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Abstract: 

The holobiont theory expands the notion of individual multicellular organisms as a community 

composed of a host and all its associated microorganisms. This concept has been extensively 

studied in the field of aquaculture, where increasing evidence has highlighted the importance 

of the host associated microorganisms in species fitness. Here, we focus our review on mollusc 

and crustacean species in which microbiota dysbiosis has recently been described in the context 

of various diseases, resulting in significant economic losses. Influencing the holobiont structure 

through the use of probiotics is a potential strategy that could improve the fitness or the 

robustness of cultivated species. We discuss here the possibility of developing microbiome 

targeted prophylactic approaches by promoting (1) methods to identify host microbial 

community that fosters good health status and (2) early life microbial education to favour long-

term resistance to stress or disease. This review aims to inform the aquaculture industry about 

potential strategies in rearing practices to mitigate diseases and economic losses. 

 

Keywords: mollusc, crustacean, holobiont, microbial education, probiotics 

 

Introduction 

 

Aquaculture production covers most of the increase in seafood needs since 1990 and 

has surpassed fisheries as a source of food for human consumption (Anderson et al. 2019). It 

has become the fastest growing food-producing sector in the world yielding 57.5 million tonnes 

of finfish, 17.7 million tonnes of molluscs and 11.2 million tonnes of crustaceans for the year 

2020 (Food and Agriculture Organisation 2022). For the aquaculture industry, disease 

emergences pose a significant risk and can induce substantial economic losses. More 

concerning is the accumulation of evidence over the past decades that diseases affecting wild 

and cultivated animals have increased in frequency and severity in association with 

anthropogenic disturbances and global change (Harvell et al. 2002; Jones et al. 2008; Altizer et 

al. 2013; Burge et al. 2014; Kibenge 2019; Behringer and Duermit-Moreau 2021). As 

mentioned below, marine invertebrates constitute an important contribution to aquaculture 

production in the world. In these species, evidence for recurrent diseases inducing mass 

mortalities have accumulated, demonstrating the devastating impact of epizooties (Burge et al. 

2014; Kibenge 2019). Diseases affecting farmed oysters, shrimp, abalone, and various fish cost 

billions of dollars each year to this industry (Lafferty et al. 2015). In some cases, these diseases 
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directly result from the emergence of viral, bacterial or parasitic pathogens (Soudant et al. 2013; 

Travers et al. 2015). For example, the White Spot Syndrome Virus (WSSV) is the most 

prevalent viral pathogen in shrimp leading to massive mortalities (up to 100% within 3-10 days) 

that have impacted productions for decades (Sánchez-Paz 2010). This highly virulent virus  

quickly infects gills, stomach, haemocytes, hematopoietic tissues and antennal gland (Pradeep 

et al. 2012). Another concerning infection known as acute hepatopancreatic necrosis disease 

(AHPDN) or Early Mortality Syndrome (EMS) has been reported in different shrimp species 

in Asia. It causes rapid and drastic mortalities causing losses of up to 90% of the livestock 

(Hong et al. 2016). This disease is caused by the bacterial agent Vibrio parahaemolyticus which 

damages the hepatopancreas.  In molluscs, the abalone withering syndrome (WS) is another 

infectious disease caused by the bacteria Xenohaliotis californiensis responsible for moderate 

to mass mortality events depending on the species involved. Mortality rate of up to 99% have 

been observed in some species such as the black abalone Haliotis cracherodii in USA (Crosson 

and Friedman 2018). Several bacterial diseases caused by Vibrio, Nocardia and Roseovarius 

have also been reported in several bivalve species (Travers et al. 2015). 

Other diseases that affect invertebrates of interest to aquaculture are multifactorial and 

polymicrobial: in this case, there is a destabilisation of the microbiota due to an initial harmful 

environmental pressure or to the presence of a pathogen.  This dysbiosis eventually opens the 

door for the development or colonization by opportunistic pathogens or may even lead to a shift 

from commensalism to opportunism/pathogenicity for some members of the microbiota. In 

shrimp species, the White Feces Syndrome (WFS) is a gastrointestinal disorder affecting 

cultivated penaeid shrimp, leading to severe production losses worldwide. Shrimp with WFS 

usually show a reduced feed consumption and growth rate, hepatopancreatic discoloration, and 

loose shells. Diseased shrimp show significantly decreased microbial richness and diversity 

compared to healthy control  (Huang et al. 2020). In molluscs, many epizooties affecting 

shellfish are polymicrobial. One of notable examples is the Pacific Oyster Mortality Syndrome 

