Lemma 4.15. ∀AB. Individual(A) → ηA (elB) ↔
(ηA (ptB) ∨ set eq B A)

By lemmas 4.10, 4.12, definition 4.1 and the symmetry of set equality
we get that for each individual name, there exists an element of it:

Lemma 4.16. ∀A a. ηA a → ∃B. ηB (elA)

The following theorem is relevant for proving the asymmetry of pt:

Theorem 4.2. ∀AB. ηA (ptB)→ ηB (neg(ptA))

Proof. Using theorem 3.1 with φ A = ptA and φ A = negA in re-
spective definitions 4.1 and 3.13, then applying lemmas 4.4, 4.11 and
symmetry of set eq a

Unfolding eta’s definition, and by theorem 4.2 we obtain that any
individual is constrained to be a part of another individual:

Lemma 4.17. ∀AB. ηAptB) → Individual B

By applying theorem 3.1 with φ A = ptA in definition 4.1, we get:

Lemma 4.18. ∀AB. ηA (ptB)→ ηA (elB)

So, using the pt definition and lemmas 4.11, 4.18, 4.15 and 4.17, it follows
that the part relation built on η is asymmetric:

Lemma 4.19. ∀AB. ηA (ptB) → ¬ ηB (ptA)

By substitution of the left members of kl and el definitions, applying
theorem 3.1 and then lemma 4.6, we derive the following implication:

Lemma 4.20. ∀E a. ηE a→ (∀A. ηA (kl a)↔ ((∀B. ηB a→
ηB (elA))∧ (∀B. ηB (elA)→ ∃C D. ηCa ∧ ηD(elB)
∧ ηD elC))))
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From lemmas A.5, 3.6, 4.12 and 4.20 we get:

Lemma 4.21. ∀AB a. ηA (elB) ∧ ηB a→ ηA (el(kl a))

Unfolding definition 3.16 then, using theorem 4.3, lemma 4.3 together
with lemmas about empty names we obtain that any collective class
exists provided that its related name exists:

Lemma 4.22. ∀a , exists at least a→ exists at least (kl a)

From lemmas 3.6, 4.7, 4.21 and 4.4 we get that each collective class
denotes a singular name:

Lemma 4.23. ∀A a. ηA a → η(kl a)(kl a)

By applying lemmas 4.7 and 4.21, we obtain that if a singular name
is one of the plural name a, then it is also an element of the class of a’s:

Lemma 4.24. ∀A a. ηA a → ηA (el(kl a))

Using lemma 4.23, we can now prove the fourth axiom of Leśniewski’s
mereology, i.e., that the class of a’s exists provided that a exists:

Theorem 4.3. ∀A a. ηA a → ∃B. ηB (kl a)

Unfolding definition 3.10, and by lemmas 4.3, 4.23 and 4.1, we get:

Lemma 4.25. ∀A a. ηA (kl a) → set eq A (kl a)

By lemmas 3.8, 4.25 and 3.5, the third axiom of Leśniewski’s mere-
ology, which states the uniqueness of classes, is proved as follows:

Theorem 4.4. ∀AB a. ηA (kl a) ∧ ηB (kl a)→ set eq A B

Many other theorems about collective classes can be proved (see the
link at the end of this section) We will give below some important lemmas
about the proper part (pt). The second axiom of Leśniewski’s mereol-
ogy expresses the transitivity for the part relation built on η is proved
according to the following theorem:

Theorem 4.5. ∀AB C. ηA (ptB) ∧ ηB (ptC)→ ηA (ptC)

Proof. We use theorem 3.1, with φ A = ptA in definition of pt, and
lemmas 4.1, 4.11 and 4.10. a

Finally, we obtain some useful lemmas. Firstly, unfolding definitions
3.18 and 3.4 and by lemmas 4.1, 3.6 and 4.8, we get:
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Lemma 4.26. ∀AB. (∀ C. ηC (elA) → ∃ P. ηP (elC) ∧
ηP (elB)→ (∀D. ηD (elA) → ∃ P Q. ηP (elD) ∧
ηQ (elB) ∧ ηP (elQ) ∧ ηQ (elA))

Secondly, using lemma 4.14 and definition 4.2, we have:

Lemma 4.27. ∀AB. ηA (elB) ↔ ∃ a. ηB (kl a) ∧ ηA a

4.2. Formalizing full mereology

Pλ-MM =<Sλ-MM, Σλ-MM, Axλ-MM> with :
Sλ-MM = SmM

Σλ-MM = ΣmM ∪ { ext : N → N, coll : N → N,

SubColl : N → N, relCompl : N → N → N}
Axλ-MM =AxmM

From all lemmas and theorems detailed above, many other lemmas are
provable stating for instance that a class built on an empty name does
not exist, the class of a and the class of class of a denote the same object
unlike in set theory, any individual cannot be its proper part, etc. Ad-
ditional functions such as exterior, collection, sub-collection and relative
complement (see, e.g., Sinisi, 1983) can be introduced as characteristic
functions (the symbol ∩ refers to nominal conjunction as defined in 3.15):

Definition 4.3. ext (A :N ) : N := Caract (fun X :object ⇒
(Individual (ι X) ∧ Individual (A ∧
¬(∃ C, η C (el A) ∧ η C (el (ι X)))))

Definition 4.4. coll (a :N ) : N := Caract (fun X :object ⇒
(Individual (ι X) ∧ ∀ B, η B (el (ι X)) →
∃ C D, η C a ∧ η D (el C ) ∧ η D (el B) ∧
η C (el (ι X))))

Definition 4.5. SubColl (A :N ) : N := Caract (fun X :object ⇒
(Individual (ι X) ∧ ∀ B, η B (el (ι X)) →
η B (el A)))

Definition 4.6. relCompl (B C :N ) : N := Caract (fun X :object ⇒
(Individual (ι X) ∧ η B (SubColl C ) ∧
η (ι X)(kl ((el C ) ∩ (ext B)))))
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Some lemmas using these definitions are given below. Firstly, by
lemmas 4.6 and 4.5, we get:

