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Abstract
Rhynchophorus ferrugineus, also known as the red palm weevil, is regarded as the major

pest of palm trees. Although studies of the microbiota associated with this species have

been performed in recent years, little attention has been dedicated to the influence of the

diet in shaping the host bacterial community. Here, we investigated the influence of food

sources (i.e. palm tissues vs apple based substrate) on the microbial diversity associated

with RPW, which was compared with the microbiota associated with wild individuals of the

sister species Rhynchophorus vulneratus. The bacterial characterization was performed

using a culture independent approach, i.e. the 16S rRNA pyrotag, and a culture dependent

approach for a subset of the samples, in order to obtain bacterial isolates from RPW tissues.

The bacterial community appeared significantly influenced by diet. Proteobacteria resulted

to be the most abundant clade and was present in all the specimens of the three examined

weevil groups. Within Proteobacteria, Enterobacteriaceae were identified in all the organs

analysed, including hemolymph and reproductive organs. The apple-fed RPWs and the wild

R. vulneratus showed a second dominant taxon within Firmicutes that was scarcely present

in the microbiota associated with palm-fed RPWs. A comparative analysis on the bacteria

associated with the palm tissues highlighted that 12 bacterial genera out of the 13 identified

in the plant tissues were also present in weevils, thus indicating that palm tissues may pres-

ent a source for bacterial acquisition.
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Introduction
The Red PalmWeevil (hereafter RPW), Rhynchophorus ferrugineusOlivier (Coleoptera;
Dryophthoridae), is regarded today as the major pest of palm, attacking over 20 palm species be-
longing to 16 different genera worldwide [1]. RPW is native to South Eastern Asia, but due to
the international exchange of infected plant material, during the last two decades it has spread
to the Middle East, Africa and the Mediterranean. In 1992 RPWwas first detected in Egypt [2]
then spread through the Northern Mediterranean Basin [3–5], where it attacked the highly sen-
sitive ornamental palm Phoenix canariensis [6]. More recently RPW has been detected in Aus-
tralia, China, Japan and the Caribbean [7–12]. Globally, the pest has a wide geographical
distribution in diverse agro-climates and an extensive host range in Oceania, Asia, Africa and
Europe [1]. The RPW life cycle, from egg to new-born adult, occurs in the palm tree trunks [13]
in which the weevil feeds on tissues and sap. Larvae develop inside palm trees resulting in the
destruction of palm tissue leading, eventually, to the death and collapse of the tree. The palm
tree trunk tissues consist of more than 80% (wt. %, dry basis) of cellulose, hemicellulose and lig-
nin [14]. For this reason, they represent a non-easily digestive substrate for most eukaryotes.

The role played by mutualistic bacterial consortia supporting their insect host with essential
compounds missing from the diet (i.e. amino acids, vitamins and cofactors), or by contributing
to the digestion of the ingested material, is well documented [15–20]. In the cases of aphids
and cicadellids, these contributions are provided by intracellular bacteria (respectively, Buch-
nera aphidicola and ‘Candidatus Sulcia muelleri’ [21–24]), while in termites and other insects,
essential compounds are provided by complex microbial communities, in some cases including
both intracellular bacteria and gut microbiota, e.g. coackroaches [15,25,26].

Considering the economic and social impact of RPW, the interest in this pest has signifi-
cantly increased in recent decades. Most studies have focused on the efficacy of different chem-
ical and bio-control strategies [27,28]. Conversely, little attention was paid to the microbial
community associated with RPW, although an intracellular primary endosymbiont has been
described in weevils and classified as ‘Candidatus Nardonella’ [29–32]. Regarding the gut bac-
terial community associated to RPW, only preliminary studies have been conducted [33–36],
in some cases addressed to cultivable bacteria in order to identify potential insect pathogens
useful in bio-control strategies [34,37]. Aerobic and facultative anaerobic bacteria (Bacillus sp.,
Salmonella sp., Enterococcus sp. and Xanthomonas sp.) and bacteria able to degrade polysac-
charides and sucrose through hydrolase activity (e.g., Klebsiella pneumoniae and Lactococcus
lactis) have been discovered and isolated from the RPW’s gut [33,35]. To date, no studies have
investigated the existence of stable core-microbiota that may be useful for the development of
efficient bio-control strategies [38,39].

The main aim of the present study is to investigate the influence of the environment (mainly
food sources) in shaping the microbial diversity of RPW by i) comparing the microbiota of
RPW individuals collected on palm tissues vs laboratory individuals reared on apple-based sub-
strate; ii) comparing the endophytes of palm tissues with the weevil’s microbiota and iii) evalu-
ating the metabolic potential of the identified microbial consortia from individuals collected
on palm tissues vs laboratory ones. Moreover, the bacterial cultivable fraction associated to
laboratory-reared individuals was estimated by the use of several isolation media.

Materials and Methods

Ethics statement
Rhynchophorus ferrugineus and its sister species R. vulneratus, the most damaging insect pest
of palms in the world, are not listed in any national or regional law as protected or endangered
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species. The collection of specimens in Malaysia was made in the private properties of cooper-
ating landowners. The collection of specimens in Italy was not subjected to any restriction,
moreover the specimens sampling occurred in not protected areas and under the surveillance
of Servizio Fitosanitario della Regione Sicilia.

