
HAL Id: hal-04470425
https://hal.science/hal-04470425

Preprint submitted on 21 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Non-Negotiating Distributed Computing
Carole Delporte-Gallet, Hugues Fauconnier, Pierre Fraigniaud, Sergio

Rajsbaum, Corentin Travers

To cite this version:
Carole Delporte-Gallet, Hugues Fauconnier, Pierre Fraigniaud, Sergio Rajsbaum, Corentin Travers.
Non-Negotiating Distributed Computing. 2024. �hal-04470425�

https://hal.science/hal-04470425
https://hal.archives-ouvertes.fr

Non-Negotiating Distributed Computing

Carole Delporte-Gallet1, Hugues Fauconnier1, Pierre Fraigniaud1, Sergio Rajsbaum2,
and Corentin Travers3

1IRIF, Université Paris Cité and CNRS
2Instituto de Matematicas, Universidad Nacional Autónoma de México

3LIS, Aix-Marseille Université

February 19, 2024

Abstract

A recent trend in distributed computing aims at designing models as simple as possible
for capturing the inherently limited computing and communication capabilities of insects,
cells, or tiny technological artefacts, yet powerful enough for solving non trivial tasks. This
paper is contributing further in this field, by introducing a new mode of distributed comput-
ing, that we call non-negotiating. In the non-negotiating model, a process decides a priori
what it is going to communicate to the other processes, before the computation starts, and
proceeds regardless of what the process hears from others during an execution. We consider
non-negotiating distributed computing in the read/write shared memory model in which
processes are asynchronous and subject to crash failures. We show that non-negotiating
distributed computing is universal, i.e., capable of solving any colorless task solvable by an
unrestricted full-information algorithm in which processes can remember all their history,
and send it to the other processes at any point in time. To prove this universality result, we
present a non-negotiating algorithm for solving multidimensional approximate agreement,
with arbitrary precision ϵ > 0.

1 Introduction

1.1 Context and Objective

Standard models of distributed computing assume a set of n ≥ 2 processes exchanging informa-
tion via some communication medium. The communication media may be of very different kinds,
from static to dynamic networks, and from message-passing to shared memory, to mention just
a few, under various failure assumptions. Several textbooks study such models, e.g. [6, 30, 32].
There has been however much interest recently in models to study systems of limited capabilities.
This is for instance the case of, e.g., sensor networks, for which space or energy considerations
limit the computing power of each device. Biological systems like a flock of birds, a school of
fish, or a colony of cells or insects, attracted a lot of interest from the distributed computing
community recently (see, e.g., [1, 2, 14, 18]). Extremely weak models have thus been intro-
duced, where, for instance, the processes are assumed to be finite-state automata [3], or the
communication bandwidth may be drastically limited, e.g., from typically O(log n) bits in the
CONGEST model [30] to O(1) bits in the STONE-AGE model [12] — the BEEPING model [7]
(see also [8, 9, 21]) even assumes that processes are capable to communicate only by either
emitting a “beep” or remaining silent. Many of these works considered synchronous failure-free
distributed computing. Others considered asynchronous models, including work assuming noisy

1

communication channels [13], work on self-stabilizing systems in which processes are subject to
transient failures [20], and a few other contributions to asynchronous shared-memory computing
to understand, e.g., epigenetic cell modification [33].

This paper introduces the study of a new type of limitation: the contents of all communica-
tion sent by a process is fixed before the execution starts. In all previous models we are aware
of, the contents of a message sent by a process may depend on the messages it has previously re-
ceived. Even in beeping models, a process decides in each round to emit a beep or remains silent
based on the beeps it has heard in the previous rounds. We consider a form of non-negotiating
distributed computing, in the sense that messages sent can only contain input values, or reflect
processes’ local progress, but cannot be related to processes’ local histories. The non-negotiating
limitation may seem too strong, especially in synchronous models, where local progress can be
anyway deduced from round numbers. Is it possible to do useful non-negotiating distributed
computing in an asynchronous system?

We show that the answer is yes, in the standard wait-free model in which n processes com-
municate by writing and reading in a shared memory, and processes are subject to permanent
crash failures. The shared memory consists of an array of n single-writer/multi-reader registers
(SWMR), one per process. The processes are asynchronous, and up to n−1 of them may crash.
Algorithms in this model are wait-free because a process can never wait for another process to
perform an action, as the latter can crash.

1.2 Non-Negotiating Distributed Computation

We propose a very weak asynchronous crash failure model. After writing its input to the shared
memory, each process just repeats a loop consisting of (1) writing a private counter in its shared
register, (2) reading all the counters currently present in the other registers, and (3) incrementing
its private counter, until some stopping condition is fulfilled. Once the process stops, it decides
an output value, and terminates. The pseudo-code of a process is presented in Algorithm 1.
We call this model non-negotiating, because each process decides what is going to say (through

Algorithm 1 Non-Negotiating Distributed Algorithm for Input-Output Tasks
1: write myinput ▷ Private input written (once) in shared memory
2: mycounter ← 1 ▷ Initialization of private counter
3: repeat
4: write mycounter ▷ Private counter written in shared memory
5: read all counters ▷ Counters are read sequentially, in arbitrary order
6: mycounter ← mycounter + 1 ▷ Private counter incremented
7: until test({counters}) ▷ Testing the stopping condition
8: read all inputs ▷ Inputs are read sequentially, in arbitrary order
9: decide output({counters}, {inputs}) ▷ Computing the output

a sequence of write operations), before the computation starts. The i-th write operation of a
process is simply i, it cannot write a value that depends on what it has read so far.

1.3 Results

In a nutshell, we show that in fact, a very large class of problems can be solved in the non-
negotiating model. Moreover, we establish a universality result: any colorless task that is solv-
able wait-free by an unrestricted algorithm, is solvable wait-free by a non-negotiating algorithm.
This result is established by showing how to solve multidimensional approximate agreement
for an arbitrary small precision ϵ > 0, using a non-negotiating algorithm, and then proving a

2

theorem that shows how to solve any colorless task using the multidimensional approximate
agreement algorithm.

Detailed results. In multidimensional approximate agreement, processes start with private
input values in Rd, are required to output values in the convex hull of the inputs and are at
most ϵ apart, for some parameter ϵ > 0.

We start by considering uniform non-negotiating algorithms, that is, an even more restricted
non-negotiating model, where processes execute the same number of rounds, k, fixed a priori. For
n = 2 processes, we show that there is a uniform non-negotiating algorithm for one-dimensional
approximate agreement, for any arbitrary small ϵ, using a sufficiently large value of k (Theo-
rem 1). Always, both processes execute exactly k rounds of the algorithm, and stop.

We however show that there is no uniform non-negotiating algorithms for approximate agree-
ment for more than two processes (Theorem 9). Remarkably, to expose its full computational
power, a non-negotiating algorithm, for n > 2, must use, in addition to counters, the ability of
a process to stop early, before executing k writes, as implied by our first main technical result:
we present a non-negotiating algorithm solving multidimensional approximate agreement, for
n ≥ 2 processes (Theorem 10). It is remarkable that a process may convey information to other
processes by stopping, since in a wait-free setting a process crash or stop is indistinguishable
from the process just being slow.

Our second main contribution is to show that our non-negotiating algorithm for multidi-
mensional approximate agreement can be used to solve any colorless task that is solvable by
an unrestricted, full-information algorithm (Theorem 16). Our reduction to multidimensional
agreement is in fact general, using our non-negotiating algorithm as a black box, and is also of
independent interest.

Discussion. The class of tasks that we consider are called colorless, because they can be
specified by sets of possible inputs to the processes, and, for each one, a set of legal sets of outputs,
without referring to process IDs. Colorless tasks have been thoroughly studied, e.g., [23], as they
include many of the standard tasks considered in the context of distributed computing. Note
that, even for just three processes, it is undecidable whether a colorless task with finite inputs
is wait-free solvable [17, 24].

The main result of the area is the Asynchronous Computability Theorem [27] characterizing
asynchronous read/write shared memory task solvability in terms of topology. There is also a
corresponding characterization theorem for colorless tasks [25, 26]. These and all subsequent
results [23] assumed an unrestricted model: unbounded size registers and full-information pro-
tocols where a process remembers all its past, and includes all of it in each write operation
to the shared memory [23]. We show in this paper, that for colorless tasks, a full-information
protocol can be replaced by writing a counter as in a non-negotiating algorithm. However,
in terms of time complexity, our approximate agreement algorithm is exponentially slow with
respect to full-information algorithms [28]. We do not know if this is unavoidable, except for uni-
form algorithms, for which we prove a corresponding lower bound for the case of two processes
(Theorem 8).

The approximate agreement algorithms we design assume fixed inputs: a process always
starts with the same fixed input value. But our reduction in Section 4 shows how to solve
multidimensional approximate agreement for any (finite) set of input values, because such a task
is colorless [23]. Our non-negotiating multidimensional agreement algorithm is of independent
interest. Indeed, since consensus is not wait-free solvable [15, 22], approximate agreement (that
is, 1-dimensional approximate agreement) has been thoroughly studied since in the early days of
the field [10]. The multidimensional approximate agreement version, where processes start with

3

values in Rd, has also received recently much attention, e.g. [4, 19, 16]. It was considered in the
context of message-passing Byzantine failures systems [29] as well as in shared memory systems
with crash failures [26]. Connections between approximate agreement, distributed optimization,
and machine learning have also been recently identified [11].

Organization of the paper. We present the results for two processes in Section 2. Our non-
negotiating algorithm solving multidimensional agreement is described in Section 3. The fact
that this algorithm can be used to solve any task that is solvable by an unrestricted algorithm is
established in Section 4. Section 5 concludes the paper. Due to lack of space, some proof details
have been moved to the Appendix.

2 Uniform Non-negotiated Approximate Agreement

In a uniform algorithm, processes always execute the same number of rounds. We present a
uniform approximate agreement algorithm for two processes in Section 2.1. The proof provides
intuition about the algorithm of Section 3 for any number of processes, but the intuition is only
partial, since we will show that actually, for n > 2 processes, there is no approximate agreement
uniform algorithm

We stress that both in this section and in Section 3 we design fixed inputs approximate
agreement algorithms, in other words, assuming each process always starts with the same input.
Approximate agreement for arbitrary (finite) inputs can be formally specified as a colorless
task [23], and hence, the results in Section 4 show that they can be solved by a non-negotiating
algorithm.

2.1 A Uniform Algorithm for 2-processes Approximate Agreement

We assume two processes, p1 starts with input value 0 and process p2 starts with input value
1. In every execution of an algorithm, each non-crashed process therefore has to decide a value
in the interval [0, 1], such that if only pi, i ∈ {1, 2} participates (takes steps), it decides its own
input, and in any case, the decided values are at most ϵ apart.1

Theorem 1. For every ϵ > 0, there exists a uniform non-negotiating algorithm that solves
ϵ-approximate agreement for two processes.

