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CONTINUUM LIMIT OF THE DISCRETE NONLINEAR KLEIN-GORDON
EQUATION

QUENTIN CHAULEUR

Abstract. We study the convergence of solutions of the discrete nonlinear Klein-Gordon equa-
tion on an infinite lattice in the continuum limit, using recent tools developed in the context of
nonlinear discrete dispersive equations. Our approach relies in particular on the use of bilinear
estimates of the Shannon interpolation alongside controls on the growth of discrete Sobolev norms
of the solution. We conclude by giving perspectives on uniform dispersive estimates for nonlinear
waves on lattices.

We consider the discrete nonlinear Klein-Gordon equation

(DNLKG) ∂2t u−∆hu+ u+ |u|p−1u = 0

on a lattice hZd of step size h > 0 with initial condition u(0) = u0 and ∂tu(0) = u1. Here

∆hu(a) =

d∑
j=1

u(a+ hej) + u(a− hej)− 2u(a)

h2
, a ∈ hZd,

denotes the usual discrete Laplace operator which accounts for nearest neighbor interactions, with
(ej)1≤j≤d the canonical basis on Rd. We restrict our attention to the dimensional cases 1 ≤ d ≤ 3.

Nonlinear waves in lattices [22] has received a lot of interest since the seminal investigation of
Fermi, Pasta and Ulam [11] on the FPUT model alongside the development of soliton theory and
integrable systems such as the Toda lattice [34] or the Ablowitz-Laddik equation [1]. Discrete Klein-
Gordon equations also naturally arise in the physics literature in order to describe Fluxon dynamics
in one dimension parallel array of Josephson junctions [35], or as a model for local denaturation of
DNA [30]. Equation (DNLKG) enjoys the following energy conservation law

(1) E(t) :=
1

2
∥∂tu∥2L2

h
+

1

2
∥∇hu∥2L2

h
+

1

2
∥u∥2L2

h
+

1

p+ 1
∥u∥p+1

Lp+1
h

= E(0).

Our analysis will be performed on a particular set of parameters p and d satisfying

(param)
®
1 < p for d = 1, 2,

1 < p < 3 for d = 3,

which will imply from energy conservation the uniform bound ∥(u, ∂tu)∥H1
h×L2

h
≤ Cd with respect

both to the time t ≥ 0 and the size of the lattice h > 0, a feature that we will extensively use
throughout this work. In particular, we will be interested in the limit h→ 0 of equation (DNLKG),
usually referred as the continuum limit. From this perspective, equation (DNLKG) can also be seen
as a finite difference scheme for the numerical simulation of the well-known nonlinear Klein-Gordon
equation

(NLKG) ∂2t ϕ−∆ϕ+ ϕ+ |ϕ|p−1ϕ = 0,
1
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and one can reasonably ask in which framework and at which rate solutions of the discrete equation
(DNLKG) converge to the ones of the continuous equation (NLKG). We briefly recall that equation
(NLKG) is a fundamental model in mathematical physics and has been extensively studied in a
large amount of literatures. It has been used as the equation of classical neutral scalar mesons,
but also to study bosonic phases in massive stars in connection with Bose-Einstein condensation
[28]. It also appears as a superfluid model to describe the creation and dynamics of quantized
vortices in galaxies [27]. We finally mention its link with nonlinear Schrödinger equations in the
non-relativistic regime [26, 25].

Other the past ten years, there have been many recent advances in the study of the continuum
limit for dispersive equations since the work of Kirkpatrick, Lenzmann and Staffilani [24], where the
authors show the L2 weak convergence of solutions of the discrete nonlinear Schrödinger equation
(DNLS) in the continuum limit. The L2 strong convergence of such solutions were then achieved
by Hong and Yang in [16] alongside precise convergence rates in h, a result which was recently
extended by Choi and Aceves [9] to the fractional nonlinear Schrödinger equation. However, to
the best of the author’s knowledge, no results are known for the continuum limit of the discrete
nonlinear Klein Gordon, which is the main purpose of this paper.

This work follows from the conference CJC-MA which held in CentraleSupelec in September
2023, during which the author presented his recent study on discrete nonlinear Schrödinger equa-
tions [6], and announced that the strategy developed in this paper can be used for other dispersive
equations. Note that contrary to this prior work, no uniform dispersive properties such as Strichartz
estimates are used throughout the forthcoming proof, and comments about this feature will be de-
veloped at the end of this paper.

This paper is organized as follows. In section 1, we give some notations for discrete functional
analysis and we state our main result Theorem 1. Section 2 is devoted to the proof of uniform
bounds on the growth of discrete Sobolev norms of solutions to (DNLKG), and Theorem 1 is then
proven in section 3. We conclude this work with section 4, where we survey recent advances in
nonlinear dispersive lattice equations and give perspectives.