Specimens sampling, dissection and DNA extraction
Male and female RPW adults, and host plant tissues were collected on Phoenix canariensis in
Catania, Italy (S1 Table). Among the insects, three individuals (one male and two females)
were preserved in absolute ethanol, whereas six additional specimens (three males and three fe-
males) were transported to laboratory and maintained alive on diets of apple for four weeks
with a natural light-dark cycle (14:10), RH = 65% and temperature = 28°C. Three adults of
Rhynchophorus sp., firstly identified as R. ferrugineus, were collected using specific traps baited
with the aggregation pheromone Rhyfer 220 (Intrachem Bio Italia S.p.A.) in Genting Sempah,
Selangor, Malaysia (S1 Table). All the collected specimens were immediately stored in absolute
ethanol, furthermore, considering the size of the specimens 1 ml of absolute ethanol was in-
jected with sterile syringes in each specimen. Before dissection, samples were surface sterilized
following the protocol reported in Montagna et al. [40]. Specimens, after anaesthetisation at
-20°C, were dissected aseptically using sterilized scalpels and forceps under a Leica MS5 stereo-
microscope. The insect content, including the whole gut, the fat body and reproductive system,
was removed and homogenised for the DNA extraction. Palm tissues were dried at room tem-
perature before DNA extraction. DNA was extracted using DNeasy Blood and Tissue Kit (Qia-
gen), for the animal tissues, and the DNeasy Plant Kit (Qiagen), for the palm tissues, following
the manufacturer’s instructions in both cases. The final elution was realised in 300 μl of AE
buffer and DNA was quantified by spectrophotometry.

In 2013 Rugman-Jones et al. [41] reported the presence of two Rhynchophorus species in
Malaysia: R. ferrugineus and R. vulneratus, which have been in synonymy until the publication
of the cited work. Since the identification at species level starting from morphological features
is sometimes impossible, we performed molecular identification of the three specimens collect-
ed in Malaysia. The following strategy has been adopted: total genomic DNA was extracted
from three individuals sampled at Genting Sempah (Malaysia) and used as template to amplify
a 50 upstream region of the cytochrome c oxidase subunit I gene (coxI) from the mitochondrial
genome. The PCR cycle was performed using the Folmer’s primers LC01490 and HC02198
[42]; complete details of the laboratory procedures are reported in Rector et al. [43]. The ac-
quired sequences, deposited at the European Nucleotide Archive with accession numbers
LN612634-LN612636, were screened for identification by a blast search over the National Cen-
ter for Biotechnology Information (NCBI) GenBank nucleotide collection using the Mega
BLAST procedure [44] available at its website (http://www.ncbi.nlm.nih.gov/blast). Our query
sequences were unequivocally assigned to R. vulneratus with high sequence identity in all cases
(Identity 99–100%, 0 gaps).

Pyrosequencing and data analysis
Pyrotag assays were carried out using bacterial universal primers (27 F mod 5’—AGR GTT
TGA TCM TGG CTC AG—3’; 519 R mod bio 5’—GTN TTA CNG CGG CKG CTG—3’) tar-
geting the variable regions of 16S rRNA V1–V3 and amplifying a fragment of approximately
400 bp. The amplified 16S rRNA regions contain enough nucleotide variability to be useful in
identification of bacterial species [45,46]. Primers were modified by the addition of a GS FLX
Titanium Key-Primer AGR GTT TGA TCM TGG CTC AG and a multiplex identifier (MID)
sequence specific to each sample. The MID sequences (forward) were reported for the
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respective weevil specimen in S1 Table. PCR reactions and next generation 454 pyrosequencing
were performed commercially (MR DNA, Shallowater, TX—U.S.) as described in a previous
work [40].

A total of 345973 raw, barcoded amplicons of the V1–V3 region of the 16S rRNA gene,
were obtained. The reads were trimmed to remove pyrosequencing adaptors, low quality base
calls (<30 Phred score) and size-selected (between 350 and 500 bp) using the QIIME [47] pipe-
line filtering scripts. The total of 138738 high quality sequence reads that were not flagged as
chimeras after screening with Chimeraslayer were clustered into operational taxonomic units
(OTUs), based on a sequence identity threshold of 97%, using Uclust [48]; drawing one se-
quence for each OTU, as representative, and then aligned to Greengenes (http://greengenes.lbl.
gov/) using PyNast [47]. Sequences representative of each OTU were taxonomically classified
by BLASTn-based comparisons to the Greengenes and Silva databases within QIIME. The re-
sulting set of OTUs was used in diversity analyses (see below). The analyses were carried out
using the various scripts of the QIIME pipeline.

The 16S rRNA gene sequences obtained by 454 pyrosequencing assays were deposited in
European Nucleotide Archive with accession numbers PRJEB6918.

Diversity and statistical analyses
The diversity indices and the following analysis (exceptions are specified) were estimated using
the vegan-package “Community Ecology Package: Ordination, Diversity and Dissimilarities”
[49] in the R software package (R Project 3.0.2; http://cran.r-project.org/). The Shannon H
index [50], Pielou’s evenness [51] and total species richness index Chao 1 [52–54] were esti-
mated. The significance of the differences between the analysed statistics (i.e. the number of
identified OTUs within each specimen, the Shannon H diversity and Pielou’s evenness indices)
were tested with the non parametric Kruskal-Wallis tests [55] after the assessment of the equal-
ity of variances adopting Levene’s test [56]. In case of comparison between to two groups the
Mann-Whitney test was adopted [57]. These tests were performed using lawstat-package [58]
in the R software package.

The β-diversity matrix was computed using the script beta_diversity.py implemented in
QIIME [47] and UniFrac [59], which uses as input the OTU table with the amount of the ob-
served 16S rRNA sequences for each OTU for each weevil and the phylogenetic tree con-
structed using FastTree [60]. Since the purpose of our ordination analysis was to reveal
significant pattern of variation in the microbiota composition between the different specimens,
the unweighted unifrac metric was adopted [61]. The obtained matrix was used as input for the
Principal Coordinates Analysis (PCoA [62]).