Lemma 4.28. ∀AB a. ηA (kl a) ∧ ηB (elA)→ ∃X Y. ηX (elY ) ∧
ηX (elB) ∧ ηY a ∧ ηY (elA)

Secondly, unfolding definition 4.4 and using lemma 4.28, we have that
each class is also a collection:

Lemma 4.29. ∀A a. ηA (kl a) → ηA (coll a)

Thirdly, using lemma 4.12 and theorem 3.1, with φ A = ext A in the
ext definition, we get that the relation ext built on top of η is irreflexive:

Lemma 4.30. ∀A. IndividualA → ¬ηA (ext A)

By theorem 3.1, with φB = ext B and φB = ptB, in the respective
ext and pt definitions, from lemma 4.1 we get the left distributivity of
ext over pt:

Lemma 4.31. ∀AB C. ηA (ext B) ∧ ηC (ptB)→ ηA (ext C)

From theorem 3.1 with φ B = ext B in the ext definition we obtain
that the relation ext built on top of η is symmetric:

Lemma 4.32. ∀AB. ηA (ext B)→ ηB (ext A)

Using theorem 4.3, with φB = ext B in the ext definition, and theo-
rem A.5, we get:

Lemma 4.33. ∀AB. ηA (elB) → ¬ηA (ext B)

Unfolding definition 4.4 and using lemma 4.12, we get:

Lemma 4.34. ∀A a. ηA (coll a)→ ∃B. ηB a ∧ ηB (elA)

From definition 4.5, with φB = subColl B, theorems 3.6, 4.8 we get:

Lemma 4.35. ∀AB. ηA (subColl B)→ ηA (elB)

Using definition 4.5, with φ B = subColl B, and theorems 3.2 and
4.1, we obtain

Lemma 4.36. ∀AB. ηA (elB)→ ηA (subColl B)

By theorems 4.35 and 4.36 we obtain that the relation subColl is
equivalent to relation el:

Lemma 4.37. ∀AB. ηA (elB)↔ ηA (subColl B)
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By theorems 4.18 and 4.37 we get:
Lemma 4.38. ∀AB. ηA (ptB)→ ηA (subColl B)

Applying lemmas 4.29, 4.3, 4.36 and 4.4 we have that any class is
also the class of its collections:
Lemma 4.39. ∀A a. ηA (kl a)↔ ηA (kl(coll a))

Using definition 4.2 together with lemmas 4.34, 4.23, 3.6, 4.3, 4.39,
4.3 and 4.25 we get that any collection is also an element of its corre-
sponding class:
Lemma 4.40. ∀A a. ηA (coll a)→ ηA (el(kl a))

Unfolding coll’s definition and using lemmas 4.12, 4.26, 4.40, 4.34,
4.14, 4.25 and 4.23, we get:
Lemma 4.41. ∀AB. Individual A ∧ (∀ C. ηC (elA)→ ∃X.

ηX (elC) ∧ ηX (elB))→ ηA (elB)
Unlike many works which formalize mereology without the ε opera-

tor, we show that there is no need in the present approach to introduce
the so-called “weak supplementation principle” since it is a theorem. It
says that if A is a (proper) part of a whole B, then there exists some
other C which is the complement of A relative to B.
Theorem 4.6. ∀AB. ηA (ptB)→ ∃ C. ηC (relCompl AB)
Proof. Using lemmas 4.38, 4.19, unfolding definition 4.1 and lemmas
4.15, 4.17, 4.37 and 4.4. Then using 4.12, 4.41, 4.17 and usual first-
order lemmas (contraposition, De Morgan, contradiction) and finally,
unfolding definitions 4.3, 4.6 and 3.15 together with theorem 4.3. a

The implemented version relies on a logical framework based on type
theoretical foundations that characterize the logic proof-theoretically.
The mereological system has been specified in Coq. A complete version
of the resulting code (37 definitions, 416 lemmas and 22 theorems) is
available in code mereology:
Proposition 4.1 (decidability). λ-MM in finite domains is decidable.
Proof. A well-known result from Tarski states that the first-order the-
ory T (B) of boolean algebras is decidable. Since mereology is isomorphic
to a boolean algebra without the bottom element, and provided that it
is axiomatized in monadic second-order logic in finite domains, then
decidability is preserved. a

https://www.univ-smb.fr/listic/technologies/logiciels/modeles-decidables-pour-la-specification-d-ontologies/mereologie/
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Figure 1. The concept of collection.

Assuming that functions are a crucial part of mereology gives the
following benefits. Variable binding is simplified since functions can
return names and LO offers primitives which operate on names (see
subsection 2.1). A formula which is written: a ⊆ b → (coll a) ⊆
(coll b) would require three variables in a classical relational setting (a,
b and A) such that, e.g., the second member becomes: ∀A. coll(A, a) →
coll(A, b). Another benefit is that all name variables can be quantified
without involving ontological commitments.

4.3. Expressing set theory in λ-MM

We will prove here that the role of collections corresponds to that of
distributive sets. However, their relation with collective classes is more
subtle. Notice that whereas a class refers to an individual name, a collec-
tion is not an individual name. Suppose that we have a name a such that
ηA (kl a). The class related to the name a contains all collections coll a
as stated in lemma 4.39. If we have another name b such that b ⊆ a,
then a new class is introduced ηB(kl b) such that this class is also a
collection of a, i.e., ηB(coll a). In other words, the collection is the
counterpart of the subset relation with collective classes (see figure 1).
In summary, collections are sets and membership is addressed by η.

Let us consider Zermelo set theory for example, and let us explain
how its corresponding axioms also reside in λ-MM. The extensionality
axiom is obviously assumed since it is the basis of Leśniewski’s theory.
Furthermore it has been set in definition 3.4. Other axioms such as
extensionality, pairing, axiom of the union, of the power set or the empty
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set become lemmas in λ-MM. For details, see the Coq file code. We only
provide here as an example, the pairing as a proved lemma.

Lemma 4.42. ∀ A B a, η A (coll a) ∧ η B (coll a) →
∃ C, η C (coll a) → ∀ X, η X (el A) ↔ η X A ∨ η X B.

