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Abstract

We address the problem of stochastic combinatorial semi-bandits, where a player can select from P
subsets of a set containing d base items. Most existing algorithms (e.g. CUCB, ESCB, OLS-UCB) require prior
knowledge on the reward distribution, like an upper bound on a sub-Gaussian proxy-variance, which is
hard to estimate tightly. In this work, we design a variance-adaptive version of OLS-UCB, relying on an
online estimation of the covariance structure. Estimating the coefficients of a covariance matrix is much
more manageable in practical settings and results in improved regret upper bounds compared to proxy-
variance-based algorithms. When covariance coefficients are all non-negative, we show that our approach
efficiently leverages the semi-bandit feedback and provably outperforms bandit feedback approaches, not
only in exponential regimes where P ≫ d but also when P ≤ d, which is not straightforward from most
existing analyses.

Keywords— Covariance-Adaptive; Bandits; Stochastic Combinatorial Semi-Bandit; Confidence Ellipsoid

1 Introduction

In sequential decision-making, the bandit framework has been extensively studied and was instrumental to
several applications, e.g. A/B testing (Guo et al., 2020), online advertising and recommendation services
(Zeng et al., 2016), network rooting (Tabei et al., 2023), demand-side management (Brégère et al., 2019),
etc. Its popularity stems from its relative simplicity, allowing it to model and analyze a wide range of
challenging real-world settings. Reference books like Bubeck and Cesa-Bianchi (2012) or Lattimore and
Szepesvári (2020) offer a wide perspective on the subject.

In this framework, a decision-maker or player must make choices and receives associated rewards, but
it lacks prior knowledge of its environment. This naturally leads to an exploration-exploitation trade-off:
the player must explore different actions to determine the best one, but an inefficient exploration strategy
harms the cumulative rewards. Efficient algorithms rely on exploiting the environment’s structure, such as
estimating parameters of a reward function rather than exploring every action.

In this paper, we focus on the stochastic combinatorial semi-bandit framework. In this setting, the player
chooses a subset of base items and receives a feedback for each item chosen. The corresponding action set
is included in the base items’ power set, and can therefore be exponentially big and difficult to explore.
However, it exhibits some structure that can be leveraged. The information collected by choosing different
intersecting subsets can be shared, but the way to do it efficiently over time remains a challenging problem.

∗julien.zhou@inria.fr
Preprint version, under review.
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Figure 1: Stochastic combinatorial semi-bandit setting where
d = 3, A = {(0, 1, 0), (1, 1, 1), (0, 1, 1)}, and P = |A| = 3.

Problem formulation. We consider a set of d ∈
N∗ base items, each item i ∈ [d] = {1, . . . , d} yielding
stochastic rewards. A player, the decision-maker,
accesses these rewards through a set A ⊆ {0, 1}d of
P = |A| ∈ N∗ actions, each corresponding to a sub-
set of items.1 We refer to actions a ∈ A using their
components vectors a = (ai)i∈[d] ∈ {0, 1}d where for
all j ∈ [d], aj = 1 if and only if action a contains
base item j (see Figure 1).

The player interacts with an environment over a
sequence of T ∈ N∗ rounds. At each round t ∈ [T ],
the player chooses an action At ∈ A, the environ-
ment samples a reward vector Yt ∈ Rd, the decision-
maker observes the realization for every item con-
tained in At, and receives their sum. The interactions between the player and the environment are summa-
rized in Framework 1.

The objective of the decision-maker is to maximize the cumulative expected rewards, or equivalently, to
minimize the expected cumulative regret defined as:

E[RT ] = T ⟨a∗, µ⟩ −
T∑

t=1

E
[
⟨At, Yt⟩

]
=

T∑
t=1

E
[
∆At

]
, (1)

where ⟨·, ·⟩ denotes the usual inner product in Rd, a∗ ∈ argmaxa∈A⟨a, µ⟩ is an optimal action, and ∆a =
⟨a∗ − a, µ⟩ is the sub-optimality gap for a ∈ A.

Framework 1 Stochastic Combinatorial Semi-Bandit

For each t ∈ {1, . . . , T}:
• The player chooses an action At ∈ A.
• The environment samples a vector of rewards Yt ∈ Rd from a fixed unknown distribution.
• The player receives the reward

⟨At, Yt⟩ =
∑

i At,iYt,i.
• The player observes Yt,i for all i ∈ [d] s.t. At,i = 1.

Assumptions. We make the following assumptions on the reward Yt. For all t ∈ [T ], Yt is independent
of Ft−1 = σ(Y1, . . . , Yt−1) and At is Ft−1−measurable. There exists a mean reward vector µ ∈ Rd and a
positive semi-definite covariance matrix Σ∗ ∈ Md(R) such that E[Yt] = µ ∈ Rd and Var(Yt) = Σ∗. There
exists a known bounds vector B ∈ Rd

+ such that for all i ∈ [d], |Yt,i − µi| ≤ Bi.

Contributions. One of the weaknesses of most existing algorithms for stochastic combinatorial semi-
bandits is their reliance on information about the reward distribution. For example, it is common to assume
the existence and knowledge of a positive semi-definite proxy-covariance matrix Γ, such that for all t ≥ 1
and for all u ∈ Rd, E[exp(u⊤(Yt − µ))] ≤ exp( 12u

⊤Γu), like for OLS-UCB in Degenne and Perchet (2016). As
the performances of these algorithms explicitly involve this information, it is essential to use the tightest
estimates possible. For example, when all the rewards are bounded by Bmax > 0, a rough proxy-covariance
Γ = dB2

maxId can be provided. However, this bound is typically very loose: it poorly uses the structure of
the reward distribution and results in sub-optimal guarantees. Estimating a good proxy-variance is actually
a challenging problem especially when dealing with non-Gaussian distributions. We propose instead an
algorithm relying on the “real” covariance matrix of the reward distribution which is easier to estimate with
good theoretical guarantees.

1Throughout the paper, the term item (or base item) refers to an element in the set [d], while an action denotes a subset of
base items, see Figure 1.
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Table 1: Asymptotic Õ(·) regret bounds for different types of feedback, up to poly-logarithmic terms in T and d, for the following
algorithms: UCB (Auer et al., 2002a), UCBV (Audibert et al., 2009), CUCB (Kveton et al., 2015), OLS-UCB (Degenne and Perchet,
2016), ESCB-C (Perrault et al., 2020), and OLS-UCBV (ours). The top of the table concerns algorithms using bandit feedbacks,
and the bottom algorithms exploiting semi-bandit ones. Notations: a refers to actions; i and j refer to items; m denotes the
maximum number of items per action; Γ is a proxy-covariance matrix; γ is a maximum of ”proxy-correlations”; we abbreviate
max{x, 0} to (x)+ for any x ∈ R.

Feedback Algorithm Info. Gap-Dependant Asymptotic Regret Gap-Free Asymptotic Regret

Bandit
UCB Γ

∑
a

a⊤Γa
∆a

√
T
∑

a a
⊤Γa

UCBV ∅
∑

a
a⊤Σ∗a

∆a

√
T
∑

a a
⊤Σ∗a

Semi-Bandit

CUCB Γ m
∑

i

Γi,i

mina/i∈a ∆a

√
mT

∑
i Γi,i

OLS-UCB Γ (1 + γm)
∑

i

Γi,i

mina/i∈a ∆a
+

dm2 maxi Γi,i

∆2
min

(dm2 maxi Γi,i)
1/3T 2/3

ESCB-C ∅
∑

i maxa/i∈a

∑
j∈a(Σ

∗
i,j)+

∆min
+

dm2 maxi Γi,i

∆2
min

(dm2 maxi Γi,i)
1/3T 2/3

OLS-UCBV ∅
∑

i maxa/i∈a

∑
j∈a(Σ

∗
i,j)+

∆a

√
T
∑

i maxa/i∈a

∑
j∈a(Σ

∗
i,j)+

The literature concerning stochastic combinatorial semi-bandit settings also mostly focuses on cases where
the action set is exponentially large, namely P ≫ d, and the way to get quasi-optimal regret rates in these
instances. However, outside of these regimes, the commonly derived regret bounds are too rough and fail to
show the benefit of the semi-bandit feedback. Conventional combinatorial semi-bandit regret upper bounds
grow as O(

√
mdT ), where m is the maximum number of items per action (Kveton et al., 2015), while a rate

of order O(
√
mPT ) can be achieved using bandit feedback only (for multi-armed bandit with P arms and

rewards having variance m). Intriguingly, the latter appears to outperform the semi-bandit rate as soon as
P < d, making the extra information obtained through supplementary feedback seemingly useless. It is thus
natural to look for more fine-grained analyses showing clear improvements when going from pure bandit to
semi-bandit feedbacks, in all regimes.

Hereafter are listed our contributions.

• In Section 2, we show a gap-free lower bound on the regret for stochastic combinatorial semi-bandits,
explicitly involving the structure of the problem (the items in each action) and the covariance matrix
Σ∗.

• In Section 3 and Section 4, we design and analyze OLS-UCBV, a least-squares-based algorithm estimating
the covariance matrix online. We show that it satisfies logarithmic regret rates explicitly involving Σ∗

and the structure of the action set A. A good estimation of Σ∗ is not only much simpler to get than
a proxy-covariance for any reward distributions, but also provides improved regret guarantees. We
show that this algorithm yields a similar gap-dependant regret bound as ESCB-C from Perrault et al.
(2020), up to logarithmic factors, and an improved

√
T gap-free regret bound. The corresponding

regret bounds are summarized in blue in Table 1. We also show that under mild conditions, leveraging
the semi-bandit feedback indeed consistently offers an advantage and outperforms bandit algorithms
in all regimes of P/d.

• Lastly Section 5 compares the computational complexities of OLS-UCBV with existing algorithms. We
particularly show that OLS-UCBV is computationally cheaper than ESCB-C as we circumvent the need to
solve a convex optimization problem at each round with increasing accuracy, by relying on closed-form
expressions. Algorithm performances are compared on synthetic environments in Appendix E.

Related works. The combinatorial bandit setting has been introduced in Chen et al. (2013) which proposes
CUCB (Combinatorial UCB), later analyzed in Kveton et al. (2015). This algorithm plugs upper confidence
bounds for the items’ rewards into a linear maximization problem and picks the action with the highest
upper bound. However this version does not exploit correlations between the different base items. Its regret
bound has later been outperformed in Combes et al. (2015) and Degenne and Perchet (2016). These papers
propose algorithms than rely on the knowledge of either the parametric form of the rewards (Bernoulli in
Combes et al., 2015) or a sub-Gaussian proxy-covariance matrix (Degenne and Perchet, 2016). However,
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needing a proxy-covariance matrix is a major limitation as getting tight estimates is difficult in practice, and
using a loose one severely impacts the performance.

While Audibert et al. (2009) designs and analyses UCBV for multi-armed bandit, Perrault et al. (2020)
recently proposed ESCB-C, a covariance-adaptive algorithm for stochastic combinatorial semi-bandit. It is
based on estimations of the covariance matrix and solving linear optimization problems in convex sets to
compute the best action. The algorithm notably satisfies gap-dependant regret bounds depending asymptot-
ically on the covariance matrix and solves most limitations from the previous work of Degenne and Perchet
(2016).

We propose and analyse a novel algorithm based on a least-squares estimator, closer to OLS-UCB (Degenne
and Perchet, 2016) than to ESCB-C (Perrault et al., 2020). We manage to show similar regret rates as
Perrault et al. (2020), up to logarithmic factors, but using a different approach. In contrast to the i.i.d
assumption needed in Perrault et al. (2020), our analysis only needs sequential independence and uses
tools from martingales theory, which could enable easier extensions to richer settings like Markov Decision
Processes. We also manage to get an improved Õ(

√
T ) gap-free regret rate, while a 1/∆2

min term in the
analysis of both OLS-UCB and ESCB-C prevents it. Besides, we also gain on computational complexity over
ESCB-C as we do not rely on the approximate resolution of an optimization problem to determine upper
bounds on actions’ rewards.

Our analysis of OLS-UCBV is close to the one in Degenne and Perchet (2016) but uses different concen-
tration bounds. We draw inspiration from Zhou et al. (2021), who recently adapted martingale arguments
from Dani et al. (2008). Our work however improves on Zhou et al. (2021) through the exploitation of a
multi-dimensional noise covariance structure for Yt. It requires us to tailor an analysis capable of coupling
it with the peeling trick used in Degenne and Perchet (2016). Thanks to these concentration arguments we
can bound a “noise” factor in the cumulative regret, and use the same kind of “deterministic” analysis as in
Kveton et al. (2015) to get logarithmic regret rates depending on the covariance matrix and the structure
of the action set.

2 Lower Bound

In their recent paper, Perrault et al. (2020) prove a gap-dependant lower bound on the cumulative regret,
and provide ESCB-C, an algorithm satisfying it, up to some assumptions and constant terms.

Theorem 2.1 (Theorem 1 in Perrault et al., 2020). Let d,m ∈ N∗ such that d/m ≥ 2 is an integer, Σ∗ ⪰ 0,
δ ∈ (0, 1) and a consistent policy π, such that for any combinatorial semi-bandit instance

E[RT ] = o(T b) for any b > 0 ,

as T → ∞. Then, there exists a stochastic combinatorial semi-bandit with d base items, actions of size at
most m, and a reward distribution with covariance matrix Σ∗ where all suboptimal gaps are ∆, on which the
regret satisfies

lim inf
T→∞

∆

log(T )
RT ≥ 2

∑
i∈[d],i/∈a∗

max
a∈A,i∈a

∑
j∈a

Σ∗
i,j .

Their proof considers d/m disjoint actions, with Gaussian rewards, and a reduction to a multi-armed
bandit’s lower bound. For a similar type of instance, we introduce a novel gap-free lower bound.

Theorem 2.2. Let d,m ∈ N∗ such that d/m ≥ 2 is an integer, T ∈ N∗, and Σ∗ ⪰ 0 a covariance matrix.
Then, there exists a stochastic combinatorial semi-bandit with d base items, actions of size at most m, and
a reward distribution with covariance matrix Σ∗ on which for any policy π, the regret satisfies

RT ≥
1

8

√
T
∑
i∈[d]

max
a∈A,i∈a

∑
j∈a

Σ∗
i,j .

Proof. The proof is detailed in Appendix A.1. We follow the methodology of Auer et al. (2002b), modifying
it to account for the different variances among actions.
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3 OLS-UCBV

In this section, we design a new algorithm that efficiently leverages the semi-bandit feedback by approximat-
ing the coefficients of the covariance matrix Σ∗ online. This approximation is symmetric by construction
and yields a coefficient-wise upper bound of Σ∗. But it is not necessarily a semi-definite positive matrix, a
constraint that can be extremely challenging to tightly impose in practical scenarios.

While Perrault et al. (2020) use an axis-realignment technique and a covering argument to derive their
confidence region, our approach is closer to the least-squares methodology of Degenne and Perchet (2016).
It uses ellipsoidal confidence regions in which we incorporate Bernstein-like concentration inequalities. This
particularly simplifies the computation of an upper confidence bound for each action. While Perrault et al.
(2020) need to solve linear programs in convex sets at each iteration to derive their bound, we have access
to closed-form expressions. More details on these differences in complexity are given in Section 5.

