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Two-dimensional Lorentz gases formed by obstacles in the shape of circles, squares, and retroreflectors are
reported to show a pronounced linear negative magnetoresistance at small magnetic fields. For circular obstacles
at low number densities, our results agree with the predictions of a model based on classical retroreflection. In
extension to the existing theoretical models, we find that the normalized magnetoresistance slope depends on
the obstacle shape and increases as the number density of the obstacles is increased. The peaks are furthermore
suppressed by in-plane magnetic fields as well as by elevated temperatures. These results suggest that classical
retroreflection can form a significant contribution to the magnetoresistivity of two-dimensional Lorentz gases,
while contributions from weak localization cannot be excluded, in particular for large obstacle densities.

DOI: 10.1103/PhysRevB.97.115301

I. INTRODUCTION

The magnetoresistivity of two-dimensional electron gases
defined in semiconductor heterostructures can show pro-
nounced deviations from the behavior expected within the
Drude-Boltzmann model, i.e., a constant longitudinal and a
linear Hall magnetoresistivity. The deviations can be traced
back to various origins. For example, the quantization of the
cyclotron motion in a perpendicular magnetic field B, lies at
the heart of the quantum Hall effect and of the Shubnikov—
de Haas oscillations in the longitudinal resistivity py.(B.1)
[1], while weak localization increases p..(B,) at B, =0,
which decays in a characteristic, nonlinear way as B, is
increased [2]. Weak localization also occurs in disordered
arrays of classical scatterers as a consequence of an interplay
between classical chaos and interference of the electron waves
[3,4]. Interaction effects typically generate a relatively broad
negative, approximately parabolic correction to p,.(B1) [5].
Within a hydrodynamic model that includes a B-dependent
viscosity of the electron liquid, interactions have been used
to explain the giant negative magnetoresistance (GNMR) [6],
observed in two-dimensional electron gases with high electron
mobilities [7-11]. One further possible origin of a negative
magnetoresistance are memory effects. They are caused by
time-independent components in the scattering potential which
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do not randomize the electron momentum in the sense of the
relaxation time approximation and thus generate deviations
from the Boltzmann expressions for the magnetoresistivities
[12]. A suitable model system for studying memory effects,
which have a classical character, is an electron gas exposed
to a static, Poisson-distributed array of identical obstacles. It
was first proposed by Lorentz [13] and is therefore known
as Lorentz gas. Two-dimensional Lorentz gases (2DLGs) are
of particular interest since a perpendicular magnetic field has
profound effects on their transport properties. Several theo-
retical studies on the magnetotransport properties of 2DLGs
have been reported, which has resulted in the identification
of various memory effects [14-19]. A prominent example are
electrons that do not contribute to the longitudinal transport
since they move forever in an undisturbed cyclotron orbit. For
circular obstacles acting as scatterers at low number densities
ng, it has been shown that this memory effect causes an
exponential decrease of p,, as B, increases [14,15]. Such
analytic expressions originate from kinematic models which
require a dimensionless obstacle number density n* = insdf
to be small compared to 1. Here, d; denotes the characteristic
size of the scatterers. Extensions to larger number densities
have been carried out numerically for circular obstacles, using
molecular dynamics simulations. They have revealed that the
conductivity as a function of n* and B, forms a delocalized,
conductive phase, which is sandwiched between two localized
phases at low and at high obstacle densities [20-22].

Of particular relevance to this study are the works of
Dmitriev et al. [18] and Cheianov et al. [19] on retroreflection
in dilute 2DLGs with circular obstacles. This type of memory

©2018 American Physical Society
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FIG. 1. (a) [llustration of the memory term caused by retroreflec-
tion at B; = 0 (left) and B, > 0 (right). The electron moves through
the obstacles (circles) which define the ballistic corridors before
and after backscattering (light gray, right), with their overlap area
marked in dark gray. (b) Scanning electron micrograph of the 2DLG
with circular obstacles of radius d; = 2 umandn, = 1.95x10'! m~2
(n* = 0.195). The obstacle centers and the corresponding Voronoi
tessellation are shown as an overlay. (c) Histogram of the normalized
Voronoi cell areas A for our arrays with number density n, =
1.95x 10" m~2, and the fit (red curve) to the probability density
function p(A) as described in the text.