Semantically, given two sets A and B, there exists a set C whose
members are exactly the two given sets. Since A, B and C are names,
they are constrained to be sets by the predicate ηA(coll a), while a
denotes the space (a proper class) containing all its collections (sets).

5. The λ-MM version of Tarski’s geometry of solids

The previous work can be directly applied for a new specification of
Tarski’s mereogeometry which has proposed a method for axiomatizing
geometry using the notion of a sphere (a.k.a. a balls) as primitive instead
of usual point-based theories (see Tarski, 1929, 1956a). For that purpose,
he has added the sphere primitive to Leśniewski’s mereology relying on
the previously defined el primitive. He showed how to give a categorical
axiomatization for the geometry of solids whose models are isomorphic
to the structure of regular open sets of points which are defined in the
Euclidean point-based geometry. However, Tarski’s theory is not fully
formalized and recent works have addressed this issue (see, e.g., Bennett,
2001; Gruszczynski and Pietruszczak, 2008, 2009; Borgo and Masolo,
2010) on the basis of set theory. One might wonder about the influence
of Leśniewski’s work on Tarski’s foundations of the geometry of solids.
A closer investigation of the 1956 version of Tarski’s proposal sheds light
on this question and reveals the explicit influence of Leśniewski’s mere-
ology (see, e.g., Betti and Loeb, 2012, for more details). A recent paper
follows this line by proposing a model of Tarski’s geometry of solids
based on Leśniewski’s mereology (see Clay, 2021). While his objective
was to investigate to what extent Tarski’s paper can be formalized, the
present objective rather focus on proofs and their availability for appli-
cations such as formal ontologies. For that purpose, we provide here an
application of the previous theory which follows Tarski’s ideas and uses
λ-MM as a library.
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5.1. Tarski’s definitions

We briefly summarize the informal definitions stated by Tarski in his
1956 paper.

Definition 5.1. A sphere A is externally tangent to a sphere B if (i) A
is disjoint from B; (ii) given two spheres X and Y containing as a part
A and disjoint from B, at least one of them is part of the other.

Definition 5.2. A sphere A is internally tangent to a sphere B if (i) A
is a proper part of B; (ii) given two spheres X and Y containing A as a
part and forming part of B, at least one of them is part of the other.

Definition 5.3. Spheres A and B are externally diametrical to the
sphere C if (i) each of A and B is externally tangent to C; (ii) given two
spheres X and Y disjoint from the sphere C and such that A is part of
X and B is part of Y , the sphere X is disjoint from Y .

Definition 5.4. Spheres A and B are internally diametrical to the
sphere C if (i) each of A and B is internally tangent to C; (ii) given
two spheres X and Y disjoint from C and such that A is externally
tangent to X and B to Y , the sphere X is disjoint from Y .

Definition 5.5. A sphere A is concentric with a sphere B if one of
the following conditions is satisfied: (i) A and B are identical; (ii) A is
a proper part of B and besides, given two spheres X and Y externally
diametrical to A and internally tangent to B, these spheres are internally
diametrical to B; (iii) B is a proper part of A and besides, given two
spheres X and Y externally diametrical to B and internally tangent to
A, these spheres are internally diametrical to A.

Definition 5.6. A point is a class of all spheres which are concentric
with a given sphere.

Definition 5.7. Points a and b are equidistant from the point c if there
exists a sphere X which belongs as an element to c and which moreover
satisfies the following condition: no sphere Y belonging to a or b is part
of X or is disjoint from X.

Definition 5.8. A solid is an arbitrary sum of spheres.

Definition 5.9. A point a is an interior point of a solid B if there exists
a sphere A which is at the same time an element of a and a part of B.
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Figure 2. Tarski’s primitive definitions.

These definitions which are extracted from (Tarski, 1956a) have been
cited in many places and previously in (Gruszczynski and Pietruszczak,
2008, 2009; Dapoigny and Barlatier, 2015). The definitions have been
illustrated schematically in their 2-D versions in figure 2. Notice that
the word “disjoint” which occurs in these definitions is a synonym of
exterior (ext) in λ-MM. In addition, the names sphere and ball will be
considered as synonymous in the following.

5.2. Specification of Tarski’s geometry of solids

A first version of Tarski’s geometry of solids has been published in
(Dapoigny and Barlatier, 2015) in which an embedding has been set
forth. However, the current approach differs from it in many places.
First, the axiomatization here relies on monadic second-order logic in-
stead of expressing directly mereology in type theory. Second, the axiom-
atization relies on a boolean-valued model (without zero) which guaran-
tees suitable properties of λ-MM. Third, we have formalized names as an
inductive type instead of simple type with a strong use of characteristic
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functions. In addition, the present version offers a better way to ensure
soundness since the current specification only requires a minimal set of
axioms (two) for mereology. Finally, the monadic second-order version
of mereology using an extended set of additional functions (i.e., relative
complement, sums) is another aspect which renders the theory more ex-
pressive and departs from the first version. More precisely, the original
contribution of the present section holds in the following specifications:
(i) the geometrical universe is seen as a collective class of balls (i.e.,
a proper class) whose elements are individual balls or ball collections
(sets), (ii) solids are built out of ball collections, from which we can infer
that the geometrical universe and individual balls are also solids and (iii)
points are collective classes of balls concentric with a given ball, which
are constrained to be saturated sub-spheres of the geometrical universe.