1. Discrete framework and main result

We denote respectively by Lp(hZd), for 1 ≤ p <∞, and L∞(hZd) (or sometimes more compactly
Lp
h and L∞

h in mathematical mode) the discrete Lebesgue spaces induced by the norms

∥g∥p
Lp

h
= hd

∑
a∈hZd

|g(a)|p and ∥g∥L∞
h

= sup
a∈hZd

|g(a)|.

One can also define the forward discrete gradient

∇+
h,jg(a) =

g(a+ hej)− g(a)

h
, ∇+

h =
Ä
∇+

h,1, . . . ,∇
+
h,d

ä⊤
for any a ∈ hZd, as well as the discrete gradient

∇h,jg(a) =
g(a+ hej)− g(a− hej)

h
, ∇h = (∇h,1, . . . ,∇h,d)

⊤
.

The discrete Fourier transform of a function g ∈ L2(hZd) and its inversion formula are given by

ĝ(ξ) = hd
∑

a∈hZd

g(a)e−ia·ξ and g(a) =
1

(2π)d

∫
Td
h

ĝ(ξ)eia·ξdξ



CONTINUUM LIMIT OF THE DISCRETE NONLINEAR KLEIN-GORDON EQUATION 3

for ξ ∈ Td
h = Rd/

(
2π
h Zd

)
and a ∈ hZd, defining an isometry from L2(hZd) to L2(Td

h). One can also
define discrete Sobolev spaces Hs(hZd) (or Hs

h) for any s ∈ R with the norm

∥g∥2Hs
h
=

1

(2π)d

∫
Td
h

Ñ
1 +

4

h2

d∑
j=1

sin

Å
hξj
2

ã2és

|û(ξ)|2 dξ.

In order to compare discrete and continuous functions, we need to define a projection operator
on the grid and an interpolation operator to lift a discrete function on the continuous space. We
denote the mean projection

πhφ(a) =
1

hd

∫
a+[−h

2 ,
h
2 [

d
φ(x)dx

for all a ∈ hZd. We also define the Shannon interpolation of a function u : L2(hZd) → C by

Shu := F−1
Ä
1Td

h
û
ä
,

which allows to extend a discrete function into a real function whose Fourier transform is compactly
supported in Td

h, and where F defined by

Ff(ξ) =
∫
Rd

f(x)e−ix·ξdx

for all ξ ∈ Rd denotes the usual Fourier transform on Rd. We now state our main result:

Theorem 1. Let s ∈ N∗ with (p, d) satisfying (param). Let ϕ ∈ C(R;Hs+2(Rd)) be the unique
solution of (NLKG) with initial condition (ϕ0, ϕ1) ∈ Hs+2(Rd)×Hs+1(Rd), and let u be the unique
solution of (DNLKG) with initial condition (u0, u1) = (πhϕ0, πhϕ1). Then

∥Shu(t)− ϕ(t)∥Hs(Rd) ≤ CheB(1+t)(p−1)

∥Shu0 − ϕ0∥Hs(Rd),

where B and C are constants depending on d, p, s and ∥(ϕ0, ϕ1)∥Hs+2(Rd)×Hs+1(Rd).

2. Growth of discrete Sobolev norms

In this section we adapt the strategy of Pampu [29] to infer upper bounds on the growth in time
of Sobolev norms for the nonlinear Klein-Gordon equation to our discrete setting. This proof relies
on the use of modified energies, a strategy that have proved useful in various contexts and which
have very little dependence on the underlying geometry of the problem, making it very appealing
from the discrete point of view. Note that this strategy was already used by the author for the
discrete nonlinear Schrödinger [6], inspired by the work of Planchon, Tzvetkov and Visciglia [31].

Let T > 0, and (u, ∂tu) ∈ C([0, T ] ;H2
h ×H1

h) be the solution of equation (DNLKG) with initial
condition (u0, u1) ∈ H2

h ×H1
h. We give all the following proves in dimension d = 2 with 1 < p <∞,

but the same arguments work in the three dimensional case d = 3 (which is actually performed in
[29]) with nonlinearity 1 < p < 3 relying on the Sobolev embedding H1

h ⊂ Lq
h for all 1 ≤ q ≤ 6.

Note also that the proof is a bit simpler in the case d = 1, as we have H1
h ⊂ L∞

h .
In view of equation (DNLKG) and conservation of energy (1) alongside discrete Sobolev embed-

dings, we see that ∂2t u ∈ C([0, T ] ;L2
h) and that

(2) ∥∂2t u−∆u∥L2
h
≤ C

where C = C(d,E(0)) > 0. We now define the modified energy

(3) E(t) := 1

2

Ä
∥∂2t u(t)∥2L2

h
+ ∥∇+

h ∂tu(t)∥
2
L2

h
+ ∥∂tu(t)∥2L2

h

ä
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for all t ∈ [0, T ]. In particular differentiating with respect to time we infer that

d

dt
E(t) = −⟨∂t(|u|p−1u), ∂2t u⟩h.