The OTU table, containing the abundance of sequences clustered within each identified
OTU for all of the processed insect specimens, was transformed into a presence-absence ma-
trix in order to be processed for further analyses. The similarity between the microbial com-
munities associated with the three groups of specimens (i.e. RPW from wild population, RPW
from wild population and reared on apple for four weeks and the sister species R. vulneratus)
was analysed through a hierarchical cluster analysis. This analysis was conducted using the
function hclust in R stats-package (R Project 3.0.2; http://cran.r-project.org/). The dissimilari-
ty matrix, used as input for the hierarchical cluster analysis, was estimated by vegdist using the
Bray and Curtis dissimilarity index [63]. In addition, to test the reliance of the obtained results
the same analysis was also performed on the dissimilarity matrix obtained adopting Jaccard
[64] and Kulczynski indices. In order to test the significant dissimilarity between the micro-
biotas associated to the groups identified by the clustering analysis (corresponding to
RPWPALM, RPWAPPLE and RVULN), the dissimilarity matrices were subjected to a
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nonparametric one-way analysis of similarity (ANOSIM [65]) as in a previous work [66]. In
order to estimate the change in species composition between the bacterial communities har-
bored by RPWPALM and by RPWAPPLE, two components of β-diversity (i.e. species turnover
and nestedness) were estimated with the R package betapart [67] using Simpson’s dissimilari-
ty index as in Montagna et al. [40]. To investigate the common OTUs present in the three
groups of weevils, an analysis of commonality was performed and visualized through a Venn
diagram using the gplots package in R.

The impact of ecological traits (i.e., the food source and the temperature at which the sam-
ples live) on the bacterial communities associated with insects has been evaluated by correla-
tion with results of the OTU-table Non-Metric Multi-Dimensional Scaling (NMDS [68]). The
adopted procedure has been described in a previous study [40]. Concerning the diet, two sub-
strates were considered: the palm tissues and apple; while, regarding the temperature two clas-
ses have been adopted based on the monthly average temperature at the time of the sampling:
20°C for specimens collected in late October, 2012 in Catania and,> 25°C for specimens main-
tained in lab and for specimens collected in Malaysia in January, 2012.

Predictive functional profiling
To explore the functional profiles of our bacterial community data set, we used PICRUST
(Phylogenetic Investigation of Communities by Reconstruction of Unobserved States http://
picrust.github.com, 3 July 2013 [69]). For the analysis, OTUs were closed-reference picked
against the 18 May 2012 Greengenes database using QIIME v 1.6 according to the online pro-
tocol. We predicted the bacterial metagenome for each of our samples. The accuracy of meta-
genome predictions was measured by the Nearest Sequenced Taxon Index (NSTI), with lower
values indicating a closer mean relationship [69]. Our samples had NSTI values of 0.06 ± 0.02.
For comparison, Langille et al. [69] found that human-associated samples had the lowest (best)
NSTI values (0.03 ± 0.2), while communities such as soil had a much higher NSTI value (0.17
± 0.02). The table with the predicted gene family counts per-samples according to Cluster of
Orthologous Groups [70] and identifiers adopted by KEGG Orthology [71] was cleaned re-
moving: i) all categories not related to the bacterial physiology/metabolism in a symbiotic per-
spective; and ii) categories with count equal to 0. Statistical analyses (i.e. Levene’s and the non
parametric Kruskal-Wallis tests) were performed among the weevil groups in order to account
for the differences in the amount of counts.

Bacterial isolation
Since most of the strategies adopted in biocontrol programs (e.g., the sterile insect technique or
the use of bacteria as biocontrol agents) are based on insects’ rearing, isolation trials were car-
ried out in order to investigate the bacterial cultivable fraction associated to RPWAPPLE, which
may be the target of such strategies. Two adults (one male and one female) sampled in Catania,
Italy, and reared under lab condition on apple for 30 days (see previous paragraph for details
on the rearing condition), were dissected to obtain gut, ovaries, testes, and the female hemo-
lymph. Each organ was smashed in 500 μl 0.9% NaCl and serial dilutions were plated on agar-
ized LB, R2A, TSB and PDB media, supplemented with 100 μg/ml cycloheximide, and
incubated in aerobic conditions or in microaerophilic Gaspak at 30°C. After isolate purifica-
tion, the bacterial collection was de-replicated by the analysis of internal transcribed spacer
(ITS)-PCR and one or two representatives of each ITS group were identified by partial se-
quencing of 16S rRNA gene after DNA extraction and amplification with the primers 27F and
1492R [72]. Partial 16S rRNA gene sequences were deposited in the European Nucleotide Ar-
chive under the accession numbers LN623577-LN623640.
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Results

Bacterial diversity associated with weevil (α-diversity)
A total of 138,738 bacterial 16S rRNA sequences have been obtained from the 12 RPW samples
(median = 7599.5). The coverage of microbial α-diversity associated with each specimen was
investigated through visual analysis of the rarefaction curves (α-diversity indices and observed
species plotted vs simulated sequencing effort; S1, S2 Figs.). Using the Shannon index as a met-
ric to measure α-diversity, all samples reached a plateau at value of ~1600 sequences per sam-
ples (except for a female specimen reared in lab for which only 1670 high-quality 16S rRNA
gene sequences have been obtained), indicating that the microbial α-diversity associated with
each specimen was well covered.

Table 1 reports the values of the estimated diversity indices (i.e. Chao-1, Shannon H diversi-
ty and Pielou’s J evenness indices) for the bacterial communities associated with the RPW and
R. vulneratus specimens. The bacterial communities associated with the specimens belonging
to the three groups were found to differ significantly in terms of diversity indices (H’ χ2 = 8.69,
P = 0.013; J’ χ2 = 6.85, P = 0.032). In particular, the bacterial communities associated with 3
specimens of RPW directly collected from palm are significantly more diverse than that
associated with the 6 specimens maintained in laboratory and fed with apple for four weeks
(H’U = 18, P = 0.024; J’ U = 18, P = 0.024). Differences were also observed in the total amount
of bacterial OTUs associated to the three groups of samples (OTUs χ2 = 6.38, P = 0.0413). This
trend was also observed using the Chao-1 richness estimator (data not shown).

Based on the Chao-1 index, approximately 66% of the α-diversity was recovered by our
analysis. The microbiotas associated with RPWPALM, with J’ = 0.56 ± 0.01, resulted more
balanced than the bacterial communities associated both with lab-maintained RPWs
(J’APPLE = 0.44 ± 0.05) and with the sister species R. vulneratus (J’VULN = 0.37 ± 0.08). The com-
munities associated with the latter two groups were dominated by few taxa. In the high-
evenness community associated with RPWPALM the dominant OTU accounts for 8.4% ± 2.4 of

Table 1. Diversity indices estimated for the bacterial communities associated with the analyzed Rhynchophorus specimens.