effect can be understood in terms of an electron that gets
scattered at an obstacle by an angle close to & after having
traveled a certain distance L ballistically. This distance is
related to a two-dimensional corridor of area L x d; which
is free of obstacle centers [see Fig. 1(a) for an illustration].
After the electron has undergone backscattering, it probes the
same corridor again which is still free of obstacles, due to
the static character of the scattering potential. This memory
term increases the resistance since any scattering event at
time-dependent potentials in this corridor would give the
electron a momentum component in forward direction. The
overlap between the corridors related to the incoming and
the backscattered electron trajectory [see Fig. 1(a)] equals
the area probed twice, and is thus a measure of this memory
term. As B, is increased, this overlap decreases due to the
Lorentz deflection. Consequently, B, suppresses this memory
term and causes the resistance to decrease. Remarkably, this
negative magnetoresistivity has been predicted to be linear
[18]. Experiments by Gusev et al. [23] are in agreement
with this prediction. Magnetotransport in 2DLGs formed by
arrays of circular obstacles has been studied experimentally
by Yevtushenko et al. [3], also at relatively low n*. The
authors observe a negative magnetoresistance which they
explain by ballistic weak localization. This takes into account
correlations in the electronic motion as well as the classical
character of the obstacles. Due to their much larger size than
the Fermi wavelength, they do not split the wave functions
in time-reversed backscattering paths as assumed within the
conventional weak localization description. However, it has
been argued later on that this phenomenology can also be
explained by classical retroreflection [18]. Thus, the rele-
vance of these two mechanisms, namely, classical retroreflec-
tion and quantum mechanical ballistic weak localization, for
the observed negative magnetoresistance of two-dimensional

electron gases exposed to random arrays of classical obstacles
is still an open question.

Here, we report magnetotransport measurements on 2DLGs
composed of classical scatterers. We find an approximately
linear negative magnetoresistivity close to B; = 0. The de-
pendencies of the peaks on the parameters shape and density
of the obstacles, temperature as well as on in-plane magnetic
field is reported. Our data suggest, in brief, that classical
retroreflection does contribute significantly to the measured
peaks while a contribution of ballistic weak localization cannot
be excluded.

The paper is organized as follows. In Sec. II, we describe
the sample preparation and the measurement setup. The ex-
perimental results are presented and interpreted in Sec. III. We
end with a summary and conclusion in Sec. V.

II. SAMPLE PREPARATION AND EXPERIMENTAL SETUP

A GaAs/Alyp3Gag7As heterostructure with a  two-
dimensional electron gas (2DEG) 150 nm below the surface
is used. The pristine 2DEG has a density of 2.5x10'> m~2
and an electron mobility of 340 m?/Vs, corresponding to a
mean-free path of £ = 31 um at liquid helium temperatures.
The quantum scattering time as determined from the envelope
of the Shubnikov—de Haas oscillations [24] amounts to
7, = 2.4 ps which gives a quantum scattering length of
£y = 530 nm. The Lorentz array is prepared by generating
two sets of random numbers which define the x and y
coordinates of the obstacle centers. The correct statistical
properties of the arrays are checked by a Voronoi tessellation of
the array, where each obstacle center defines a cell containing
all points closer to this center than to any other [see Fig. 1(b)].

The probability density function p(A) of the Voronoi cell
areas has no known analytical expression, but can be well ap-
proximated by p(A) = 32./7/2w A>3¢~354, where A denotes
the normalized cell area [25]. This expression provides excel-
lent fits to our arrays for all obstacle densities, and the average
value (A) = 1 as well as the standard deviation o4 ~ /2/7 are
well reproduced [see Fig. 1(c)]. The obstacles in one array have
identical shapes (circles, squares, and retroreflectors, see the
insets in Fig. 2) and sizes characterized by a lateral extension
d; = 1 and 2 pum, respectively. Here, d; is the diameter of the
circles or the edge length of the squares and retroreflectors,
respectively. For the implementation of an array, one shape is
allocated with random orientation to each center coordinate
by a pattern generator and then transferred to the samples by
electron beam lithography and subsequent reactive ion etching.
The etch depth of roughly 150 nm in all samples ensures
depletion of the electron gas in the etched regions. An example
of such an array is shown in Fig. 1(b).