Now integrating in time between 0 and T , we get by Hölder’s inequality that

E(T )− E(0) ≤
∫ T

0

∑
hZd

|u|p−1|∂tu||∂2t u| ≤
∫ T

0

∥up−1∥
L

2(2+η)
η

h

∥∂tu∥L2+η
h

∥∂2t u∥L2
h

for any small η > 0 yet to be fixed. Then from interpolation in discrete Lebesgue spaces alongside
discrete Sobolev embedding H1

h ⊂ Lq
h for all q > 1, we get that

E(T )− E(0) ≤
∫ T

0

∥u∥p−1

L

2(2+η)(p−1)
η

h

∥∂tu∥
2−η2

2+η

L2
h

∥∂tu∥
η(η+1)
2+η

L
1+ 1

η
h

∥∂2t u∥L2
h
≲ T∥∂tu∥

η(η+1)
2+η

L∞
T H1

h
∥∂2t u∥L∞

T L2
h
,

so denoting ε = 2η(η + 1)/(2 + η) > 0 as small as needed, we infer in view of (3) that

(4) E(T )− E(0) ≲ T sup
t∈[0,T ]

E(t)
1+ε
2 .

This last equation will be useful to prove the following bound on the growth of the H2
h ×H1

h-norm
of (u, ∂tu), using the equivalence between the H2

h ×H1
h norm of (u, ∂tu) and E(t).

Proposition 1. Let (u, ∂tu) be solution to (DNLKG) with (u0, u1) ∈ H2
h ×H1

h, then for all ε > 0,

sup
t∈[0,T ]

∥(u, ∂tu)(t)∥H2
h×H1

h
≲


(1 + T ) if d = 1,

(1 + T )
1

1−ε if d = 2,

(1 + T )
2

3−p if d = 3.

Proof. As before, we restrain the proof to the two-dimensional case d = 2, the cases d = 1 and
d = 3 (with 1 < p < 3) being proven similarly. Let first write that thanks to equation (2),

E(t) ≤ ∥∂2t u(t)−∆u(t)∥2L2
h
+ ∥(u, ∂tu)(t)∥2H2

h×H1
h
≤ C + ∥(u, ∂tu)(t)∥2H2

h×H1
h
.

On the other hand, for all τ ∈ (0, 1) and small η > 0, we infer thanks to equation (4) that

∥(u, ∂tu)(τ)∥2H2
h×H1

h
≲ ∥(u, ∂tu)(τ)∥2H1

h×L2
h
+ ∥∆hu(τ)∥2L2

h
+ ∥∇+

h ∂tu(τ)∥
2
L2

h

≤ C + 2∥∂tu(τ)−∆u(τ)∥2L2
h
+ 2E(τ)

≤ C + 2E(0) + Cτ sup
t∈[0,τ ]

E(t)
1+ε
2

≤ C + 2∥(u, ∂tu)(0)∥2H2
h×H1

h
+ C̃τ sup

t∈[0,τ ]

∥(u, ∂tu)(t)∥1+ε
H2

h×H1
h
,

where the constants C and C̃ are independents of τ . In particular, for 0 < τ ≤ τ0 small enough
such that C̃τ0 < 1, we get from previous estimate that

sup
t∈[0,τ0]

∥(u, ∂tu)(t)∥2H2
h×H1

h
≤ 2∥(u, ∂tu)(0)∥2H2

h×H1
h
+ C,

which gives that

∥(u, ∂tu)(τ0)∥2H2
h×H1

h
≤ 2∥(u, ∂tu)(0)∥2H2

h×H1
h
+ C
Ä
1 + ∥(u(0), ∂tu(0))∥2H2

h×H1
h

ä 1+ε
2
.
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We know remark that denoting αn = 1 + ∥(u, ∂tu)(nτ0)∥2H2
h×H1

h
, the sequence (αn)n≥0 satisfies

that αn+1 ≤ 2αn + Cα
1− 1−η

2
n , which leads by induction that αn ≤ Cn

2
1−ε , or rewriting in terms of

(u, ∂tu) that
sup

t∈[0,T ]

∥(u, ∂tu)(t)∥H2
h×H1

h
≤ C(1 + T )

1
1−ε

which ends the proof for d = 2. □

To estimate higher discrete Sobolev norms Hk+1
h × Hk

h for k ≥ 2, one can define the higher
modified energies

Ek(t) :=
1

2

Ä
∥∂k+1

t u(t)∥2L2
h
+ ∥∇+

h ∂
k
t u(t)∥2L2

h
+ ∥∂kt u(t)∥2L2

h

ä
which enjoys the same way that

d

dt
Ek(t) = −⟨∂kt (|u|p−1u), ∂k+1

t u⟩h.