3.1 Estimators for mean and covariance

Mean estimation. Let a ∈ A, t ∈ [T ], we denote by da = diag(a) ∈ Md(R) the diagonal matrix where
the non-null coefficients are the elements of a. The number of times two items i, j ∈ [d] (with possibly
i = j) have been chosen together after round t is denoted by nt,(i,j) =

∑t
s=1 1

{
(i, j) ∈ As

}
. We define

Dt = diag((nt,(i,i))i∈[d]) ∈Md(R) the diagonal matrix of item counts. Then the least-squares estimator dor
the mean reward vector µ using all the data from the past rounds after round t is the empirical average

µ̂t = D−1
t

∑t
s=1 dAs

Ys = µ+D−1
t

∑t
s=1 dAs

ηs , (2)

where ηs denotes the deviation of reward Ys from its mean µ. This average yields the estimator ⟨a, µ̂t⟩ for
the mean reward ⟨a, µ⟩, to which a well-designed optimistic bonus should be added. We design a strategy
inspired from LinUCB (Rusmevichientong and Tsitsiklis, 2010; Filippi et al., 2010). The ellipsoid-based bonus
that we introduce enables the use of a peeling trick and Bernstein’s style concentration inequalities.

Covariance estimation. Let t ∈ N∗ and i, j ∈ [d] such that nt,(i,j) ≥ 2. The coefficients of Σ∗ can be
estimated online by χ̂t with elements as follows

χ̂t,(i,j) =
1

nt,(i,j)

∑t
s=1 As,iAs,j1{ns,(i,j) ≥ 2}(Ys,i − µ̂s−1,i)(Ys,j − µ̂s−1,j) . (3)

A major difference with the estimators used in Perrault et al. (2020) (or those used in Audibert et al., 2009)
is the fact that the rewards are “centered” using the sample average of the past rewards at the time of their
observation (s in our case), instead of the whole sample average at time t.

3.2 Upper confidence bounds for covariance and mean

Covariance coefficients upper confidence bound. The following result controls the error of the online
covariance estimator χ̂t presented in Equation (3).

Proposition 3.1. Let T ≥ 3, δ ∈ (0, 1). Then with probability 1 − δ, for all t ≤ T and (i, j) ∈ [d]2, such
that nt,(i,j) ≥ 2,

|χ̂t,(i,j) −Σ∗
i,j | ≤ Bt,(i,j)(δ, T ) ,

where Bt,(i,j)(δ, T ) = 3BiBj

(
hT,δ√
nt,(i,j)

+
h2
T,δ

nt,(i,j)
log(T )

)
with hT,δ = log(5d2T 2/δ).

Proof. See Appendix B.1.

This result suggests the following upper confidence bounds for Σ∗ to be plugged into our algorithm:

Σ̂t,(i,j) = χ̂t,(i,j) + Bt,(i,j)(δ, T ) . (4)
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Algorithm 2 OLS-UCBV

Input δ > 0, T ≥ 1, B ∈ Rd
+.

for t = 1, . . . , T do
if
{
a ∈ A s.t min(i,j)∈a nt,(i,j) ≤ 1

}
̸= ∅ then

Choose any At in the above set.
else
Choose At ∈ A from (7) using µ̂t−1, Ẑt−1.
Environment samples Yt ∈ Rd.
Receive reward ⟨At, Yt⟩ =

∑
i At,iYt,i.

Compute µ̂t from (2).

Compute Σ̂t from (3) and (4).

Compute Ẑt from (5).
end if

end for

Mean upper confidence bound. We propose an upper confidence bound for the average rewards of all
actions a ∈ A at any round t.

Denoting by Σ̂t the coefficient-wise UCB covariance matrix given by (4), we introduce the following
“regularized empirical design matrix”:

Ẑt =

t∑
s=1

dAs
Σ̂tdAs

+ dΣ̂t
Dt + ddB , (5)

where dB = diag((B2
i )i∈[d]) and dΣ̂t

= diag(Σ̂t) are matrices in Md(R). The regularization of the matrix Ẑt

is engineered to enable the use of a peeling trick in the proof of the regret bound stated in Theorem 3.2.
As we show in the upcoming analysis (see proof of Proposition 4.5), with probability greater than 1− δ,

for all a ∈ A
|⟨a, µ⟩ − ⟨a, µ̂t⟩| ≤ ft,δ ∥D−1

t a∥Zt
,

where
ft,δ = 6d log

(
log(1 + t)

)
+ 3d log(1 + e) + log(1/δ) , (6)

is an exploration factor depending on the desired uncertainty level δ ∈ (0, 1) and Zt is the “exact” counterpart

of Ẑt, using Σ∗ instead of Σ̂t.

3.3 Algorithm

We now present OLS-UCBV written in Algorithm 2.
The algorithm first performs an initial exploration by sampling every base item i ∈ [d] and every “reach-

able” couple (i, j) ∈ [d]2 at least twice. Then, for all subsequent rounds t+1, OLS-UCBV picks an action At+1

such that:
At+1 ∈argmax

a∈A

{
⟨a, µ̂t⟩+ ft,δ

∥∥D−1
t a

∥∥
Ẑt

}
. (7)

3.4 Regret upper bound

We establish the following regret upper bounds for OLS-UCBV. We denote Õ for O when T → ∞, up to
poly-logarithmic terms.

Theorem 3.2. Let T ≥ 5, B ∈ Rd
+, and δ = 1/T 2. Let

σ2
a,i =

∑
j∈a

(Σ∗
i,j)+ , (8)

6
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where i ∈ [d], a ∈ A and ( · )+ = max{·, 0}. Then, OLS-UCBV (Alg. 2) satisfies the gap-dependent regret
upper bound

E[RT ] = Õ

(
log(d)2

d∑
i=1

max
a∈A/i∈a,∆a>0

σ2
a,i

∆a

)
,

and the distribution-free regret upper bound

E[RT ] = Õ

(
log(d)

√
T
∑d

i=1 max
a∈A/i∈a

σ2
a,i

)
.

We manage to get the same gap-dependent regret upper bound as ESCB-C (Perrault et al., 2020), up to
logarithmic factors in time but we also manage to get a new

√
T gap-free bound.

Diagonal covariance. It is important to note that in the scenario of independent item rewards, where
the covariance Σ∗ is diagonal, then σ2

a,i = Σ∗
i,i for all a ∈ A and i ∈ a. Our gap-dependent and gap-free

upper bounds are then roughly bounded as

Õ

( d∑
i=1

Σ∗
i,i

min
a∈A/i∈a

∆a

)
and Õ

(√
Tr(Σ∗)T

)
,

respectively. In this particular case, our gap-free bound outperforms the standard regret upper bound for
combinatorial semi-bandit problems (which does not use the independence information, see for instance
Kveton et al. (2015)), typically of the order O(

√
dmT ) where m is the maximum number of items per action.

4 Analysis of OLS-UCBV

In this section, we analyze OLS-UCBV by detailing key steps of the proof of Theorem 3.2, while certain
technical arguments are deferred to Appendix C.

The proof relies on considering high-probability “favorable” events where the two following conditions
are met:

• µ̂t remains within a sufficiently small ellipsoid, the size of which expands logarithmically over time
with ft,δ – denoted as Gt thereafter, see (9),

• the covariance estimators are within high confidence bounds as specified in Proposition 3.1 – denoted
as C thereafter, see (10).

4.1 Defining “favorable” events

Let t ∈ [T ] and a ∈ A. We introduce the regularized design matrix Zt using the covariance matrix Σ∗ (recall
the empirical version defined in (5))

Zt =
∑t

s=1 dAs
Σ∗dAs

+ dΣ∗Dt + ddB ,

and the event
Gt =

{ ∥∥∑t
s=1 dAs

ηs
∥∥
Z−1

t
≤ ft,δ

}
, (9)

corresponding to the belonging of µ̂t to an ellipsoid centered in µ (since η denote rewards deviations from
the mean µ), the size of which grows with ft,δ given in (6). We also define the event C of Proposition 3.1 as

C =
{
∀t ∈ [T ], (i, j) ∈ [d]2 s.t. nt,(i,j) ≥ 2, |χ̂t,(i,j) −Σ∗

i,j | ≤ Bt,(i,j)(δ, T )
}
, (10)

having probability at least 1− δ.
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4.2 Regret template bound

The algorithm begins with an exploration phase lasting at most d(d+ 1) rounds. Thus,

E[RT ] ≤ d(d+ 1)∆max +
∑T−1

t=d(d+1) E[∆At+1
], (11)

where ∆max is the largest suboptimality gap in the instance.
Using the fact that the probability of C is at least 1− δ, the formula of total probability brings

E[RT ] ≤ ∆max

(
d(d+ 1) +

T−1∑
t=d(d+1)

P
(
Gct
)

︸ ︷︷ ︸
A

+Tδ
)
+

T−1∑
t=d(d+1)

E
[
∆At+1

1{Gt
⋂
C}
]

︸ ︷︷ ︸
B

. (12)

The rest of the proof consists in upper bounding the terms A and B appearing in (12), for which we now
provide respective sketches of proof.

4.3 Bounding A =
∑T−1

t=d(d+1) P
(
Gct
)

The term A =
∑T−1

t=d(d+1) P
(
Gct
)
upper-bounds the probability that at least one of the unfavorable events Gct

is realized –i.e. that for at least one round t, µ̂t is outside of the ellipsoid defined by (9). The following result
provides an upper bound for A.

Proposition 4.1. For events {Gt}t≤T defined as in (9), we have∑T−1
t=d(d+1) P

(
Gct
)
≤ δT 2. (13)

Proof. Bounding
∑T−1

t=d(d+1) P
(
Gct
)
needs a meticulous interaction of a peeling trick as used by Degenne

and Perchet (2016) and martingale arguments inspired from Abbasi-Yadkori et al. (2011). In the next two
paragraphs, we present the main results of each of these two elements of the proof.

Peeling trick. The peeling trick consists in separating the space of trajectories up to round t into an
exponentially large number of parts, each having an exponentially small probability.

Formally, let ϵ > 0. To each p ∈ Nd we associate the set

Dp =
{
x ∈Rd s.t. ∀i ∈ [d], (1 + ϵ)pi ≤ xi < (1 + ϵ)pi+1

}
. (14)

As an abuse of notation, we denote by (t ∈ Dp) the event ((nt,(i,i) + 1)i∈[d] ∈ Dp).

Setting Pt,ϵ =
⌊ log(1+t)
log(1+ϵ)

⌋
, we define for each p ∈ [Pt,ϵ]

d

Dp = diag
((

(1 + ϵ)pi
)
i∈[d]

)
∈Md(R) ,

Zt,p =

t∑
s=1

dAs
Σ∗dAs

+ dΣ∗Dp + ddB ,

Mt,p =

∥∥∥∥ t∑
s=1

dAsηs

∥∥∥∥
Z−1

t,p

. (15)

Proposition 4.2. With the notations of (14) and (15), we have

P(Gct ) ≤
∑

p∈[Pt,ϵ]d

P
{
(M2

t,p > f2
t,δ)
⋂

(t ∈ Dp)
}
. (16)

Proof. The proof is deferred to Appendix C.1.
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Martingale bounding. The following result proposes a bound for the right-hand side of (16) and is
proven using martingale arguments.

Proposition 4.3. For p ∈ [Pt,ϵ]
d and with the notations of (14) and (15), we have

P
{
M2

t,p > f2
t,δ

⋂
(t ∈ Dp)

}
≤ 2tδ

(
log(1 + ϵ)

log(1 + t)

)d

, (17)

where ft,δ = 6d log(log(1 + t)) + 3d log(1 + e) + log(1/δ) is defined in (6).

Proof. The proof is deferred to Appendix C.2.

Armed with Propositions 4.2 and 4.3 we can finally write:

P(Gct )
(16)

≤
∑

p∈[Pt,ϵ]d

P
{
M2

t,p > f2
t,δ

⋂
(t ∈ Dp)

} (17)

≤ (Pt,ϵ)
d2tδ

(
log(1 + ϵ)

log(1 + t)

)d

≤ 2tδ ,

where the last inequality comes from Pt,ϵ =
⌊ log(1+t)
log(1+ϵ)

⌋
. Summing for t = d(d+ 1) to T − 1 then shows (13)

which is the desired result.

4.4 Bounding B =
∑T−1

t=d(d+1) E
[
∆At+11{Gt

⋂
C}
]

Leveraging the careful definition of the favorable {Gt}t∈[T ] and C from (9) and (10) enables us to provide
the following result to bound term B, corresponding the cumulative regret incurred under {Gt

⋂
C} at each

round t.
Our objective is to prove that B grows at most poly-logarithmically w.r.t. T , with coefficients depending

on the structure of the instance and the covariance matrix Σ∗. We state our result formally in the following
proposition.

Proposition 4.4. Let T ≥ d(d+ 1) and δ = 1/T 2. Then,

E
[ T−1∑
t=d(d+1)

∆At+1
1
{
Gt
⋂
C
}]

= O

(
log(T )3(log d)2

( d∑
i=1

max
a∈A/i∈a

σ2
a,i

∆a

))
,

as T →∞, where σ2
a,i =

∑
j∈a(Σ

∗
i,j)+.

Proof. We first prove the following result which gives an upper bound of the gap ∆At+1 under {Gt
⋂
C}.

Proposition 4.5. Let t ≥ d(d+ 1). Then under {Gt
⋂
C}, ∆At+1 ≤ ft,δ

(
∥D−1

t At+1∥Zt + ∥D−1
t At+1∥Ẑt

)
.

Proof. The proof is deferred to Appendix C.7.

To continue with our objective to bound B, we take inspiration from the works of Kveton et al. (2015)
and Degenne and Perchet (2016). For starters, we prove the following result (using σ̄2

a,i’s defined differently
from the σa,i’s).

Lemma 4.6. Let t ≥ d(d+ 1), we have that under {Gt
⋂
C},

∆2
At+1

4f2
t,δ

≤ 1

2

(
∥D−1

t At+1∥2Zt
+ ∥D−1

t At+1∥2Ẑt

)
≤

∑
i∈At+1

σ̄2
At+1,i

nt,(i,i)
+
(
d+ 3 log(T )h2

T,δ

) ∑
(i,j)∈At+1

BiBj

n2
t,(i,j)

+ 3hT,δ

∑
(i,j)∈At+1

BiBj

n
3/2
t,(i,j)

, (18)

where

σ̄2
At+1,i = 2

∑
j∈At+1/Σ∗

j,j≤Σ∗
i,i

(Σ∗
i,j)+ ≤ 2σ2

At+1,i .

9
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Proof. The proof is a consequence of Proposition 4.5 and is deferred to Appendix C.8.

Unfortunately, only the positive coefficients of Σ∗ are considered in the analysis but the inclusion of
negative correlations could be advantageous to reduce the rate at which the regret increases. However, it is
quite complex and thus deferred to future research.