From Aharonov-Bohm experiments on comparable struc-
tures in large magnetic fields [26], we estimate the lateral deple-
tion length around the etched structure to ~75 nm. Taking this
depletion into account, the corresponding densities of the ar-
rays of circles and retroreflectors are n* = 0.065, 0.13, 0.195,
and 0.26, while for the arrays of squares, the densities are
smaller by a factor of 7 /4. This choice of parameters ensures
that on the one hand, the obstacle size is large compared to the
Fermi wavelength of 250 nm such that the scattering can be
regarded as classical, while on the other hand, the resistivity
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FIG. 2. Longitudinal magnetoresistance of the 2DLGs with var-
ious obstacle densities n* for circles with d; =2 pum (a) and 1 um
(b), squares with d; = 2 um (c), and retroreflectors with d; = 2 um
(d). The interval of the linear regime is indicated by the dashed,
vertical lines. Scanning electron electron microscope pictures of the
corresponding obstacles that form the arrays are shown in the insets.
The temperature was 1.4 K in all measurements.

of the arrays is dominated by the patterned obstacles. The
mean-free path of the Lorentz gas composed of circular disks
in the dilute limit is given by £; = (ngdy) ", corresponding
to values below 8 um for all obstacle densities, significantly
smaller than €. Only the arrays with the smallest n,; values
of n, = 6.5x10' m~2 can be considered as dilute, which

defines the range of validity of the models mentioned above,
i.e., in Refs. [14—19]. Furthermore, the absolute number of
obstacles varies between 975 and 20 000 which should ensure
reasonable ensemble averaging. All arrays are located in Hall
bar structures and have a size of 100 £mx200 pwm. The insets
in Fig. 2 illustrate the geometries of the individual obstacles.

Measurements are carried out in the mixing chamber of
a 3He/*He dilution refrigerator with a base temperature of
25 mK and in a *He gas flow cryostat that can be operated
at temperatures between 1.4 and 300 K. Both cryostats are
equipped with superconducting solenoids and a rotatable sam-
ple stage. They are used for applying perpendicular magnetic
fields B as well as for in-plane components B). An ac current
(amplitude 500 nA, 17.7 Hz) is applied, and the magnetore-
sistance components R,.(B ) and R,,(B,) are measured via
voltage probes using lock-in amplifiers.

III. EXPERIMENTAL RESULTS AND DISCUSSION

Figure 2 shows the measured longitudinal magnetoresistiv-
ities py,(B1) of the 2DLGs formed by circles (d; = 1 and
2 um) as well as by squares and retroreflectors with d, =
2 pum. A pronounced peak centered at B, = 0 is observed in
all samples which, for larger n*, extends well into the regime
where Shubnikov—de Haas oscillations are visible. For small
B, , the magnetoresistivity within the peak is approximately
linear and develops a nonlinear behavior as B increases. Note
that the resistivity of the arrays of squares with the largest
n* is significantly larger than that one of the circles at the
same obstacle density. We attribute this to the fact that the
array of squares is much closer to the percolation threshold
of n: = 0.246 for the squares vs 0.359 for the circles [27]
(the percolation threshold for the arrays of retroreflectors has
not been determined yet to the best of our knowledge). This
may also explain the structures visible in the flanks of the
peaks in these samples since the proximity to the percolation
threshold makes the transport more sensitive to local details of
the potential.