(POMS) which emerged in 2008 and is still heavily impacting the Pacific oyster, Crassostrea 

gigas, production worldwide (Barbosa Solomieu et al. 2015; Petton et al. 2021). POMS is a 

multifactorial disease, influenced by biotic and abiotic factors (Petton et al. 2015, 2021). The 

central role of a herpes-like virus, OsHV-1-µVar, in POMS has been demonstrated; viral 

infection triggers an immune-compromised state that leads to microbiota dysbiosis and 

subsequent bacteraemia caused by opportunistic bacteria, ultimately resulting in oyster death 

(de Lorgeril et al. 2018). Additional studies have shown that OsHV-1 infection leads to 

variations in the microbiota characterised by changes in the bacterial groups which are normally 
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the most abundant and an increase of rare OTU belonging to the Vibrio genus including known 

opportunistic pathogens such as V. harveyi (King et al. 2019a) and Arcobacter (Lasa et al. 

2019). Other studies have shown that environmental factors such as exposure to pollutants or 

warming temperatures are other potential causes of dysbiosis in molluscs leading to increased 

mortality rate in farms. Temperature stress in C. gigas (rapid increase from 20°C to 25°C) alters 

in the bacterial composition of the microbiota towards dominance of opportunistic pathogens 

such as Vibrionaceae correlating with increased in mortality (Green et al. 2019). Heat stress 

also leads to decreased stability of the haemolymph microbiota in the Pacific oyster C. gigas 

(Lokmer and Wegner 2015) and induces lower diversity in the mussel M. coruscus (Li et al. 

2019). These changes in the haemolymph microbiota contributes to increased mortality in these 

two bivalves in response to infections. Other studies performed in the clams Chamelea gallina 

(Milan et al. 2019) and Tegillarca granosa (Liu et al. 2022) have shown that chemical pollution 

leads to microbiota shift associated with the proliferation of opportunistic pathogens potentially 

contributing to the declining health of clams.  

In order to fight these diseases threatening aquaculture activities, a series of approaches have 

been developed. Strategies such as the use of probiotics, mutualist symbionts and 

bacteriophages have been proposed (Pérez-Sánchez et al. 2018). These approaches are based 

on the identification of beneficial microorganisms that directly benefit by exerting antagonistic 

effects against potential pathogens. These effects include the production of antimicrobial 

compounds, interference with quorum sensing or predatory actions (Touraki et al. 2012; 

Kiymaci et al. 2018; Offret et al. 2018; Zhao et al. 2019; Goh et al. 2022). Other strategies are 

based on changes in aquaculture practices through the application of methods that aim to 

manage the microbial community within rearing tanks. For instance, the implementation of 

biofloc system improves water quality (Kumar et al. 2021; Rajeev et al. 2021; Khanjani et al. 

2022) and has been shown to promote a better host immune response (Khanjani et al. 2023). 

Diverse technologies aim to create a K-selected microbial community that counteracts r-

strategic opportunists. These microbial management strategies have resulted in improved 

performance and increased viability of larvae. (De Schryver et al. 2014; Bossier et al. 2016; 

Vadstein et al. 2018). Otherwise, in a broader context, several studies have evidenced the 

critical role of microbiota during the early developmental steps to educate and durably imprint 

the host innate immune system in mammals (Arrieta et al. 2014; Gensollen et al. 2016, Renz et 

al. 2017), in fish (Galindo-Villegas et al. 2012) in crustaceans (Ziaei-Nejad et al. 2006; Roy et 

al. 2020) and in molluscs (Yang et al. 2020; Fallet et al. 2022).  Despite these evidence, 
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antagonistic approaches toward microbial communities, such as water sterilization and 

antibiotic treatment, have been favoured so far (Eljaddi et al. 2021; Cordier et al. 2021) .  