Algorithm 2 is used to prove this theorem. Processes execute k rounds, where k depends on
ϵ, that is, the algorithm solves ϵ = 1

2k+1 -approximate agreement.
Each process pi, i ∈ {1, 2} has two local variables: a local counter ci and an array viewi.

The counter ci records the local progress of pi: it is incremented each time pi repeats its for
loop. The local array viewi stores the successive values of the other process counter, as read by
pi. That is, for r ∈ {1, . . . , k}, viewi[r] is reserved to store the value returned by its r-th read
operation, of the other process’ register. After k iterations, process pi decides a value yi based
on k and its viewi (at line 7).

The decision of process pi depends on the index di such that viewi[di]+di ≤ k and viewi[di+
1] + di ≥ k. It is easy to see that such an index di can always be found since the function r →
viewi[r]+ r is increasing, and pi performs k rounds. Moreover, in the cases when both processes
terminate the algorithm, the indexes d1 and d2 of p1 and p2 are closely related, d1 = k − d2 or
d1 = k − d2 − 1, as we prove (Lemma 3). Therefore, the decision values y1 and y2 are at most

1
2k+1 apart, because v1 =

2(k−d1)
2k+1 and v2 =

2d2+1
2k+1 , see line 7.

1We consider inputs 0, 1 for concreteness and following previous papers, but a similar algorithm can be designed
with inputs (1, 0), (0, 1) as in Section 3.

4

Algorithm 2 Uniform non-negotiating algorithm for 2-processes 1
2k+1 -approximate agreement

in [0, 1]. Code for pi, i ∈ {1, 2} with input i− 1.

1: ci ← 0; viewi[r]← 0, 1 ≤ r ≤ k
2: for r = 1, . . . , k do
3: ci ← ci + 1
4: write(ci) to R[i] ▷ R[i] is pi’s register
5: viewi[r]← read(R[3− i]) ▷ read other process register

▷ store value read in the array viewi

6: let d be
{

k if viewi[k] = 0
such that (viewi[d] ≤ k − d) ∧ (viewi[d+ 1] ≥ k − d) otherwise

7: decide yi =

{
2(k−d)
2k+1 if i = 1
2d+1
2k+1 if i = 2

The validity requirement is trivially satisfied: in case only one process participates, say p1,
its array view1 contains only 0’s at the end of the algorithm, and the index d1 is consequently
equal to k. p1 thus decides 2(k−d1)

2k+1 = 0, as required. Similarly, in a solo execution p2 decides 1.
When both processes participate, decisions are in the range [0, 1].

We give a full proof of the correctness of the Algorithm below. The main technical ingredient
is first to show that the arrays view obtained by the processes when the algorithm terminates
can be partitioned into disjoint classes C1, C2, . . . defined as follows.

Definition 2. Let view be an array of k integers and let d ≥ 0 be an integer. We say that view
is in Cd if and only if:

• For r ∈ {1, . . . , d}, view[r] ∈ {0, .., k − d} and
• For r ∈ {d+ 1, . . . , k}, view[r] ∈ {k − d, . . . , k}.

In particular, [k, k, . . . , k] belongs to the class C0, and [0, 0, . . . , 0] belongs to the class Ck.
Second, we establish that when both processes terminate the algorithm, their array view1 and
view2 belong to two related classes:

Lemma 3. In every execution where pi and pj terminate their algorithm, we have viewi ∈
Cd =⇒ (viewj ∈ Ck−d−1) ∨ (viewj ∈ Ck−d)

This is illustrated Figure 1. In the case where both processes terminate, the views of both
processes are always in “neighbour” classes. As processes chooses their output based on the
index of the class their view belongs to, this ensures that outputs are at most ϵ = 1

2k+1 apart.

Ck C0 Ck−1 C1 C2 Ck−2 C1 Ck−1 C0 Ck

Figure 1: An edge between Ci and Cj represents executions of the two processes ending in these
classes, where red is for p1 and blue for p2. Thus, in one extreme p1 decides 0 and in the other
p2 decides 1, and in adjacent vertices decisions are at most 1

2k+1 apart.

An intuition behind the algorithm can be obtained by representing executions in a 2-
dimensional grid, as illustrated in Figure 2. Starting from the lower left corner, an execution
is depicted by moving 1 unit to the right each time p1 executes a read or write operation, and
moving up 1 unit each time p2 executes an operation. In this example k = 5, and each process
executes an alternating sequence of 5 write and 5 read operations. Three executions are depicted,

5

R:
1

R:
2

R:
3

R:
4

R:
5

R:
0

R:1

R:2

R:3

R:4

R:5

R:0

p1

p2

view1 = [1,1,2,2,3]
view2 = [3,5,5,5,5]
view2 = [2,3,4,5,5]
view2 = [0,2,4,5,5]

Figure 2: Three executions for k = 5, where p1 has the same view [1, 1, 2, 2, 3], while p2 has
different views. An horizontal arrow represents a read or write operation by process p2 while
a vertical one, an operation by process p1. Arrows on the edge of a bi-colored read/blue cell
correspond to read operations. For p1 (respectively, for p2), output of a read depends solely on
the row index (respectively column index) of the bi-colored cell is on the edge of.

all three indistinguishable to p1, and hence with the same view1. However, p2 distinguishes the
three executions, and thus it has a different view in each one.

The diagonal x → k − x is also depicted (black dotted line.). Every path representing the
execution crosses the diagonal. Notice that the last two executions (highlighted in green and
purple) cross the diagonal at the same point, but not the third one. The intuition is that the
decision of the process depends on when (it becomes aware from its view that) the execution has
reached the diagonal. In the yellow execution, p2 knows that the crossing point has been reached
after its second read, while this happens only after its third read in the last two executions.

2.2 Correctness Proof of the 2-processes Algorithm

We first derive a few basic properties of the algorithm. In the following, i ∈ {1, 2} is the index of
one of the process. We denote by j = 3− i the index of the other process. When the algorithm
terminates for process pi, its local array viewi contains values of the counter of process pj , as
seen by process pi. Therefore, as each counter is incremented at most k times and initialized
to 0, 0 ≤ viewi[r] ≤ k for each r ∈ {1, . . . , k}. As in each iteration of its algorithm, process
pj increments its counter before writing its value to its register, the values in viewi are thus
non-decreasing:

Lemma 4. If process pi terminates its algorithm, we have

• ∀r, 1 ≤ r ≤ k : 0 ≤ viewi[r] ≤ k

• ∀r, 1 ≤ r < k : viewi[r] ≤ viewi[r + 1]

Recall that class Cd contains the arrays view such that:

6

• For r ∈ {1, . . . , d}, view[r] ∈ {0, .., k − d} and

• For r ∈ {d+ 1, . . . , k}, view[r] ∈ {k − d, . . . , k}.

We next check that the classes C1, C2, . . . are disjoint:

Lemma 5. For every integers d, d′, d ̸= d′ =⇒ Cd ∩ Cd′ = ∅

Proof. Assume without loss of generality that d < d′. If view ∈ Cd′ then view[d′] ∈ {0, .., k−d′}.
If view ∈ Cd then, as d < d′, view[d′] ∈ {k−d, .., k}. As k−d′ < k−d ,{0, .., k−d′}∩{k−d, .., k} =
∅. Hence view cannot belong to both Cd and Cd′ .

Next, we prove that any array view obtained when the algorithm terminates belongs to some
class Cd:

Lemma 6. If process pi terminates its algorithm, there exists d ∈ {0, . . . , k} such that viewi ∈
Cd.

Proof. Suppose that process pi terminates its algorithm, and let viewi be its local array at
the end of the algorithm. If viewi[1] = k then viewi ∈ C0. In the following, we assume that
viewi[1] ≤ k − 1.

By Lemma 4, we can identify viewi with a non-decreasing continuous function fi : [1, k] →
[0, k]. For example, fi may be define as follows: on each interval [r, r+1), 1 ≤ r ≤ k−1, fi(x) =
(viewi[r + 1] − viewi[r])(x − r) + viewi[r]. Let us also consider the function g : [1, k] → [0, k]
that associates with each x ∈ [1, k] g(x) = k − x (Graphically, g is the diagonal line that goes
through points (1, k − 1) and (k, 0), see Figure 2).

As we assume that viewi[1] ≤ k − 1, fi(1) ≤ g(1). As the codomain of fi is [0, k],
fi(k) ≥ g(k) = 0. Since fi is non decreasing and continuous, it thus follows that there ex-
its an intersection point (α, k−α), α ∈ [1, k] in which the graphs of fi and g intersect. For every
r ∈ {1, . . . , ⌊α⌋}, viewi[r] ≤ k − ⌊α⌋, and for r from ⌊α⌋+ 1 to k view[r] ≥ k − ⌊α⌋. Therefore,
viewi is in the class C⌊α⌋.

We are now ready to prove Lemma 3.

Lemma 3. In every execution where pi and pj terminate their algorithm, we have viewi ∈
Cd =⇒ (viewj ∈ Ck−d−1) ∨ (viewj ∈ Ck−d)

Proof. Since the value in viewj are non-decreasing, it is enough to establish that viewj [x] ≤ k−x
and viewj [x+ 1] ≥ k − x to prove that the array viewj belongs to the class Cx.

Let us assume that both processes pi and pj terminate their algorithm, and suppose that
viewi ∈ Cd for some integer d, 0 ≤ d ≤ k. We first examine the case in which viewi ∈ Ck. This
means that for every r, 1 ≤ r ≤ k, viewi[r] = 0. That is, process pi writes and reads k times
before the first write of pj . Therefore, the first time process pj reads, it sees that the counter
of pi has already reaches k. Hence, viewj [r] = k, for all r, 1 ≤ r ≤ k. It thus follows that
viewj ∈ C0, as desired.

We now assume that viewi ∈ Cd for some d, 0 ≤ d < k. For ℓ ∈ {1, 2} and r, 1 ≤ r ≤ k, let
W r

ℓ and Rr
ℓ denote respectively the r-th write and the r-th read by process pℓ.

As viewi ∈ Cd, the read Rd
i returns a value ≤ k − d and the next read Rd+1

i returns a value
≥ k − d. This implies that process pj cannot write a value larger than k − d too early, that is
before Rd

i occurs. Similarly, pj cannot write values smaller than k − d after Rd+1
i occurs. As

writing alternates with reading, we have the two following claims :

Claim C1 Rk−d+1
j occurs after W d

i

7

Claim C2 Rk−d−1
j occurs before W d+2

i

Proof of Claim C1 Assume for contradiction that the (k− d+1)-th read by process pj precedes
the d-th write by process pj . Therefore pj has written k − d + 1 to its register before the d-th
read by pi (this is because W k−d+1

j precedes Rk−d+1
j , and pj writes k− d+ 1 the (k− d+ 1)-th

time it writes). Hence, viewi[d] ≥ k − d+ 1, contradicting the fact that viewi ∈ Cd.