In mereology, any (collective) class or collection is built from names
(see definitions 4.2 and 4.4) and provided that the foundational prim-
itives such as el or pt only accept singular names as arguments, then
collections and classes follow the same rule. The universe of mereo-
geometrical names admits a single primitive name, the (ontological) plu-
ral name balls. Then, each singular name refers (e.g., η(B, balls)) to
the distributive set balls. In the present model of mereogeometry, all
quantifications occur on singular names, leaving room for mere first-
order logic reasoning. The whole space of mereogeometry is formalized
as a collective class of balls based on the single primitive (balls):

Definition 5.10. Gspace : N := Caract (fun A:object ⇒
(η (ι A) (kl balls)))

Notice that this assumption is similar to that of (Gruszczynski and
Pietruszczak, 2008, 2009) in which the universe of discourse of mere-
ogeometry coincides with arbitrary “mereological sums6 of balls”. By
theorem 4.3, unfolding definition 5.10, then with lemma 4.10 we get that
any individual ball A is an element of the class Gspace:7

Lemma 5.1. ∀A. η A balls → ηA (elGspace)

Unfolding definitions 3.16 and 5.10, by lemma 4.22, we have that the
existence of the geometric space assumes that there exists at least a ball:

Theorem 5.1. exists at least balls ↔ ∃ E, ηE Gspace
6 Mereological sums are the set-based counterpart of collective classes, i.e., kl.
7 We will see in the following part, that Gspace also involves solids and points,

themselves including balls.
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Since Tarski assumes that balls, as a primitive, is an existing name
it follows that individual balls are also existing names:
Axiom 5.1. exists at least balls

Unfolding definitions 3.17 and 5.10 and applying lemma 4.4 we have
that there exists at most one geometric space:
Theorem 5.2. exists at most Gspace

Using theorems 5.1 and 5.2, it results that the geometric space is
unique. Using these properties, the first postulates of Pieri can be ful-
filled by proving (i) the existence of at most one geometric space and (ii)
that there exists at least a ball in that space. All Tarski’s definitions are
introduced following the same scheme. The first definition addresses the
external tangency of two balls. We define an externally tangent ball as a
name (seen as a set), and specify additional constraints on its elements,
i.e., they are totally ordered:
Definition 5.11. ET (B:N ) : N :=

Caract (fun X :object ⇒
(In balls X ∧ η B balls ∧ η (ι X)(ext B) ∧ (∀ x y, η x balls ∧
η y balls ∧ η (ι X) (el x) ∧ η x (ext B) ∧ η (ι X)(el y) ∧
η y (ext B) → (η x (el y) ∨ η y (el x))))).

For instance, in a term having the form ηA(ET B), the name A
collects all singletons (ιX) for which the formula under the scope of
Caract is true. The specification of internally tangent balls is similar:
Definition 5.12. IT (B:N ) : N :=

Caract (fun A:object ⇒
(In balls A ∧ η B balls ∧ η (ι A)(pt B) ∧ (∀ x y, η x balls ∧
η y balls ∧ η (ι A)(el x) ∧ η x (el B) ∧ η (ι A)(el y) ∧
η y (el B) → (η x (el y) ∨ η y (el x))))).

For the definitions of diametrically tangent spheres, we introduce
ternary relations in the Leśniewski’s style (see, e.g., definition 4.6). For
example, “A and B are externally diametrical to C” is read as “A is
externally diametrically tangent to B relative to C”.
Definition 5.13. ED (C B:N ) : N :=

Caract (fun X :object ⇒
(η (ι X)(ET C ) ∧ η B (ET C ) ∧ (∀ P Q, η P balls ∧ η
Q balls ∧ η (ι X)(el P) ∧ η P (ext C ) ∧ η B (el Q) ∧
η Q (ext C ) → η P (ext Q)))).
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A number of lemmas can be inferred using definitions 5.13 and 5.11
and applying lemma 4.7, such as the fact that externally diametrically
tangent balls are always external:

Lemma 5.2. ∀AB C. ηA (ED C B) → ηA (ext B)

The definition of internally diametrical follows the same rule, how-
ever we rather adopt the view of (Clay, 2021) since it appears as more
useful from the computational perspective.

Definition 5.14. ID (C B:N ) : N :=
Caract (fun X :object ⇒

(η (ι X)(el C ) ∧ η B (el C ) ∧ (∃ P Q R, η P balls ∧
η Q balls ∧ η R balls ∧ η P (ED (ι X) Q) ∧ η P (ED B R) ∧
η Q (ED C R)))).

Then we introduce the formalization of concentric spheres (A is con-
centric with B) according to (Clay, 2021) for the same motivation (↔
denotes singular equality).

Definition 5.15. Concent (B:N ) : N :=
Caract (fun X :object ⇒

(In balls X ∧ η B balls ∧ ((ι X) ↔ B ∨
(η (ι X) (pt B) ∧ ∃ P Q R S, η P (ED (ι X) Q) ∧
η P (ID B Q) ∧ η R (ED (ι X) S) ∧ η R (ID B S) ∧
¬(P ↔ R) ∧ ¬(P ↔ S)) ∨ (η B (pt (ι X)) ∧ ∃ P Q R S,
η P (ED B Q) ∧ η P (ID (ι X) Q) ∧ η R (ED B S) ∧
η R (ID (ι X) S) ∧ ¬(P ↔ R) ∧ ¬(P ↔ S))))).

From this definition, by unfolding definition 5.15, from lemma 3.7,
reflexivity and symmetry follow:

Lemma 5.3. ∀A. ηA balls → ηA (Concent A)

Using definition 5.15 and the symmetry of set eq, we get:

Lemma 5.4. ∀AB. ηA (Concent B) → ηB (Concent A)

Transitivity requires a supplementary axiom:

Axiom 5.2. ∀AB C. ηA (Concent B) ∧ ηB (Concent C) →
ηA (Concent C)

The definition of a solid is coherent with previous work (Dapoigny
and Barlatier, 2015). We assert that a solid is a collection of balls, the
meaning of collections being previously explained in figure 1.
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Definition 5.16. Solid : N :=
Caract (fun X :object ⇒ (η (ι X) (coll balls))).

Using definitions 5.16, 4.4, 3.9 and lemma 4.12, we can prove that (i)
any ball is also a solid (while the converse is not true), (ii) the geometric
space is a solid and (iii) any solid is an element of the geometric space.