Identifier Group N seqsb OTUs H’ J’ Chao-1

I_palm_F1 RPWPALM 5420 1060 5.61 0.56 1605

I_palm_F2 RPWPALM 5398 1028 5.74 0.57 1652

I_palm_M3 RPWPALM 5835 1142 5.69 0.56 1667

RPWPALM
a 1076.7±58.8 5.68±0.07 0.56±0.01 1641.3±32.3

I_apple_F1 RPWAPPLE 13605 722 4.4 0.46 1082

I_apple_F2 RPWAPPLE 8635 296 3.03 0.37 485

I_apple_F3 RPWAPPLE 1670 209 3.98 0.52 345

I_apple_M3 RPWAPPLE 8292 404 3.62 0.42 606

I_apple_M4 RPWAPPLE 6907 420 3.67 0.42 617

I_apple_M5 RPWAPPLE 8764 520 4.25 0.47 707

RPWAPPLE
a 428.5±179.4 3.83±0.5 0.44±0.05 640.3±250

MYS_field_F1 RVULN 2354 134 2.98 0.42 189

MYS_field_F2 RVULN 12106 342 3.54 0.42 473

MYS_field_M3 RVULN 59752 633 2.56 0.27 880

RVULN
a 369.7±250.6 3.03±0.49 0.37±0.08 588±347.5

a The mean and standard deviation of the estimated diversity indices are reported for each analyzed group of weevils;
b Number of sequences obtained for each specimens after chimeric and contaminants removal.

doi:10.1371/journal.pone.0117439.t001

Is the Microbiota of RPW Influenced by Diet?

PLOS ONE | DOI:10.1371/journal.pone.0117439 January 30, 2015 6 / 22



the insect’s microbiota respect to those explained by the dominant OTUs in RPWAPPLE and
RVULN, in which they made up respectively 15.4% ± 8.1 and 33% ± 12.1 of the total microbial
diversity. These results were also visually confirmed by the rank-frequency curves plot
(S3 Fig.), in which, for each of the 12 RPW and R. vulneratus samples, the number of high-
quality 16S rRNA sequences clustered into each OTUs is reported. This method allows a visual
evaluation of OTU richness and evenness [73,74].

β-diversity and ecological traits
The β-diversity of bacterial communities associated with the weevil specimens was investigated
through a principal coordinates analysis (PCoA) carried on the phylogenetic β-diversity ma-
trix, obtained by UniFrac. The first two components explain a total of 42.6% of the variation
(1st component, 28.3%; 2nd component, 14.3%). The analysis revealed an evident clustering of
the samples according to each membership group; the first principal component segregates the
microbiota of the two groups of R. ferrugineus, while the second component isolates the speci-
mens of R. vulneratus (Fig. 1A). The clustering analysis performed on the OTUs’ presence-
absence matrix confirms the results obtained by PCoA showing that the pattern of association
of the different bacterial community was congruent with the different weevil groups (i.e. the
microbiota associated to each specimen clustered together; Fig. 1B). The same results were also
obtained by analysing the presence-absence OTUs matrix using Jaccard index (S4 Fig.) and the
abundance OTUs matrix adopting the Kulczynski distance (S5 Fig.). These results support the
fact that the observed pattern in microbiota composition (i.e. the presence-absence of the dif-
ferent OTUs) is congruent with the grouping factor independently from the bacterial evenness
associated with each community. Interestingly, microbiota from specimens of R. ferrugineus
reared in laboratory clustered as the sister group of microbiota from R. vulneratus specimens.

Fig 1. Similarity among the weevil-associated bacterial communities. A: principal-coordinate analysis on the phylogenetic β-diversity matrix obtained
starting from the OTU table. The explained variance is as follows: 28.3% 1st component, 14.3% 2nd component. B: hierarchical clustering dendrogram
representing the OTU table pairwise dissimilarities between the different analyzed weevils; the pie charts represent the relative abundance of bacterial
communities at phylum level.

doi:10.1371/journal.pone.0117439.g001
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The estimated β-diversity over the two groups of RPWs, measured as Sørensen’s dissimilari-
ty, resulted in a value of βSOR = 0.982. The two components of the β-diversity, the turnover and
the nestedness, resulted in βSIM = 0.973 and in βNES = 0.009, respectively. These values indicate
that high OTU turnover and a low nested component have been recovered between the two
groups of RPWs, which means that ~97% of the OTUs are different in the two communities. It
is interesting to note that after only 30 days of feeding on apple, the bacterial community asso-
ciated with RPWAPPLE, derived from RPWPALM, dramatically changed compared to the micro-
biota of the original population, maintaining only a few shared OTUs.

The analyses on the OTUs common to the three groups of weevils showed (Fig. 2) that over
a total of 2386 OTUs associated with R. ferrugineus, 1369 are exclusive to RPWPALM and 702 to
RPWAPPLE. Interestingly only 34 OTUs (19 unique OTUs shared between RPWPALM and
RPWAPPLE plus 15 unique OTUs common to all) are shared between these two groups of wee-
vils that descend from the same population. Considering all the three groups, only a total of 15
OTUs are shared among them (taxonomic assignment of these OTUs with a comparative anal-
ysis with bacterial OTUs isolated from palm tissues are reported below).

Fig. 3 reports the results of the NMDS analysis performed on the bacterial OTU table fitted
with both ecological traits: i) diet consisting in apple for the lab-reared RPW and palm tissues
for field collected RPW and R. vulneratus and ii) the temperatures at which the specimens have
been maintained (lab) or are assumed to have developed (wild collected). Both traits signifi-
cantly explain the dissimilarities among the bacterial communities associated with the three
groups of weevils (diet: R2 = 0.87, P = 0.003; temperature: R2 = 0.94, P = 0.006). These results
also suggest that temperature may be a confounding factor to explain the impact of different
diets on the bacterial diversity and richness associated with the different weevil groups.