The rest of the proof involves a decomposition of {Gt
⋂
C}. By considering each of the 3 sub-sum in

Equation (18) and designing set of event that are implied by {Gt
⋂
C} but that can happen only a finite

number of times.
In practice, we introduce two well-chosen sequences (αk)k∈N and (βk)k∈N (see Appendix C.9), and define

sequences of events Ar
t,k for k ∈ N∗ and r = 1, 2 and 3 from them (see Appendix C.10). In particular, the

following result holds

Lemma 4.7. Let t ≥ d(d+ 1) and k0 ∈ N∗ such that 0 < dβk0
<
(
1
d ∧mini,a{Σ∗

i,iσ̄
−2
a,i }

)
. Then,

1{Gt
⋂
C} ≤

∑3
r=1

∑k0

k=1 1{Ar
t,k} .

Proof. The proof is deferred to Appendix C.11.

The rest of the proof consists in upper bounding
∑T−1

t=d(d+1) ∆At+1
1{Ar

t,k} for each (r, k) ∈ [3]× [k0] using
the definitions of the events, and is detailed in Appendix C.12.

A notable difference from previous approaches by Kveton et al. (2015); Degenne and Perchet (2016) is the
use of Σ∗

i,i/σ̄
2
a,i in A1

t,k instead of set cardinals. This enables the explicit appearance of the σ2
a,i coefficients

(as σ̄2
a,i ≤ 2σ2

a,i). The use of log(T ) and 2 log(T )
log(T )−1 factors for Lemma 4.7 also enable to make the terms

depending on σ2
a,i dominant in the final bound.

4.5 Conclusion of the proof

Injecting results from Proposition 4.4 and Proposition 4.1 into (12) finally yields

E[RT ] = O

(
log(T )3

(∑
i∈[d]

max
a∈A/i∈a

σa,i

∆′
a

)
(log d)2

)
,

as T → ∞. This provides the gap-dependent bound of Theorem 3.2. The gap-free bound is detailed in
Appendix D. It arises from the fact that our gap-dependent bound does not incur any term in ∆−2

min, unlike
Perrault et al. (2020); Degenne and Perchet (2016).

5 Comparisons and Complexity Analysis

5.1 Regret rates

Some advantages of using variance-adaptive algorithms instead of ones for which the performance depends on
potentially non-tight quantities like sub-Gaussian parameters have been outlined in Section 3.4 and discussed
more in Audibert et al. (2009) and Perrault et al. (2020). They particularly yield regret rates that can be
considerably improved, at the cost of only marginally more computations. Among stochastic combinatorial
semi-bandit algorithms, OLS-UCBV thus manages to yield variance-dependant regret rates similar to those
reached by Perrault et al. (2020) up to log factors, but with an additional gap-free rate evolving as

√
T , see

Table 1. An example of experiment can be found in Figure 2 in Appendix E where we can see that OLS-UCBV
yields similar regret as other combinatorial algorithms.

5.2 Computational complexity

Another point of comparison between algorithms is their computational complexity, outlined in Table 2.
Combinatorial semi-bandit algorithms are known not to be efficiently manageable for big action sets in the
absence of structure (matroid constraints for example). For our comparison, we place ourselves in settings
where we can afford to iterate computationally over it, thus the P factors. In that case, for the same

10
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theoretical guarantees, OLS-UCBV is cheaper to execute compared to ESCB-C. Indeed, the latter needs to
solve a linear program in a convex set at each round for each action, and with enough precision so that it
does not influence the regret substantially. Given the form of the problem, this operation is significantly
more costly than computing the upper confidence bound of OLS-UCBV which has a closed form involving only
a finite number of matrix operations.

5.3 Complexity / regret trade-off

We now analyze the complexity / regret trade-off between using the pure bandit feedback or using the semi-
bandit one, in settings where the number of actions is reasonable. Exploiting the semi-bandit feedback may be
beneficial in certain cases, as it enables to combine information collected by different actions, but this comes
at the cost of an increased computational complexity which may not be worth it. Looking more precisely
at the gap-free regret rates in Table 1, while the regret of UCBV is upper bounded by

(
T
∑

a a
⊤Σ∗a

)1/2
, the

upper bound for OLS-UCBV is
(
T
∑

i maxa/i∈a

∑
j∈a(Σ

∗
i,j)+

)1/2
. In the case where all the correlations are

positive or null, OLS-UCBV performs better. But in general, it may not be the case and negative coefficients
in Σ∗ could make

∑
a a

⊤Σ∗a smaller than
∑

i maxa/i∈a

∑
j∈a(Σ

∗
i,j)+, particularly in cases where P is

not significantly bigger than d. Unfortunately, leveraging negative coefficients of Σ∗ to make the semi-
bandit feedback “always better” than the pure bandit feedback (as intuition dictates) does not seem to be
straightforward and remains an open question.

Table 2: Complexity of the following algorithms: UCB (Auer et al., 2002a), UCBV (Audibert et al., 2009), CUCB (Kveton et al.,

2015), OLS-UCB (Degenne and Perchet, 2016), ESCB-C (Perrault et al., 2020), and OLS-UCBV (ours). Copt
1/T

refers to the complexity

of the optimisation step needed in ESCB-C.

Feed. Algorithm Time Space

Bandit UCB/UCBV TP P

Semi-B.

CUCB TPm d+ P
OLS-UCB T (m2 + Pd2) d2 + P

ESCB-C T (m2 + P Copt
1/T ) d2 + P

OLS-UCBV T (m2 + Pd2) d2 + P

5.4 Empirical comparison

We compare empirically in Appendix E theoretical regret rates of UCBV and OLS-UCBV,
(∑

i maxa/i∈a σa,i

)
/
(∑

a a
⊤Σ∗a

)
, for randomly generated instances with different ratios P/d. Not enforcing any particular

structure, the ratio seems to remain constant for our generated instances, with a notably constant factor gain
when the covariance coefficients are biased to remain positive. But when we enforce a particular structure,
like actions with no overlaps, we can actually see regimes where the absence of negative coefficients in the
theoretical rate of OLS-UCB is detrimental, Figure 3 in Appendix E.

6 Concluding Remarks

We propose and analyze OLS-UCBV, a covariance-adaptive algorithm for stochastic combinatorial semi-
bandits. Compared to other existing approaches, ours is computationally less demanding and yields the
first

√
T gap-free regret rate depending explicitly on the covariance of the base items rewards. A limitation,

also existing in other works, is the overlooking of negative covariance coefficients. Finding a way to take
them into account might greatly improve the performances of semi-bandit algorithms and show the benefit
of the additional feedback compared to a pure bandit one.
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A Proofs of Section 2

A.1 Proof of Theorem 2.2

Theorem 2.2. Let d,m ∈ N∗ such that d/m ≥ 2 is an integer, T ∈ N∗, and Σ∗ ⪰ 0 a covariance matrix.
Then, there exists a stochastic combinatorial semi-bandit with d base items, actions of size at most m, and
a reward distribution with covariance matrix Σ∗ on which for any policy π, the regret satisfies

RT ≥
1

8

√
T
∑
i∈[d]

max
a∈A,i∈a

∑
j∈a

Σ∗
i,j .

Proof. Let d,m ∈ N∗ such that d/m ≥ 2 is an integer, T ∈ N∗ a horizon, and Σ∗ ⪰ 0 a covariance matrix.
We consider the structure where A = {a1, . . . , ad/m} ⊂ {0, 1}d contains d/m disjoint actions each having
m base elements. We consider that for all p ∈ [d/m], (ap)i∈[d] =

(
1
{
(p− 1)m < i ≤ pm

})
i∈[d]

. Let π be a
policy. As all the actions are disjoints, we can reduce ourselves to a multi-armed bandit with d/m actions,
where for all p ∈ [d/m] the variance of the p-th action is a⊤p Σ

∗ap.

Let Σ′ ∈Md/m(R) be the diagonal matrix where for all p ∈ [d/m], Σ′
p,p = a⊤p Σ

∗ap. Let c > 0, and

∆ = 2c

√
Σ′

min

∑d/m
k=1 Σ

′
k,k

T
, (19)

where Σ′
min = minp∈[d/m] Σ

′
p,p.

We denote G0 ∼ N (0,Σ′) a (d/m)-dimensional centered Gaussian distribution with covariance matrixΣ′.
Let p ∈ [d/m], we consider the mean vector µ(p) ∈ Rd/m having coordinate 0 everywhere and ∆ at coordinate

p, for all i ∈ [d/m], µ
(p)
i = ∆1{i = p}. We introduce the Gaussian reward distributions Gp ∼ N (µ(p),Σ′)

and denote Tp =
∑T

t=1 1{At = p}. Then, using policy π, and considering the reward distributions Gp and
G0, the average number of times action p has been chosen satisfies∣∣∣Eπ,Gp

[Tp]− Eπ,G0
[Tp]

∣∣∣ ≤ T TV
(
(π,G0), (π,Gp)

)
≤ T

√
1

2
KL
(
(π,G0), (π,Gp)

)
, (20)

where TV denotes the total variation distance, KL denotes the Kullback–Leibler divergence and the last
inequality uses Pinsker’s inequality. Then, using the divergence decomposition between multi-armed bandits
(Lemma 15.1 in Lattimore and Szepesvári, 2020),

KL
(
(π,G0), (π,Gp)

)
=

d/m∑
k=1

Eπ,G0

[
Tk

]
KL
(
N (0,Σ′),N (µ(p),Σ′)

)
=

d/m∑
k=1

Eπ,G0

[
Tk

] (µ(p)
k

)2
2Σ′

k,k

.

Reinjecting this expression into Equation (20), we get

Eπ,Gp [Tp] ≤ Eπ,G0 [Tp] +
T

2

√√√√d/m∑
k=1

(
µ
(p)
k

)2
Σ′

k,k

Eπ,G0 [Tk]

= Eπ,G0
[Tp] +

T

2

√
1

Σ′
p,p

∆2Eπ,G0
[Tp]

= Eπ,G0 [Tp] + c

√√√√TEπ,G0 [Tp]
Σ′

min

Σ′
p,p

d/m∑
k=1

Σ′
k,k ← reinjecting Equation (19)

≤ Eπ,G0
[Tp] + c

√√√√TEπ,G0
[Tp]

d/m∑
k=1

Σ′
k,k .
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Now, summing over the actions p,

d/m∑
p=1

Eπ,Gp [Tp] ≤
d/m∑
p=1

Eπ,G0 [Tp] + c

√√√√T

d/m∑
k=1

Σ′
k,k

d/m∑
p=1

√
Eπ,G0 [Tp]

≤ T + c

√√√√T

d/m∑
k=1

Σ′
k,k

√
d

m

√√√√d/m∑
p=1

Eπ,G0 [Tp] ← Cauchy–Schwarz

≤ T + cT

√√√√ d

m

d/m∑
k=1

Σ′
k,k . (21)

We denote R
(p)
T the average cumulative regret incurred with the reward distribution Gp, then

d/m∑
p=1

R
(p)
T = ∆

d/m∑
p=1

(T − Eπ,Gp
[Tp])

= 2c

√
Σ′

min

∑d/m
k=1 Σ

′
k,k

T

(
d

m
T −

d/m∑
p=1

Eπ,Gp
[Tp]

)
← reinjecting Equation (19)

≥ 2c

√
Σ′

min

∑d/m
k=1 Σ

′
k,k

T

(
d

m
T − T − cT

√√√√ d

m

d/m∑
k=1

Σ′
k,k

)
← from Equation (21)

= 2c
√
Σ′

min

d

m

√√√√T

d/m∑
k=1

Σ′
k,k

(
1− m

d
− c

√√√√ 1

d/m

d/m∑
k=1

Σ′
k,k

)

≥ 2c
√
Σ′

min

d

m

√√√√T

d/m∑
k=1

Σ′
k,k

(
1− m

d
− c
√
Σ′

min

)
.

Taking c = 1
2

1√
Σ′

min

(1− m
d ),

d/m∑
p=1

R
(p)
T ≥ d

m

√√√√T

d/m∑
k=1

Σ′
k,k

1

2

(
1− m

d

)2

≥ 1

8

d

m

√√√√T

d/m∑
k=1

Σ′
k,k ← as m/d ≤ 1/2 .

Therefore, there exists at least one instance p∗ ∈ [d/m] such that

R
(p∗)
T ≥ 1

8

√√√√T

d/m∑
k=1

Σ′
k,k .

Now, decomposing

d/m∑
k=1

Σ′
k,k =

d/m∑
k=1

(∑
i∈ak

∑
j∈ak

Σ∗
i,j

)
=
∑
i∈[d]

max
a∈A,i∈a

∑
j∈a

Σ∗
i,j ,

we get

R
(p∗)
T ≥ 1

8

√
T
∑
i∈[d]

max
a∈A,i∈a

∑
j∈a

Σ∗
i,j .
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B Proofs of Section 3

B.1 Proof of Proposition 3.1

Proposition 3.1. Let T ≥ 3, δ ∈ (0, 1). Then with probability 1 − δ, for all t ≤ T and (i, j) ∈ [d]2, such
that nt,(i,j) ≥ 2,

|χ̂t,(i,j) −Σ∗
i,j | ≤ Bt,(i,j)(δ, T ) ,

where Bt,(i,j)(δ, T ) = 3BiBj

(
hT,δ√
nt,(i,j)

+
h2
T,δ

nt,(i,j)
log(T )

)
with hT,δ = log(5d2T 2/δ).

Proof. Diagonal coefficients. Let i ∈ [d], δ ∈ (0, 1) and t ∈ N. For simplicity of notation, we write nt,i

and χt,i instead of nt,(i,i) and χt,(i,i) for the diagonal coefficients. Then

χ̂t,i =
1

nt,i

∑t
s=1 As,i1{ns,i ≥ 2}(Ys,i − µ̂s−1,i)

2

=
1

nt,i

t∑
s=1

As,i1{ns,i ≥ 2}
(
Ys,i − µi −

1

ns−1,i

s−1∑
k=1

Ak,i(Yk,i − µi)
)2

=
1

nt,i

t∑
s=1

As,i1{ns,i ≥ 2}(Ys,i − µi)
2

− 2
1

nt,i

t∑
s=1

As,i1{ns,i ≥ 2}(Ys,i − µi)
1

ns−1,i

s−1∑
k=1

Ak,i(Yk,i − µi)

+
1

nt,i

n∑
s=1

As,i1{ns,i ≥ 2}( 1

ns−1,i

s−1∑
k=1

Ak,i(Yk,i − µk,i))
2 .

Then, the triangle inequality yields

|χ̂t,i −Σ∗
i,i| ≤

∣∣∣ 1

nt,i

t∑
s=1

As,i1{ns,i ≥ 2}(η2s,i −Σ∗
i,i)
∣∣∣︸ ︷︷ ︸

A

+
∣∣∣ 1

nt,i
Σ∗

i,i

∣∣∣ (22)

+
∣∣∣2 1

nt,i

t∑
s=1

As,i1{ns,i ≥ 2}ηs,i
1

ns−1,i

s−1∑
k=1

Ak,iηk,i

∣∣∣︸ ︷︷ ︸
B

(23)

+
∣∣∣ 1

nt,i

n∑
s=1

As,i1{ns,i ≥ 2}( 1

ns−1,i

s−1∑
k=1

Ak,iηk,i)
2
∣∣∣︸ ︷︷ ︸

C

. (24)

We begin with the term A. As for all s ∈ [t], |As,i1{ns,i ≥ 2}(η2s,i−Σ∗
i,i)| ≤ B2

i , then for all λ ∈ R, using
submartingale arguments,

E

[
exp

(
λ

t∑
s=1

As,i1{ns,i ≥ 2}(η2s,i −Σ∗
i,i)− (nt,i − 1)

1

2
λ2B4

i

)]
≤ 1 .