Proof of Claim C2 Assume for contradiction that Rk−d−1
j follows W d+2

i . This means that when
W d+2

i occurs, the largest value written in the register of pj is smaller than or equal to k− d− 1.
In particular, as Rd+1

i precedes W d+2
i , the (d+ 1)th read by process pi returns a value smaller

than or equal to k − d− 1. Hence, viewi[d+ 1] ≤ k − d− 1, contradicting the fact viewi ∈ Cd.

We deduce from the two claims that viewj belongs to Ck−d or Ck−d−1. Assume that viewj ̸∈
Ck−d. By Claim C2, viewj [k−d−1] ≤ d+1 = k− (k−d−1). By Claim C1, viewj [k−d+1] ≥
d = k − (k − d). As we assume that viewj /∈ Ck−d, it must be the case that viewj [k − d] ≥
d+ 1 = k − (k − d− 1). It thus follows that viewj ∈ Ck−d−1.

Lemma 7. Algorithm 2 implements 1
2k+1 -approximate agreement with fixed inputs for two pro-

cesses.

Proof. Let ℓ ∈ {1, 2} and let us assume that only process pℓ participates. Its array viewℓ is thus
equal to [0, . . . , 0] at the end of the algorithm. By definition 2, [0, . . . , 0] ∈ Ck. By the code
of Algorithm 2, pℓ decides 0 if ℓ = 1 and 1 if ℓ = 2, as required (recall that the input of each
process is fixed: 0 for process p1 and 1 for process p2.).

Let us now consider the case in which both processes participate. By Lemma 6, if process
pℓ, ℓ ∈ {1, 2} terminates its algorithm, viewℓ ∈ Cd for some d ∈ {0, . . . , k}. From Lemma 5, this
d is unique. If follows from the code (line 7) and the fact that 0 ≤ d ≤ k that decided values
are in the range [0, 1].

Suppose that both processes decide and let d1 and d2 be such that their array view1 and
view2 are in the classes Cd1 and Cd2 respectively at the end of their algorithm. By the code
(line 7), process p1 decides v1 = 2(k−d1)

2k+1 and process p2 decides v2 = 2d2+1
2k+1 . By Lemma 3,

d2 = k − d1 − 1 or d2 = k − d1. Therefore,

v1 − v2 =
2k − 2d1 − 2d2 − 1

2k + 1
=

{ 1
2k+1 if d2 = k − d1 − 1
−1

2k+1 if d2 = k − d1

Hence, if processes p1 and p2 terminate their algorithm, their decision value differs by at most
1

2k+1 .

Theorem 1 is an immediate consequence of Lemma 7.

2.3 Inherent Slowness of Uniform Non-negotiating computing

We show that our uniform two-processes algorithm is essentially optimal with regards to the
number of rounds k. Thus, although it is exponentially slower than unrestricted algorithms such
as [28], this is unavoidable. Indeed, we establish that Ω(1k) is a lower bound on the agreement
parameter ϵ of any uniform non-negotiating algorithm that stops after k rounds, for any k:

Theorem 8. For any ϵ < 1
4k−1 , there is no uniform k-non negotiating algorithm for two pro-

cesses that implements ϵ-agreement.

8

The main idea is to consider the subset of executions of a uniform k-non negotiating algorithm
that have an immediate snapshot schedule, following [5]. Such an execution is defined by a
sequence of concurrency classes, c1, c2, . . ., where each ci consists of a non-empty subset of
{p1, p2}. In the corresponding execution, processes in ci write their counters (in an arbitrary
order), and then they read each other counters (in an arbitrary order). A sequence of concurrency
classes C = c1, c2, . . . , cℓ is complete if each process appears in exactly k concurrency classes,
i.e., it is an executions of a uniform k-non negotiating algorithm. Notice that the number ℓ of
concurrency classes satisfies k ≤ ℓ ≤ 2k.

Some immediate snapshot executions are represented in Figure 3, where the horizontal axis
corresponds to the operations executed by p1 and the vertical axis by p2. Thus, a path on the
grid defines an interleaving of the operations of the two processes. Arrows represent concurrency
classes. Table (a) represents the fully synchronous execution of 4 concurrency classes, where
every concurrency class ci is equal to {p1, p2}, while Table (h) represents a fully sequential
execution of 8 concurrency classes, where first p1 executes and then p2, so the first 4 concurrency
classes ci are equal to {p1}, and the other 4 concurrency classes are equal to {p2}. Notice that a
full concurrency class {p1, p2} is represented as a diagonal arrow, for the two write operations,
and for the two read operations, since both commute: no processes distinguishes in which order
the operations were performed. But in brief, the idea is to count the number of executions from

W R W R W R W R

W

R

W

R

W

R

W

R

W R W R W R W R

W

R

W

R

W

R

W

R

W R W R W R W R

W

R

W

R

W

R

W

R

W R W R W R W R

W

R

W

R

W

R

W

R

W R W R W R W R

W

R

W

R

W

R

W

R

W R W R W R W R

W

R

W

R

W

R

W

R

W R W R W R W R

W

R

W

R

W

R

W

R

W R W R W R W R

W

R

W

R

W

R

W

R

(a) (b) (c) (d)

(e) (f) (g) (h)

<latexit sha1_base64="dx3sOHuYGyDrQmOKFaI1kcBO7FY=">AAAB+3icbVDLSsNAFL2pr1pfsS7dDBbBVUmKr2XRjcsK9gFNCJPptB06mYSZiVhCfsWNC0Xc+iPu/BunbRbaeuDC4Zx7ufeeMOFMacf5tkpr6xubW+Xtys7u3v6BfVjtqDiVhLZJzGPZC7GinAna1kxz2kskxVHIaTec3M787iOVisXiQU8T6kd4JNiQEayNFNhVT2lMJpLyLAkauadYFNg1p+7MgVaJW5AaFGgF9pc3iEkaUaEJx0r1XSfRfoalZoTTvOKliiZmCR7RvqECR1T52fz2HJ0aZYCGsTQlNJqrvycyHCk1jULTGWE9VsveTPzP66d6eO1nTCSppoIsFg1TjnSMZkGgAZOUaD41BBPJzK2IjLHERJu4KiYEd/nlVdJp1N3L+sX9ea15U8RRhmM4gTNw4QqacActaAOBJ3iGV3izcuvFerc+Fq0lq5g5gj+wPn8AeQWUvA==</latexit>p2⇠
<latexit sha1_base64="HI/luoNDmgp8LOdW32F4rU69IrQ=">AAAB+3icbVDLSsNAFJ34rPUV69JNsAiuSiK+lkU3LivYBzQhTKaTdujMJMzciCXkV9y4UMStP+LOv3HaZqGtBy4czrmXe++JUs40uO63tbK6tr6xWdmqbu/s7u3bB7WOTjJFaJskPFG9CGvKmaRtYMBpL1UUi4jTbjS+nfrdR6o0S+QDTFIaCDyULGYEg5FCu+ZrwGSsKM/T0Ct8zURo192GO4OzTLyS1FGJVmh/+YOEZIJKIBxr3ffcFIIcK2CE06LqZ5qmZgke0r6hEguqg3x2e+GcGGXgxIkyJcGZqb8nciy0nojIdAoMI73oTcX/vH4G8XWQM5lmQCWZL4oz7kDiTINwBkxRAnxiCCaKmVsdMsIKEzBxVU0I3uLLy6Rz1vAuGxf35/XmTRlHBR2hY3SKPHSFmugOtVAbEfSEntErerMK68V6tz7mrStWOXOI/sD6/AF3fJS7</latexit>p1⇠ <latexit sha1_base64="dx3sOHuYGyDrQmOKFaI1kcBO7FY=">AAAB+3icbVDLSsNAFL2pr1pfsS7dDBbBVUmKr2XRjcsK9gFNCJPptB06mYSZiVhCfsWNC0Xc+iPu/BunbRbaeuDC4Zx7ufeeMOFMacf5tkpr6xubW+Xtys7u3v6BfVjtqDiVhLZJzGPZC7GinAna1kxz2kskxVHIaTec3M787iOVisXiQU8T6kd4JNiQEayNFNhVT2lMJpLyLAkauadYFNg1p+7MgVaJW5AaFGgF9pc3iEkaUaEJx0r1XSfRfoalZoTTvOKliiZmCR7RvqECR1T52fz2HJ0aZYCGsTQlNJqrvycyHCk1jULTGWE9VsveTPzP66d6eO1nTCSppoIsFg1TjnSMZkGgAZOUaD41BBPJzK2IjLHERJu4KiYEd/nlVdJp1N3L+sX9ea15U8RRhmM4gTNw4QqacActaAOBJ3iGV3izcuvFerc+Fq0lq5g5gj+wPn8AeQWUvA==</latexit>p2⇠

<latexit sha1_base64="HI/luoNDmgp8LOdW32F4rU69IrQ=">AAAB+3icbVDLSsNAFJ34rPUV69JNsAiuSiK+lkU3LivYBzQhTKaTdujMJMzciCXkV9y4UMStP+LOv3HaZqGtBy4czrmXe++JUs40uO63tbK6tr6xWdmqbu/s7u3bB7WOTjJFaJskPFG9CGvKmaRtYMBpL1UUi4jTbjS+nfrdR6o0S+QDTFIaCDyULGYEg5FCu+ZrwGSsKM/T0Ct8zURo192GO4OzTLyS1FGJVmh/+YOEZIJKIBxr3ffcFIIcK2CE06LqZ5qmZgke0r6hEguqg3x2e+GcGGXgxIkyJcGZqb8nciy0nojIdAoMI73oTcX/vH4G8XWQM5lmQCWZL4oz7kDiTINwBkxRAnxiCCaKmVsdMsIKEzBxVU0I3uLLy6Rz1vAuGxf35/XmTRlHBR2hY3SKPHSFmugOtVAbEfSEntErerMK68V6tz7mrStWOXOI/sD6/AF3fJS7</latexit>p1⇠