At first sight, the magnetoresistance peaks resemble those
observed on pristine high-mobility 2DEGs, which are usually
referred to as giant negative magnetoresistance (GNMR)
[7-11]. This structure, which is also present in our pristine
samples, shows, aside from a marked dependence on the width
of the Hall bar [28], the parametric dependencies as reported
earlier: a rapid suppression as the temperature is increased to
1 K as well as by parallel magnetic fields [9,29]. The amplitude
of the GNMR structure in our samples is in the range of
a few Q only and thus negligible in the arrays containing
artificial obstacles at all our obstacle number densities. Our
data even suggest that already at our lowest obstacle density, the
GNMR is strongly suppressed [29]. Furthermore, the dominant
magnetoresistance peak observed in our samples does not
depend significantly on in-plane B fields and is much more
robust with respect to thermal smearing.

As n* is increased, the linear part of the peak tends to get
more pronounced and increases both in amplitude and width.
For large obstacle densities, the amplitude of the corresponding
conductance dip is in the range of 2e?/h, the maximum
possible amplitude of weak localization. For low densities,
however, the amplitude is significantly larger, reaching values
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FIG. 3. (a) Temperature dependence of R,, for the array formed
by retroreflectors with a density of n* =0.195 and d; =2 um.
(b) Effect of in-plane magnetic fields on the magnetoresistivity, for
the array of circles with d; = 1 um and n* = 0.195. The traces are
offset by 50 2 each for clarity.

as high as ~250¢?/ h [29], which excludes weak localization as
the dominant origin. Furthermore, the peak is more prominent
in the Lorentz gases formed by retroreflectors in comparison to
those formed by circles and squares of size 2 pum. We have also
measured arrays of squares and retroreflectors withd; = 1 um
and found no significant differences to the corresponding
arrays of circles [29]. We take this as an indication that for
the obstacles with the smaller size, the geometric smearing
of the obstacle shape by the lateral depletion is already
significant and leads to a convergence of the scattering cross
sections. In Fig. 3(a), the temperature dependence of the
peak is exemplified using the retroreflector array of density
n* = 0.195. A qualitatively similar behavior is observed for the
other arrays. As the sample is warmed from 25 to 800 mK, the
peak shape remains nearly unaffected while the Shubnikov—de
Haas oscillations show thermal smearing. This can be seen as
an indication that weak localization does not dominate the peak
shape. As the temperature is increased to 8 K, the linear part of
the peak, visible for magnetic fields below 30 mT in this case,
decays to zero amplitude. The background peak has a much
weaker temperature dependence and is still clearly visible at
32 K.

The influence of in-plane magnetic fields B) is shown
in Fig. 3(b), exemplified for the array of circles with with
d; = 1 um and n* = 0.195. These data have been obtained
by rotating the samples with respect to the fixed magnetic field
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FIG. 4. Result of a model simulation (blue circles) of p,,(B) for
a 2DLG formed by an array of circles (d; = 1 um and n* = 0.225).
The red line shows a linear approximation of the data points at the
seven lowest magnetic fields (B < 34 mT).

by angles up to ~1.4° around /2, such that a change of the
perpendicular component B; by +0.15T was reached under
approximately constant By (changes of less than 2 mT). The
peak is suppressed as B is increased and remains barely visible
at B = 12 T.

In order to narrow down the character of this peak further,
we have carried out molecular dynamics simulations for an
array formed by circles with d; =1 um and n* = 0.225.
The electrons and scatterers interact via a standard shifted,
purely repulsive Weeks-Chandler-Andersen (WCA) poten-
tial, u(r) = 48[(rx/r)12 — (rx/r)6 + 1/4] for r < 216y and
u(r) = 0 otherwise. Here, we have set the energy parameter
to e =0.1Er. We use 100 statistically independent matrix
structures. Newton’s equations of motion are integrated using
the velocity-Verlet algorithm [30] with a time step of 1073¢,
with 7y being the time an electron needs to travel ballistically
the distance d;, i.e., #p = 9.23 ps for our samples. All electrons
move with the Fermi velocity in regions where u = 0. At
each magnetic field, 2400 electrons are used for runs of 10%%,
duration. In Fig. 4, the result of such a model calculation is
shown. Both features of the magnetoresistance, namely, the
broad shoulder and the smaller, approximately linear, peak
close to B, = 0, are reproduced. The linear regime extends up
to B; ~ 30 mT, which is of the same order of magnitude as
observed experimentally for comparable parameters. A linear
negative magnetoresistivity is also obtained in corresponding
simulations for lower n* (not shown). These model calculations
demonstrate that classical effects can generate the measured
structure also in the regime of large obstacle densities and
justifies its discussion in terms of memory effects.