From here, we use a Laplace’s method by taking λ ∼ N (0, 1/B4
i ), this yields
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B2
i√
2π

E

[∫
R
exp

(
λ

t∑
s=1

As,i1{ns,i ≥ 2}(η2s,i −Σ∗
i,i)− nt,i

1

2
λ2B4

i

)
dλ

]
≤ 1

B2
i√
2π

E

[∫
R
exp

(1
2

1

nt,iB4
i

( t∑
s=1

As,i1{ns,i ≥ 2}(η2s,i −Σ∗
i,i)
)2

− 1

2
nt,iB

4
i

(
λ− 1

nt,iB4
i

t∑
s=1

As,i1{ns,i ≥ 2}(η2s,i −Σ∗
i,i)
)2)

dλ

]
≤ 1

B2
i√
2π

E

[
exp

(1
2

1

nt,iB4
i

( t∑
s=1

As,i1{ns,i ≥ 2}(η2s,i −Σ∗
i,i)
)2)

∫
R
exp

(
− 1

2
nt,iB

4
i

(
λ− 1

nt,iB4
i

t∑
s=1

As,i1{ns,i ≥ 2}(η2s,i −Σ∗
i,i)
)2)

dλ

]
≤ 1

B2
i√
2π

E

[
exp

(1
2

1

nt,iB4
i

( t∑
s=1

As,i1{ns,i ≥ 2}(η2s,i −Σ∗
i,i)
)2) √

2π
√
nt,iB2

i

]
≤ 1

E

[
exp

(1
2

1

nt,iB4
i

( t∑
s=1

As,i1{ns,i ≥ 2}(η2s,i −Σ∗
i,i)
)2 − 1

2

(
log(nt,i) + 2 log(1/δ)

))]
≤ δ

E

[
exp

(
1

2

nt,i

B4
i

(( 1

nt,i

t∑
s=1

As,i1{ns,i ≥ 2}(η2s,i −Σ∗
i,i)
)2 − B4

i

nt,i

(
log(nt,i) + 2 log(1/δ)

)))]
≤ δ .

Thus a Chernoff’s bounding yields

P

(∣∣∣ 1

nt,i

t∑
s=1

As,i1{ns,i ≥ 2}(η2s,i −Σ∗
i,i)
∣∣∣ ≥ B2

i√
nt,i

(
log(T ) + log(1/δ)

))
≤ δ. (25)

For the term B, we use the same kind of approach to get that,

P

(
2
∣∣∣ 1

nt,i

t∑
s=1

As,i1{ns,i ≥ 2}ηs,i
1

ns−1,i

s−1∑
k=1

Ak,iηk,i

∣∣∣ ≥ 2B2
i√

nt,i

(
log(T ) + log(1/δ)

))
≤ δ . (26)

The last term, C, needs a little more steps. With probability at least 1− Tδ, for all s ∈ [T ]

P

(∣∣∣ 1

ns−1,i

s−1∑
k=1

Ak,iηk,i

∣∣∣2 ≥ B2
i

ns−1,i

(
log(T ) + log(1/δ)

)2) ≤ δ ,

and thus, a union bound gives that, for all t ∈ [T ],

P

(∣∣∣ 1

nt,i

n∑
s=1

As,i1{ns,i ≥ 2}
( 1

ns−1,i

s−1∑
k=1

Ak,iηk,i
)2∣∣∣ ≥ B2

i (1 + log(T ))

nt,i

(
log(T ) + log(1/δ)

)2) ≤ Tδ . (27)

Reinjecting Eq. (25), (26) and (27) into Eq. (22) yields that with probability at least 1 − 3Tδ, for all
t ∈ [T ]

|χ̂t,i −Σ∗
i,i| ≤

3B2
i√

nt,i
(log(T ) + log(1/δ)) +

B4
i (1 + log(T ))

nt,i

(
log(T ) + log(1/δ)

)2
+

B2
i

nt,i
,

the last term coming from the bias when we use nt,i instead of nt,i − 1.
Rearranging terms, for T ≥ 3, with probability at least 1− dδ, for all t ∈ [T ] and i ∈ [d],

|χ̂t,i −Σ∗
i,i| ≤

3B2
i√

nt,i
(log(3T 2) + log(1/δ)) + 3

B2
i

nt,i
log(T )

(
log(3T 2) + log(1/δ)

)2
.

16



Covariance-Adaptive Least-Squares Algorithm for Stochastic Combinatorial Semi-Bandits

Extra diagonal coefficients. Let (i, j) ∈ [d], δ ∈ (0, 1) and t ∈ N. Then,

χ̂t,(i,j) =
1

nt,(i,j)

t∑
s=1

As,iAs,j1{ns,(i,j) ≥ 2}(Ys,i − µ̂s−1,i)(Ys,j − µ̂s−1,j)

=
1

nt,(i,j)

t∑
s=1

As,iAs,j1{ns,(i,j) ≥ 2}
(
ηs,i −

1

ns−1,i

s−1∑
k=1

ηk,i

)(
ηs,j −

1

ns−1,j

s−1∑
k=1

ηk,j

)
.

Thus

|χ̂t,(i,j) −Σ∗
i,j | ≤

∣∣∣∣∣ 1

nt,(i,j)

t∑
s=1

As,iAs,j1{ns,(i,j) ≥ 2}ηs,iηs,j −Σ∗
i,j

∣∣∣∣∣︸ ︷︷ ︸
D

+
|Σ∗

i,j |
nt,(i,j)

+
∣∣∣ 1

nt,(i,j)

t∑
s=1

As,iAs,j1{ns,(i,j) ≥ 2}ηs,i
1

ns−1,j

s−1∑
k=1

Ak,jηk,j

∣∣∣︸ ︷︷ ︸
E

+
∣∣∣ 1

nt,(i,j)

t∑
s=1

As,iAs,j1{ns,(i,j) ≥ 2}ηs,j
1

ns−1,i

s∑
k=1

Ak,iηk,i

∣∣∣︸ ︷︷ ︸
F

+
∣∣∣ 1

nt,(i,j)

t∑
s=1

As,iAs,j1{ns,(i,j) ≥ 2} 1

ns−1,i

s−1∑
k=1

Ak,iηk,i
1

ns−1,j

s−1∑
k=1

Ak,jηk,j

∣∣∣︸ ︷︷ ︸
G

The term are treated just like for the diagonal terms.

P

(
D ≥ BiBj√

nt,i,j

(
log(T ) + log(1/δ)

))
≤ δ ,

P

(
E ≥ BiBj√

nt,(i,j)

(
log(T ) + log(1/δ)

))
≤ δ ,

P

(
F ≥ BiBj√

nt,(i,j)

(
log(T ) + log(1/δ)

))
≤ δ .

And with probability at least 1− 2Tδ, for all s ∈ [T ],∣∣∣ 1

ns−1,i

s−1∑
k=1

Ak,iηk,i

∣∣∣ ≤ Bi√
ns−1,i

(
log(T ) + log(1/δ)

)
,

and ∣∣∣ 1

ns−1,j

s−1∑
k=1

Ak,jηk,j

∣∣∣ ≤ Bj√
ns−1,j

(
log(T ) + log(1/δ)

)
.

As ns−1,(i,j) ≤
√
ns−1,ins−1,j , then for all t ∈ [T ]

G ≤ BiBj

nt,(i,j)
(1 + log(T ))

(
log(T ) + log(1/δ)

)2
.

Therefore for T ≥ 3, with probability at least 1− 1
2d(d− 1)δ, for all t ∈ [T ] and (i, j) ∈ [d]2,

|χ̂t,(i,j) −Σ∗
i,j | ≤ 3

BiBj√
nt,i,j

(
log(5T 2) + log(1/δ)

)
+ 3

BiBj

nt,(i,j)
log(T )

(
log(5T 2) + log(1/δ)

)2
.

A final union bound for all the coefficients yield the desired result.
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C Proofs of Section 4

C.1 Proof of Proposition 4.2

Proposition 4.2. With the notations of (14) and (15), we have

P(Gct ) ≤
∑

p∈[Pt,ϵ]d

P
{
(M2

t,p > f2
t,δ)
⋂

(t ∈ Dp)
}
. (16)

Proof. Using the definition of the events Dp we can write the following onion bound:

P(Gct ) ≤
∑

p∈[Pt,ϵ]d
P
{
Gct
⋂
(t ∈ Dp)

}
. (28)

where Pt,ϵ =
⌊ log(1+t)
log(1+ϵ)

⌋
. Let p ∈ Nd, under the event (t ∈ Dp), we have∥∥∑t

s=1 dAs
ηs
∥∥
Z−1

t
≤
∥∥∑t

s=1 dAs
ηs
∥∥
Z−1

t,p
, (29)

with Dp = diag(((1 + ϵ)pi)i∈[d]) ∈ Md(R) and Zt,p =
∑t

s=1 dAs
Σ∗dAs

+ dΣ∗Dp + ddB . Then, denoting

Mt,p = ∥
∑t

s=1 dAs
ηs∥Z−1

t,p
, the unfavorable event probability may be upper bounded as

P(Gct )
(9)
= P

{∥∥∥ t∑
s=1

dAs
ηs

∥∥∥
Z−1

t

> ft,δ

}
(28)

≤
∑

p∈[Pt,ϵ]d

P
{(∥∥∥ t∑

s=1

dAs
ηs

∥∥∥
Z−1

t

> ft,δ

)⋂
(t ∈ Dp)

}
(29)

≤
∑

p∈[Pt,ϵ]d

P
{
(M2

t,p > f2
t,δ)
⋂

(t ∈ Dp)
}
. (30)

C.2 Proof of Proposition 4.3

Proposition 4.3. For p ∈ [Pt,ϵ]
d and with the notations of (14) and (15), we have

P
{
M2

t,p > f2
t,δ

⋂
(t ∈ Dp)

}
≤ 2tδ

(
log(1 + ϵ)

log(1 + t)

)d

, (17)

where ft,δ = 6d log(log(1 + t)) + 3d log(1 + e) + log(1/δ) is defined in (6).

Proof. In order to analyze P
{
M2

t,p > f2
t,δ

⋂
(t ∈ Dp)

}
for each p ∈ [Pt,ϵ]

d, we first upper bound M2
t,p by a

sum of two martingales thanks to the following technical lemma.

Lemma C.1. Let t ∈ N and p ∈ Nd, then

M2
t,p ≤ 2

∑t
s=1 (dAs

ηs)
⊤
Z−1

s−1,p

(∑s−1
k=1 dAk

ηk

)
︸ ︷︷ ︸

It,p

+
∑t

s=1 ∥dAs
ηs∥2Z−1

s−1,p︸ ︷︷ ︸
Jt,p

.

Proof. The complete argument is deferred to Appendix C.3.

Conveniently, we can tie the variance of these martingales to the dimension d in each layer thanks to the
the following technical lemma, inspired by Abbasi-Yadkori et al. (2011). The proof is in Appendix C.4.

Lemma C.2. Let t ∈ N, p ∈ Nd, then under (t ∈ Dp),
∑s

k=1

∥∥dAk
Σ∗1/2

∥∥2
Z−1

k−1,p

≤ 2d log(2+ϵ) for all s ∈ [t].
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Let (xI , xJ) ∈]0, 1[2 such that xI + xJ = 1. Then,

P
{
M2

t,p > f2
t,δ

⋂
(t ∈ Dp)

}
≤ P

{
(M2

t,p > f2
t,δ)
⋂

(∀s ≤ t, Js,p ≤ xJf
2
t,δ)
⋂

(t ∈ Dp)
}

+ P
{
(∃s ∈ [t], Js,p > xJf

2
t,δ)
⋂

(t ∈ Dp)
}
. (31)

This yields the following two propositions.

Proposition C.3. Let t ∈ N, p ∈ Nd, then for xIft ≥ 4d log log(1 + t) + 2d log(2 + ϵ) + 4 log(1/δ),

P
{
(M2

t,p > f2
t,δ)
⋂
(∀s ∈ [t], Js,p ≤ xJf

2
t,δ)
⋂
(t ∈ Dp)

}
≤ tδ

(
log(1+ϵ)
log(1+t)

)d
.

Proof. The proof relies on bounding the probability by the sum
∑t

k=1 P((Ik,p > xIf
2
t )
⋂
(t ∈ Dp)), and using

a submartingale argument. See Appendix C.5.

Proposition C.4. Let t ∈ N, p ∈ Nd, then if xJf
2
t ≥ 2d log log(1 + t) + 3d log(2 + ϵ) + 2 log(1/δ),

P
{
(∃s ∈ [t], Js,p > xJf

2
t )
⋂
(t ∈ Dp)

}
≤ tδ

(
log(1+ϵ)
log(1+t)

)d
.

Proof. The proof is in Appendix C.6.

Let t ≥ 5, d ≥ 1, the choices xJ = 1/3, xI = 2/3, ϵ = e− 1 and

ft = 6d log(log(1 + t)) + 3d log(1 + e) + log(1/δ) (32)

satisfy the assumptions of Propositions C.3 and C.4. Combining (31) and Propositions C.3 and C.4 yields
the wanted result.

C.3 Proof of Lemma C.1

Lemma C.1. Let t ∈ N and p ∈ Nd, then

M2
t,p ≤ 2

∑t
s=1 (dAs

ηs)
⊤
Z−1

s−1,p

(∑s−1
k=1 dAk

ηk

)
︸ ︷︷ ︸

It,p

+
∑t

s=1 ∥dAs
ηs∥2Z−1

s−1,p︸ ︷︷ ︸
Jt,p

.

Proof. Let t ∈ N∗, p ∈ Nd, s ∈ [t], then Z0,p = DpdΣ∗ + ddB and, as

Zs,p = Zs−1,p + dAs
Σ∗dAs

,

then,
Z−1

s,p ≼ Z−1
s−1,p . (33)
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We can now bound M2
s,p with a recursive expression (with respect to M2

s−1,p), as

M2
s,p =

∥∥∥∥∥
s∑

k=1

dAk
ηk

∥∥∥∥∥
2

Z−1
s,p

≤

∥∥∥∥∥
s∑

k=1

dAk
ηk

∥∥∥∥∥
2

Z−1
s−1,p

← Eq. (33)

=

(
s−1∑
k=1

dAk
ηk + dAs

ηs

)⊤

Z−1
s−1,p

(
s−1∑
k=1

dAk
ηk + dAs

ηs

)

=

(
s−1∑
k=1

dAk
ηk

)⊤

Z−1
s−1,p

(
s−1∑
k=1

dAk
ηk

)
+ 2 (dAs

ηs)
⊤
Z−1

s−1,p

(
s−1∑
k=1

dAk
ηk

)
+ (dAs

ηs)
⊤
Z−1

s−1,p (dAs
ηs)

=

∥∥∥∥∥
s−1∑
k=1

dAk
ηk

∥∥∥∥∥
2

Z−1
s−1,p

+ 2 (dAs
ηs)

⊤
Z−1

s−1,p

(
s−1∑
k=1

dAk
ηk

)
+ ∥dAs

ηt∥2Z−1
s−1,p

= M2
s−1,p + 2 (dAs

ηs)
⊤
Z−1

s−1,p

(
s−1∑
k=1

dAk
ηk

)
+ ∥dAs

ηt∥2Z−1
s−1,p

, . (34)

Inequality (34) being true for every s ∈ [t], we can sum:

t∑
s=1

M2
s,p ≤

t∑
s=1

M2
s−1,p + 2

t∑
s=1

(dAs
ηs)

⊤
Z−1

s−1,p

(
s−1∑
k=1

dAk
ηk

)
+

t∑
s=1

∥dAs
ηs∥2Z−1

s−1,p

.