<latexit sha1_base64="HI/luoNDmgp8LOdW32F4rU69IrQ=">AAAB+3icbVDLSsNAFJ34rPUV69JNsAiuSiK+lkU3LivYBzQhTKaTdujMJMzciCXkV9y4UMStP+LOv3HaZqGtBy4czrmXe++JUs40uO63tbK6tr6xWdmqbu/s7u3bB7WOTjJFaJskPFG9CGvKmaRtYMBpL1UUi4jTbjS+nfrdR6o0S+QDTFIaCDyULGYEg5FCu+ZrwGSsKM/T0Ct8zURo192GO4OzTLyS1FGJVmh/+YOEZIJKIBxr3ffcFIIcK2CE06LqZ5qmZgke0r6hEguqg3x2e+GcGGXgxIkyJcGZqb8nciy0nojIdAoMI73oTcX/vH4G8XWQM5lmQCWZL4oz7kDiTINwBkxRAnxiCCaKmVsdMsIKEzBxVU0I3uLLy6Rz1vAuGxf35/XmTRlHBR2hY3SKPHSFmugOtVAbEfSEntErerMK68V6tz7mrStWOXOI/sD6/AF3fJS7</latexit>p1⇠
<latexit sha1_base64="dx3sOHuYGyDrQmOKFaI1kcBO7FY=">AAAB+3icbVDLSsNAFL2pr1pfsS7dDBbBVUmKr2XRjcsK9gFNCJPptB06mYSZiVhCfsWNC0Xc+iPu/BunbRbaeuDC4Zx7ufeeMOFMacf5tkpr6xubW+Xtys7u3v6BfVjtqDiVhLZJzGPZC7GinAna1kxz2kskxVHIaTec3M787iOVisXiQU8T6kd4JNiQEayNFNhVT2lMJpLyLAkauadYFNg1p+7MgVaJW5AaFGgF9pc3iEkaUaEJx0r1XSfRfoalZoTTvOKliiZmCR7RvqECR1T52fz2HJ0aZYCGsTQlNJqrvycyHCk1jULTGWE9VsveTPzP66d6eO1nTCSppoIsFg1TjnSMZkGgAZOUaD41BBPJzK2IjLHERJu4KiYEd/nlVdJp1N3L+sX9ea15U8RRhmM4gTNw4QqacActaAOBJ3iGV3izcuvFerc+Fq0lq5g5gj+wPn8AeQWUvA==</latexit>p2⇠

<latexit sha1_base64="dx3sOHuYGyDrQmOKFaI1kcBO7FY=">AAAB+3icbVDLSsNAFL2pr1pfsS7dDBbBVUmKr2XRjcsK9gFNCJPptB06mYSZiVhCfsWNC0Xc+iPu/BunbRbaeuDC4Zx7ufeeMOFMacf5tkpr6xubW+Xtys7u3v6BfVjtqDiVhLZJzGPZC7GinAna1kxz2kskxVHIaTec3M787iOVisXiQU8T6kd4JNiQEayNFNhVT2lMJpLyLAkauadYFNg1p+7MgVaJW5AaFGgF9pc3iEkaUaEJx0r1XSfRfoalZoTTvOKliiZmCR7RvqECR1T52fz2HJ0aZYCGsTQlNJqrvycyHCk1jULTGWE9VsveTPzP66d6eO1nTCSppoIsFg1TjnSMZkGgAZOUaD41BBPJzK2IjLHERJu4KiYEd/nlVdJp1N3L+sX9ea15U8RRhmM4gTNw4QqacActaAOBJ3iGV3izcuvFerc+Fq0lq5g5gj+wPn8AeQWUvA==</latexit>p2⇠

Figure 3: Some immediate snapshot executions of a uniform k-non negotiating algorithm, k = 4,
and their indistinguishability relations.

the fully sequential to the fully concurrent. In more detail, there is a path of 4k − 1 executions
(vertices), with C1 as the central vertex, and whose endpoints are the fully sequential executions,
C ′, C ′′, and each two consecutive executions are indistinguishable to one process. This claim
implies that the best ϵ-agreement that can be achieved is 1

4k−1 . This is because in each two
consecutive executions one process decides the same value.

Recall that a uniform k-non negotiating algorithm is a non-negotiating algorithm in which
processes perform k iterations of the repeat loop in every execution, while in a k-non negotiating
algorithm processes performs at most k iterations of the repeat loop in every execution. In such
an algorithm, processes are thus allowed to stop early, as a function of their views of the other

9

processes’ counters. We next present the proof of Theorem 8 (restated below).

Theorem 8. For any ϵ < 1
4k−1 , there is no uniform k-non negotiating algorithm for two pro-

cesses that implements ϵ-agreement.

Proof. For the proof it suffices to consider the subset of executions of an uniform k-non negoti-
ating algorithm that have an immediate snapshot schedule, following [5]. Such an execution is
defined by a sequence of concurrency classes, c1, c2, . . ., where each ci consists of a non-empty
subset of {p1, p2}. In the corresponding execution, processes in ci write their counters (in an
arbitrary order), and then they read each other counters (in an arbitrary order). A sequence of
concurrency classes C = c1, c2, . . . , cℓ is complete if each process appears in exactly k concur-
rency classes, i.e., it is an execution of a uniform k-non negotiating algorithm. Notice that the
number of concurrency classes satisfies k ≤ ℓ ≤ 2k.

Some immediate snapshot executions are represented in Figure 4, where the horizontal axis
corresponds to the operations executed by p1 and the vertical axis by p2. Thus, a path on the
grid defines an interleaving of the operations of the two processes. Arrows represent concurrency
classes. Table (a) represents the fully synchronous execution of 4 concurrency classes, where
every concurrency class ci is equal to {p1, p2}, while Table (h) represents a fully sequential
execution of 8 concurrency classes, where first p1 executes and then p2, so the first 4 concurrency
classes ci are equal to {p1}, and the other 4 concurrency classes are equal to {p2}. Notice that a
full concurrency class {p1, p2} is represented as a diagonal arrow, for the two write operations,
and for the two read operations, since both commute: no processes distinguishes in which order
the operations were performed. On the other hand, we have the following observation.

W R W R W R W R

W

R

W

R

W

R

W

R

W R W R W R W R

W

R

W

R

W

R

W

R

W R W R W R W R

W

R

W

R

W

R

W

R

W R W R W R W R

W

R

W

R

W

R

W

R

W R W R W R W R

W

R

W

R

W

R

W

R

W R W R W R W R

W

R

W

R

W

R

W

R

W R W R W R W R

W

R

W

R

W

R

W

R

W R W R W R W R

W

R

W

R

W

R

W

R

(a) (b) (c) (d)

(e) (f) (g) (h)

<latexit sha1_base64="dx3sOHuYGyDrQmOKFaI1kcBO7FY=">AAAB+3icbVDLSsNAFL2pr1pfsS7dDBbBVUmKr2XRjcsK9gFNCJPptB06mYSZiVhCfsWNC0Xc+iPu/BunbRbaeuDC4Zx7ufeeMOFMacf5tkpr6xubW+Xtys7u3v6BfVjtqDiVhLZJzGPZC7GinAna1kxz2kskxVHIaTec3M787iOVisXiQU8T6kd4JNiQEayNFNhVT2lMJpLyLAkauadYFNg1p+7MgVaJW5AaFGgF9pc3iEkaUaEJx0r1XSfRfoalZoTTvOKliiZmCR7RvqECR1T52fz2HJ0aZYCGsTQlNJqrvycyHCk1jULTGWE9VsveTPzP66d6eO1nTCSppoIsFg1TjnSMZkGgAZOUaD41BBPJzK2IjLHERJu4KiYEd/nlVdJp1N3L+sX9ea15U8RRhmM4gTNw4QqacActaAOBJ3iGV3izcuvFerc+Fq0lq5g5gj+wPn8AeQWUvA==</latexit>p2⇠
<latexit sha1_base64="HI/luoNDmgp8LOdW32F4rU69IrQ=">AAAB+3icbVDLSsNAFJ34rPUV69JNsAiuSiK+lkU3LivYBzQhTKaTdujMJMzciCXkV9y4UMStP+LOv3HaZqGtBy4czrmXe++JUs40uO63tbK6tr6xWdmqbu/s7u3bB7WOTjJFaJskPFG9CGvKmaRtYMBpL1UUi4jTbjS+nfrdR6o0S+QDTFIaCDyULGYEg5FCu+ZrwGSsKM/T0Ct8zURo192GO4OzTLyS1FGJVmh/+YOEZIJKIBxr3ffcFIIcK2CE06LqZ5qmZgke0r6hEguqg3x2e+GcGGXgxIkyJcGZqb8nciy0nojIdAoMI73oTcX/vH4G8XWQM5lmQCWZL4oz7kDiTINwBkxRAnxiCCaKmVsdMsIKEzBxVU0I3uLLy6Rz1vAuGxf35/XmTRlHBR2hY3SKPHSFmugOtVAbEfSEntErerMK68V6tz7mrStWOXOI/sD6/AF3fJS7</latexit>p1⇠ <latexit sha1_base64="dx3sOHuYGyDrQmOKFaI1kcBO7FY=">AAAB+3icbVDLSsNAFL2pr1pfsS7dDBbBVUmKr2XRjcsK9gFNCJPptB06mYSZiVhCfsWNC0Xc+iPu/BunbRbaeuDC4Zx7ufeeMOFMacf5tkpr6xubW+Xtys7u3v6BfVjtqDiVhLZJzGPZC7GinAna1kxz2kskxVHIaTec3M787iOVisXiQU8T6kd4JNiQEayNFNhVT2lMJpLyLAkauadYFNg1p+7MgVaJW5AaFGgF9pc3iEkaUaEJx0r1XSfRfoalZoTTvOKliiZmCR7RvqECR1T52fz2HJ0aZYCGsTQlNJqrvycyHCk1jULTGWE9VsveTPzP66d6eO1nTCSppoIsFg1TjnSMZkGgAZOUaD41BBPJzK2IjLHERJu4KiYEd/nlVdJp1N3L+sX9ea15U8RRhmM4gTNw4QqacActaAOBJ3iGV3izcuvFerc+Fq0lq5g5gj+wPn8AeQWUvA==</latexit>p2⇠

<latexit sha1_base64="HI/luoNDmgp8LOdW32F4rU69IrQ=">AAAB+3icbVDLSsNAFJ34rPUV69JNsAiuSiK+lkU3LivYBzQhTKaTdujMJMzciCXkV9y4UMStP+LOv3HaZqGtBy4czrmXe++JUs40uO63tbK6tr6xWdmqbu/s7u3bB7WOTjJFaJskPFG9CGvKmaRtYMBpL1UUi4jTbjS+nfrdR6o0S+QDTFIaCDyULGYEg5FCu+ZrwGSsKM/T0Ct8zURo192GO4OzTLyS1FGJVmh/+YOEZIJKIBxr3ffcFIIcK2CE06LqZ5qmZgke0r6hEguqg3x2e+GcGGXgxIkyJcGZqb8nciy0nojIdAoMI73oTcX/vH4G8XWQM5lmQCWZL4oz7kDiTINwBkxRAnxiCCaKmVsdMsIKEzBxVU0I3uLLy6Rz1vAuGxf35/XmTRlHBR2hY3SKPHSFmugOtVAbEfSEntErerMK68V6tz7mrStWOXOI/sD6/AF3fJS7</latexit>p1⇠