In this review, we promote the potential application of natural microorganisms as a treatment 

during the early developmental stage (larval rearing) to shape and sustain lifelong innate 

immune competence in aquaculture. Firstly, we report recent studies which emphasize the 

critical role played by the microbiota in molluscs and crustaceans of economic interest for the 

aquaculture field. Then, we discuss the possibility of using the growing amount of data 

describing the host associated microbiota to predict health promoting bacteria. Finally, we argue 

that the application of these new generation probiotics for microbial education in early 

developmental steps (larval rearing) could be a novel strategy to induce long-term beneficial 

effects in aquaculture.  

 

1. Host-microbiota interactions in health and disease of mollusc and crustacean species 

 

a. Definition of the holobiont concept 

 

Numerous studies have provided evidence that host associated microbial communities can 

influence multiple facets of animal physiology encompassing pathogen resistance,immunity, 

development,  behaviour, and ecological functions such as stress tolerance (Sharon et al. 2010; 

Heijtz et al. 2011; Webster et al. 2011; McFall-Ngai et al. 2013; Kostic et al. 2013; Gilbert et 

al. 2015; Schmidt et al. 2015; Kohl and Yahn 2016; Webster and Reusch 2017; Gould et al. 

2018). These impacts imply that microbiota can profoundly influence animal performance, 

fitness and adaptation capacities in changing environmental conditions (Rosenberg et al. 2009; 

Webster and Reusch 2017). These observations fall into the widely accepted holobiont concept 

which considers multicellular organisms as a complex community of species. Initially, this 

concept took into account only the mutualistic obligate associations between the host and its 

symbionts (Rohwer et al. 2002). however, with the advancements in sequencing methodologies 

and progress in microbiota research, the concept of holobiont was expanded to encompass the 

association between the host and all its associated microorganisms (bacteria, Archaea, viruses 

and yeasts) (Bordenstein and Theis 2015). Building on the holobiont concept, the hologenome 

theory of evolution considers the holobiont with its hologenome (all genomic entities in 

interaction) as the unit of selection during evolution (Zilber-Rosenberg and Rosenberg 2008; 

Theis et al. 2016). This theory implies that the host and the symbiont do not interact only for 

food or ecological niche, but also constitute the true unit of selection, thus co-evolving together 



6 
 

and shaping the genetic composition of each other. These concepts have enabled a re-evaluation 

of host-associated microorganisms beyond their association with diseases and have permitted 

the consideration of their role in host physiology (see Laukens et al. 2015). The influence of 

the microbiota on the host immunity is one of the best examples illustrating the contribution of 

associated microorganisms to host fitness. Interestingly, commensal microbiota has multiple 

ways to cooperate with the host immune system to prevent pathogen infection. This has been 

well described in model species, especially in mice where experiments on germ free animals is 

feasible. Commensal bacteria can boost the immune system either locally oy systemically (e.g. 

in distant tissues) (Chung et al. 2012; Hooper et al. 2012; Abt and Artis 2013; Sommer and 

Bäckhed 2013). Additionally, commensals can also directly  impact bacteria (either true 

pathogens or opportunistic ones) through interference with their entry and establishment via 

direct competition or production of antimicrobial compounds. The aquatic invertebrate model 

organism, the cnidarian Hydra vulgaris extensively addresses the beneficial effect of the 

microbiota. A substantial body of work clearly shows that mucosal innate immunity is shaped 

by host-microbiota interactions (Schröder and Bosch 2016).   

 

b- Influence of the microbiota for health and disease outcomes in crustaceans and 

molluscs of aquaculture interests 

 

Several studies focusing on host-associated microbiota have highlighted the beneficial effects 

of microorganisms for invertebrate species relevant to aquaculture. Beneficial properties of the 

microbiota have been observed in several context relevant for aquaculture such as enhanced 

growth, feed efficiency,  increased survival in early life stages, settlement, shell quality, size, 

or organoleptic quality  (Infante-Villamil et al. 2021; Rajeev et al. 2021; Paillard et al. 2022; 

Yu et al. 2022). We have focused our review work on host associated microorganisms which 

are beneficial in a context of health and infectious disease outcomes (Table 1). Several studies 

have indicated that higher microbiota diversity is associated with the host health status in both 

crustaceans and molluscs (Table 1, part 1). This may result from the capacity of a highly 

diversified microbial community to provide a greater number of beneficial functions. In 

different shrimp species, a greater diversity of metabolites with potential beneficial properties 

is produced by half of the core microbiota likely contributing to their immune homeostasis 

(Zhang and Sun 2022). Additionally, functional redundancy has been described in the more 

diverse microbial community of the yellow abalone compared to the blue abalone correlating 

with a lower prevalence of the Withering Syndrome disease (Cicala et al. 2018, 2022). 