Lemma 5.5. ∀A. ηA balls → ηA Solid

By unfolding definitions 5.16, 5.10, from lemma 4.29 we get:

Lemma 5.6. ∀A. ηA Gspace → ηA Solid

Unfolding definitions 5.16 and 5.10, by lemmas 4.40, 3.13 and 4.10,
we obtain:

Lemma 5.7. ∀A. ηA Solid → ηA (elGspace)

The definition of a point deserves some attention. We depart from
the common view which describes a point as a non-finite set of concentric
spheres, because quantification over points would lead outside first-order
logic. The idea is to consider a point as an individual name. We first
recall the following definition inspired from (Jaśkowski, 1948). A ball A
is a saturated sub-sphere of a solid B iff (i) it is a part of B, (ii) it is a
ball, and (iii) given an arbitrary ball X, if A is part of X and X is part
of B, then X is equal to A. More formally:

Definition 5.17. sat subsphere (B:N ) : N :=
Caract (fun X :object ⇒

( η (ι X) balls ∧ η B Solid ∧ η (ι X) (el B) ∧
(∀ A, η A balls ∧ η (ι X)(el A) → η (ι X) A)))

Second, let us consider the following lemma which states that for any
given ball Y , if there exists another ball X of which it is a proper part,
which is concentric with Y and maximal in the geometric space, then X
is the class of the set of all concentric balls with X. Indeed, unfolding
definitions 5.17 and 4.1, applying lemmas 4.16 and 4.11, we get:

Lemma 5.8. ∀ Y. ηY balls → ∃X. ηX (sat subsphere Gspace) ∧
ηY (ptX) ∧ ηY (Concent X) → ηX (kl(Concent X))

According to these results, the definition of a point A involves (i)
the concept of a maximal sub-sphere in the geometric space and (ii) the
class of all spheres concentric with A:
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Definition 5.18. Point : N :=
Caract (fun X :object ⇒

(η (ι X) (sat subsphere Gspace) ∧
η (ι X) (klass (Concent (ι X))))).

With such a definition, a point is seen as an individual, i.e., a sphere
that encompasses all spheres concentric with it. It gives rise to the
following lemmas. Firstly, by definitions 5.18, 5.17 and 4.2, we get:

Lemma 5.9. ∀A. ηA Point ∧ ηB Point ∧ ηA (Concent B)→ ηA B

Secondly, applying lemmas 4.24 and 5.3, we have:

Lemma 5.10. ∀A. ηA balls → ηA (el(kl(Concent A)))

Thirdly, by applying 4.27, 5.10 and definition 5.18, we get:

Lemma 5.11. ∀ X. ηX balls → ∃ Y. ηY (sat subsphere Gspace) ∧
ηY (kl(Concent X)) → ηY Point

Fourthly, from definitions 5.18 and 5.17, we have:

Lemma 5.12. ∀A. ηA Point → ηA (elGspace)

Fifth, using definitions 5.18 and 5.17, and lemma 5.3, we get:

Lemma 5.13. ∀A. ηA Point → ∃B. ηB (sat subsphere Gspace) ∧
ηA (Concent B)

Finally, using definition 5.15 and lemma 5.13, we obtain:

Lemma 5.14. ∀A. ηA Point → ηA balls

Among others, lemma 5.9 demonstrates that two concentric points
refer to the same point, while lemma 5.11 proves that every ball gives
rise to a point, 5.12 shows that any point is an element of the geometric
space and lemma 5.14 confirms that points are convertibles to spheres.

Now we come to the specification of equidistant points. The under-
lying idea is to divide the equidistant definition into sub-parts that can
be more easily worked with. Some previous works have already inves-
tigate such an approach (e.g., the centered on the boundary relation in
(Bennett, 2001)). Besides, a similar suggestion which has been detailed
in (Jaśkowski, 1948), will be the basis of the following definition:
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Definition 5.19. on surface (A :N ) : N :=
Caract (fun X :object ⇒

(η A balls ∧ η (ι X) Point ∧ (∀ B, η B balls ∧
η B (Concent (ι X)) → ¬η B (el A) ∧ ¬η B (ext A)))).

It means that a point B is situated on the surface of a ball A if for
any concentric element X of B, X is neither external nor internal to A
(see Jaśkowski, 1948, p. 301). From definition 5.19 and lemmas 5.3, 4.8
and 3.7, we can infer that a point cannot be on its own surface:

Lemma 5.15. ∀A. ¬ηA (on surface A)

Using previous specifications, we are now able to express that points
B and C are equidistant from ball A:

Definition 5.20. Equid (B C :N ) : N :=
Caract (fun X :object ⇒ (η B Point ∧ η C Point ∧

η B (on surface (ι X)) ∧ η C (on surface (ι X)))).

Using lemma 5.15 after unfolding definition 5.20, we will first prove
that the case corresponding to an equidistance relation involving a single
point must be ruled out:

Lemma 5.16. ∀A. ¬ηA (Equid A A)

This lemma avoids the contradiction highlighted in (Gruszczynski
and Pietruszczak, 2008) meaning that there is no need to modify the
definition of Equid. The following lemmas respectively express reflex-
ivity on the two first arguments (third axiom of Pieri), symmetry and
transitivity of the equidistance relation. Firstly, by unfolding definitions
5.19 and 5.20:

Lemma 5.17. ∀AB. ηB (on surface A) → ηA (Equid B B)

Secondly, by simply unfolding definition 5.20:

Lemma 5.18. ∀AB C. ηA (Equid B C) → ηA (Equid C B)

Thirdly, from unfolding definition 5.20:

Lemma 5.19. ∀AB C D. ηA Point → ∃A′. ηA′ balls ∧
ηA′ (Equid B C) ∧ ηA′ (Equid C D) → ηA′ (Equid B D)

Finally, the last definition involves the formalization of Tarski’s Def-
inition 9 of interior points within a solid. It correspond to the simple
well-formed definition:
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Definition 5.21. InteriorPoint (B :N ) : N :=
Caract (fun X :object ⇒ (η B Solid ∧ η (ι X) Point ∧
∃ C, η C (Concent (ι X)) ∧ η C (el B))).

In the paper (Tarski, 1956a), apart from axioms resulting from regu-
lar open sets, two alternative axioms are said to be equivalent. We will
prove here that this assumption is true.

Axiom 5.3. If A is a solid and B a part of A, then B is also a solid.