<latexit sha1_base64="HI/luoNDmgp8LOdW32F4rU69IrQ=">AAAB+3icbVDLSsNAFJ34rPUV69JNsAiuSiK+lkU3LivYBzQhTKaTdujMJMzciCXkV9y4UMStP+LOv3HaZqGtBy4czrmXe++JUs40uO63tbK6tr6xWdmqbu/s7u3bB7WOTjJFaJskPFG9CGvKmaRtYMBpL1UUi4jTbjS+nfrdR6o0S+QDTFIaCDyULGYEg5FCu+ZrwGSsKM/T0Ct8zURo192GO4OzTLyS1FGJVmh/+YOEZIJKIBxr3ffcFIIcK2CE06LqZ5qmZgke0r6hEguqg3x2e+GcGGXgxIkyJcGZqb8nciy0nojIdAoMI73oTcX/vH4G8XWQM5lmQCWZL4oz7kDiTINwBkxRAnxiCCaKmVsdMsIKEzBxVU0I3uLLy6Rz1vAuGxf35/XmTRlHBR2hY3SKPHSFmugOtVAbEfSEntErerMK68V6tz7mrStWOXOI/sD6/AF3fJS7</latexit>p1⇠
<latexit sha1_base64="dx3sOHuYGyDrQmOKFaI1kcBO7FY=">AAAB+3icbVDLSsNAFL2pr1pfsS7dDBbBVUmKr2XRjcsK9gFNCJPptB06mYSZiVhCfsWNC0Xc+iPu/BunbRbaeuDC4Zx7ufeeMOFMacf5tkpr6xubW+Xtys7u3v6BfVjtqDiVhLZJzGPZC7GinAna1kxz2kskxVHIaTec3M787iOVisXiQU8T6kd4JNiQEayNFNhVT2lMJpLyLAkauadYFNg1p+7MgVaJW5AaFGgF9pc3iEkaUaEJx0r1XSfRfoalZoTTvOKliiZmCR7RvqECR1T52fz2HJ0aZYCGsTQlNJqrvycyHCk1jULTGWE9VsveTPzP66d6eO1nTCSppoIsFg1TjnSMZkGgAZOUaD41BBPJzK2IjLHERJu4KiYEd/nlVdJp1N3L+sX9ea15U8RRhmM4gTNw4QqacActaAOBJ3iGV3izcuvFerc+Fq0lq5g5gj+wPn8AeQWUvA==</latexit>p2⇠

<latexit sha1_base64="dx3sOHuYGyDrQmOKFaI1kcBO7FY=">AAAB+3icbVDLSsNAFL2pr1pfsS7dDBbBVUmKr2XRjcsK9gFNCJPptB06mYSZiVhCfsWNC0Xc+iPu/BunbRbaeuDC4Zx7ufeeMOFMacf5tkpr6xubW+Xtys7u3v6BfVjtqDiVhLZJzGPZC7GinAna1kxz2kskxVHIaTec3M787iOVisXiQU8T6kd4JNiQEayNFNhVT2lMJpLyLAkauadYFNg1p+7MgVaJW5AaFGgF9pc3iEkaUaEJx0r1XSfRfoalZoTTvOKliiZmCR7RvqECR1T52fz2HJ0aZYCGsTQlNJqrvycyHCk1jULTGWE9VsveTPzP66d6eO1nTCSppoIsFg1TjnSMZkGgAZOUaD41BBPJzK2IjLHERJu4KiYEd/nlVdJp1N3L+sX9ea15U8RRhmM4gTNw4QqacActaAOBJ3iGV3izcuvFerc+Fq0lq5g5gj+wPn8AeQWUvA==</latexit>p2⇠

Figure 4: Some immediate snapshot executions of a uniform k-non negotiating algorithm, k = 4,
and their indistinguishability relations.

Consider two executions C = c1, c2, . . . , cℓ and C ′ = c′1, c
′
2, . . . , c

′
ℓ′ . We write C

pi∼ C ′ if pi
does not distinguish the two executions, i.e., it reads the same sequence of counters in C and in
C ′.
Observation: (i) Any concurrency class ci = {p1, p2} of C, can be split into two consecutive
concurrency classes {p1}{p2} to obtain and execution C ′ indistinguishable to p2. (ii) Similarly,
any two consecutive concurrency classes {p1}{p2} of C can be joined into one {p1, p2} and obtain
an execution C ′ indistinguishable to p2.

10

The observation can be applied in “parallel”, as illustrated in Figure 4. For example, Table (a)
and Table (b), represent executions indistinguishable to p2, obtained by splitting all concurrency
classes in Table (a). Similarly, Table (c) is obtained from Table (b) by joining concurrency classes,
maintaining indistinguishability with respect to p1.

Now, consider the concurrent execution C1 = c1, c2, . . . , ck, and the two sequential executions,
C ′ = c′1, c

′
2, . . . , c

′
2k, and C ′′ = c′′1, c

′′
2, . . . , c

′′
2k, where in C ′, first p1 runs solo and then p2 runs

solo, and in C ′′ the opposite. Namely, for 1 ≤ i ≤ k, we have c′i = {p1}, c′k+i = {p2}, and
c′′i = {p2} and c′′k+i = {p1}.

Claim: There is a path of 4k − 1 executions (vertices), with C1 as the central vertex, and
whose endpoints are the fully sequential executions, C ′, C ′′, and each two consecutive executions
are indistinguishable to one process.

This Claim implies that the best ϵ-agreement that can be achieved is 1
4k−1 . This is because

each two consecutive executions one process decides the same value.
We verify the above claim, following the example in the figure. Let us denote by αm a

sequence of m concurrency classes {p1, p2}, βi
m a sequence of m concurrency classes {pi}, by γijm

a sequence of m concurrency classes {pi}, {, pj}. Thus, C1 = αk.
Applying repeatedly the previous observation, we have the following sequence of executions

illustrated in Figure 4,
C1

p2∼ C2
p1∼ C3

p2∼ · · · p2∼ C2k(= C ′)

and
C1 = C ′

1
p1∼ C ′

2
p2∼ C ′

3
p1∼ · · · p1∼ C ′

2k(= C ′′)

where for 1 ≤ i ≤ k, C2i−1 is of the form β1
i−1αk−i+1β

2
i−1, and C ′

2i−1 is of the form β2
i−1αk−i+1β

1
i−1.

3 Non-Negotiated Multidimensional Approximate Agreement

In this section, we show how to solve multidimensional approximate agreement in the non-
negotiating model. As in the previous section, we concentrate on a fixed inputs version of
multidimensional approximate agreement in which each process starts with a fixed input value.
It will be used in Section 4 to solve any colorless task. Let ϵ > 0. Each process pi, i ∈ {1, . . . , n},
n ≥ 2, starts with input xi = (0, . . . , 0, 1, 0, . . . , 0) ∈ {0, 1}n where the unique 1 stands at the
i-th coordinate. Each participating process pi must output a vector yi ∈ Qn such that, if I ⊆
{1, . . . , n} denotes the set of participating processes, then (1) for every non-faulty process pi ∈ I,
yi ∈ Hull({xi | i ∈ I}), and (2) for every two non-faulty processes pi, pj ∈ I, ||yi − yj ||2 ≤ ϵ.
Here, for a set S of points in {0, 1}n, Hull(S) denotes the convex hull of S. Note that since, for
every i, process pi always starts with input xi, it does not need to write xi in memory.

We first show that actually no uniform algorithm can solve multidimensional approximate
agreement (for arbitrarily small ϵ).

Theorem 9. Let n ≥ 3. For ϵ <
√

n−2
n−1 , there is no uniform non-negotiating algorithm that

implements multidimensional approximate agreement for n processes.

Proof. Let A be a n-processes uniform non-negotiating algorithm that implements multidimen-
sional ϵ-agreement for some ϵ, 0 ≤ ϵ < 1. Recall that in our fixed inputs version, the input of
each process pi is the point ui = (0, . . . , 0, 1, 0, . . . , 0) whose all coordinates are 0, except the
i-th which is 1.

In a uniform non-negotiating algorithm, in every execution, every process performs k itera-
tions of the repeat loop before deciding (unless it fails). The constant k may depend on ϵ, but
it is independent of the execution.

11

The proof is based an indistinguishability argument. For i, 1 ≤ i ≤ n − 1, let ei be an
execution such that:

• Process pi performs first its k iterations and decides,
• Then processes pj , j ∈ {1, . . . , n − 1} \ {i} perform their k iterations of the repeat loop.

The order in which these processes take steps does not matter. For example, they may
perform their k iterations sequentially in increasing index order.

• Finally, process pn performs its k iterations of the for loop of the algorithm.
Let us first observe that for each i, 1 ≤ i ≤ n − 1, process pi cannot distinguish ei from an

execution in which it is the only participating process. It thus decides ui in execution ei.
Second, note that executions e1, . . . , en−1 are indistinguishable for process pn. Indeed, it each

of them, the state of the shared memory is [k, . . . , k, 0] when pn starts executing its algorithm
as every process has written the final value, k, of its counter before pn has taken even one step.
Hence, in each execution ei, 1 ≤ i ≤ n− 1, the successive views of the counters for process pn is
[k, . . . , k, 1], . . . , [k, . . . , k, k]. pn thus decides the same point y in e1, . . . , en−1.

By the first observation, it must be the case that ||y − ui||2 ≤ ϵ for all i, 1 ≤ i ≤ n − 1.
The coordinates of the point c closest to u1, . . . ,un−1 (that is, the centroid of u1, . . . ,un−1) are
(1
n−1 , . . . ,

1
n−1 , 0). As ||c−ui||2 =

√
n−2
n−1 for every i, 1 ≤ i ≤ n−1, it follows that ϵ ≥

√
n−2
n−1 .

We now present our general multidimensional approximate agreement algorithm, which in
light of the previous impossibility, is not uniform.

Theorem 10. For every n ≥ 2, and for every ϵ > 0, Algorithm 3 with k = 3n
ϵ solves multidi-

mensional ϵ-approximate agreement for n processes.

Algorithm 3 Non-negotiating Algorithm for multidimensional approximate agreement. Code
for process pi, i ∈ {1, . . . , n}, starting with input xi. R is a shared array of n integers initialized
to 0.
1: ci ← 0 ▷ Counter of pi
2: viewi ← [0, . . . , 0] ▷ viewi[j] contain last read value of pj ’s counter
3: repeat
4: ci ← ci + 1
5: write(ci) to R[i] ▷ R[i] is the shared register of pi
6: viewi ← collect(R) ▷ instruction collect reads all registers in arbitrary order
7: until

∑n
j=1 viewi[j] ≥ k ▷ stop when the sum of counters reaches threshold k

8: decide yi =
∑n

j=1(viewi[j]·xj)∑n
j=1 viewi[j]

The rest of the section is dedicated to the proof of Theorem 10. In Algorithm 3, the accuracy
ϵ of the agreement is controlled through parameter k = O(nϵ). A process stops incrementing its
counter when it observes that the sum of the counters is larger than the threshold k (line 7). In
other words, each process looks for the first iteration d at which the sum of the counters of the
processes is at least k. In each iteration of the repeat-loop, the value of the counters, as observed
by process pi, are stored in the local variable viewi, and are interpreted as the coordinates of a
point di ∈ Rn where

di =

n∑
j=1

(viewi[j] · xj).