Taxonomic classification of OTUs
The results of the taxonomic assignment analysis at the phylum and family levels are reported
in Fig. 4 (see also S2–S3 Tables). The analysis revealed that the most abundant taxa shared by

Fig 2. Operational taxonomic units shared by the three groups of weevils. Venn diagram showing the
shared bacterial OTUs (at 97% similarity) between all studied weevils groups.

doi:10.1371/journal.pone.0117439.g002
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all the members of the three insect groups belong to Proteobacteria (on average c.a. 64.6% of
the sequences in the specimens of RPWPALM group, 51.6% in RPWLAB and 43.3% in RVULN;
Fig. 4A). The specimens of the groups RPWAPPLE and RVULN harbour a second dominant
taxon represented by Firmicutes (on average 39.1% and 44.1%), while members of this taxon
are scarcely represented in the microbiotas associated to RPWPALM specimens (0.3%). The
members of the three groups of insects harbour, with different abundance, also members of
Actinobacteria (RPWPALM = 17.1%, RPWAPPLE = 1.2% and RVULN = 5.6%) and Bacteroidetes
(RPWPALM = 8.2%, RPWAPPLE = 3.6% and RVULN = 4.3%). In table 2 are reported the relative
abundances of the bacterial genera (with abundance> 1%) associated with the three groups of
weevils. Within the R. ferrugineus feeding on palm the most abundant taxa belong to Xantho-
monadaceae (mean 13.2% ± 4.03) and Rhodobacteraceae (mean 11.9% ± 11), to which belong
the genera Luteimonas (mean 6.6% ± 2) and Paracoccus (mean 7% ± 7.8), respectively. In the
microbiota associated with RPWPALM specimens, but not with those reared in laboratory,
members of the genus Demequina (Cellulomonadaceae) and members of Rhodobacteraceae,
Phyllobacteraceae and Rhizobiales were recovered. In contrast, the most abundant genus in the
bacterial community associated to RPWAPPLE and RVULN specimens was Leuconostoc, which
represents respectively 17.8% (s.d. 14.1) and 37.2% (s.d. 34.1) (Table 2). This genus was not
observed in the microbiota of RPWPALM specimens. Other dominant components of the
RPWAPPLE microbiota are the bacteria of the genera Acetobacter (12.9% ± 9.2) and Lactococcus

Fig 3. Bacterial communities and ecological factors. Biplot of the first 2 axes for the Non-Metric Multi-
Dimensional Scaling representing correlations between the OTUs Chao dissimilarity index and ecological
factors (i.e. diet and temperature). The black squares, the black and open circles represent respectively:
RPWPALM, R. vulneratus and RPWAPPLE; while black crosses represent the identified OTUs. The vectors
represent the mean direction and strength of correlation of diet and temperature (p-value< 0.05).

doi:10.1371/journal.pone.0117439.g003
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Fig 4. Weevil-associated bacterial diversity.Histogram representing the taxonomic assignment of bacterial 16S rRNA gene sequences associated with
the analyzed weevils; A: phylum level, B: family level.

doi:10.1371/journal.pone.0117439.g004
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(9.3% ± 6.2). Bacteria of the genera Lactobacillus and Entomoplasma are present in all speci-
mens of R. ferrugineus reared under lab conditions and in that of the sister species R. vulnera-
tus, but are not associated with RPWPALM. Besides Leuconostoc, the dominant bacteria in the
R. vulneratusmicrobiota belong to the family Comamonadaceae (11.2% ± 7.3) and to the
genus Ralstonia (Burkholderiaceae). S3–S4 Tables, respectively, report the relative abundances

Table 2. Genera of bacteria identified in the weevil microbiotas with their relative average abundance expressed as percentage.