However, as in proof of [29, Proposition 5], one can show by induction on k that for any dimension
1 ≤ d ≤ 3 (with 1 < p < 3 if d = 3),

Ek(T )− Ek(0) ≲ T sup
t∈[0,T ]

Ek(t)
1
2 ,

which is a better estimate than equation (4) and leads to the following result:

Proposition 2. Let (u, ∂tu) be solution to (DNLKG) with (u0, u1) ∈ Hk+1
h ×Hk

h for k ≥ 2, then

sup
t∈[0,T ]

∥(u, ∂tu)(t)∥Hk+1
h ×Hk

h
≲ (1 + T ).

Proof. The proof follows the exact same lines as the one given through [29, Section 4] as no dispser-
sive estimates are used throughout the proof. □

3. Strong convergence in the continuum limit

From Duhamel’s formula, denoting Kh(t) =
sin(t

√
1−∆h)√

1−∆h
and K̇h(t) = cos(t

√
1−∆h), we write

u(t) = K̇h(t)u0 −Kh(t)u1 −
∫ t

0

Kh(t− τ)
(
|u|p−1u

)
(τ)dτ

for any u solution of (DNLKG), and analogous formulas hold for K̇(t), K(t) and ϕ(t) solution of
(NLKG) following the notations from [12, 13]. We will decompose our analysis on the following
integrals

(5)

∥Shu(t)− ϕ(t)∥Hs(Rd) ≤ ∥ShK̇h(t)u0 − K̇(t)ϕ0∥Hs(Rd) + ∥ShKh(t)u1 −K(t)ϕ0∥Hs(Rd)

+

∫ t

0

∥∥(ShKh(t)−K(t)Sh)
(
|u|p−1u

)
(τ)

∥∥
Hs(Rd)

dτ

+

∫ t

0

∥∥∥Sh

(
|u|p−1u

)
(τ)−

Ä
|Shu|p−1 Shu

ä
(τ)

∥∥∥
Hs(Rd)

dτ

+

∫ t

0

∥∥∥Ä|Shu|p−1 Shu
ä
(τ)−

(
|ϕ|p−1ϕ

)
(τ)

∥∥∥
Hs(Rd)

dτ

=: J1(t) + J2(t) + J3(t) + J4(t) + J5(t).
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3.1. The linear flow. It is quite direct (see for instance [16, Lemma 5.1]) that for φ ∈ Hs(Rd),
∥πhφ∥Hs

h
≲ ∥φ∥Hs , which is known as the boundedness property of the discretization πh. We now

deal with the error made by consequently projecting then interpolating a function φ, as it may not
be explicitly written in the literature.

Lemma 1. Let s ≥ 0 and φ ∈ L2(Rd), then for all ξ ∈ Td
h,‘πhφ(ξ) = Fφ(ξ)

d∏
j=1

sinc

Å
hξj
2

ã
.

Proof. From inverse Fourier transform property we compute that for all a ∈ hZd,

πhφ(a) =
1

(2πh)d

∫
a+[−h

2 ,
h
2 [

d

∫
Rd

eix·ξFφ(ξ)dξdx =
1

(2π)d

∫
Rd

eia·ξFφ(ξ)
d∏

j=1

sinc (hξj/2) dξ.

On the other hand we know that

Πhf(a) =
1

(2π)d

∫
Td
h

eia·ξ‘Πhf(ξ)dξ,

which gives the result. □

Estimates on J1 and J2 will be a direct consequence of the following statement:

Proposition 3. Let u0 = πhϕ0 and u1 = πhφ1, then for all s ≥ 0,

∥ShK̇h(t)u0−K̇(t)ϕ0∥Hs ≤ Ch(1+t)∥ϕ0∥Hs+2 and ∥ShKh(t)u1−K(t)ϕ1∥Hs ≤ Ch(1+t)∥ϕ1∥Hs+2 .

Proof. We focus on the first estimate, as the second one can be proved similarly. We write that

∥ShK̇h(t)u0 − K̇(t)ϕ0∥Hs ≤ ∥ShK̇h(t)u0 − K̇(t)Shu0∥Hs + ∥K̇(t)(Shu0 − ϕ0)∥Hs =: I1(t) + I2(t).