Axiom 5.4. If A is a sphere and B a part of A, there exists a sphere C
which is a part of B.

From the two following lemmas, we demonstrate that they are inferen-
tially equivalent.

Lemma 5.20. (∀AB. ηA balls ∧ ηB (elA)→ ∃ C. ηC balls ∧
ηC (elB) → ∀AB. ηA Solid ∧ ηB (elA) → η B Solid

Proof. By first unfolding definitions 5.16, 3.9, 4.5 and applying lemma
4.36, then rewriting multiple times definition 4.4 and using lemmas 4.12
and theorem 4.1 (three times), together with lemmas about singletons,
the result follows. a

By lemma 5.5 and definitions 5.16 and 4.4, we get:

Lemma 5.21. (∀AB. ηA Solid ∧ ηB (elA) → ηB Solid) → ∀AB.
ηA balls ∧ ηB (elA)→ ∃ C. ηC balls ∧ ηC (elB)

These two lemmas are converse implications which give rise to a single
theorem establishing the equivalence. We can deduce two consequences:
(i) the assertion of Tarski was correct and (ii) the present conceptualiza-
tion of a solid as mereological collection of balls is coherent with these
axioms and their equivalence.

5.3. Extension of geometry of solids

The previous model has been extended by several authors (see, e.g.,
Borgo et al., 1996; Dugat et al., 1999; Bennett, 2001, to cite a few).
If one wants to specify a geometrical model, mereogeometry should be
extended by introducing a between relation to concentricity and equidis-
tance. We revisit here the idea of (Clay, 2021), which consists in two
steps, (i) to introduce a relation between balls and (ii) to derive a relation
between points. However, our approach using mereological expressions
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for solids and points relies only on singular names to preserve first-order
quantification.

Definition 5.22. Btw (B C :N ) : N :=
Caract (fun X :object ⇒ (In balls X ∧ ∃ D E F, η D (Concent B) ∧

η E (Concent C ) ∧ η F (Concent (ι X)) ∧ η D (ED F E)))

Using this definition, the two lemmas referred as T4 and T5 in (Clay,
2021) are easily proved. Firstly, using contraposition, unfolding defini-
tion 5.22, lemmas 5.2, 5.4, 5.2, definition 5.15, we get:

Lemma 5.22. ∀AB D. ηD (Btw A B)→ ¬ηA (Concent B)

Secondly, by unfolding definition 5.22, rewriting definition 5.15, then
using multiple times lemmas 5.4 and 5.2, we get:

Lemma 5.23. ∀AB D P QR. ηR (Concent D) ∧ ηP (Concent A) ∧
ηQ (Concent B) → (ηD (Btw A B) ↔ ηD (Btw A B))

We can now express the relation between involving points as follows:

Definition 5.23. btw (A B:N ) : N :=
Caract (fun X :object ⇒

(η A Point ∧ η B Point ∧ ∃ A’ B’, η A’ balls ∧ η B’ balls ∧
η A’ (Concent A) ∧ η B’ (Concent B) ∧ η (ι X) (Btw A’ B’))).

From which, first unfolding definitions 5.22, 5.23 and 3.12, then using
lemma 5.2 and finally, unfolding again def. 3.12 and applying lemma 5.3,
we can derive that all balls concentric with a given ball lying between
points A and B, are included into all balls that are between A and B.

Lemma 5.24. ∀AB D. ηD (btw A B) ↔ (ηD balls ∧
(Concent B) ⊆ (btw A B))

The code for mereogeometry is available in code mereogeometry and
has required 37 definitions, 416 lemmas and 22 theorems.

6. Conclusion

We have proposed in the first part, an interpretation of Leśniewski’s
mereology in monadic second-order logic whose purpose is to provide
an expressive theory. Leśniewski’s axioms8 become theorems under the

8 Except for the initial axiom M.

https://www.univ-smb.fr/listic/technologies/logiciels/modeles-decidables-pour-la-specification-d-ontologies/modele-decidable-mereogeometry


90 Patrick Barlatier and Richard Dapoigny

λ-MM translation, and hence it follows that the translation of every
theorem of Leśniewski’s first-order theory of ontology is also a theorem
of our system. In addition, the weak supplementation principle has also
been proved as a theorem. Further, most axioms of set theory become
provable using collections as sets and collective classes as proper classes.
In the future, we also plan a more thorough investigation about a mere-
ological version of Morse’s class-theory in the same spirit as pointed out
in early works (see, e.g., Pietruszczak, 1996; Welch and Horsten, 2016)
but with quite distinct assumptions e.g., the use of collections.

The library has been expressed in the Coq theorem prover (see Bertot
and Castéran, 2004))using CoqHammer (see Czajka and Kaliszyk, 2018),
an automated reasoning hammer tool for Coq, but other provers are
possible (e.g., Isabelle/HOL Wenzel et al., 2008). The choice of Coq
has been motivated by an accessible reading of proofs by contrast with
other theorem provers. CoqHammer9 is an extension of Coq which del-
egates automated proving to different first-order theorem provers. It is
a translation from the Calculus of Inductive Constructions, with certain
extensions introduced by Coq, to untyped first-order logic. It involves
some automated reasoners such as Z3, CVC4, Eprover and Vampire.
Whenever automated reasoning fails with CoqHammer, then interactive
theorem proving is manually achieved in Coq. The output is a library
having the form of an executable file that can be incorporated in any
Coq-based application, such as Tarski’s geometry of solids.

In a second part, we have suggested a mereology-based specification
of Tarski’s geometry of solids relying on the previous library. Many defi-
nitions are original such as that of geometric space (Gspace), the concept
of Point specified from saturated sub-spheres, and that of Equidistance.
We have shown that they are able to verify important properties of points
such as the equidistance between them. Finally, we prove the inferential
equivalence between the two axioms set forth by Tarski. Adding the
definition of betweenness we are able to revisit the specification of Clay.
The present formalization is a basis of a long-term project to formalize
a region-based theory of space based on Tarski’s geometry of solids. In
addition, it is intended to serve as a theoretical basis in formal ontologies
by explaining how to exploit monadic second-order mereology in order
to design specific part-of relations. Applications in formal ontologies will
be also considered as another investigation domain.