Rhyncophorus
ferrugineus

Rhyncophorus ferrugineus Rhyncophorus vulneratus

palm apple palm

fa fa ma fa fa fa ma ma ma fa fa ma

Demequina 2.96 4.13 1.13 - - - - - - - - -

Gordonia 0.21 0.55 1.19 - - - - - - - 0.30 0.03

Aeromicrobium 0.74 2.99 1.50 - - - - - - - - -

Pimelobacter 0.27 0.94 3.20 - - - - - - - - -

Propionibacterium - - - 0.04 0.09 0.24 - - - 0.17 2.92 0.03

Dysgonomonas - - - 1.64 0.67 0.06 6.64 6.76 1.92 - 0.50 -

Flavobacterium - - 0.09 - - - - - - - 1.55 -

Wautersiella 0.15 1.27 0.96 - - - - - - - 0.17 -

Enterococcus - - 0.04 0.24 0.01 - 0.66 11.48 8.97 - - -

Lactobacillus - - - 2.60 0.60 1.56 0.99 0.38 0.79 0.04 0.07 0.10

Leuconostoc - - - 5.07 2.17 22.16 40.88 22.15 14.54 41.21 1.37 69.17

Lactococcus - - - 11.05 2.92 18.62 4.49 13.61 4.94 0.25 - 0.35

Clostridium - - - - - - - - - - 2.30 0.04

Erysipelothrix - - - 1.29 - - 0.07 0.01 0.41 1.53 0.14 -

Planctomyces 1.01 0.59 0.22 - - - - - - - 0.27 0.04

Asticcacaulis 1.01 0.54 0.33 - - - - - - - - -

Devosia 3.68 1.09 1.48 - - - - - - 0.17 0.95 0.07

Hyphomicrobium 0.82 1.37 0.69 - - - - - - 0.17 - -

Defluvibacter 0.02 0.06 0.06 - - - - - - - 1.29 0.06

Kaistia 1.11 0.07 0.06 - - - - - - - - 0.02

Paracoccus 1.03 15.79 4.22 0.04 0.02 - - - - 0.30 1.79 0.25

Acetobacter 0.07 - - 22.16 23.91 14.79 4.22 1.22 10.95 0.04 - 0.20

Swaminathania - - - 1.07 0.42 0.30 0.19 0.04 0.16 - - 0.17

Ralstonia - - - - - - - - - 8.37 38.90 2.38

Escherichia 0.03 0.02 0.28 0.06 0.10 - 7.25 - 1.21 0.30 - -

Gluconacetobacter - - - 0.49 0.16 1.80 0.01 0.41 0.90 - - -

Serratia - 0.02 0.50 1.28 0.19 - 1.19 1.10 2.03 - 1.65 1.39

Trabulsiella 0.02 - 0.31 4.31 0.06 - 0.02 0.52 0.55 1.57 - 0.01

Acinetobacter 0.27 0.46 5.46 0.01 0.01 0.12 - - - 0.08 2.07 0.35

Pseudomonas 1.82 1.07 4.41 0.30 - 0.12 - - - 0.04 0.26 -

Luteimonas 8.88 4.91 6.00 - - - - - - - - -

Stenotrophomonas - 0.04 0.70 - 0.01 - - - - 0.13 1.64 0.05

Thermomonas 1.68 0.44 1.76 - - - - - - - - -

In this table are reported the bacterial genera present with abundance > 1% in at least one specimens. The main differences in the bacterial genera

associated with apple and palm are highlighted in bold.
a The gender of the specimens is reported; f: female, m: male.

doi:10.1371/journal.pone.0117439.t002
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of the bacterial families and of the genera associated with the different weevil samples. In agree-
ment with the results obtained by the biodiversity analysis, the higher number of bacterial fam-
ilies are associated with RPWPALM, while samples of R. ferrugineus reared under lab conditions
and those of the sister species R. vulneratus harbour a lower number of bacterial taxa.

Interestingly, no OTUs of the R. ferrugineus primary endosymbiont “CandidatusNardo-
nella” were recovered in the first analysis of the data using the well-curated RDP database to tax-
onomically identify OTUs. A more detailed analysis of the OTUs, which were previously
identified as unknown Gammaproteobacteria, performed by BLAST against known sequences
of “Ca. Nardonella” allowed the identification of different OTUs as belonging to this taxon
(S5 Table). The identity of these OTUs was later confirmed as the primary symbiont by bidirec-
tional BLAST with values of sequence similarity> 97%. Noteworthy, all the identified OTUs
matched with the sequence FJ626262, endosymbiont of Sphenophorus levis. The prevalence of
“Ca. Nardonella” was 100% in all the RPWs and R. vulneratus specimens. This result confirms
the presence of “Ca. Nardonella” also in this Rhynchophorus species. The fact that the titer of
the primary symbiont within the analysed samples was low can be attributed to the fact that the
bacteriome and mesenteric caeca, colonized by the primary symbiont [75], represent a small
fraction of the total sampled tissues colonisable by bacteria. In addition, the titer of endosymbi-
onts has been demonstrated to vary along the life cycle of their arthropod host (e.g., [76]).

Bacteria associated with palm tissues
The majority of the 16S rRNA sequences, 60755 out of the obtained 61189 via 454 sequencing
from the palm tissues were removed from the analysis, since they matched with the chloroplast.
From the three palm samples, a total of 434 16S rRNA sequences were of bacterial origin, and
were clustered in 193 ± 78.5 OTUs. The taxonomic composition of the bacterial communities
associated with the palm tissues is dominated by members of Firmicutes and Proteobacteria,
representing on average the 62% and the 34% of the microbiota (Fig. 5A). The composition of
family-level microbiota associated with palm tissues is represented in the pie chart reported in
Fig. 5B. The genus Brevibacillus (Paenibacillaceae), detected in all the processed palm samples,
is the dominant one (average 60 ± 37.7% of the obtained 16S rRNA sequences).

A comparative analysis on the bacteria associated with weevil and palm samples were per-
formed on the genus-level identified OTUs in order to detect any patterns of commonalities.
Interestingly, 12 out of the 13 bacterial genera identified in the palm tissues, are recovered,
with different degree of prevalence and abundance, also in the weevil microbiota (only Klebsiel-
la is exclusive of these tissues). Brevibacillus, the dominant bacterium in the palm microbiota,
is found to be associated also with two samples of RPW although with a low abundance.

Metabolic potential
In order to investigate and compare the metagenomic functional potential associated with the
different bacterial communities harboured by the three groups of weevils, the 16S rRNA se-
quences obtained from each specimen were analysed with a dedicated bioinformatics tool
(PICRUSt, [69]). In S6 Table are reported the results of the analysis containing the predicted
gene family counts per sample for all the categories that have been related to the bacterial phys-
iology/metabolism, in light of a symbiotic relationship, such as the amino acid metabolism, the
biosynthesis of secondary metabolites and the metabolism of cofactors and vitamins. The full
results of the analysis are reported in S7 Table. Within the cellular processes category, signifi-
cant differences between all the three insect groups were recovered in bacterial chemotaxis and
in bacterial motility proteins (respectively Kruskal-Wallis χ2 = 6.54, df = 2, P = 0.038 and Krus-
kal-Wallis χ2 = 7.27, df = 2, P = 0.026). In the amino acid metabolism category, significant

Is the Microbiota of RPW Influenced by Diet?

PLOS ONE | DOI:10.1371/journal.pone.0117439 January 30, 2015 12 / 22



differences (P< 0.05) between the three groups of weevil were reported for Lys, Val, Leu and
Ile degradation and for Phe, Trp and β-Ala metabolism. None of the predictions obtained for
the category of biosynthesis of other secondary metabolites resulted different based on the
Kruskal-Wallis test. Interestingly, other statistically significant differences between-groups
were observed in the categories of carbohydrate/energy metabolism (pentose phosphate path-
way and nitrogen metabolism) and in the metabolism of cofactor and vitamins (thiamine me-
tabolism). Pairwise comparison carried on the subsets of differentially predicted metabolic
pathways, using the Mann-Whitney test, indicated that most of the differences result to be be-
tween the R. ferrugineus that were fed on palms and those fed on apples (p<0.05; S6 Table).
From the PICRUSt prediction, these pathways result to be present at a higher percentage in the
microbiota associated with RPWPALM than in the one associated with RPWAPPLE.