Since M0,p = 0, this finally yields

M2
t,p ≤ 2

t∑
s=1

(dAs
ηs)

⊤
Z−1

s−1,p

(
s−1∑
k=1

dAk
ηk

)
+

t∑
s=1

∥dAs
ηs∥2Z−1

s−1,p

,

which is the desired result.

C.4 Proof of Lemma C.2

Lemma C.2. Let t ∈ N, p ∈ Nd, then under (t ∈ Dp),
∑s

k=1

∥∥dAk
Σ∗1/2

∥∥2
Z−1

k−1,p

≤ 2d log(2+ϵ) for all s ∈ [t].

Proof. Let t ∈ N, p ∈ Nd, s ∈ [t], k ∈ [s].

20



Covariance-Adaptive Least-Squares Algorithm for Stochastic Combinatorial Semi-Bandits

We first observe that, under the event (t ∈ Dp),∥∥dAk
Σ∗1/2∥∥2

Z−1
k−1,p

= Tr
(
Σ∗1/2dAk

Z−1
k−1,pdAk

Σ∗1/2
)

= Tr
(
Σ∗1/2dAk

(DpdΣ∗ + ddB + Vk−1)
−1dAk

Σ∗1/2
)
← by Def. of Zk−1,p

= Tr
(
Σ∗1/2dAk

(
ddB

)−1/2(
I + (ddB)

1/2DpdΣ∗(ddB)
1/2 + (dd∗

Σ)
1/2Vk−1(dd

∗
Σ)

1/2
)−1

(
ddB

)−1/2
dAk

Σ∗1/2
)

≤ 1

d
Tr
(
Σ∗1/2dAk

d−1
B dAk

Σ∗1/2
)
← all the eigenvalues of the central matrix are ≤ 1

=
1

d
Tr(Σ∗1/2dAk

d−1
B dAk

dAk
Σ∗1/2)← as dAk

= d2
Ak

=
1

d
Tr(dAk

Σ∗dAk
d−1
B dAs)

=
1

d

∑
i∈Ak

Σ∗
i,i

B2
i

≤ 1← as Σ∗
i,i ≤ B2

i .

Using that for x ∈ [0, 1], x ≤ 2 log(1 + x), we can derive

s∑
k=1

∥∥∥dAs
Σ∗1/2

∥∥∥2
Z−1

k−1,p

≤ 2

s∑
k=1

log

(
1 +

∥∥∥dAk
Σ∗1/2

∥∥∥2
Z−1

k−1,p

)

= 2

s∑
k=1

log

(
1 + Tr

(
Σ∗1/2dAk

Z−1
k−1,pdAk

Σ∗1/2
))

= 2

s∑
k=1

log

(
1 + Tr

(
Z

−1/2
k−1,pdAk

Σ∗dAk
Z

−1/2
k−1,p

))
← Tr(AB) = Tr(BA)

≤ 2

s∑
k=1

log

(
det
(
I + Z

−1/2
k−1,pdAk

Σ∗dAk
Z

−1/2
k−1,p

))
,

where the last inequality uses the fact that the eigenvalues of Z
−1/2
k−1,pdAk

Σ∗dAk
Z

−1/2
k−1,p are all non-negative.

Therefore,

s∑
k=1

∥∥∥dAs
Σ∗1/2

∥∥∥2
Z−1

k−1,p

≤ 2

s∑
k=1

log

(
det
(
Z

−1/2
k−1,p(Zk−1,p + dAk

Σ∗dAk
)Z

−1/2
k−1,p

))
← det(AB) = det(A) det(B)

= 2

s∑
k=1

log

(
det(Zk−1,p + dAk

Σ∗dAk
)

det(Zk−1,p)

)

= 2

s∑
k=1

log

(
det(Zk,p)

det(Zk−1,p)

)
= 2 log

(
det(Zs,p)

det(Z0,p)

)
← Telescoping sum.

= 2 log

(
det(Dpd

∗
Σ + ddB + Vs)

det(Dpd∗
Σ + ddB)

)
= 2 log

(
det
(
I + (Dpd

∗
Σ + ddB)

−1/2Vs(Dpd
∗
Σ + ddB)

−1/2
))

≤ 2 log

(
d∏

i=1

(
1 +

ns,iΣ
∗
i,i

(1 + ϵ)piΣ∗
i,i + dB2

i

))
,
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by multiplying the diagonal elements of
(
I + (Dpd

∗
Σ + ddB)

−1/2Vs(Dpd
∗
Σ + ddB)

−1/2
)
, as it is a symmetric

positive-definite matrix. Therefore, we get the result using the definition of (t ∈ Dp),

s∑
k=1

∥∥∥dAsΣ
∗1/2

∥∥∥2
Z−1

k−1,p

≤ 2 log

(
d∏

i=1

(
1 +

ns,i

(1 + ϵ)pi

))
≤ 2 log

( d∏
i=1

(2 + ϵ)

)
= 2d log(2 + ϵ) .

C.5 Proof of Proposition C.3

Proposition C.3. Let t ∈ N, p ∈ Nd, then for xIft ≥ 4d log log(1 + t) + 2d log(2 + ϵ) + 4 log(1/δ),

P
{
(M2

t,p > f2
t,δ)
⋂
(∀s ∈ [t], Js,p ≤ xJf

2
t,δ)
⋂
(t ∈ Dp)

}
≤ tδ

(
log(1+ϵ)
log(1+t)

)d
.

Proof. Let t ∈ N and p ∈ Nd. We begin by decomposing the probability into more “manageable pieces”. For
s ∈ [t] we define Ep,t,s =

{
∀k ∈ [s],M2

k,p ≤ f2
t,δ

}
, then

P
{
(M2

t,p > f2
t,δ)
⋂

(∀s ∈ [t],Js,p ≤ xJf
2
t,δ)
⋂

(t ∈ Dp)
}

= P
{
(M2

t,p > f2
t,δ)
⋂

(Ep,t,1)
⋂

(∀s ∈ [t], Js,p ≤ xJf
2
t,δ)
⋂

(t ∈ Dp)
}

+ P
{
(M2

t,p > f2
t,δ)
⋂

(Ecp,t,1)
⋂

(∀s ∈ [t], Js,p ≤ xJf
2
t,δ)
⋂

(t ∈ Dp)
}
.

Iterating this operation on the term containing Ep,t,k for k = 1, . . . , t− 1

P
{
(M2

t,p > f2
t,δ)
⋂

(∀s ∈ [t], Js,p ≤ xJf
2
t,δ)
⋂

(t ∈ Dp)
}

= P
{
(M2

t,p > f2
t,δ)
⋂

(∀s ∈ [t], Ep,t,s)
⋂

(∀s ∈ [t], Js,p ≤ xJf
2
t,δ)
⋂

(t ∈ Dp)
}

+

t−1∑
k=0

P
{
(M2

t,p > f2
t,δ)
⋂

(∀s ∈ [k], Ep,t,s)
⋂

(Ecp,t,k+1)
⋂

(∀s ∈ [t], Js,p ≤ xJf
2
t,δ)
⋂

(t ∈ Dp)
}

=

t−1∑
k=0

P
{
(M2

t,p > f2
t,δ)
⋂

(∀s ∈ [k], Ep,t,s)
⋂

(Ecp,t,k+1)
⋂

(∀s ∈ [t], Js,p ≤ xJf
2
t,δ)
⋂

(t ∈ Dp)
}
,

as (M2
t,p > f2

t,δ) and Ep,t,t, are incompatible events. Then,

P
{
(M2

t,p > f2
t,δ)
⋂

(∀s ∈ [t], Js,p ≤ xJf
2
t,δ)
⋂

(t ∈ Dp)
}

≤
t−1∑
k=0

P
{
(∀s ∈ [k], Ep,t,s)

⋂
(Ecp,t,k+1)

⋂
(∀s ∈ [t], Js,p ≤ xJf

2
t,δ)
⋂

(t ∈ Dp)
}

≤
t−1∑
k=0

P
{
(M2

k+1,p > f2
t,δ)
⋂

(∀s ∈ [k], Ep,t,s)
⋂

(∀s ∈ [t], Js,p ≤ xJf
2
t,δ)
⋂

(t ∈ Dp)
}
,

by definition of
{
(∀s ∈ [k], Ep,t,s)

⋂
(Ecp,t,k+1)

}
. And finally, using Mk+1,p ≤ Ik+1,p + Jk+1,p,

P
{
(M2

t,p > f2
t,δ)
⋂

(∀s ∈ [t], Js,p ≤ xJf
2
t,δ)
⋂

(t ∈ Dp)
}

≤
t−1∑
k=0

P
{
(Ik+1,p + Jk+1,p > f2

t,δ)
⋂

(∀s ∈ [k], Ep,t,s)
⋂

(Jk+1,p ≤ xJf
2
t,δ)
⋂

(t ∈ Dp)
}

≤
t−1∑
k=0

P
{
(Ik+1,p > xIf

2
t,δ)
⋂

(∀s ∈ [k], Ep,t,s)
⋂

(t ∈ Dp)
}
.

(35)
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For k = 0, as xIf
2
t,δ > 0 and I1,p = 0,

P
{
(I1,p > xIf

2
t,δ)
⋂

(∀s ∈ [k], Ep,t,s)
⋂

(t ∈ Dp)
}
= 0 . (36)

For k ≥ 1, under the event
{
(∀s ∈ [k], Ep,t,s)

}
,

Ik+1,p = 2

k+1∑
s=1

(dAs
ηs)

⊤Z−1
s−1,p(

s−1∑
l=1

dAl
ηl) = 2ft,δ

k+1∑
s=1

(dAs
ηs)

⊤Z−1
s−1,p(

s−1∑
l=1

dAl
ηl)

1{Ep,t,s−1}
ft,δ

. (37)

We then use the following Lemma.

Lemma C.5. (Proposition 2.10 from Wainwright, 2019) Let X be a centered random variable, bounded by
b ∈ R∗+, with variance σ2 ∈ R∗+. Then, for all |λ| ≤ 1

2b , we have E
[
exp(λX − λ2σ2)

]
≤ 1.

Let |λ| ≤ 1
2 . As for all s ∈ [k + 1],∣∣∣∣(dAsηs)

⊤Z−1
s−1,p(

s−1∑
l=1

dAl
ηl)

1{Ep,t,s−1}
ft,δ

∣∣∣∣ ≤ ∥dAsηs∥Z−1
s−1,p

Ms−1,p

ft,δ
1{Ep,t,s−1} ≤ 1,

E

[
(dAs

ηs)
⊤Z−1

s−1,p(

s−1∑
l=1

dAl
ηl)

1{Ep,t,s−1}
ft,δ

∣∣∣∣∣Fs−1

]
= 0,

E

[(
(dAs

ηs)
⊤Z−1

s−1,p

( s−1∑
l=1

dAl
ηl

)1{Ep,t,s−1}
ft,δ

)2
∣∣∣∣∣Fs−1

]
≤
∥∥∥Z−1/2

s−1,pdAs
(Σ∗)1/2

∥∥∥2 .
Then, by Lemma C.5

E

[
exp

(
λ(dAs

ηs)
⊤Z−1

s−1,p

( s−1∑
l=1

dAl
ηl

)1{Ep,t,s−1}
ft,δ

− λ2∥Z−1/2
s−1,pdAs

(Σ∗)1/2∥2
)∣∣∣∣∣Fs−1

]
≤ 1 .

Iterating over s = 1, . . . , k + 1 results in

E

[
exp

(
λ

k+1∑
s=1

(dAsηs)
⊤Z−1

s−1,p(

s−1∑
l=1

dAl
ηl)

1{Ep,t,s−1}
ft,δ

− λ2
k+1∑
s=1

∥Z−1/2
s−1,pdAs(Σ

∗)1/2∥2
)]
≤ 1 . (38)

However, this inequality cannot be exploited readily in this form as we need the event (t ∈ Dp) and Lemma
C.2 to incorporate the dimension d,

E

[
exp

(
λ

k+1∑
s=1

(dAs
ηs)

⊤Z−1
s−1,p

( s−1∑
l=1

dAl
ηl

)1{Ep,t,s−1}
ft,δ

− 2dλ2 log(2 + ϵ)

)
1{t ∈ Dp}

]

≤ E

[
exp

(
λ

k+1∑
s=1

(dAs
ηs)

⊤Z−1
s−1,p

( s−1∑
l=1

dAl
ηl

)1{Ep,t,s−1}
ft,δ

− λ2
k+1∑
s=1

∥Z−1/2
s−1,pdAs

(Σ∗)1/2∥2
)
1{t ∈ Dp}

]
← Lemma C.2

≤ E

[
exp

(
λ

k+1∑
s=1

(dAs
ηs)

⊤Z−1
s−1,p

( s−1∑
l=1

dAl
ηl

)1{Ep,t,s−1}
ft,δ

− λ2
k+1∑
s=1

∥Z−1/2
s−1,pdAs

(Σ∗)1/2∥2
)]
← as 1{t ∈ Dp} ≤ 1

≤ 1 .← by Eq. (38)
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Now, taking λ = 1
2 , we can bound

P
(
(Ik+1,p > xIf

2
t,δ)
⋂

(∀s ∈ [k], Ep,t,s)
⋂

(t ∈ Dp)
)

≤ P

((
2ft,δ

k+1∑
s=1

(dAs
ηs)

⊤Z−1
s−1,p

( s−1∑
l=1

dAl
ηl

)1{Ep,t,s−1}
ft,δ

> xIf
2
t,δ

)⋂
(t ∈ Dp)

)
← by Eq. (37)

= P

((
1

2

k+1∑
s=1

(dAsηs)
⊤Z−1

s−1,p

( s−1∑
l=1

dAl
ηl

)1{Ep,t,s−1}
ft,δ

>
xI

4
ft,δ

)⋂
(t ∈ Dp)

)

= P

((
exp

(1
2

k+1∑
s=1

(dAsηs)
⊤Z−1

s−1,p

( s−1∑
l=1

dAl
ηl
)1{Ep,t,s−1}

ft,δ
− 2d

1

4
log(2 + ϵ)

)
> exp

(xI

4
ft,δ − 2d

1

4
log(2 + ϵ)

))⋂
(t ∈ Dp)

)

≤ P

(
exp

(
1

2

k+1∑
s=1

(dAsηs)
⊤Z−1

s−1,p

( s−1∑
l=1

dAl
ηl

)1{Ep,t,s−1}
ft,δ

− d

2
log(2 + ϵ)

)
1{t ∈ Dp}

> exp

(
xI

4
ft,δ −

d

2
log(2 + ϵ)

))

≤ exp

(
d

2
log(2 + ϵ)− xI

4
ft,δ

)
.← by Markov ineq.