9 Its main limitations are higher-order features and type classes.
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pressed a set of three axioms for a Boolean algebra on a set of objects and
it is shown that these three axioms are inferentially equivalent to a single
axiom (see Clay, 1969). Clay has proved that axiom A.1 is inferentially
equivalent to a pair <W,ZD> in which <W> stand for a formula which
is independent whether the lowest element exists or not, and ZD is a for-
mula expressing that zero is deleted. Axiom A.1 stands for a complete
boolean algebra with zero deleted (V denotes the universe of objects):

Axiom A.1. ∀XY. X ¬ Y ↔ (In V X ∧ In V Y ∧ (Y ¬ Y →
(∀ β α. incl α V ∧ incl β V ∧ In α Y ∧ (∀ Z. In β Z ↔
((∀W. In α W → W ¬ Z) ∧
(∀W. W ¬ Z → ∃ ST. In α S ∧ T ¬ W ∧ T ¬ S)))→
∃L. set eq β (ιL) ∧ X ¬ L)))

From the above axiom we can derive a simpler version denoted A.1′ in
which the terms X ∈ V and Y ∈ V are removed. In the case of a boolean
algebra without zero, the resulting system would not have a minimal
element leaving out the case of a boolean algebra having precisely two
elements. Therefore, we assume that there exists at least two distinct
objects in the boolean algebra:

Axiom A.2. ∃XY. ¬(X = Y )
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The central idea is to prove, from axioms A.1 and A.2 together with
the supremum and lowerbound definitions, that ¬ is a partial order, i.e.,
it is reflexive, transitive and antisymmetric. We will express <W,ZD> as
a pair of theorems. It requires first to introduce the supremum definition.
Reflexivity is easily proved by axiom A.1:10

Lemma A.1. ∀X. X ¬ X

We introduce the supremum of a set a, sup(a), by the definition:

Definition A.1. sup(a :N ) : N := Caract (fun X :object ⇒
((∀ Y, In a Y → Y ¬ X) ∧
∀ Y :object, Y ¬ X → ∃ S T,
In a S ∧ T ¬ Y ∧ T ¬ S))

From which we can infer the following lemmas. Firstly, by definitions
A.1 and 3.2, then applying propositional extensionality, we get:

Lemma A.2. ∀Xa. In (sup a) X ↔ (∀Y. In a Y → Y ¬ X) ∧
(∀Y. Y ¬ X → ∃ ST. In a S ∧ T ¬ Y ∧ T ¬ S)

Secondly, by lemmas A.1, 3.4, A.2 and axiom A.1, we obtain:

Lemma A.3. ∀Xa. In a X → ∃Z. set eq (sup a)(ιZ)

Thirdly, by A.2 and lemmas about singletons, we get:

Lemma A.4. ∀XZ. (∀Y. Z ¬ Y ) → In (sup (ι Z))X

Fourthly, by lemmas A.4, A.3 and lemmas on singletons, we get:

Lemma A.5. ∀XY Z. (∀Y. Z ¬ Y ) → X = Y

Fifth, by lemma A.5, contraposition and negation of the existential, we
get:

Lemma A.6. ∀XY Z. ¬(X = Y ) → (∃W. ¬(Z ¬W ))

Now, by lemma A.6, we can prove ZD as follows:

Lemma A.7. (∃XY. ¬(X = Y )) → (∀Z. ∃W. ¬(Z ¬W ))

From lemma A.7, we get:

10 In fact using its simplified version.
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Lemma A.8. (∃ X Y :object, ¬(X = Y )) → ∀ Z :object, (∀ β α,
(In α Z ∧ (∀ X, In β X ↔ ((∀ Y, In α Y → Y ¬ X) ∧
(∀ S T, S ¬ X ∧ ¬(S ¬ T ) → ∃ P Q R, In α P ∧
Q ¬ S ∧ Q ¬ P ∧ ¬(Q ¬ R))))) ↔ (In α Z ∧ (∀ X,
In β X ↔ ((∀ Y, In α Y → Y ¬ X) ∧ (∀ Y, Y ¬ X →
∃ S T, In α S ∧ T ¬ Y ∧ T ¬ S))))).

Moreover, applying four times lemma A.8, we obtain:

Lemma A.9. (∃ X Y :object, ¬(X = Y )) → (∀ X Y :object, X ¬ Y ↔
(Y ¬ Y → (∀ β α, incl α V ∧ incl β V ∧ In α Y ∧
(∀ Z, In β Z ↔ ((∀ W, In α W → W ¬ Z ) ∧
(∀ W, W ¬ Z → ∃ S T, In α S ∧ T ¬ W ∧ T ¬ S))) →
∃ L, set eq β (ι L) ∧ X ¬ L))) ↔
∀ X Y :object, X ¬ Y ↔ (Y ¬ Y → (∀ β α, incl α V ∧
incl β V ∧ In α Y ∧ (∀ Z, In β Z ↔ ((∀ W, In α W →
W ¬ Z ) ∧ (∀ W T, W ¬ Z ∧ ¬(W ¬ T ) →
∃ P Q R, In α P ∧ Q ¬ W ∧ Q ¬ P ∧ ¬(Q ¬ R)))) →
∃ L, set eq β (ι L) ∧ X ¬ L)).