Bacterial isolation from laboratory reared weevils
The bacterial cultivable fraction was investigated on RPWAPPLE.. This work allowed the isola-
tion of a total of 103 isolates from different insect organs dissected from laboratory weevils,

Fig 5. Palm-associated bacterial diversity. Pie charts representing the taxonomic assignment of bacterial
16S rRNA gene sequences associated with the analyzed the palm tissues; A: phylum level, B: family level.

doi:10.1371/journal.pone.0117439.g005
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with the aim to investigate the bacterial diversity associated to the different body districts (S8
Table). Partial 16S rRNA sequencing results showed that the majority of the isolates belonged
to Proteobacteria (64%) and Firmicutes (22%, Fig. 6A). Among Proteobacteria, Gamma-
subdivision was the most abundant (46% in comparison to Alpha and Beta ones which ac-
counted with 12% and 6%, respectively) with members of Enterobacteriales and Xanthomona-
dales. Among Firmicutes bacteria belonging to the orders Lactobacillales and Bacillales were
isolated. Acetic Acid Bacteria (AAB) accounted for 9% of the total isolates (Fig. 6).

We did not appreciate major differences in the bacterial composition of the different organs
and tissues analysed, even though an important fraction of the isolates were obtained from the
intestine (no. 38) (Fig. 6B; S8 Table).

Fig 6. Relative abundance of the strains isolated from the different organs of RPW. A: histogram
representing the relative abundance of strains at order level isolated by different organs; B: pie chart
representing the cumulative abundance of the different strains at the genus level.

doi:10.1371/journal.pone.0117439.g006
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The isolated strains belong mainly to the taxa Enterobacteraceae, Lactobacillales, Actinobac-
terales and Acetobacteraceae. These taxa were also observed in the metabarcoding analysis.

Discussion
The bacterial communities harboured by the three groups of weevils are dominated by mem-
bers of Proteobacteria; in addition, RPWAPPLE and RVULN specimens harbour a second domi-
nant taxon represented by Firmicutes (see Fig. 4). The unbalanced composition of the bacterial
communities associated with these insect groups is reflected also in the Pielou’s evenness
index, where RPWAPPLE and RVULN show significant lower values that those of RPWPALM. In
fact, the microbiota associated with RPWPALM is characterized by the absence of dominant
bacteria. Most of the RPWPALM exclusive taxa are present with low abundance (<1%); con-
versely, the microbiota associated with RPWAPPLE and RVULN are dominated, with an average
abundance of 17.85% and 37.27%, by bacteria of the genus Leuconostoc, which is absent in the
microbiota of RPWPALM. The microbiota of RPWAPPLE specimens is characterized also by bac-
teria of the genera Acetobacter (14.47% ±13.6) and Lactococcus (9.25% ± 6.2). Interestingly the
three groups of weevils shared 15 common OTUs (S9 Table). Among these OTUs, taxa such as
Serratia and Ochrobactrum were observed. Both taxa have been described in association with
several arthropod taxa ([40,77,78] Amblyomma rotundatum, data not shown). While Serratia
plays several roles ranging from host protection against parasitoids [79] to the enhancement of
host fitness [80], the role of Ochrobactrum is yet to be investigated. Noteworthy, three of these
shared OTUs belonged to taxa that were present also in palm tree tissues (i.e., one belonging to
Comamonadaceae and two to Stenotrophomonas).

Culture-dependent methods on organs and tissues of RPWAPPLE have allowed obtaining
103 isolates, which were identified by sequencing of partial 16S rRNA gene. Interestingly, a
large part of the isolates was constituted by Proteobacteria and Firmicutes, which were present
in all the different dissected organs and in the hemolymph. This is in accordance with the data
obtained with DNA-based method. In fact, using both cultivation dependent and independent
technique, Proteobacteria and Firmicutes members resulted abundant in the laboratory popu-
lation. Particularly, members of Gammaproteobacteria, with Enterobacteriales and Xanthomo-
nadales representatives, and Firmicutes, with Lactococcus, Streptococcus, Enterococcus and
Lactobacillus, were retrieved. Bacteria belonging to the genus Lactococcus were also previously
isolated from wild specimens of RPW [34]. It is interesting to note that members of AAB were
isolated from the hemolymph. In insects, these bacteria are generally described as gut associat-
ed, but they have been shown to colonize different organs even after administration with food;
this indicates that AAB are able to cross the gut barrier and reach other organs, likely through
the hemolymph [80–83]. Moreover, in accordance with pyrotag data, laboratory insects har-
bour also Actinobacteria and Betaproteobacteria, with respectively 13% and 6% of abundance.

The comparative analysis performed on the bacterial consortia associated with the palm tis-
sues with those associated with weevils highlight some patterns of commonalities: 12 bacterial
genera out of the 13 identified in palm tissues were also recovered in weevils from the original
palm population. Based on this finding, we can hypothesise that these bacteria are ingested by
weevils along with palm tissues. Even if we cannot completely exclude that these bacteria are
transient components of the weevil microbiota and do not represent stable consortia, the fact
that most of them (nine out of 13) are present also in specimens reared on apple for 30 days or
in R. vulneratus suggests that these are stable component of the weevil microbiota. The alterna-
tive hypothesis is that palm tissues are contaminated by weevil faeces; the shared insect-palm
bacteria would thus represent contaminants from the insects. However, palm tissues examined
in this study were healthy and not colonized by the weevil.
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Interestingly, even if the microbiota associated with weevils clearly differ among groups in
terms of diversity and composition, the predicted metagenome functional potentials related to
the bacterial physiology/metabolism in light of a symbiotic relationship were maintained in
most aspects. Statistically significant differences among the three groups of weevils were re-
ported for the metabolism of a few amino acids (degradation of Lys, Val, Leu and Ile; metabo-
lism of Phe, Trp and β-Ala), in carbohydrate/energy metabolism (pentose phosphate pathway
and nitrogen metabolism) and in thiamine metabolism. These biochemical pathways are linked
with the recycling of nitrogen and are thus expected to be highly represented in the microbiota
of organisms feeding on nitrogen-poor food sources (e.g., palm tissues, apple). The differences
in the carbohydrate/energy metabolism could be explained by the high-sugar content in the
food resources dispensed to RPWs in laboratory respect to those feeding on the palm tissues.
The apple-based diet provided in the laboratory enriched and selected for Lactococcus and
Acetobacter. These bacteria have been observed in association with several other insects that
have a sugar-rich diet [72,82].