Taking ft,δ ≥ 4
xI
(d log log(1 + t) + d

2 log(2 + ϵ) + log(1/δ)), we have

P
(
(Ik+1,p > xIf

2
t,δ)
⋂

(∀s ∈ [k], Ep,t,s)
⋂

(t ∈ Dp)
)
≤ δ

(
log(1 + ϵ)

log(1 + t)

)d

,

and the desired result,

P
{
(M2

t,p > f2
t,δ)
⋂

(∀s ∈ [t], Js,p ≤ xJf
2
t,δ)
⋂

(t ∈ Dp)
}

≤
t−1∑
k=0

P
{
(Ik+1,p > xIf

2
t,δ)
⋂

(∀s ∈ [k], Ep,t,s)
⋂

(t ∈ Dp)
}
← by Eq. (35)

≤ tδ
( log(1 + ϵ)

log(1 + t)

)d
.

C.6 Proof of Proposition C.4

Proposition C.4. Let t ∈ N, p ∈ Nd, then if xJf
2
t ≥ 2d log log(1 + t) + 3d log(2 + ϵ) + 2 log(1/δ),

P
{
(∃s ∈ [t], Js,p > xJf

2
t )
⋂
(t ∈ Dp)

}
≤ tδ

(
log(1+ϵ)
log(1+t)

)d
.

Proof. Let t ∈ N, p ∈ Nd. Then

P
{
(∃s ∈ [t], Js,p > xJf

2
t )
⋂

(t ∈ Dp)
}
≤

t∑
s=1

P
{
(Js,p > xJf

2
t )
⋂

(t ∈ Dp)
}
. (39)

Let s ∈ [t]. By definition, Js,t =
∑s

k=1 ∥dAk
ηk∥2Z−1

k−1,p

.
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For k ∈ [s],

∥dAk
ηk∥2Z−1

k−1,p

≤ 1 ,

E
[
∥dAk

ηk∥2Z−1
k−1,p

∣∣∣Fk−1

]
= E

[
η⊤k dAk

Z−1
k−1,pdAk

ηk

∣∣∣Fk−1

]
= E

[
Tr(Z

−1/2
k−1,pdAk

ηkη
⊤
k dAk

Z
−1/2
k−1,p)

∣∣∣Fk−1

]
← Tr(AB) = Tr(BA)

= Tr
(
Z

−1/2
k−1,pdAk

Σ∗dAk
Z

−1/2
k−1,p

)
= ∥dAk

(Σ∗)1/2∥2
Z−1

k−1,p

,

E
[
∥dAk

ηk∥4Z−1
k−1,p

∣∣∣Fk−1

]
− E

[
∥dAk

ηk∥2Z−1
k−1,p

∣∣∣Fk−1

]2
≤ E

[
∥dAk

ηk∥4Z−1
k−1,p

∣∣∣Fk−1

]
≤ E

[
∥dAk

ηk∥2Z−1
k−1,p

|Fk−1

]
← as ∥dAk

ηk∥2Z−1
k−1,p

≤ 1

= ∥dAk
(Σ∗)1/2∥2

Z−1
k−1,p

.

We can then use Lemma C.5. Let |λ| ≤ 1
2 , then

E
[
exp

(
λ∥dAk

ηk∥2Z−1
k−1,p

− λ(λ+ 1)∥Z−1/2
k−1,pdAk

(Σ∗)1/2∥2
)∣∣∣Fk−1

]
= E

[
exp

(
λ
(
∥dAk

ηk∥2Z−1
k−1,p

− E
[
∥dAk

ηk∥2Z−1
k−1,p

∣∣Fk−1]
)
− λ2∥dAk

(Σ∗)1/2∥2
Z−1

k−1,p

)∣∣∣Fk−1

]
≤ 1 ,

and, summing over k yields,

E
[
exp

(
λ

s∑
k=1

∥dAk
ηk∥2Z−1

k−1,p

− λ(λ+ 1)

s∑
k=1

∥dAk
(Σ∗)1/2∥2

Z−1
k−1,p

)]
≤ 1 .

We can now incorporate the event (t ∈ Dp) to get the inequality

E
[
exp

(
λJs,p − λ(λ+ 1)2d log(2 + ϵ)

)
1{t ∈ Dp}

]
← by Lemma C.2

≤ E
[
exp

(
λJs,p − λ(λ+ 1)

s∑
k=1

∥dAk
(Σ∗)1/2∥2

Z−1
k−1,p

)
1{t ∈ Dp}

]

≤ E
[
exp

(
λJs,p − λ(λ+ 1)

s∑
k=1

∥dAk
(Σ∗)1/2∥2

Z−1
k−1,p

)]
≤ 1 .

Then, using Markov inequality,

P
{
(Js,p > xJf

2
t )
⋂

(t ∈ Dp)
}
= P

{(
exp

(1
2
Js,p −

3

4
2d log(2 + ϵ)

)
> exp

(1
2
xJf

2
t −

3

4
2d log(1 + ϵ)

))⋂
(t ∈ Dp)

}
≤ P

{
exp

(1
2
Js,p −

3

4
2d log(2 + ϵ)

)
1{t ∈ Dp} > exp

(1
2
xJf

2
t −

3

4
2d log(2 + ϵ)

)}
≤ exp

(3
2
d log(1 + ϵ)− 1

2
xJf

2
t

)
≤ δ

(
log(2 + ϵ)

log(1 + t)

)d

,

(40)
for ft ≥ 1√

xJ

√
3d log(2 + ϵ) + 2d log log(1 + t) + 2 log(1/δ).

Thus, we deduce the desired inequality,
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P
{
(∃s ∈ [t], Js,p > xJf

2
t )
⋂

(t ∈ Dp)
}
≤

t∑
s=1

P
{
(Js,p > xJf

2
t )
⋂

(t ∈ Dp)
}
← by Eq. (39)

≤ tδ

(
log(1 + ϵ)

log(1 + t)

)d

.← by (40)

C.7 Proof of Proposition 4.5

Proposition 4.5. Let t ≥ d(d+ 1). Then under {Gt
⋂
C}, ∆At+1 ≤ ft,δ

(
∥D−1

t At+1∥Zt + ∥D−1
t At+1∥Ẑt

)
.

Proof. Let t ≥ d(d+ 1)The error in estimating the mean reward for action a with ⟨a, µ̂t⟩ is bounded as∣∣a⊤(µ̂t − µ)
∣∣ = ∣∣∣a⊤D−1

t

∑t
s=1 dAs

ηs

∣∣∣
=
∣∣∣a⊤D−1

t Z
1/2
t Z

−1/2
t

∑t
s=1 dAs

ηs

∣∣∣
≤ ∥D−1

t a∥Zt

∥∥∑t
s=1 dAs

ηs
∥∥
Z−1

t
, (41)

where the last line is by Cauchy–Schwarz’ inequality.
We reminding the event where the empirical average µ̂ remains in our ellipsoid

Gt =
{ ∥∥∑t

s=1 dAsηs
∥∥
Z−1

t
≤ ft,δ

}
.

On this event, injecting a = At+1 and a = a∗ into (41) yields

⟨At+1, µ̂t⟩ ≤ ⟨At+1, µ⟩+ ft,δ∥D−1
t At+1∥Zt

,

and
⟨a∗, µ⟩ − ft,δ∥D−1

t a∗∥Zt ≤ ⟨a∗, µ̂t⟩ .
Moreover, since by definition of At+1 in (7) we have

⟨a∗, µ̂t⟩+ ft,δ∥D−1
t a∗∥Ẑt

≤ ⟨At+1, µ̂t⟩+ ft,δ∥D−1
t At+1∥Ẑt

,

we can finally write

⟨a∗, µ⟩+ ft,δ(∥D−1
t a∗∥Ẑt

− ∥D−1
t a∗∥Zt)

≤ ⟨At+1, µ⟩+ ft,δ∥D−1
t At+1∥Zt + ft,δ∥D−1

t At+1∥Ẑt
. (42)

Besides, under C, by the definition in 10, Ẑt uses coefficient-wise upper bounds of Σ∗, which yields for
all a ∈ A

∥D−1
t a∗∥2Zt

≤ ∥D−1
t a∗∥2

Ẑt
.

Injecting this in (42) and denoting ∆At+1
= ⟨a∗, µ⟩ − ⟨At+1, µ⟩ concludes the proof.

C.8 Proof of Lemma 4.6

Lemma 4.6. Let t ≥ d(d+ 1), we have that under {Gt
⋂
C},

∆2
At+1

4f2
t,δ

≤ 1

2

(
∥D−1

t At+1∥2Zt
+ ∥D−1

t At+1∥2Ẑt

)
≤

∑
i∈At+1

σ̄2
At+1,i

nt,(i,i)
+
(
d+ 3 log(T )h2

T,δ

) ∑
(i,j)∈At+1

BiBj

n2
t,(i,j)

+ 3hT,δ

∑
(i,j)∈At+1

BiBj

n
3/2
t,(i,j)

, (18)

where

σ̄2
At+1,i = 2

∑
j∈At+1/Σ∗

j,j≤Σ∗
i,i

(Σ∗
i,j)+ ≤ 2σ2

At+1,i .
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Proof. Let t ≥ d(d + 1), then Proposition 4.5 yields that under {Gt
⋂
C}, ∆At+1 ≤ ft,δ

(
∥D−1

t At+1∥Zt +

∥D−1
t At+1∥Ẑt

)
, and

∆2
At+1

≤ f2
t,δ

(
∥D−1

t At+1∥Zt
+ ∥D−1

t At+1∥Ẑt

)2
≤ 2f2

t,δ

(
∥D−1

t At+1∥2Zt
+ ∥D−1

t At+1∥2Ẑt

)
∆2

At+1

2f2
tδ

≤ ∥D−1
t At+1∥2Zt

+ ∥D−1
t At+1∥2Ẑt

. (43)

From, here, we just need to develop the right-hand side of this inequality.

∥D−1
t At+1∥2Zt

= A⊤
t+1D

−1
t ZtD

−1
t At+1

=
∑

(i,j)∈At+1

(Zt)i,j
nt,(i,i)nt,(j,j)

.

As Zt =
∑t

s=1 dAsΣ
∗dAs + dΣ∗Dt + ddB , we get

∥D−1
t At+1∥2Zt

=
∑

(i,j)∈At+1

nt,(i,j)Σ
∗
i,j

nt,(i,i)nt,(j,j)
+

∑
i∈At+1

nt(i,i)Σ
∗
i,i

n2
t,(i,i)

+ d
∑

i∈At+1

B2
i

n2
t,(i,i)

≤
∑

i∈At+1

(
2

∑
j∈At+1/Σ∗

j,j≤Σ∗
i,i

nt,(i,j)Σ
∗
i,j

nt,(i,i)nt,(j,j)

)
+ d

∑
i∈At+1

B2
i

n2
t,(i,i)

,

by rearranging terms. Now as for all (i, j) ∈ [d]2, nt,(i,j) ≤ max{nt,(i,i), nt,(j,j)}, then

∥D−1
t At+1∥2Zt

≤
∑

i∈At+1

1

nt,(i,i)

(
2

∑
j∈At+1/Σ∗

j,j≤Σ∗
i,i

Σ∗
i,j

)
+ d

∑
i∈At+1

B2
i

n2
t,(i,i)

,

Denoting σ̄2
At+1,i

= 2
∑

j∈At+1/Σ∗
j,j≤Σ∗

i,i
(Σ∗

i,j)+ yields

∥D−1
t At+1∥2Zt

≤
∑

i∈At+1

σ̄2
At+1,i

nt,(i,i)
+ d

∑
i∈At+1

B2
i

n2
t,(i,i)

. (44)

The second term from the right-hand side of Equation (43) is developed in the same manner.

∥D−1
t At+1∥2Ẑt

= A⊤
t+1D

−1
t ẐtD

−1
t At+1

=
∑

(i,j)∈At+1

(Ẑt)i,j
nt,(i,i)nt,(j,j)

.

We remind that Ẑt =
∑t

s=1 dAsΣ̂tdAs + dΣ̂t
Dt + ddB where for all (i, j) ∈ [d]2, Σ̂t,(i,j) = χ̂t,(i,j) +

Bt,(i,j)(δ, T ). Being under the event C, Proposition 3.1 yields that Σ̂t,(i,j) ≤ Σ∗
i,j + 2Bt,(i,j)(δ, T ), therefore,

∥D−1
t At+1∥2Ẑt

≤
∑

(i,j)∈At+1

nt,(i,j)Σ
∗
i,j

nt,(i,i)nt,(j,j)
+

∑
(i,j)∈At+1

nt,(i,j)2Bt,(i,j)(δ, T )
nt,(i,i)nt,(j,j)

+
∑

i∈At+1

nt(i,i)Σ
∗
i,i

n2
t,(i,i)

+ d
∑

i∈At+1

B2
i

n2
t,(i,i)

≤
∑

i∈At+1

σ̄2
At+1,i

nt,(i,i)
+

∑
(i,j)∈At+1

nt,(i,j)2Bt,(i,j)(δ, T )
nt,(i,i)nt,(j,j)

+ d
∑

i∈At+1

B2
i

n2
t,(i,i)

.

Reminding, Bt,(i,j)(δ, T ) = 3BiBj

(
hT,δ√
nt,(i,j)

+
h2
T,δ

nt,(i,j)
log(T )

)
,

∥D−1
t At+1∥2Ẑt

≤
∑

i∈At+1

σ̄2
At+1,i

nt,(i,i)
+ d

∑
i∈At+1

B2
i

n2
t,(i,i)

+
∑

(i,j)∈At+1

nt,(i,j)6BiBjhT,δ

nt,(i,i)nt,(j,j)
√
nt,(i,j)

+
∑

(i,j)∈At+1

nt,(i,j)6BiBjh
2
T,δ log(T )

nt,(i,i)nt,(j,j)nt,(i,j)
.
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As nt,(i,j) ≤
√
nt,(i,i)nt,(j,j) (Cauchy–Shwarz),

∥D−1
t At+1∥2Ẑt

≤
∑

i∈At+1

σ̄2
At+1,i

nt,(i,i)
+ d

∑
i∈At+1

B2
i

n2
t,(i,i)

+
∑

(i,j)∈At+1

6BiBjhT,δ

n
3/2
t,(i,j)

+
∑

(i,j)∈At+1

6BiBjh
2
T,δ log(T )

n2
t,(i,j)

. (45)

Reinjecting Equation (44) and Equation (45) into Equation (43) yields

∆2
At+1

2f2
tδ

≤ ∥D−1
t At+1∥2Zt

+ ∥D−1
t At+1∥2Ẑt

≤ 2
∑

i∈At+1

σ̄2
At+1,i

nt,(i,i)
+ 2d

∑
i∈At+1

B2
i

n2
t,(i,i)

+
∑

(i,j)∈At+1

6BiBjhT,δ

n
3/2
t,(i,j)

+
∑

(i,j)∈At+1

6BiBjh
2
T,δ log(T )

n2
t,(i,j)

≤ 2
∑

i∈At+1

σ̄2
At+1,i

nt,(i,i)
+
(
2d+ 6h2

T,δ log(T )
) ∑
(i,j)∈At+1

BiBj

n2
t,(i,i)

+ 6hT,δ

∑
(i,j)∈At+1

BiBj

n
3/2
t,(i,j)

,

thus the desired inequality,

∆A2
t+1

4f2
T,δ

≤
∑

i∈At+1

σ̄2
At+1,i

nt,(i,i)
+
(
d+ 3h2

T,δ log(T )
) ∑
(i,j)∈At+1

BiBj

n2
t,(i,i)

+ 3hT,δ

∑
(i,j)∈At+1

BiBj

n
3/2
t,(i,j)

.