Using axiom A.2, lemmas A.9 and A.1 (the simplified version), we
can now prove W :

Theorem A.1. ∀XY. X ¬ Y ↔ (Y ¬ Y → (∀ β α.incl α V ) ∧
incl β V ) ∧ In α Y ∧ (∀Z. In β Z ↔
((∀W. In α W →W ¬ Z) ∧
(∀WS. W ¬ Z ∧ ¬(W ¬ S)→ ∃ PQR. In α P ∧
Q ¬W ∧Q ¬ P ∧ ¬(Q ¬ R))))→
∃L. set eqβ (ι L) ∧X ¬ L))

Using axiom A.2 and lemmas A.2 and A.7, we get:

Lemma A.10. ∀Xa. In (sup a) X ↔
((∀Y. In a Y → Y ¬ X) ∧ ∀WZ. W ¬ X ∧ ¬(W ¬ Z)→
∃ PQR. In a P ∧Q ¬W ∧Q ¬ P ∧ ¬(Q ¬ R))

By lemma 3.7 and axiom A.1, we obtain:

Lemma A.11. ∀XY. (∀Z. Y ¬ Z → X ¬ Z)→ X ¬ Y

From theorem A.1, lemmas A.1 and A.10, we have:

Lemma A.12. ∀XY a.X ¬ Y ∧In a X → ∃L.set eq(sup a)(ι L)∧X ¬ L
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From lemmas A.1 and A.12, we get:

Lemma A.13. ∀Aa. In a A→ ∃L.set eq(sup a)(ι L)

In order to complete the proof, we define the characteristic function
of the lowerBound assuming that the lower bound of a given object Y is
the set lowerBound Y of all X such that X ¬ Y is true:

Definition A.2. lowerBound (Y :object) : N :=
Caract (fun X :object ⇒ (X ¬ Y )).

Using definition A.1 and propositional extensionality, we get:

Lemma A.14. ∀XY. In (lowerBound Y )X ↔ X ¬ Y

Using definition A.1, and lemmas A.10, A.14 and A.1, we get:

Lemma A.15. ∀X.In (sup (lowerBound X)) X

Using first lemmas A.14 and A.1, then lemmas A.13, symmetry of
set eq, lemma A.15 and finally lemmas about singletons, we obtain:

Lemma A.16. ∀X. set eq (ιX) (sup(lowerBound X))

Finally, using lemmas A.11, A.14, A.12, A.15, A.16, set extension-
ality for singletons (from lemmas 3.4 and 3.3), definitions 3.5 and 3.4,
transitivity and asymmetry follow:

Theorem A.2. ∀ABC. A ¬ B ∧ B ¬ C → A ¬ C

From theorem A.2, definition 3.4, lemmas A.14, A.16, A.2 and using
propositional extensionality, we get:

Theorem A.3. ∀AB. A ¬ B ∧ B ¬ A → A = B

According to theorems A.1, A.2 and A.3, relation ¬ is a partial order
relation. The introduction of the part-of relation referred to as el, relies
on the relation ¬ as shown by definition 3.18. In this definition, the
constructor provides the property which is defined in the right mem-
ber. Subsets of names el(a) ⊆ V are built from all values of X which
satisfy the right member. From theorem 3.1, it can be rewritten as
η(ι(X), el(a)). Some additional lemmas are required to state that this
minimal model satisfies the structure of a boolean algebra with zero
deleted. We only recall important lemmas for the sake of simplicity.
Firstly, unfolding definitions 3.9, 3.18, 3.5, 3.3, 3.2 and by lemmas about
singletons, we get:
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Lemma A.17. ∀AB. ηB (elA)↔ (Individual B ∧ Individual A ∧
∃XY. In B X ∧ In A Y ∧X ¬ Y )

Secondly, unfolding definition 3.18, 3.4, applying lemma A.17 and
lemmas about singletons, we obtain:

Lemma A.18. ∀XY. X ¬ Y ↔ η(ιX)(el(ιY ))

Theorem A.4. ∀ X Y :object, η (ι X) (el (ι Y )) ↔
(In V X ∧ In V Y ∧ (η (ι Y ) (el (ι Y )) →
∀ b a :N, (η (ι Y ) a ∧ (∀ Z : object, η (ι Z ) b ↔
In V Z ∧ (∀ W :object, η (ι W ) a → η (ι W ) (el (ι Z )))∧
∀ W :object, η (ι W ) (el (ι Z )) → ∃ S T :object,
η (ι S) a ∧ η (ι T )(el (ι W )) ∧ η (ι T )(el (ι S)))
→ ∃ L :object, set eq b (ι L) ∧ η (ι X)(el (ι L)))))

Proof. The first implication requires axiom A.1, lemmas A.18 (twice),
3.4, 3.10 (twice) and lemmas about singletons. The second implication
is proved by applying several times lemmas A.18 and 3.10, then using
definition 3.9 and lemmas about singletons. a

Unfolding definitions 3.4, 3.3, 3.9 and 3.5, then by lemmas A.18, 3.2
and lemmas about singletons, we get:

Lemma A.19. ∀ab.(∃AB. ηA a ∧ ηB (el b) ∧ ηB (elA))
→ ∃XY. η(ι X) a ∧ η(ι Y ) (el b) ∧ η(ι Y ) (el(ι X))

Using lemma A.19 together with lemmas about singletons, we obtain:

Lemma A.20. ∀ab. (∃ cd. η c b ∧ η d (el a) ∧ η d (el c))↔
∃EF. η(ι E) b ∧ η(ι F ) (el a) ∧ η(ι F ) (el(ι E))

We finally obtain the expected result:

Theorem A.5. ∀AB, η A (el B) ↔ (eta A A ∧ η B B ∧
(η B (el B) → (∀ C a, η B a ∧ (∀ D, η D C ↔
(∀ E :N, η E a → η E (el D)) ∧ (∀ E, η E (el D) →
∃ F G, η F a ∧ η G (el E) ∧ η G (el F)))→ η A(elC ))))

Proof. The first implication is proved unfolding definitions 3.9, 3.5,
then using lemmas 3.6, 3.7, A.17, A.18, A.20, A.1, theorem A.4 and
lemmas about singletons. The second implication, needs definitions 3.4,
3.5, 3.18, then lemmas 3.6, 3.7, 3.4, A.17, A.18, theorem A.4, symmetry
of set eq and lemmas about singletons. a
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Quantification occurs here over names, i.e., second-order variables. In
such a way, theorem A.5 states that Mereology based on the el function
has the structure of a complete boolean algebra without zero.

Theorem A.6. The structures of mereology and those of complete
boolean algebra with zero deleted are identical.

Proof. The first implication is proved according to Clay’s work. The
second implication has been proved in λ-MM as detailed above. It follows
that the equivalence holds. a
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