As cos and
√
1 + · are 1-Lipschitz and as | 4

h2

∑d
j=1 sin(hξj/2)

2 − |ξ|2| ≲ h2ξ4 for ξ ∈ Td
h,

I1(t)
2 =

∫
Td
h

(1 + |ξ|2)s
∣∣∣∣∣∣cos
Ñ
t

Ã
1 +

4

h2

d∑
j=1

sin

Å
hξj
2

ã2é
− cos(t

»
1 + |ξ|2)

∣∣∣∣∣∣
2

|û0(ξ)|2dξ

≲ t2h2
∫
|ξ|≤ π√

h

(1 + |ξ|2)s|ξ|4 |û0(ξ)|2 dξ +
∫
Td
h∩
¶
|ξ|> π√

h

© (1 + |ξ|2)s+2

(1 + |ξ|2)2
|û0(ξ)|2 dξ

≲ t2h2
∫
|ξ|≤ π√

h

(1 + |ξ|2)s+2 |û0(ξ)|2 dξ + h2
∫
Td
h∩
¶
|ξ|> π√

h

©(1 + |ξ|2)s+2 |û0(ξ)|2 dξ,

which gives the first bound as ∥u0∥Hs+2
h

≲ ∥ϕ0∥Hs+2 . Now note that from Lemma 1,

∥Sh ◦ πhφ− φ∥2Hs =

∫
Td
h

(
1 + |ξ|2

)s ∣∣∣‘πhf(ξ)−Ff(ξ)
∣∣∣2 dξ + ∫

Rd\Td
h

(
1 + |ξ|2

)s |Ff(ξ)|2 dξ
≲

∫
Td
h

(
1 + |ξ|2

)s |Ff(ξ)|2
∣∣∣∣∣∣

d∏
j=1

sinc (hξj/2)− 1

∣∣∣∣∣∣
2

dξ +

∫
Rd\Td

h

(
1 + |ξ|2

)s+2

(1 + |ξ|2)2
|Ff(ξ)|2 dξ

≲ h4
∫
Td
h

(
1 + |ξ|2

)s |ξ|4 |Ff(ξ)|2 dξ + h4
∫
Rd\Td

h

(
1 + |ξ|2

)s+2 |Fφ(ξ)|2 dξ,
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as |
∏d

j=1 sinc(hξj/2)− 1| ≲ h2|ξ|2 so for I2 we directly get that

I2(t) ≤ ∥Shu0 − ϕ0∥Hs ≲ h2∥ϕ0∥Hs+2 ,

which gives the result as h ≤ 1. □

3.2. Linear flow on the nonlinearity. To estimate J3, we temporary denote F = |u(τ)|p−1u(τ),
so that

J3(t) ≤
∫ t

0

(∥ShKh(τ)(F − πhShF )∥Hs + ∥(ShKh(τ)πh −K(τ))ShF∥Hs) dτ =: I3(t) + I4(t).

A bound on I4 can be directly derived using Proposition 3, so that

I4(t) ≲ h

∫ t

0

(1 + τ)∥F∥Hs+2
h

dτ ≲ h

∫ t

0

(1 + τ)∥u∥p
Hs+2

h

dτ

as s+ 2 > d/2 since 1 ≤ d ≤ 3. On the other hand, as ∥Shφ∥Hs ≲ ∥φ∥Hs
h

(see [6, Lemma 5]),

I3(t) ≲
∫ t

0

∥Kh(τ)(F − πhShF )∥Hs
h
dτ ≲

∫ t

0

∥F − πhShF∥Hs
h
dτ,

and from Lemma 1 we know that ÷πhShu(ξ) = û(ξ)
∏d

j=1 sinc(hξj/2) so by Jensen inequality

I3(t)
2 ≲

1

(2π)d

∫ t

0

∫
Td
h

Ñ
1 +

4

h2

d∑
j=1

sin

Å
hξj
2

ã2és ∣∣∣“F (ξ)∣∣∣2 ∣∣∣∣∣∣1− d∏
j=1

sinc(hξj/2)

∣∣∣∣∣∣
2

dξdτ

≲ h4
∫ t

0

∥F∥2
Hs+2

h

dτ ≲ h4
∫ t

0

∥u∥2p
Hs+2

h

dτ.

as |ξ|2 ≤ π2

4

∑d
j=1

4
h2 sin(hξj/2)

2 for all ξ ∈ Td
h. Combining the bounds on I3 and I4, we get that

(6) J3(t) ≲ h

∫ t

0

(1 + τ)∥u(τ)∥p
Hs+2

h

dτ ≲ h(1 + t)(p+1)

using Proposition 2 since s ∈ N∗ so s+ 2 ≥ 3.

3.3. Aliasing and Gronwall argument. A straightforward bound on J4 can be derive the exact
same way as in [6, Section 5.2], which relies on the bilinear estimate satisfies by the Shannon
interpolation [6, Proposition 6] stating that for f , g ∈ Hδ(hZd) with δ > d

2 and for 0 ≤ s ≤ δ, we
have

∥Sh(fg)− ShfShg∥Hs ≲ hδ−s∥Shf∥Hδ∥Shg∥Hδ .