C.9 Definition of the sequences (αk) and (βk)

Let β = 1/5, x > 0. We define β0 = α0 = 1. For k ≥ 1, we define

βk = βk, αk = xβk . (46)

Let’s first look for an adequate k0 for Proposition 4.7. As for a ∈ A and i ∈ a, Σ∗
i,iσ̄

−2
a,i ≥ 1

2d (by definition

of σ̄2
a,i), taking k0 = ⌈ 2 log(

√
2d)

log(1/β) + 1⌉ is sufficient to have 0 < dβk0 <
(
1
d ∧ mini,a{Σ∗

i,iσ̄
−2
a,i }

)
. This choice

yields (
k0−1∑
k=1

βk−1 − βk

αk
+

βk0−1

αk0

)
=

(
k0−1∑
k=1

1− β

β
+

1

β

)
1

x

=

(
(k0 − 1)

1− β

β
+

1

β

)
1

x

=

(
4k0 + 1

)
1

x

≤ 1 ,

(47)

for x = 4k0 + 1.
Besides, denoting ≲ for a rough inequality up to universal multiplicative constants,

k0∑
k=1

αk

βk
= (4k0 + 1)k0

≲ log(d)2 ,

(48)
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k0∑
k=1

√
αk

βk
=
√

9k0 + 5

k0∑
k=1

β−k/2

=
√

9k0 + 5

k0∑
k=1

√
5
k

=
√

9k0 + 5

√
5
k0

+ 1√
5− 1

≤
√
9k0 + 5

(
exp

(
1

2
log(5)

(2 log(√2d)
log(5)

+ 1
))

+ 1

)
≤
√
9k0 + 5(d

√
10 + 1)

≲ d
√
log(d) , (49)

and

k0∑
k=1

α
2/3
k

βk
≤ (9k0 + 5)2/3(d

√
10 + 1)

≲ d
(
log(d)

)2/3
. (50)

C.10 Definition of the sequences Ar
t,k

The two sequences (αk)k∈N and (βk)k∈N, both begin at 1 and strictly decrease to 0 (see Appendix C.9).
These sequences are introduced to be able to consider the 3 terms of Equation (18) separately, and are
engineered so that they only introduce a quasi-constant factor in the final regret bound.

Let t ≥ d(d+ 1), then, Lemma 4.6 states that under {Gt
⋂
C},

∆2
At+1

4f2
t,δ

≤
∑

i∈At+1

σ̄2
At+1,i

nt,(i,i)
+
(
d+ 3 log(T )h2

T,δ

) ∑
(i,j)∈At+1

BiBj

n2
t,(i,j)

+ 3hT,δ

∑
(i,j)∈At+1

BiBj

n
3/2
t,(i,j)

.

Let k ∈ N∗, we introduce the sets

S1
t,k =

{
i ∈ At+1, nt,(i,i) ≤ dαk log(T )

4f2
t,δ

∆2
At+1

σ̄4
At+1,i

Σ∗
i,i

}
, (51)

S2
t,k =

{
(i, j) ∈ At+1, n2

t,(i,j) ≤ d2αk
2 log(T )

log(T )− 1

4f2
t,δ

∆2
At+1

(d+ 3 log(T )h2
T,δ)BiBj

}
, (52)

S3
t,k =

{
(i, j) ∈ At+1, n

3/2
t,(i,j) ≤ d2αk

2 log(T )

log(T )− 1

4f2
t,δ

∆2
At+1

3hT,δBiBj

}
. (53)

They are associated to the events

A1
t,k =

{ ∑
i∈S1

t,k

Σ∗
i,i

σ̄2
At+1,i

≥ βkd; ∀l < k,
∑
i∈S1

t,l

Σ∗
i,i

σ̄2
At+1,i

< βld

}
,

A2
t,k =

{
|S2

t,k| ≥ βkd
2; ∀l < k, |S2

t,l| < βld
2
}
,

A3
t,k =

{
|S3

t,k| ≥ βkd
2; ∀l < k, |S3

t,l| < βld
2
}
.

C.11 Proof of Lemma 4.7

Lemma 4.7. Let t ≥ d(d+ 1) and k0 ∈ N∗ such that 0 < dβk0
<
(
1
d ∧mini,a{Σ∗

i,iσ̄
−2
a,i }

)
. Then,

1{Gt
⋂
C} ≤

∑3
r=1

∑k0

k=1 1{Ar
t,k} .
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Proof. Let t ≥ d(d + 1), (αk)k∈N and (βk)k∈N defined in Appendix C.9 and the events Ar
t,k defined in

Appendix C.10.
Let k ≥ k0,

A1
t,k =

{ ∑
i∈S1

t,k

Σ∗
i,i

σ̄2
At+1,i

≥ βkd; ∀l < k,
∑
i∈S1

t,l

Σ∗
i,i

σ̄2
At+1,i

< βld

}
.

As βkd < mini,a Σ
∗
i,iσ̄

−2
a,i and (S1

t,l)l is a decreasing sequence of sets,
∑

i∈S1
t,k0

Σ∗
i,i

σ̄2
At+1,i

< βk0
d imply S1

t,k0
= ∅

and
∑

i∈S1
t,k

Σ∗
i,i

σ̄2
At+1,i

= 0 < βkd. Therefore, A1
t,k cannot happen and we denote

A1
t =

⋃
k≥1

A1
t,k =

⋃
k∈[k0]

A1
t,k =

⋃
k∈[k0]

{ ∑
i∈S1

t,k

Σ∗
i,i

σ̄2
At+1,i

≥ βkd; ∀l < k,
∑
i∈S1

t,l

Σ∗
i,i

σ̄2
At+1,i

< βld

}
.

Likewise, for k > k0 and r = 2 or 3,

Ar
t,k =

{
|Sr

t,k| ≥ βkd
2; ∀l < k, |Sr

t,k| < βld
2

}
.

As βk0
d2 < 1 and (Sr

t,l)l is a decreasing sequence of sets, then |Sr
t,k0
| < βk0

d2 imply Sr
t,k0

= ∅ and |Sr
t,k| =

0 < βkd
2. Therefore, Ar

t,k cannot happen and we denote

A2
t =

⋃
k≥1

A2
t,k =

⋃
k∈[k0]

A2
t,k =

⋃
k∈[k0]

{
|S2

t,k| ≥ βkd
2; ∀l < k, |S2

t,k| < βld
2

}
,

A3
t =

⋃
k≥1

A3
t,k =

⋃
k∈[k0]

A3
t,k =

⋃
k∈[k0]

{
|S3

t,k| ≥ βkd
2; ∀l < k, |S3

t,k| < βld
2

}
.

The idea is now to prove that (
3⋃

r=1

Ar
t

)c

=

3⋂
r=1

(
Ar

t

)c
⊆
(
Gt
⋂
C
)c

.

We begin by considering (A1
t )

c,

(A1
t )

c =

k0⋂
k=1

(A1
t,k)

c

=

k0⋂
k=1

({ ∑
i∈S1

t,k

Σ∗
i,i

σ̄2
At+1,i

< βkd

} k−1⋃
l=1

{ ∑
i∈S1

t,l

Σ∗
i,i

σ̄2
At+1,i

≥ βld

})

=

k0⋂
k=1

{ ∑
i∈S1

t,k

Σ∗
i,i

σ̄2
At+1,i

< βkd

}
.

(54)
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Then, under (A1
t )

c, denoting S1
t,0 = At+1, as S

1
t,k0

= ∅ and the sets S1
t,k are decreasing with respect to k,

∑
i∈At+1

σ̄2
At+1,i

nt,(i,i)
=

k0∑
k=1

∑
i∈S1

t,k−1\S
1
t,k

σ̄2
At+1,i

nt,(i,i)

≤
k0∑
k=1

∑
i∈S1

t,k−1\S
1
t,k

σ̄2
At+1,i

1

dαk

1

log(T )

∆2
At+1

4f2
t,δ

Σ∗
i,i

σ̄4
At+1,i

← by Eq. (51)

=
∆2

At+1

log(T )4f2
t,δd

k0∑
k=1

1

αk

∑
i∈St,k−1\St,k

Σ∗
i,i

σ̄2
At+1,i

=
∆2

At+1

4 log(T )f2
t,δd

k0∑
k=1

1

αk

( ∑
i∈S1

t,k−1

Σ∗
i,i

σ̄2
At+1,i

−
∑

i∈S1
t,k

Σ∗
i,i

σ̄2
At+1,i

)

=
∆2

At+1

4 log(T )f2
t,δd

k0−1∑
k=0

1

αk+1

( ∑
i∈S1

t,k

Σ∗
i,i

σ̄2
At+1,i

−
∑

i∈S1
t,k+1

Σ∗
i,i

σ̄2
At+1,i

)

=
∆2

At+1

4 log(T )f2
t,δd

(
1

α1

∑
i∈S1

t,0

Σ∗
i,i

σ̄2
At+1,i

+

k0−1∑
k=1

(
1

αk+1
− 1

αk

) ∑
i∈S1

t,k

Σ∗
i,i

σ̄2
At+1,i

)

<
∆2

At+1

4 log(T )f2
t,δd

(
d

α1
+

k0−1∑
k=1

dβk

(
1

αk+1
− 1

αk

))
← St,0 = At+1 and Eq. (54)

=
∆2

At+1

4 log(T )f2
t,δ

(
k0−1∑
k=1

βk−1 − βk

αk
+

βk0−1

αk0

)

≤ 1

log(T )

∆2
At+1

4f2
t,δ

.← by Eq. (47) (55)

Likewise for r = 1 and 2,

(Ar
t )

c =

k0⋂
k=1

{
|Sr

t,k| < βkd
2

}
. (56)
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For r = 2, under (A2
t )

c, denoting S2
t,0 = At+1 ×At+1, as S

2
t,k0

= ∅,

(
d+ 3 log(T )h2

T,δ

) ∑
(i,j)∈At+1

BiBj

n2
t,(i,j)

=
(
d+ 3 log(T )h2

T,δ

) k0∑
k=1

∑
(i,j)∈St,k−1\St,k

BiBj

n2
t,i

≤
k0∑
k=1

∑
(i,j)∈St,k−1\St,k

BiBj
1

αk

1

d2
log(T )− 1

2 log(T )

∆2
At+1

4f2
t,δ

1

BiBj
← by Eq. (52)

=
log(T )− 1

2 log(T )

∆2
At+1

4f2
t,δ

1

d2

k0∑
k=1

1

αk

(
|St,k−1| − |St,k|

)
=

log(T )− 1

2 log(T )

∆2
At+1

4f2
t,δ

1

d2

k0−1∑
k=0

1

αk+1

(
|St,k| − |St,k+1|

)
=

log(T )− 1

2 log(T )

∆2
At+1

4f2
t,δ

1

d2

(
|St,0|
α1

+

k0−1∑
k=1

|St,k|
(

1

αk+1
− 1

αk

))

<
log(T )− 1

2 log(T )

∆2
At+1

4f2
t,δ

1

d2(
1

α1
d2 +

k0−1∑
k=1

βkd
2

(
1

αk+1
− 1

αk

))
← by Eq. (56)

=
log(T )− 1

2 log(T )

∆2
At+1

4f2
t,δ

(
k0−1∑
k=1

βk−1 − βk

αk
+

βk0−1

αk0

)

≤ log(T )− 1

2 log(T )

∆2
At+1

4f2
t,δ

.← by Eq. (47) (57)

And for r = 3,

3hT,δ

∑
(i,j)∈At+1

BiBj

n
3/2
t,(i,j)

<
log(T )− 1

2 log(T )

∆2
At+1

4f2
t,δ

. (58)

Therefore, under
⋂3

r=1

(
Ar

t

)c
, summing Equation (55), Equation (57) and Equation (58) yields

∑
i∈At+1

σ̄2
At+1,i

nt,i
+
(
d+ 3 log(T )h2

T,δ

) ∑
(i,j)∈At+1

BiBj

n2
t,(i,j)

+ 3hT,δ

∑
(i,j)∈At+1

BiBj

n
3/2
t,(i,j)

<
∆2

At+1

4f2
t,δ

( 1

log(T )
+ 2

log(T )− 1

2 log(T )

)
=

∆2
At

4f2
t,δ

,

which contradict Equation (18) and thus imply {Gt
⋂
C}c. By contraposition, we have proved that {Gt

⋂
C}

imply
⋃3

r=1

(
Ar

t

)
. Therefore,

1{Gt
⋂
C} ≤

3∑
r=1

1{Ar
t} ≤

3∑
r=1

k0∑
k=1

1{Ar
t,k} .

C.12 Proof of Proposition 4.4

Proposition 4.4. Let T ≥ d(d+ 1) and δ = 1/T 2. Then,

E
[ T−1∑
t=d(d+1)

∆At+1
1
{
Gt
⋂
C
}]

= O

(
log(T )3(log d)2

( d∑
i=1

max
a∈A/i∈a

σ2
a,i

∆a

))
,
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as T →∞, where σ2
a,i =

∑
j∈a(Σ

∗
i,j)+.

Proof. Let T ≥ d(d+A), from Proposition 4.7 we have

T−1∑
t=d(d+1)

∆At+11{Gt
⋂
C} ≤

T−1∑
t=d(d+1)

3∑
r=1

k0∑
k=1

∆At+11{Ar
t,k}

=

3∑
r=1

T−1∑
t=d(d+1)

∆At+1

k0∑
k=1

1{Ar
t,k} . (59)

We begin with r = 1, t ≥ d(d+ 1), and k ∈ [k0],

A1
t,k =

{ ∑
i∈S1

t,k

Σ∗
i,i

σ̄2
At+1,i

≥ βkd; ∀l < k,
∑
i∈S1

t,l

Σ∗
i,i

σ̄2
At+1,i

< βld

}
⊆
{

1

βkd

∑
i∈S1

t,k

Σ∗
i,i

σ̄2
At+1,i

≥ 1

}
.