The algorithm stops at process pi when di is far enough from the origin (0, . . . , 0), that is, when
it is on the other side of the hyperplane Hk with respect to the origin — see Figure 5. Hk is

12

O

x1

x2

H1

x3

(k, 0, 0)

(0, k, 0)

Hk

(0, 0, k)

d1

d2

d3

y1
y2

y3

Figure 5: Points di, i ∈ {1, 2, 3}, and outputs
yi for n = 3.

O

di

dj

H1

Hki

Hkj

yiyj

I

Figure 6: The points used in the proof of
Lemma 15

the hyperplane that contains the n points (k, 0, . . . , 0), . . . , (0, . . . , 0, k). The coordinates of di

are then scaled down to produce a decision yi that belongs to the hyperplane H1 (line 8). As
we shall prove in Lemma 12, scaling down the points di ensures validity as the resulting points
yi are in the convex hull of the unit vectors corresponding to the participating processes. For
agreement, we shall prove in Lemma 15 that the decisions yi, i ∈ I, all lie in a same L2-ball of
diameter O(nk).

We first show that Algorithm 3 terminates.

Lemma 11. In every execution, every process decides after a finite number of iterations.

Proof. Let pi be a process. Suppose for contradiction that there is an infinite execution in which
pi does not fail, and does not decide. This means that pi performs infinitely many iterations of the
repeat-loop. In particular, in iteration k, the value of the counter of process pi is k, which is the
value that pi writes to shared memory in this iteration. Hence, the view it obtains after reading
the memory in this iteration is such that viewi[i] = k. Since the initial value of each register is 0
and each process writes only positive values to its register, we get that

∑
1≤j≤n viewi[j] ≥ k.

Therefore, process pi exits the repeat-loop, and, as it does not fail, decides at line 8.

Next, we show that the validity condition of multidimensional ϵ-agreement is satisfied.

Lemma 12. In every execution, any decision is in the convex hull of the inputs of the partici-
pating processes.

Proof. Let e be an execution of Algorithm 3, let P be the set of participating processes in e,
and let pi ∈ P be a process that decides in e. We denote by yi its decision. It is required that
any decision yi belongs to the convex hull of the inputs of the participating processes, that is,
y =

∑
j∈P λjxj where, for every j ∈ P , λj ≥ 0 and

∑
j∈P λj = 1. Let viewi be the result

of the last collect by process pi before it decides. Note that for each pj /∈ P , viewi[j] = 0
as a non-participating process never writes to shared memory, and all registers are initialized
to 0. By Line 8, the coordinates of the output decision yi are 1∑

j viewi[j]
(viewi[1], . . . , viewi[n]).

Therefore, the coordinates are all positive, and their sum is 1. Since, in addition, viewi[j] = 0
for every j /∈ P , it follows that yi ∈ Hull({xj : j ∈ P}).

13

We now establish a couple of technical lemmas that will be used for proving that the outputs
are close to each other.

Lemma 13. Let e be an execution, and let i ∈ {1, . . . , n} such that process pi is correct in e.
Let viewi be the last view of pi before pi decides. Then

k ≤
∑

1≤j≤n

viewi[j] ≤ k + n− 1.

Proof. As viewi is obtained the last times process pi reads the shared memory, we have k ≤∑
1≤j≤n view[j] by the stopping condition in line 7. Assume for contradiction that

∑
1≤j≤n viewi[j] ≥

n+ k. For every integer ℓ, 1 ≤ ℓ ≤ n+ k, let Wℓ denote the ℓth write to the shared memory. As
registers are initialized to 0, and since each time a process writes to shared memory it increments
its register by 1, any read of the memory that terminates before the write Wℓ returns an array
whose sum of its components is less than ℓ. Similarly, if an array v is obtained by a read of
the memory that starts after Wℓ, then ℓ ≤∑

1≤j≤n v[j]. As process pi obtains the array viewi

with
∑

1≤j≤n viewi[j] ≥ n + k, the execution must contain at least n + k writes. In particular
the n + 1 writes Wk, . . . ,Wk+n must occur in e. At least two of them, say Wℓ and W ′

ℓ, with
k ≤ ℓ < ℓ′ ≤ k+n, must be performed by a single process, denoted by pj . After performing the
write operation Wℓ, pj reads the memory. The sum of the counters in the array that it obtains
by reading is at least ℓ ≥ k. It follows that pj exits its repeat-loop, and consequently never
performs Wℓ′ , a contradiction.

The previous lemma establishes a bound on the sum of the components of the final views of
the processes. This sum cannot be too far away from the threshold value k. In the next lemma,
we examine each component individually, and we show that each component j cannot be to far
from some value cj .

Lemma 14. Let e be a finite execution in which at least one process decides. For each process
pj, j ∈ {1, . . . , n}, let cj be the last value of its counter as written to its register, with cj = 0 if
process pj does not participate in e. For every process pi that decides there exists n non-negative
integers δ1i , . . . , δ

n
i such that

∑n
ℓ=1 δ

ℓ
i ≤ n− 1, and di =

∑n
ℓ=1(cℓ − δℓi) · xℓ.

Proof. As in the proof of Lemma 13, let Wℓ denote the ℓth write to the shared memory in e.
Since the registers are initialized to 0, and since each write operation increments a register by 1,
we have

∑
1≤j≤nR[j] = ℓ− 1 immediately before Wℓ occurs, and

∑
1≤j≤nR[j] = ℓ immediately

after.
We say that a process is slow if its last write precedes Wk, and that a process is fast if its

last write follows Wk. Let S and F be the sets of indexes of slow and fast processes, respectively.
In addition, let pt be the process that performs the write Wk. Let pi be a process that decides,
and, let viewi be the result of its last collect operation. We now examine how each individual
component viewi[j] compare to the last value cj written by pj in its register. We distinguish
the two cases i ∈ F ∪ {t} and i ∈ S.

If i ∈ F ∪{t}, then pi is fast, or i = t. In this case, the last collect performed by pi starts after
Wk. Therefore, for each ℓ ∈ S ∪ {t}, viewi[ℓ] = cℓ. For ℓ ∈ F , note that any write performed
by a process p after Wk is the last write of this process. Indeed, the collect that follows that
write returns an array whose sum is at least k, since

∑
1≤j≤nR[j] ≥ k after Wk. Therefore,

since the last time process pi reads R[ℓ] occurs after Wk, that read either returns the last or
the next-to-last value written by pℓ to R[ℓ]. Hence viewi[ℓ] = cℓ − δℓi where δℓi ∈ {0, 1}. To
summarize, for every ℓ ∈ {1, . . . , n}, we have viewi[ℓ] = cℓ − δℓi where δℓi = 0 if ℓ ∈ S ∪ {t}, and
δℓi ∈ {0, 1} if ℓ ∈ F . Since there are at most n−1 fast processes, we get that

∑
1≤ℓ≤n δ

ℓ
i ≤ n−1.

14

If i ∈ S then the last collect of pi starts before Wk. The value read from register R[ℓ] by pi
is cℓ − δℓi , where δℓi ≥ 0. On one hand, process pi decides, and thus the sum of the components
of viewi must be larger that k. That is,∑

1≤ℓ≤n

cℓ − δℓi ≥ k. (1)

On another hand, k can be expressed in terms of the last value of the counters of the processes:

k =
∑
j∈R

(cj − 1) +
∑
j∈S

cj + ct. (2)

Indeed, we know that
∑

1≤j≤nR[j] = k immediately after Wk. The value stored in R[j] is then
cj if pj is a slow process or if pj = pt, and it is cj − 1 if pj is a fast process. This is because, as
we have seen before, a fast process performs exactly one write after Wk. By combining Eq. (1)
and (2), we get

∑
1≤ℓ≤n δ

ℓ
i ≤ |F |, from which we conclude that

∑
1≤ℓ≤n δ

ℓ
i ≤ n− 1 as there are

at most n− 1 fast processes.
It follows that, in each case, there exists n non-negative integers δ1i , . . . , δ

n
i such that

di =
∑

1≤ℓ≤n

viewi[ℓ] · xℓ =
∑

1≤ℓ≤n

(cℓ − δℓi) · xℓ

with
∑

1≤ℓ≤n δ
ℓ
i ≤ n− 1, as desired.

We now have all the ingredients to show that multidimensional ϵ-agreement is solved by
Algorithm 3.

Lemma 15. Let us assume that, in some execution of Algorithm 3, pi and pj decide yi and yj,
respectively. Then ||yi − yj ||2 ≤ 3(n−1)

k .

Proof. We denote by viewi and viewj the last counters collected on the memory obtained by
pi and pj , respectively. If viewi = viewj , then yi = yj , and the lemma follows. In the
following, we thus suppose that viewi ̸= viewj . Let us denote by ki (respectively, kj) the
sum of the components of viewi (respectively, viewj). Without loss of generality, we assume
that ki ≤ kj . For every integer ℓ > 0, let Hℓ be the hyperplane that contains the n points
(ℓ, 0, . . . , 0), . . . , (0, . . . , 0, ℓ). That is, Hℓ = {v = (v1, . . . , vn) |

∑
1≤λ≤n vλ = ℓ}. Note that

di ∈ Hki as it is the point whose coordinates are (viewi[1], . . . , viewi[n]).
The line (Odi), where O = (0, . . . , 0) is the origin, intersects Hk in a single point that we

denote by I — See Figure 6. Indeed, dj is either in Hki , in which case I = dj , or on the opposite
side of Hk. By line 8 in Algorithm 3, yi stands on the line (Odi). Similarly, yi stands on the
line (Odj), and, by definition, I also stands on this line. Therefore, points O, di, dj , yi, yj , and
I are co-planar. To bound the distance between yi and yj , we are going to use the Intercept
Theorem on the triangles (OdiI) and (Oyiyj) .