This directly gives in our setting (using Proposition 2) that

(7) J4(t) ≲ h2
∫ t

0

∥Shu(τ)∥pHs+2dτ ≲ h2
∫ t

0

∥u(τ)∥p
Hs+2

h

dτ ≲ h2(1 + t)2.

Turning now to J5, using the well-known identity
∣∣|f |p−1f − |g|p−1g

∣∣ ≲p (|f | + |g|)p−1|f − g| we
can write that for all τ ∈ (0, t),∥∥∥Ä|Shu|p−1 Shu

ä
(τ)−

(
|ψ|p−1ψ

)
(τ)

∥∥∥
Hs

≲
Ä
∥Shu(τ)∥p−1

Hs+2 + ∥ϕ(τ)∥p−1
Hs+2

ä
∥Shu(τ)− ϕ(τ)∥Hs

as s+ 2 > d/2, so

(8) J4(t) ≲
∫ t

0

(1 + τ)(p−1)∥Shu(τ)− ϕ(τ)∥Hsdτ.
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Using respectively the bounds on J1 and J2 from Proposition 3, as well as the ones on J3 (6), on
J4 (7) and on J5 (8) in estimate (5), we get the result of Theorem 1 by Gronwall lemma. Note
that the polynomial terms (1 + t)α for any α > 0 can absorbed by the exponentially growing term
eB(1+t)(p−1)

taking a larger constant B > 0.

4. Decay estimates for discrete wave equations

One may wonder if it would be possible to obtain continuum limit properties such has Theorem 1
for more general cases, for instance in the cubic case p = 3 in the three-dimensional case d = 3,
which appears as a limiting case in Proposition 1. In order to follow the proof of [29], this would
require the use of Strichartz estimates so one can trade space regularity for time integrability in
Hölder’s inequality application to estimate equation (4). It is now a standard argument since the
work of Keel and Tao [21] that Strichartz estimates are deduced from a bounded L2-estimate of
the associated linear semi-group (usually derived from conservation laws) alongside a time decay
estimate of the L∞-norm of such linear flow. In fact, the derivation of decay estimates for discrete
dispersive equations has drawn some attention through the last decades, and we survey some of
these results in a unified framework.

4.1. Dispersive estimates on lattices. Consider a discrete dispersion relation of the form

ωh(ξ) =

Ñ
m2 +

4

h2

d∑
j=1

sin

Å
hξj
2

ã2éα
2

associated to the linear flow Uh(t) = exp(−it(m2 −∆h)
α
2 ). This covers several interesting models:

• The case m = 0 and α = 1 corresponds to the discrete wave equation.
• The case m = 0 and α = 2 corresponds to the discrete Schrödinger equation.
• The case m = 1 and α = 1 corresponds to the discrete Klein-Gordon equation.

The evolution of an initial state φ of discrete Fourier transform η under the linear flow Uh(t) is
given by the oscillatory integral

(9) I(t, a, η) =

∫
Td
h

ei(a·ξ−tωh(ξ))η(ξ)dξ.

for any a ∈ hZd. In the case of the Schrödinger flow, as performed in the seminal work of Stefanov
and Kevrekidis [33], one can separate variables in order to reduce the problem to the d = 1 case,
and an application of the well-known Van der Corput lemma gives that

(10) ∥eit∆hφ∥L∞(hZd) ≤
C

|th| d3
∥φ∥L1(hZd)

for any initial data φ ∈ L1(hZd), which is proven to be sharp [18]. Such a dispersive estimate has
to be compared with the usual decay in t−

d
2 in the continuous free case on Rd. It displays a weaker

dispersion estimate than the continuous case, a pathological behavior induced by critical points and
a lack of convexity of the symbol of the discrete operator ∆h.

From now on we fix h = 1 to introduce the forthcoming results, and we denote ℓ∞(Zd) :=
L∞(hZd) in order to match the notations of these papers. One-dimensional decay of the discrete
Klein-Gordon flow was also derived in [33] from the same techniques, which can be written as

∥e−it
√
1−∆hφ∥ℓ∞(Z) ≲

1

|t| 13
∥φ∥L1(Z).
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However, wave dispersion relations (for α ̸= 2) fail to have this separation-of-variables property,
leading to more involved analysis as dimension increases. Back in 1998, Schultz proved in his
breakthrough work [32] that for the discrete wave equation in dimensions d = 2, 3,∣∣∣∣∣∣ ∥e

−it
√
−∆h∥ℓ∞(Z2) ≤ C(1 + |t|)− 2

3 ,

∥e−it
√
−∆h∥ℓ∞(Z3) ≤ C(1 + |t|)− 7

6 ,

where C = C(η) > 0, a result that have only been very recently extended to the fourth dimensional
case d = 4 in [3] which states the sharp bound