We attribute the broad background component of the peak
predominantly to undisturbed cyclotron motion of electrons
in-between the obstacles [15]. This structure is of no further
interest here. Rather, we focus on the approximately linear
peak close to B; = 0. As mentioned in the Introduction,
theoretical studies were carried out for low obstacle densities
[18], showing that retroreflection causes the resistance to
decrease linearly as a function of B in the regime w.t; < 0.2
where o, denotes the cyclotron frequency and t, the obstacle-
generated scattering time, i.e., T, = (n,d,vp)~" with the Fermi
velocity vp. Here, d; takes the role of the total scattering
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cross section for circles. These results have been derived for
the limit of low obstacle densities, characterized by d; < £
with the obstacle-dominated mean-free path of ¢; = vpt;.
Interestingly, the normalized slope o of p,,(L), defined as

P07y do

is independent of the obstacle density in this regime and has
a value which is characteristic for the obstacle shape. For
circular obstacles, o, = —0.04 has been reported [18], while
to the best of our knowledge, other shapes have not yet been
considered in this context. The numerical studies have shown
that such a linear magnetoresistivity is still to be expected at
relatively large obstacle densities of n* ~ 0.05. These results
are in agreement with the experiments of Gusev et al. in
Ref. [23]. The fact that the obstacle positions were not random
but showed Gaussian deviations from a periodic arrangement
is of minor relevance in that context since, at low obstacle
densities, retroreflection is a single-obstacle process.

In Fig. 5(a), we show the normalized magnetoresistivities
for the arrays presented in Fig. 2. Here, we have followed
Ref. [18] and determined the scattering times according to
7, = (ny0,vF)"!, where oy is the total scattering cross sec-
tion of one obstacle, i.e., o5, =d;, 0,0 = 4%, and o, x =

2[(2 — V2)w + +/2d,] ~ 0.98d,, where w denotes the width
of the retroreflector bars (see also Fig. 2), in our case w =
0.45 pm for the samples withd; = 2 um and w = 0.3 pm for
the samples with d; = 1 um, respectively. A linear regime is
found for all arrays, with an interval of varying size, extending
up to w. Ty, & 0.4, 0.5, and 0.9 for the arrays of retroreflectors,
squares, and circle with d; = 2 pum, respectively. The array
formed by circles with dg = 1 um shows a smaller interval,
with an upper limit of w.t; & 0.2. This is in rough agreement
with the interval sizes of w.t, ~ 0.2 found in numerical sim-
ulations for the dilute case [18,19], as well as with the results
of our molecular dynamics simulations (see Fig. 4). Within
the retroreflection picture, it corresponds to the magnetic field
where the overlap between the ballistic corridors of injected
and retroreflected electrons becomes insignificant.

The values of « are plotted as a function of the scattering
times in Fig. 5(b). Here, 1y denotes the time the electron needs
to move ballistically the distance dj, i.e., 7o = 4.3 ps for d; =
1 um and 7y = 8.6 ps ford; = 2 um. As 7, /1) reaches values
of 2 or above, « is comparable to the value of 0.04 as predicted
theoretically for the dilute case [18]. For all obstacle shapes,
« increases as T, is decreased. This increase is largest for the
retroreflectors with d; = 2 um, reaching a value as high as
ay = 0.48 for the sample with n* = 0.26.