The taxonomic composition of the microbiota associated with R. ferrugineus specimens col-
lected in Catania (Italy) clearly differ from those described in a previous study, where a compa-
rable approach was adopted on R. ferrugineus collected in Al-Hassa Oasis (Saudi Arabia) [35].
In this study, even if a seasonal variability in the gut microbiota was observed, the dominant
bacteria in adult specimens belonged to the genera Lactococcus and Acinetobacter, whereas
Klebsiella and Lactococcus were detected in larvae. In our study, bacteria of the genus Lactococ-
cus were recovered in specimens reared in laboratory on apple, while members of the genus
Klebsiella were only recovered in the palm tissues. The last findings lead to the hypothesis that
the pattern found by Jia and colleagues [35] could result from the effect of the bacteria trans-
mitted to the weevil by the palm tissues.

The bacterial communities associated with the three groups of weevil under study (R. ferru-
gineus from wild population, R. ferrugineus from wild population reared in laboratory for four
weeks feeding on apple, and R. vulneratus fromMalaysia) were significantly different. The
specimens belonging to R. ferrugineus of the invasive population collected in Catania har-
boured the highest number of bacterial OTUs (OTUs = 1077), while a significant decrease in
the number of harboured OTUs has been observed in the specimens reared in laboratory
(OTUs = 429). This reduction has been observed after a relatively short time of maintenance
(30 days) under stable environmental conditions (temperature, humidity, light-dark cycle and
food resources) feeding on a sugar-rich resource as the apple. The number of OTUs identified
in the sister species R. vulneratus, collected in the Rhynchophorus native area, was lower
(OTUs = 370) respect to those of the two groups of R. ferrugineus. Interestingly, the number
of OTUs associated with adult specimens from Saudi Arabia and to larvae reared under hot
condition (i.e. 32°C) resulted of ~ 400 [35], a value comparable to those obtained for the
RPWAPPLE and of R. vulneratus fromMalaysia, but not with the recovered value for RPWPALM

and larvae reared at 20°C (1077 and 1049, respectively). We cannot exclude that the differences
in OTU number between our specimens and those from Saudi Arabia [35] are due to differ-
ences in the used 16S rRNA regions. The number of OTUs detected in the analysed weevils
was higher in respect to those observed in other Coleoptera [40,84–86]. Moreover, the compo-
sition of the bacterial community associated with the three groups of weevils, which have been
analysed through PCoA and ANOSIM, resulted statistically different. These results have also
been confirmed by the analysis on the two components of the β-diversity, which was performed
on the bacterial community associated with the two groups of RPW. The hierarchical cluster-
ing grouped the bacterial community associated with RPWAPPLE together with those associated
with the sister species R. vulneratus instead of with those harboured by the co-specific speci-
mens from wild population.
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Based on the achieved results on the bacterial OTU diversity, integrated with those obtained
by Jia and colleagues [35], we can hypothesize that high temperatures (as those of rearing facili-
ties, of Saudi Arabia and of Malaysia) have caused a decrease in the level of bacterial diversity
associated with weevil. Conversely, low temperatures (as those experienced by adults collected
in Catania and larvae reared at 20°C) increase the bacterial OTU diversity associated with the
insect. Both studies confirmed the high plasticity, in terms of turnover, of the microbiota asso-
ciated with RPW. Based on our results, environmental abiotic factors, such as the temperature,
could play an effect in shaping the diversity of weevil’s microbiota. Similar results have been
obtained for another group of phytophagous beetles, in which the altitude is related with the
structure of the insect’s microbiota [40]. The interpretation of these findings by biological and
evolutionary perspectives can be done in the light of the hologenome hypothesis [87], which
argues that the real unit under natural selection is the eukaryotic host together with its associat-
ed microorganisms. Harbouring a more diverse and evenly represented microbiota, in addition
to the capability to acquire new bacterial taxa from the environment, may confer selective ad-
vantages to the host in changing environments (e.g., food resources exploitation, capability to
survive in polluted environments).

In conclusion, our study shows that: i) the bacterial diversity and evenness decrease in a
short time when RPW specimens are reared in laboratory under controlled conditions (tem-
perature, humidity, light-dark cycle and food resources); ii) the composition of the bacterial
community associated with the three weevil groups clearly differs both within the same popula-
tion (influenced by the diet) and between the considered species; iii) most of the members of
the bacterial community associated with palm tissues, from which the specimens of R. ferrugi-
neus were collected, are also present in the insects microbiota; iv) bacterial isolation performed
on laboratory reared weevils confirmed pyrotag data; v) both the present study and the previ-
ous one by Jia et al. [35] do not identify a fixed microbiota in RPW, suggesting the importance
of the environment in shaping it. The knowledge of the bacterial community associated to this
important pest, the metabolic potentials exerted by its bacterial partners, the bacterial dynam-
ics in relation to the environment/diet and their distribution and localization, both in palm and
insect organs, together with the possibility to cultivate the bacterial symbionts of this insect,
could open new interesting perspectives towards the development of novel strategies for the
symbiotic control of weevils.
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