∥e−it
√
−∆h∥ℓ∞(Z4) ≤ C(1 + |t|)− 3

2 log(2 + |t|),
where the proof relies on the analysis of Newton polyhedra. For the discrete Klein-Gordon equation,
Borovyk and Goldberg proved in [4] that in dimension d = 2,

∥e−it
√
1−∆h∥ℓ∞(Z2) ≤ C(1 + |t|)− 3

4 ,

a result which was extended a few years later by Cuenin and Ikromov [10]∣∣∣∣∣∣ ∥e
−it

√
1−∆h∥ℓ∞(Z3) ≤ C(1 + |t|)− 7

6 ,

∥e−it
√
1−∆h∥ℓ∞(Z4) ≤ C(1 + |t|)− 3

2 log(2 + |t|),

so that in dimension 3 and 4 the discrete Klein-Gordon and wave equations share the same decay
rates, whereas in the two-dimensional setting d = 2 the dispersion of the wave flow is a bit slower
than the one of the Klein-Gordon equation.

For higher dimensions d ≥ 5, the Klein-Gordon flow is conjectured in [10] to decay as

∥e−it
√
1−∆h∥ℓ∞(Zd) ≤ C(1 + |t|)−

2d+1
6 log(2 + |t|)d−4,

whereas the wave flow is conjectured in [3] to behave like

∥e−it
√
∆h∥ℓ∞(Zd) ≤ C(1 + |t|)−

2d+1
6 .

4.2. Uniform Strichartz estimates for the discrete Klein-Gordon equation. Decay esti-
mates of Section 4.1 are inherently not uniform with respect to the mesh size h > 0, making them
a priori useless in the study of the continuum limits of such discrete systems as h→ 0.

Several works of Ignat and Zuazua for the discrete Schrödinger equation [19, 20] and Audiard [2]
for the discrete critical Korteweg-de Vries use Fourier filtering methods alongside two-grid algorithm
in order to remove the bad behavior frequencies from the discrete operator ∆h. This strategy
allows to recover modified Strichartz estimates which are uniform with respect to h, that can be
described as follows in the Schrödinger setting: denote by Π̃h the piecewise linear extension operator
Π̃h : L2(4hZd) → L2(hZd), then one recovers that

∥eit∆hΠ̃hφ
4h∥Lq

t (R;Lr(hZd)) ≤ C(d, r)∥Π̃hφ
4h∥L2(hZd)

for all φ4h ∈ L2(4hZd) and h > 0, and for any set of Schrödinger admissible pairs
2

q
+
d

r
=
d

2
, 2 ≤ q, r ≤ ∞, (q, r, d) ̸= (2,∞, 2).

Such kind of strategy was also used by Killip Ouyang Visan and Wu [23] in the study of the
continuum limit of the Ablowitz-Ladik model, where frequency-localized Strichartz estimates [23,
Proposition 4.3] were also derived in order to infer compactness on low-regularity discrete solutions.
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Another approach was recently considered by Hong and Yang in [17], where the authors showed
that such h-dependence in equation (10) can be removed paying fractional derivatives on the right
hand side of Strichartz estimates, which compensates the lattice resonances. The proof relies on
harmonic analysis tools such as Littlewood-Paley inequality, Calderon-Zygmund theory and the
Hörmander-Mikhlin theorem adapted on the discrete setting. This implies a uniform Strichartz
estimate of the form

(11) ∥eit∆hφ∥Lq
t (R;Lr

h)
≲ ∥φ∥

H
1
q
h

for any set of discrete Schrödinger-admissible pairs (q, r) satisfying

(12)
3

q
+
d

r
=
d

2
, 2 ≤ q, r ≤ ∞, (q, r, d) ̸= (2,∞, 3).

Note that this kind of discrete Strichartz estimates with loss were also recently proved by Choi and
Aceves [9] for fractional-type discrete Schrödinger equations in the two-dimensional case, and are
of course reminiscent of the situation occurring on compact manifolds like in the seminal work of
Burq Gérard and Tzevtkov [5].

To the best of the author’s knowledge, no such techniques have yet been used in order to de-
rive uniform Strichartz estimates for the multidimensional discrete Klein-Gordon equation. In the
following we elaborate on this point. Making the change of variables

(13) ξ 7→ ξ′

h
, τ =

t

h
, v =

a

hτ

in (9), one is reduce to estimate the oscillatory integral

JΦv,ζ :=

∫
Rd

eiτΦv(ξ)ζ(ξ)dξ

for any v ∈ Rd in the limit τ → ∞, where ζ ∈ C∞
c (Rd) and Φv(ξ) = v · ξ − γh(ξ) with

γh(ξ) =

Ã
h2 + 2

d∑
j=1

cos(ξj)

denoting the dispersion relation. Note that in the two-dimensional case, on the lattice Z2 (with
h = 1), the work [4] provide a decay rate in τ−

3
4 for |JΦv,ζ |. However, at the limit h→ 0 we observe

that γh tends to the dispersion relation of the discrete wave equation, which would suggest a slower
decay rate in τ−

2
3 of the oscillatory integral in view of [32]. Comments on this pathological behavior

are also given in [4, Section 2.2], but not from a continuum limit perspective, and we suggest the
following conjecture:

Conjecture 1. For any ζ ∈ C∞
c (Rd),

sup
v∈Rd

|JΦv,ζ | ≤ C(ζ)(1 + |τ |)− 2
3 .