These observations are interesting in two respects. First
of all, they represent an experimental verification of the
suggestion by theory that « is a measure of the retroreflectivity
of the individual obstacle. While our data do not show a clear
difference in this respect between circles and squares, « is
enhanced for the retroreflectors with d; = 2 pwm in comparison
to the arrays of circles and squares of the same size. Second, if
is interpreted this way, our data suggest that the retroreflectivity
increases with increasing obstacle density. We are not aware
of any theoretical work in relation to this issue, but provide
a simple geometrical interpretation, illustrated in the inset of
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FIG. 5. (a) Experimentally determined normalized magnetoresis-
tivity of the studied arrays and the corresponding linear fits for the
different arrays. The traces at larger n* are vertically offset by 0.2
for clarity. (b) Normalized slopes « of the normalized linear negative
magnetoresistivities as a function of n*. The inset shows exemplified
retroreflected trajectores at clusters of circles and squares, as well as
a bound trajectory in a resonator formed by two retroreflectors. All
data have been obtained for 7 = 1.4 K.

Fig. 5(b). As n* increases, the probability of finding two obsta-
cles close together or even overlapping increases as well. This
leads to additional backscattering (in the sense of Ref. [18])
when the corridor of the incoming electron overlaps with one
of an outgoing electron after multiple reflections at more than
one obstacle, i.e., for spatial separations of the two trajectories
smaller than d;. The contribution of this effect could be tested
by future studies on arrays with increased obstacle density but
with a different spatial distribution statistics, for example, by
excluding overlaps or by periodic arrays with large Gaussian
disorder. In addition, in particular for the retroreflector arrays,
the formation of random resonators that localize electrons
in-between two obstacles will increase as the scatterer density
increases. Electrons may scatter into or out of such resonators
by random background scattering on phonons or residual
impurities. A clarification of how these effects contribute
quantitatively to « requires extensive theoretical studies that
are beyond the scope of this work.

In Fig. 6, the dependencies of « on the temperature and
on in-plane magnetic fields B) are shown. We observe that,
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FIG. 6. Dependence of « on the temperature (a) and on in-plane
magnetic fields B; (b), exemplified by two arrays (see Fig. 3 for
examples of the raw data).

in general, o decays as T is increased and vanishes at a
temperature of about 8 K. Among other effects like thermal
smearing, this may originate from acoustic phonons that scatter
the electrons off the ballistic corridors, thereby decreasing
their length. This is in tune with our observation that the
mean-free path ¢ decreases from 31 um at 25 mK to 20 um
at 8 K, the largest temperature where the peak can still be
analyzed. Yevtushenko et al. [3] have reported a much weaker
temperature dependence of the corresponding peak in their
arrays, which remained visible up to temperatures of 44 K.
This may be due to the significantly smaller obstacle sizes of
ds; ~ 200 nm in those arrays, as well as due to the possible
domination of these peaks by ballistic weak localization.
Furthermore, in Ref. [3], the conductivity amplitude of this
peak is studied as a function of temperature, which leads to
its interpretation in terms of ballistic weak localization with
the Ehrenfest and the dephasing times as characteristic time
scales [31]. In our data, such an analysis is hampered by
the gradual and temperature-dependent transition between the
linear and the background peaks, which impedes a meaningful
subtraction of some background conductance.

A decrease of « is also observed as a function of increasing
B [see Fig. 6(b)]. For the retroreflectors, a rapid suppression of
the peak is observed as By is increased from zero to ~8 T, while
at a further increase of By, the suppression is less pronounced.
For the circles, the suppression of the peak by B is weaker.
Also, the o values of different obstacle shapes tend to converge

towards similar values at large in-plane magnetic fields. In
relation to the well-known suppression of the conventional
weak localization peak [2], it has been established that due
to the diamagnetic shift, the increase of the electron density
of states and the modification of electron wave functions,
the electrons develop a larger sensitivity to the roughness of
the GaAs-Al,Ga;_,As interface which causes a reduction of
the mean-free path [32]. Also, B) is known to deform the
cyclotron orbits in a characteristic way [33]. In the pristine
2DEG, we observe a decrease of £ from 31 um at By =0 to
16 um at By = 12 T, which demonstrates that in fact a process
is active which suppresses the mobility in parallel magnetic
fields. This effect leads to a modified overlap of the incoming
and reflected corridors. A model for the effect of in-plane
magnetic fields on retroreflection is presently not available.
However, it appears plausible that the additional scattering
generated by B also reduces the extension of the ballistic cor-
ridors, thereby suppressing the retroreflection. The observed
convergence of the o values for different obstacle shapes as
By is increased is in tune with this picture, considering that B
effectively shortens the ballistic corridor and thus reduces the
relevance of the obstacle-specific reflectivity.