We first show that we can bound the L1-norm ||I −di||1 from above by a quantity that does
not depend on k. Observe that

I =
ki
kj

dj

Indeed, dj = (viewj [1], . . . , viewj [n]) with
∑

1≤ℓ≤n viewj [ℓ] = kj . Hence ki
kj
dj is on the hyper-

plane Hki and also a point on the line passing through O and dj . We use the expression of di

and dj given by Lemma 14. Recall that cℓ is the last value written by process pℓ to its register,
and δ1t , . . . , δ

n
t , t ∈ {i, j} are non-negative integers whose sum is at most n− 1. We have

di =
∑

1≤ℓ≤n

(cℓ − δℓi)xℓ, and dj =
∑

1≤ℓ≤n

(cℓ − δℓj)xℓ,

15

from which we deduce that
dj = di +

∑
1≤ℓ≤n

(δℓi − δℓj)xℓ

We next use this equation to bound ||di − I||1, as follows.

||di − I||1 = ||di −
ki
kj

dj ||1

= ||di −
ki
kj

(di +
∑

1≤ℓ≤n

(δℓi − δℓj)xℓ)||1

= ||(1− ki
kj

)di −
ki
kj

∑
1≤ℓ≤n

(δℓi − δℓj)xℓ||1

≤ (1− ki
kj

)||di||1 +
ki
kj
||

∑
1≤ℓ≤n

(δℓi − δℓj)xℓ||1

Note that
||di||1 =

∑
1≤ℓ≤n

|viewi[ℓ]| =
∑

1≤ℓ≤n

viewi[ℓ] = ki.

Also, since, first,
∑

1≤ℓ≤n δ
ℓ
i ≤ n− 1, second,

∑
1≤ℓ≤n δ

ℓ
j ≤ n− 1, and, third, all terms δℓi , δ

ℓ
j are

non-negative, we have ||∑1≤ℓ≤n(δ
ℓ
i − δℓj)xℓ||1 ≤ 2(n− 1). Therefore,

||di − I||1 ≤ ki(1−
ki
kj

) + 2(n− 1)
ki
kj

=
(kj − ki + 2(n− 1))ki

kj
. (3)

Let kj = ∆+ki. Since ki and kj are the sums of the components of viewi and viewj obtained by
pi and pj , respectively, we get that ∆ ≤ n− 1 by Lemma 13. In addition, 0 ≤ ∆ as we assume
ki ≤ kj . Equation (3) can thus be rewritten as follows:

||di − I||1 ≤
(ki +∆− ki + 2(n− 1))ki

ki +∆

≤ (∆ + 2(n− 1))

1 + ∆
ki

≤ 3(n− 1)
(4)

Due to the relationship between L2-norm and L1-norm, we have

||di − I||2 ≤ ||di − I||1 ≤ 3(n− 1)

Finally, we use the Intercept Theorem to bound the distance between the decision yi and yj .
As observed earlier, O,yi,di,yj and I are co-planar. Hyperplanes H1 and Hki have the same
direction, and contain yi,yj and di, I, respectively. Therefore the lines (yiyj) and (diI) are
parallel. It follows from the Intercept Theorem that

||yj − yi||2
||I − di||2

=
||yi −O||2
||di −O||2

Now, the decision of process pi is yi =
di∑

1≤ℓ≤n viewi[ℓ]
= di

ki
. Therefore,

||yj − yi||2 =
||yi||2
||di||2

||I − di||2 =
1

ki

||di||2
||di||2

||I − di||2 ≤ 3
(n− 1)

ki
≤ 3

(n− 1)

k
.

The penultimate inequality comes from Eq. (4), and the last inequality follows from the fact
that the sum ki of the components in the last collect viewi of process pi is at least k.

16

4 Universality of Multidimensional Approximate Agreement

In this section, we show that multidimensional approximate agreement with fixed inputs is
complete, in the sense that any problem that is solvable wait-free can be solved by merely
solving multidimensional ϵ-agreement for an appropriate setting of ϵ, and inferring the outputs
of the problem directly from the solution to multidimensional ϵ-agreement.

To formally define the notion of “problem”, it is convenient to adopt the terminology of
algebraic topology (see, e.g., [23]). Recall that a simplicial complex K with vertex set V is
a collection of non-empty subsets of V containing each singleton {v}, v ∈ V , and closed by
inclusion, i.e., if σ ∈ K then σ′ ∈ K for every non-empty σ′ ⊆ σ. Each set in K is called
a simplex. A task is then defined as a triple Π = (I,O,∆) where I and O are simplicial
complexes, and ∆ : I → 2O is the input-output specification. That is, every vertex of I (resp.,
of O) is a possible input value (resp., output value), and every σ ∈ I (resp., τ ∈ O) represents
a collection of legal input configurations (resp., output configurations) of the system. In other
words, if σ = {x1, . . . , xk} belongs to I, then it is legal that n ≥ k processes conjointly start
with this set of inputs, i.e., some processes start with input x1, some others with input x2,
etc. Similarly, if τ = {y1, . . . , yk} belongs to O then it is legal for a set of n ≥ k processes to
conjointly output τ , i.e., some processes output y1, while some others output y2, etc. Finally,
for every σ ∈ I, ∆(σ) is a sub-complex of O specifying the set of legal outputs for σ, i.e., any
set of processes with input configuration σ can collectively output any simplex τ ∈ ∆(σ).

For instance, n-dimensional ϵ-agreement with fixed inputs is the task Π = (I,O,∆) with

I =
{
{xi | i ∈ I} | (I ̸= ∅) ∧ (I ⊆ {1, . . . , n}

}
where, for every i ∈ {1, . . . , n}, xi is the n-dimensional vector (0, . . . , 0, 1, 0, . . . , 0) with the 1 at
the i-th coordinate,

O =
{
{yj | j ∈ J} ∈ P(Qn) | (∅ ̸= J ⊆ {1, . . . , n}) ∧ (∀i, j ∈ J, ||yi − yj ||2 ≤ ϵ)

}
and, for every σ = {xi | i ∈ I} ∈ I, and every τ = {yj | j ∈ J} ∈ O, we have

τ ∈ ∆(σ) ⇐⇒ yj ∈ Hull({xi | i ∈ I}) for every j ∈ J .

The following theorem essentially states that an algorithm for multidimensional ϵ-agreement can
be used to solve any (solvable) task.

Theorem 16. Let n ≥ 2, and let Π = (I,O,∆) be a task solvable by n processes. There exists
ϵ > 0 such that, for every input σ = {xi | i ∈ I} ∈ I for Π, with ∅ ̸= I ⊆ {1, . . . , n}, if
{yi | i ∈ I} denotes any solution of multidimensional ϵ-agreement whenever process pi starts
with input xi for every i ∈ I, then every process pi, i ∈ I can compute locally from yi an output yi
for Π such that {yi | i ∈ I} ∈ ∆(σ).

Proof. By the colorless wait-free computability theorem [23, 26], since Π = (I,O,∆) is a task
solvable by n processes, there exists an integer T ≥ 0 and a simplicial map2

f : BT (I)→ O

where BT (I) is the simplicial complex obtained by applying T times the barycentric subdivision
operator to I (see Fig. 7). Moreover, this map f agrees with the input-output specification ∆
of the task, that is, for every σ ∈ I,

f(BT (σ)) ⊆ ∆(σ),

17

-ball ϵ B1

-ball ϵ B3

-ball ϵ B2

x1

x2 x3

u

v

a
b

c

Figure 7: Applying two times the barycentric subdivision operator to σϵ = {x1,x2,x3}. For-
mally, the figure displays the canonical geometric realization of B2(σϵ), and the outer triangle
represents the frontier of the convex hull of the three points x1,x2,x3.

i.e., every simplex σ′ ∈ BT (σ) is mapped by f to a simplex f(σ′) of ∆(σ).
Let us denote by Πϵ = (Iϵ,Oϵ,∆ϵ) the multidimensional ϵ-agreement task. Recall that

we mean here the fixed inputs version, for which every i ∈ {1, . . . , n}, process pi can only
starts with the point xi. That is, the input complex of multidimensional ϵ-agreement is simply
Iϵ = {x1, . . . ,xn}. Now, recall that, by definition of multidimensional ϵ-agreement, the outputs
yj , j ∈ J , will be at mutual distance at most ϵ, and will stand in the convex hull of the input
simplex σ = {xi | i ∈ J}.

A first observation is that, by picking ϵ sufficiently small, any ball of radius ϵ in the convex
hull of σ can be mapped to a simplex of BT (σ). For instance, in Fig. 7, the ball B1 is included
in the simplex {a, b,x1} of B2(σ). Therefore, each yj in B1 can be mapped to any of the three
points a, b, or x1, e.g., to the closed point. Instead, the ball B2 intersects a face of B2(σ), namely
the edge {u, v}. In this case, each yj in B2 can be mapped to any of the two points u or v, e.g.,
the closest. A ball of radius ϵ may however intersect many different faces, just like the ball B3

does in Fig. 7. However, for ϵ sufficiently small, this may occur only for balls that are close to a
single vertex (c in the case of the ball B3). Therefore, each yj in B3 can simply be mapped to
this vertex. Let us denote by

g : Oϵ → BT (Iϵ)
this mapping.

A second observation is that there is a canonical one-to-one correspondence between any
input simplex σ = {xi | i ∈ I} ∈ I of the task Π and the input simplex σϵ = {xi | i ∈ I} ∈ Iϵ
of multidimensional ϵ-agreement. Therefore, the same holds for their barycentric subdivisions.
Let us denote by

hσ : BT (σ)→ BT (σϵ)
this one-to-one map. Note that, for every face σ′ of σ, hσ′ coincides with hσ restricted to BT (σ′).

We have now all the ingredients for establishing the theorem. Let us first explain how the
generic non-negotiating algorithm (Algorithm 1 of Section 1.2) is instantiated by each process.
Every process pj starts by writing its input for task Π (line 1 of the generic algorithm). It then

2Recall that a map f from the vertex set of a complex K1 to the vertex set of a complex K2 is simplicial if,
for every σ ∈ K1, f(σ) ∈ K2. Such a map is therefore a map f : K1 → K2, mapping every simplex of K1 to a
simplex of K2.

18

solves multidimensional ϵ-agreement (with fixed input xj) using the multidimensional approx-
imate agreement algorithm (Algorithm 3). Following algorithm 3, this consists in performing
O(n/ϵ) iterations of the repeat loop of the generic algorithm. pj finally reads all inputs for task
Π previously written (line 8 of the generic algorithm.).

By reading the inputs for Π, process pj thus collects an input simplex σ = {xi | i ∈ I} ∈ I.
From σ, pi infers σϵ = {xi | i ∈ I} which is its view of the input simplex of the multidimensional
approximate agreement. Let y be the output of pj in multidimensional ϵ-agreement. Using the
map g : Oϵ → BT (Iϵ), process pj computes

z = g(y) ∈ BT (Iϵ).

Given z, σ, and σϵ, process pj can then use the one-to-one map hσ : BT (σ)→ BT (σϵ) to compute

z = h−1
σ (z) ∈ BT (σ).