Assuming Conjecture 1, one can derive uniform Strichartz estimates for (DNLKG) for d = 2 the
following way. Let ψ : Rd → [0, 1] be a smooth even compactly supported function such that ψ = 1

for ξ ∈ [−π, π]d and ψ = 0 for ξ ∈ Rd\ [−2π, 2π]
d. Let η(ξ) := ψ(|ξ|)− ψ(2|ξ|). We then define for

dyadic integers N ∈ 2Z the Littlewood-Paley projections given by

PN := F−1η

Å
hξ

N

ã
F .
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Since ξ ∈ Td
h, PN is a smooth projector onto the set π

2
N
h ≤ |ξ| ≤ 2πN

h , and the (PN )N resolves the
identity ∑

N≤1

PN = Id.

Note that the sum has an upper bound as hξ = Od(1). Denoting

Kt,N,h(a) := I (t, a, η(h · /N)) ,

we infer that
∥e−it

√
1−∆hPNφ∥L∞

h
= ∥Kt,N,h ∗ φ∥L∞

h
≤ ∥Kt,N,h∥L∞

h
∥φ∥L1

h

by Young’s inequality. Making the change of variable (13) we get that Kt,N,h(a) = h−dJΦv,η(·/N),
so from Conjecture 1 we write that

∥Kt,N,h∥L∞
h

≤ C(η(·/N))

hd
|τ |− 2

3 ≤ C

Å
N

h

ãd− 2
3

|t|− 2
3 ,

which implies as d = 2 that

∥e−it
√
1−∆hPNφ∥L∞

h
≤ C

Å
N

h

ã 4
3

|t|− 2
3 ∥φ∥L1

h

for any φ ∈ L1(hZ2) and N ≤ 1. Once such a bound has been obtained, it is then straightforward
to derive the Strichartz estimates for the linear evolution by averaging in t and N ,see for instance
[9, Remark 3.4]. In fact, denoting Uh(t) = e−it

√
1−∆h and defining as in [7, p.1127]‹UN (t) = PNUh

Å
N2t

h2

ã
P
Ñ

where P
Ñ

= PN/2+PN +P2N , we can show that (‹UN (t))t∈R satisfies the hypothesis of [21, Theorem
1.2] which implies that

∥Uh(t)PNφ∥Lq
t (R;Lr

h)
≲
Å
N

h

ã 4
3 (

1
2−

1
r )

∥PNφ∥L2(hZ2) ≃ ∥PN |∇h|
4
3 (

1
2−

1
r )φ∥L2(hZ2).

Squaring on both side and summing over N ≤ 1, this gives that

∥Uh(t)φ∥Lq
t (R;Lr

h)
≲

Ñ∑
N≤1

∥Uh(t)PNφ∥2Lq
t (R;Lr

h)

é 1
2

≲

Ñ∑
N≤1

∥PN |∇h|
4
3 (

1
2−

1
r )φ∥2L2

h

é 1
2

≲ ∥|∇h|
4
3 (

1
2−

1
r )φ∥L2

h
,

which would finally provides in our case a uniform Strichartz estimate with loss of the form

(14) ∥e−it
√
1−∆hφ∥Lq

t (R;Lr(hZ2)) ≤ C(q, r)∥φ∥
H

2
q (hZ2)

in view of the admissible condition (12). Note that this estimate still give a gain of regularity
compared to the trivial estimate induced by the Sobolev embedding Hα(hZ2) ⊂ Lr(hZ2) with
α = 1 − 2/r, which would imply a H

3
q (hZd)-norm in the right hand side of estimate (14) in view

of (12).
To conclude this monograph, we point out that uniform discrete Strichartz with loss can also

be derived on compact sets, which is in agreement with effective numerical simulations. Adapting
the work of Vega [36] on the discrete setting, these kind of estimates were derived for the discrete
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Schrödinger flow on the discrete torus T2
h in [14] or in a large box limit in dimension d = 2, 3 in [15],

and very recently for the discrete fractional Schrödinger equation on Th in [8]. Note that contrary
to those on hZd [16], these discrete Strichartz on compact sets are not proved to be optimal or not
yet.
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