Therefore,

1{A1
t,k} ≤

1

βkd

∑
i∈[d]

Σ∗
i,i

σ̄2
At+1,i

1
{
A1

t,k

⋂
{i ∈ S1

t,k}
}
. (60)

Summing over t and integrating the gaps yields

T−1∑
t=d(d+1)

∆At+1

k0∑
k=1

1{A1
t,k} ≤

T∑
t=d(d+1)

∆At+1

k0∑
k=1

1

βkd

∑
i∈[d]

Σ∗
i,i

σ̄2
At+1,i

1
{
A1

t,k

⋂
{i ∈ S1

t,k}
}
← by Eq. (60)

≤
∑
i∈[d]

Σ∗
i,i

T∑
t=d(d+1)

k0∑
k=1

1

βkd

∆At+1

σ̄2
At+1,i

1{i ∈ S1
t,k}

=
∑
i∈[d]

Σ∗
i,i

k0∑
k=1

1

βkd

T∑
t=d(d+1)

∆At+1

σ̄2
At+1,i

1

{
nt,(i,i) ≤ dαk log(T )

4f2
t,δ( ∆At+1

σ̄2
At+1,i

)2
Σ∗

i,i

}
.← by Eq. (51)

(61)

Let i ∈ [d], we consider all the actions associated to it. Let qi ∈ N be the number of actions associated

to item i. Let l ∈ [qi], we denote eli ∈ A the l-th action associated to item i, sorted by decreasing
∆

el
i

σ̄2

el
i
,i

, with

σ̄2

e0
i
,i

∆
e0
i

= 0 by convention. Then
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T−1∑
t=d(d+1)

∆At+1

σ̄2
At+1,i

1

{
nt,(i,i) ≤ dαk log(T )

4f2
t,δ( ∆At+1

σ̄2
At+1,i

)2
Σ∗

i,i

}

≤
T−1∑
t=0

∆At+1

σ̄2
At+1,i

1

{
nt,(i,i) ≤ dαk log(T )

4f2
T,δ( ∆At+1

σ̄2
At+1,i

)2
Σ∗

i,i

}
← as ft,δ ≤ fT,δ and extending the sum over all the rounds

=

T−1∑
t=0

qi∑
l=1

∆eli

σ̄2
eli,i

1

{
nt,(i,i) ≤ dαk log(T )

4f2
T,δ( ∆

el
i

σ̄2

el
i
,i

)2
Σ∗

i,i

, At+1 = eli

}

=

T−1∑
t=0

qi∑
l=1

∆eli

σ̄2
eli,i

1

{
nt,(i,i)

Σ∗
i,i

dαk log(T )4f2
T,δ

≤ 1( ∆
el
i

σ̄2

el
i
,i

)2 , At+1 = eli

}

=

T−1∑
t=0

qi∑
l=1

∆eli

σ̄2
eli,i

l∑
p=1

1

{
1( ∆

e
p−1
i

σ̄2

e
p−1
i

,i

)2 < nt,(i,i)

Σ∗
i,i

dαk log(T )4f2
T,δ

≤ 1( ∆e
p
i

σ̄2
e
p
i
,i

)2 , At+1 = eli

}
← decomposing the event

≤
T−1∑
t=0

qi∑
l=1

l∑
p=1

∆epi

σ̄2
epi ,i

1

{
1( ∆

e
p−1
i

σ̄2

e
p−1
i

,i

)2 < nt,(i,i)

Σ∗
i,i

dαk log(T )4f2
T,δ

≤ 1( ∆e
p
i

σ̄2
e
p
i
,i

)2 , At+1 = eli

}
← as

∆eli

σ̄2
eli,i

≤
∆epi

σ̄2
epi ,i

=

qi∑
p=1

∆epi

σ̄2
epi ,i

T−1∑
t=0

qi∑
l=p

1

{
1( ∆

e
p−1
i

σ̄2

e
p−1
i

,i

)2 < nt,(i,i)

Σ∗
i,i

dαk log(T )4f2
T,δ

≤ 1( ∆e
p
i

σ̄2
e
p
i
,i

)2 , At+1 = eli

}

≤
qi∑

p=1

∆epi

σ̄2
epi ,i

T−1∑
t=0

qi∑
l=1

1

{
1( ∆

e
p−1
i

σ̄2

e
p−1
i

,i

)2 < nt,(i,i)

Σ∗
i,i

dαk log(T )4f2
T,δ

≤ 1( ∆e
p
i

σ̄2
e
p
i
,i

)2 , At+1 = eli

}
← we extend the sum over l

=

qi∑
p=1

∆epi

σ̄2
epi ,i

T−1∑
t=0

1

{
1( ∆

e
p−1
i

σ̄2

e
p−1
i

,i

)2 < nt,(i,i)

Σ∗
i,i

dαk log(T )4f2
T,δ

≤ 1( ∆e
p
i

σ̄2
e
p
i
,i

)2 , i ∈ At+1

}
← we simplify the inner sum

≤
qi∑

p=1

∆epi

σ̄2
epi ,i

(⌊( σ̄2
epi ,i

∆epi

)2 dαk log(T )4f
2
T,δ

Σ∗
i,i

⌋
−
⌊( σ̄2

ep−1
i ,i

∆ep−1
i

)2 dαk log(T )4f
2
T,δ

Σ∗
i,i

⌋)
← the event can only happen a given nbr. of times

=

(⌊(
σ̄e

qi
i ,i

∆e
qi
i

)2 dαk log(T )4f
2
T,δ

Σ∗
i,i

⌋
∆e

qi
i

σ̄e
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i ,i

+

qi−1∑
p=1

⌊( σ̄2
epi ,i

∆epi

)2 dαk log(T )4f
2
T,δ

Σ∗
i,i

⌋(
∆epi

σ̄2
epi ,i

−
∆ep+1

i

σ̄2
ep+1
i ,i

))
← summation by parts

≤
dαk log(T )4f

2
T,δ

Σ∗
i,i

(
σ̄2
e
qi
i ,i

∆e
qi
i

+

qi−1∑
p=1

( σ̄2
epi ,i

∆epi

)2(∆epi

σ̄2
epi ,i

−
∆ep+1

i

σ̄2
ep+1
i ,i

))
← everything is positive

≤
4f2

T,δdαk log(T )

Σ∗
i,i

(
σ̄2
e
qi
i ,i

∆e
qi
i

+

∫ ( ∆
e1
i

σ̄2
e1
i
,i

)
( ∆

e
qi
i

σ̄2

e
qi
i

,i

) 1

x2
dx

)

=
4f2

T,δdαk log(T )

Σ∗
i,i

(
σ̄2
e
qi
i ,i

∆e
qi
i

+
σ̄2
e
qi
i

∆e
qi
i

−
σ̄2
e1i

∆e1i

)

≤
8f2

T,δdαk log(T )

Σ∗
i,i

σ̄2
e
qi
i ,i

∆e
qi
i

≤
8f2

T,δdαk log(T )

Σ∗
i,i

(
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a∈A/i∈a

σ̄2
a,i

∆a

)
≤

16f2
T,δdαk log(T )

Σ∗
i,i

(
max

a∈A/i∈a

σ2
a,i

∆a

)
.← σ̄2

a,i ≤ 2σ2
a,i (62)
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Reinjecting Eq. (62) into Equation (61) yields

T−1∑
t=d(d+1)

∆At+1

k0∑
k=1

1{A1
t,k} ≤

∑
i∈[d]

Σ∗
i,i

k0∑
k=1

1

βkd

16f2
T,δdαk log(T )

Σ∗
i,i

(
max

a∈A/i∈a

σ2
a,i

∆a

)

= 16 log(T )f2
T,δ

( k0∑
k=1

αk

βk

)∑
i∈[d]

(
max

a∈A/i∈a

σ2
a,i

∆′
a

)
≲
(
log(T )

)3
log(d)2

∑
i∈[d]

(
max

a∈A/i∈a

σ2
a,i

∆′
a

)
,← Eq. (6) and Eq. (48) (63)

for d ≲ log(T )
log(log(1+T )) and δ = 1/T 2.

We treat the 2 other terms in a similar way. For r = 2, let t ≥ d(d+ 1), and k ∈ [k0],

A2
t,k =

{
|S2

t,k| ≥ βkd
2; ∀l < k, |S2

t,l| < βld
2

}
⊆
{

1

βkd2
|S2

t,k| ≥ 1

}
.

Therefore,

1{A2
t,k} ≤

1

βkd2

∑
(i,j)∈[d]2

1
{
A2

t,k

⋂
{(i, j) ∈ S2

t,k}
}
. (64)

Summing over t and integrating the gaps yields

T−1∑
t=d(d+1)

∆At+1

k0∑
k=1

1{A2
t,k} ≤

T−1∑
t=d(d+1)

∆At+1

k0∑
k=1

1

βkd2

∑
(i,j)∈[d]2

1
{
A2

t,k

⋂
{(i, j) ∈ S2

t,k}
}
← by Eq. (64)

≤
∑

(i,j)∈[d]2

T−1∑
t=d(d+1)

k0∑
k=1

1

βkd2
∆At+11{(i, j) ∈ S2

t,k}

=
∑

(i,j)∈[d]2

k0∑
k=1

1

βkd2

T−1∑
t=d(d+1)

∆At+1
1

{
nt,(i,j) ≤ d

√
αk

√
2 log(T )

log(T )− 1

2ft,δ
√
(d+ 3 log(T )h2

T,δ)BiBj

∆At+1

}
.← by Eq. (52)

(65)

Let (i, j) ∈ [d]2, we consider all the actions which are associated to it. Let q(i,j) ∈ N be the number of

actions associated to the tuple (i, j). Let l ∈ [q(i,j)], this time, we denote el(i,j) ∈ A the l-th action associated

to tuple (i, j), sorted by decreasing ∆el
(i,j)

, with 1
∆

e0
(i,j)

= 0 by convention. Then,
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T−1∑
t=d(d+1)

∆At+1
1

{
nt,(i,j) ≤ d

√
αk

√
2 log(T )

log(T )− 1

2ft,δ
√
(d+ 3 log(T )h2

T,δ)BiBj

∆At+1

}

≤
T−1∑
t=0

∆At+1
1

{
nt,(i,j) ≤ d

√
αk

√
2 log(T )

log(T )− 1

2fT,δ

√
(d+ 3 log(T )h2

T,δ)BiBj

∆At+1

}
← as ft,δ ≤ fT,δ

=

T−1∑
t=0

q(i,j)∑
l=1

∆el
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1

{
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√
αk

√
2 log(T )

log(T )− 1

2fT,δ

√
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}

=
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∆el
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1

{
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1

d

√
1
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√
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≤ 1
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}
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√
(d+ 3 log(T )h2
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√
2 log(T )

log(T )− 1

√
αkd

(
1 +

q(i,j)−1∑
p=1

1

∆ep
(i,j)

(
∆ep

(i,j)
−∆ep+1

(i,j)

))
← same steps as for (62)

≤ 2
√
2dfT,δ

√
(d+ 3 log(T )h2

T,δ)BiBj

√
log(T )

log(T )− 1

√
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(
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∫ ∆
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(i,j)

∆
e
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1

x
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)
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√
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√
(d+ 3 log(T )h2
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√
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√
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(
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(i,j)

∆
e
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√
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√
(d+ 3 log(T )h2

T,δ)BiBj

√
log(T )

log(T )− 1

√
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(
1 + log

(
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))
. (66)

Reinjecting Eq. (66) into (65), we get

T−1∑
t=d(d+1)

∆At+1

k0∑
k=1

1{A2
t,k} ≤

2
√
2

d
fT,δ

√
(d+ 3 log(T )h2

T,δ)

√
log(T )

log(T )− 1

(
1 + log

(
∆max

∆min

)) ∑
(i,j)∈[d]2

√
BiBj

k0∑
k=1

√
αk

βk

≲
(
log(T )

)5/2
d2Bmax

(
1 + log

(
∆max

∆min

))
, (67)

for d ≲ log(T )
log(log(1+T )) , δ = 1/T 2 and d ≲ log(T )3.

Likewise for r = 3, let t ≥ d(d+ 1), and k ∈ [k0],

A3
t,k =

{
|S3

t,k| ≥ βkd
2; ∀l < k, |S3

t,l| < βld
2

}
⊆
{

1

βkd2
|S3

t,k| ≥ 1

}
,

And

1{A3
t,k} ≤

1

βkd2

∑
(i,j)∈[d]2

1
{
A3

t,k

⋂
{(i, j) ∈ S3

t,k}
}
. (68)
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Summing over t and integrating the gaps yields

T−1∑
t=d(d+1)

∆At+1

k0∑
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1

βkd2

∑
(i,j)∈[d]2
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← by Eq. (68)
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}
.← by Eq. (53)

(69)

Let (i, j) ∈ [d]2, we consider all the actions which are associated to it. Let q(i,j) ∈ N be the number of

actions associated to the tuple (i, j). Let l ∈ [q(i,j)], this time, we denote el(i,j) ∈ A the l-th action associated

to tuple (i, j), sorted by decreasing ∆el
(i,j)

, with 1
∆

e0
(i,j)

= 0 by convention. Then, like for (62),
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t=d(d+1)
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∆
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∆
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. (70)

Reinjecting Eq. (70) into (69), we get
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t=d(d+1)
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, (71)

for d ≲ log(T )
log(log(1+T )) and δ = 1/T 2.

Summing (63), (67) and (71), the dominant term with respect to T is (63) which yields

E
[ T−1∑
t=d(d+1)

∆At+1
1{Gt

⋂
C}
]
= O
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i∈[d]
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a∈A/i∈a
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a,i
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log(d)2 log(T )3

)
. (72)
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D Proof of Theorem 3.2

Theorem 3.2. Let T ≥ 5, B ∈ Rd
+, and δ = 1/T 2. Let

σ2
a,i =

∑
j∈a

(Σ∗
i,j)+ , (8)

where i ∈ [d], a ∈ A and ( · )+ = max{·, 0}. Then, OLS-UCBV (Alg. 2) satisfies the gap-dependent regret
upper bound
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,

and the distribution-free regret upper bound
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)
.

Proof. Let T ≥ 5 and δ = 1/T 2.
Injecting the result of Proposition 4.1 into (12) readily yields
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Reinjecting the result of Proposition 4.4 into it, we get the gap-dependent bound

E[RT ] = O
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(74)

For the gap-free bound, return to Eq. (73)
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but we bound the last part differently. Let ∆ > 0,
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Adapting Proposition 4.4 for to account for ∆At+1
> ∆ yields
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Balancing T∆ and 1
∆ log(T )3 log(d)2
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2
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E Comparison of algorithms on synthetic environments

This section provides plots for the empirical comparison described in Section 5.4.

Figure 2: Average Cumulative Regret for environments generated with d = 10 and P = 10 and exploration parameters fine-
tuned.

Figure 3: Comparison of the theoretical regret rate of OLS-UCBV and UCBV for a general structure on the left, and no action
overlap on the right.

39


	Introduction
	Lower Bound
	OLS-UCBV
	Estimators for mean and covariance
	Upper confidence bounds for covariance and mean
	Algorithm
	Regret upper bound

	Analysis of OLS-UCBV
	Defining ``favorable'' events
	Regret template bound
	Bounding A
	Bounding B
	Conclusion of the proof

	Comparisons and Complexity Analysis
	Regret rates
	Computational complexity
	Complexity / regret trade-off
	Empirical comparison

	Concluding Remarks
	Proofs of Section 2
	Proof of Theorem 2.2

	Proofs of Section 3
	Proof of Proposition 3.1

	Proofs of Section 4
	Proof of Proposition 4.2
	Proof of Proposition 4.3
	Proof of Lemma C.1
	Proof of Lemma C.2
	Proof of Proposition C.3
	Proof of Proposition C.4
	Proof of Proposition 4.5
	Proof of Lemma 4.6
	Definition of the sequences (alpha_k) and (beta_k)
	Definition of the sequences A_{t, k}r̂
	Proof of Lemma 4.7
	Proof of Proposition 4.4

	Proof of Theorem 3.2
	Comparison of algorithms on synthetic environments