Finally, given z ∈ BT (σ), process pj just outputs y = f(z) where f : BT (I) → O is the
aforementioned simplicial map whose existence is guaranteed by the wait-free computability
theorem.

To show correctness, let I ⊆ {1, . . . , n} be the set of (correct) participating processes, with
input simplex {xi | i ∈ I}. These processes solve multidimensional ϵ-agreement with input
σϵ = {xi | i ∈ I}, and output {yj | j ∈ J} ∈ ∆ϵ(σϵ). Thanks to the mapping g, these output
values are mapped to a simplex τ ∈ BT (σϵ), which is, thanks to hσ, in one-to-one correspondence
with a simplex τ ′ ∈ BT (σ). Since f is simplicial, the latter simplex is mapped to a simplex
τ ′′ ∈ O. In fact, since f solves the task Π, and since τ ′ ∈ BT (σ), we necessarily have τ ′′ ∈ ∆(σ)
as f agrees with ∆. This completes the proof.

The following is a direct consequence of Theorem 16, merely because multidimensional ϵ-
agreement with process pi starting with input xi for every i ∈ {1, . . . , n} can be solved using a
non-negotiating algorithm.

Corollary 17. Let n ≥ 2, and let Π = (I,O,∆) be a task solvable by n processes with an
unrestricted algorithm. There exists a non-negotiating algorithm solving Π for n processes.

5 Conclusion

We have introduced a very restricted form distributed wait-free shared memory computing, and
shown that nevertheless, it is universal, in the sense that it is capable of solving any colorless
task that is wait-free solvable under no restrictions on the algorithm. The result is achieved
by proving a general result about multidimensional approximate agreement: a black box that
solves this task for arbitrary ϵ > 0, can be used to solve any (wait-free solvable) colorless task.

Our results open several interesting avenues for future research. They uncover the remarkable
power of asynchronous read/write shared memory, that allows processes to communicate to each
other information, through the timing of their read/write operations, which is not under their
control. Although we proved a lower bound for two process uniform algorithms, in general
we don’t know if the exponential slowdown of our n-processes multidimensional approximate
agreement algorithm is unavoidable.

It would also be interesting to compare our results to dynamic graph message passing [16]
or shared-memory iterated models [31], where processes operate in rounds, and hence the round
number is a counter available for free. For instance, it has been shown [9] that the wait-
free dynamic graph model is strong enough to implement any two process task, without an
exponential slowdown, even using only beeps. Interestingly, in this and other beeping models

19

processes decide when to send a beep, as a function of their history. Our non-negotiating model
is more restrictive in this sense, and indeed beeps would be useless; the moment a process writes
is not under its own control, since the model is fully asynchronous.

The class of tasks we have considered are colorless [23], which includes consensus, approx-
imate agreement, set agreement, and many others. It remains an open question if our non-
negotiating model can be used to solve colored tasks, most notably, renaming [6].

References

[1] Yehuda Afek, Noga Alon, Omer Barad, Eran Hornstein, Naama Barkai, and Ziv Bar-
Joseph. A biological solution to a fundamental distributed computing problem. science,
331(6014):183–185, 2011.

[2] Bertie Ancona, Ayesha Bajwa, Nancy A. Lynch, and Frederik Mallmann-Trenn. How to
color a french flag - biologically inspired algorithms for scale-invariant patterning. In 14th
Latin American Symposium on Theoretical Informatics (LATIN), volume 12118 of LNCS,
pages 413–424. Springer, 2020.

[3] Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and René Peralta. Compu-
tation in networks of passively mobile finite-state sensors. Distributed Comput., 18(4):235–
253, 2006.

[4] Hagit Attiya and Faith Ellen. The step complexity of multidimensional approximate agree-
ment. In 26th International Conference on Principles of Distributed Systems, OPODIS,
volume 253 of LIPIcs, pages 6:1–6:12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2022. doi:10.4230/LIPIcs.OPODIS.2022.6.

[5] Hagit Attiya and Sergio Rajsbaum. The combinatorial structure of wait-free solvable tasks.
SIAM J. Comput., 31(4):1286–1313, 2002.

[6] Hagit Attiya and Jennifer Welch. Distributed computing: fundamentals, simulations, and
advanced topics, volume 19. John Wiley & Sons, 2004.

[7] Alejandro Cornejo and Fabian Kuhn. Deploying wireless networks with beeps. In 24th
International Symposium on Distributed Computing (DISC), volume 6343 of LNCS, pages
148–162. Springer, 2010.

[8] Peter Davies. Optimal message-passing with noisy beeps. In 42th ACM Symposium on
Principles of Distributed Computing (PODC), pages 300–309, 2023.

[9] Carole Delporte-Gallet, Hugues Fauconnier, and Sergio Rajsbaum. Communication com-
plexity of wait-free computability in dynamic networks. In 27th International Colloquium
on Structural Information and Communication Complexity (SIROCCO), volume 12156 of
LNCS, pages 291–309. Springer, 2020.

[10] Danny Dolev, Nancy A. Lynch, Shlomit S. Pinter, Eugene W. Stark, and William E. Weihl.
Reaching approximate agreement in the presence of faults. In 3rd IEEE Symposium on
Reliability in Distributed Software and Database Systems (SRDS), pages 145–154, 1983.

[11] El-Mahdi El-Mhamdi, Rachid Guerraoui, Arsany Guirguis, Lê-Nguyên Hoang, and
Sébastien Rouault. Genuinely distributed byzantine machine learning. Distributed Com-
puting, 35(4):305–331, 2022.

20

https://doi.org/10.4230/LIPIcs.OPODIS.2022.6

[12] Yuval Emek and Roger Wattenhofer. Stone age distributed computing. In 32nd ACM
Symposium on Principles of Distributed Computing (PODC), pages 137–146, 2013.

[13] Ofer Feinerman, Bernhard Haeupler, and Amos Korman. Breathe before speaking: ef-
ficient information dissemination despite noisy, limited and anonymous communication.
Distributed Comput., 30(5):339–355, 2017.

[14] Ofer Feinerman and Amos Korman. The ANTS problem. Distributed Comput., 30(3):149–
168, 2017.

[15] Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impossibility of distributed con-
sensus with one faulty process. J. ACM, 32(2):374–382, 1985.

[16] Matthias Függer, Thomas Nowak, and Manfred Schwarz. Tight bounds for asymptotic and
approximate consensus. J. ACM, 68(6):46:1–46:35, 2021. doi:10.1145/3485242.

[17] Eli Gafni and Elias Koutsoupias. Three-processor tasks are undecidable. SIAM J. Comput.,
28(3):970–983, 1999.

[18] Aviram Gelblum, Ehud Fonio, Yoav Rodeh, Amos Korman, and Ofer Feinerman. Ant
collective cognition allows for efficient navigation through disordered environments. eLife,
9:e55195, may 2020. doi:10.7554/eLife.55195.

[19] Diana Ghinea, Chen-Da Liu-Zhang, and Roger Wattenhofer. Multidimensional approxi-
mate agreement with asynchronous fallback. In 35th ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), pages 141–151, 2023.

[20] George Giakkoupis and Isabella Ziccardi. Distributed self-stabilizing MIS with few states
and weak communication. In 42nd ACM Symposium on Principles of Distributed Computing
(PODC), pages 310–320, 2023.

[21] Lauri Hella, Matti Järvisalo, Antti Kuusisto, Juhana Laurinharju, Tuomo Lempiäinen,
Kerkko Luosto, Jukka Suomela, and Jonni Virtema. Weak models of distributed computing,
with connections to modal logic. Distributed Computing, 28(1):31–53, 2015.

[22] Maurice Herlihy. Wait-free synchronization. ACM Trans. Program. Lang. Syst., 13(1):124–
149, 1991. doi:10.1145/114005.102808.

[23] Maurice Herlihy, Dmitry N. Kozlov, and Sergio Rajsbaum. Distributed Computing Through
Combinatorial Topology. Morgan Kaufmann, 2013.

[24] Maurice Herlihy and Sergio Rajsbaum. The decidability of distributed decision tasks. In
Proceedings of the Twenty-Ninth Annual ACM Symposium on the Theory of Computing,
pages 589–598. ACM, 1997. doi:10.1145/258533.258652.

[25] Maurice Herlihy and Sergio Rajsbaum. The topology of shared-memory adversaries. In
Proceedings of the 29th ACM SIGACT-SIGOPS Symposium on Principles of Distributed
Computing (PODC), page 105–113. ACM, 2010. doi:10.1145/1835698.1835724.

[26] Maurice Herlihy, Sergio Rajsbaum, Michel Raynal, and Julien Stainer. From wait-free to
arbitrary concurrent solo executions in colorless distributed computing. Theor. Comput.
Sci., 683:1–21, 2017.

[27] Maurice Herlihy and Nir Shavit. The topological structure of asynchronous computability.
J. ACM, 46(6):858–923, 1999.

21

https://doi.org/10.1145/3485242
https://doi.org/10.7554/eLife.55195
https://doi.org/10.1145/114005.102808
https://doi.org/10.1145/258533.258652
https://doi.org/10.1145/1835698.1835724

[28] Gunnar Hoest and Nir Shavit. Toward a topological characterization of asynchronous com-
plexity. SIAM J. Comput., 36(2):457–497, 2006.

[29] Hammurabi Mendes, Maurice Herlihy, Nitin H. Vaidya, and Vijay K. Garg. Multidimen-
sional agreement in byzantine systems. Distributed Comput., 28(6):423–441, 2015.

[30] David Peleg. Distributed Computing: A Locality-Sensitive Approach. Society for Industrial
and Applied Mathematics, 2000.

[31] Sergio Rajsbaum. Iterated shared memory models. In Alejandro López-Ortiz, edi-
tor, 9th Latin American Symposium on Theoretical Informatics (LATIN), volume 6034
of Lecture Notes in Computer Science, pages 407–416. Springer, 2010. doi:10.1007/
978-3-642-12200-2_36.

[32] Michel Raynal. Fault-Tolerant Message-Passing Distributed Systems - An Algorithmic Ap-
proach. Springer, 2018. doi:10.1007/978-3-319-94141-7.

[33] Gadi Taubenfeld. Anonymous shared memory. J. ACM, 69(4), 2022.

22

https://doi.org/10.1007/978-3-642-12200-2_36
https://doi.org/10.1007/978-3-642-12200-2_36
https://doi.org/10.1007/978-3-319-94141-7

	Introduction
	Context and Objective
	Non-Negotiating Distributed Computation
	Results

	Uniform Non-negotiated Approximate Agreement
	A Uniform Algorithm for 2-processes Approximate Agreement
	Correctness Proof of the 2-processes Algorithm
	Inherent Slowness of Uniform Non-negotiating computing

	Non-Negotiated Multidimensional Approximate Agreement
	Universality of Multidimensional Approximate Agreement
	Conclusion