All results presented above are influenced not only by the ar-
tificial array of obstacles, but also by the background disorder.
Effects of background disorder on memory effects have been
discussed so far, to the best of our knowledge, only in relation
to the depinning of electrons from single obstacles or obstacle
clusters [34]. The small-angle (quantum) scattering time of
implies that the electrons undergo a random scattering event
after traveling an average distance of £, = 530 nm in our
samples. These small deflections can scatter the electrons out
of the retroreflection corridor, thereby limiting its length. Thus,
small-angle scattering may contribute to our observation that
retroreflection is more visible in arrays with larger obstacle
density where the ballistic corridors are shorter. A quantitative
description of these effects is beyond the scope of this paper
and requires extensive numerical simulations. However, since
we expect that quite a few small-angle deflections will be
necessary to remove the electron from the reflective corridor,
the electrons will still probe a significant fraction of the overlap
of the corridors for the incoming and the reflected electrons,
namely, over a length scale comparable to the distance between
the artificial obstacles.

It should be noted that a parabolic magnetoresistivity has
been predicted for very small magnetic fields as a consequence
of memory effects [19]. For our samples, the upper magnetic
field limit for this interval is of the order of 100 1T and thus not
resolvable in the measurements reported here. Furthermore, for
W Ty K nsdf, a BII/ 2 dependence has been predicted [19].
We do not find such a dependence in any of our samples. This
could be due to the relatively large values of n* in our sam-
ples, or a consequence of distortions by residual background
scattering [34].

We end this section by returning to the GNMR effect and
its relation to our measurements. Typical GNMR data show a
broad peak in p,, (B, ) with the phenomenology as described
above, plus a small peak close to B, = 0 on top, which has
been attributed to sparse oval defects that act as Lorentz array
and shows a remarkable robustness with respect to elevated
temperatures [8] as well as to in-plane magnetic fields [8,29].
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Within this picture, it would thus correspond to the broad
maximum we observe in our 2DLGs. On the other hand, the
small peak we interpreted in terms of retroreflection is not
resolved in the GNMR measurements.

IV. SUMMARY AND CONCLUSIONS

A linear negative magnetoresistance is observed in two-
dimensional Lorentz gases in the classical regime, in qualita-
tive agreement with both the predicted magnetoresistivity due
toretroreflection at the obstacles at small scatterer densities and
a numerically calculated classical magnetoresistivity at large
scatterer densities. It can be concluded that retroreflection,
one member of the family of classical memory effects, is the
dominant origin of this peak in our samples. A comprehensive
phenomenology of this peak has been presented, including
its dependence on the density and shape of the obstacles,
on the temperature as well as on in-plane magnetic fields.
The measurements confirm the existing theory which has fo-
cused on circular-shaped obstacles in the low-density regime.
However, the normalized slope o of the magnetoresistance

decreases as the temperature or the in-plane magnetic field is
increased and increases with a larger density or retroreflectivity
of the obstacles. These results cannot be understood within the
presently available models. We have tentatively explained the
behavior of o as a function of the obstacle density in terms
of additional retroreflection that emerges due to the formation
of clusters and/or resonators by the obstacles. Although our
molecular dynamics simulations suggest that retroreflection
does contribute to the experimentally observed structure, we
cannot exclude an additional contribution by ballistic weak
localization, which, however, would be non-negligible only
for arrays with large obstacle densities. A further clarification
would require theoretical work that extends to larger obstacle
densities and includes the effects of the obstacle shape as well
as of in-plane magnetic fields.
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