7 
 

However, it’s essential to note that while the mentioned studies are mostly correlative, only two 

of them have demonstrated a direct causality between healthy or diseased microbiota and health 

status.  In  penaeid shrimp, intestinal microbiota transfer (IMT) from WFS diseased shrimp to 

healthy ones led to the development of symptoms similar to those of diseased shrimp (Huang 

et al. 2020). In C. gigas, a microbiota transfer from healthy juvenile donor oysters to healthy 

recipient larval oysters for ten days, resulted in enhanced immune response at juvenile stages 

and a greater capacity to prevent OsHV-1 viral proliferation associated with reduced mortality 

to the POMS disease (Fallet et al. 2022).  

Beyond the beneficial properties induced by a highly diversified microbial community, specific 

strains within the microbiota may also contribute to the host health through their direct 

antagonistic effect on pathogens (Table 1, part 2). For instance, the addition of Alterin-

producing Pseudoalteromonas hCg-42 correlates with lower mortality in Vibrio challenged C. 

gigas (Defer et al. 2013; Desriac et al. 2020 and Dantan et al., Not published). Injection of 

BALOs (Bdellovibrio-like organisms) in lobster juveniles results in lower Vibrio abundance 

compared to non-injected control group (Ooi et al. 2021). BALOs are a group of Gram-negative 

bacteria that prey on other Gram-negative bacteria and have been reported in the haemolymph 

microbiota of diverse shrimp species and the spiny lobster Panulirus ornatus.  Moreover, in a 

broader context, extensive correlation analysis have revealed associations between the presence 

or abundance of specific bacteria and varyingdisease prevalence (King et al. 2019a; Clerissi et 

al. 2020; Infante-Villamil et al. 2021). Nevertheless, the precise role of these bacteria in 

contributing to the advantageous properties to their associated host has yet to be accurately 

delineated.  

In summary, evidence suggests that the host-associated microbiota significantly contributes to 

the health of molluscs and crustaceans relevant to aquaculture. Disruption of a healthy and 

diversified microbiota can lead to disease states. Understanding the dynamic interplay of this 

interaction in these species is essential to implement disease mitigation strategies. 

 

c. Innate immune effectors are key players which shape the microbiota of molluscs and 

crustaceans of interest to aquaculture. 

 

In many species, host-microbiota associations appear relatively stable within an individual 

showing a strong correlation between host phylogeny and microbiota that co-evolved for 

beneficial outcomes, a concept known as phylosymbiosis (Lim and Bordenstein 2020). This 
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concept implies that the host can selectively shape its microbiota, leading to convergence of 

host phylogeny and microbiota composition. The correlation between host genetic background 

and microbiota composition has been clearly observed in marine molluscs. In C. gigas, 

microbiota specific to oyster families has been described and perfectly segregates with the 

oyster’s genetic background (King et al. 2019b; Clerissi et al. 2020; Dupont et al. 2020).  

In a broader context, evidence from invertebrate models reveals that immune systems can 

control microbial communities and promote its long-term colonization through diverse 

strategies such as mechanical barriers provided by chitine or mucus layers, or mediated by 

conserved non-self recognition and antimicrobial mechanisms (Rosenstiel et al. 2009; Chu and 

Mazmanian 2013; Broderick 2016; Dishaw et al. 2016). Among all these mechanisms, 

antimicrobial peptides are major players identified as key regulators of a well-balanced 

interaction between commensal microbes and host tissues. Implication of these peptides for 

microbiota shaping has been well characterised in the two noteworthy invertebrate aquatic 

models, the squid Euprymna scolopes (Heath-Heckman et al. 2016) and the cnidaria Hydra 

vulgaris (Fraune and Bosch 2007; Augustin et al. 2017). In molluscs of aquaculture interest, 

several studies have shown an indirect link between microbiota and host immunity, especially 

in the context of abiotic stresses (Auguste et al. 2019, 2020; Yang et al. 2020; Li et al. 2022; 

Liu et al. 2022; Zhao et al. 2023; Dang et al. 2023) and disease-triggered dysbiosis (de Lorgeril 

et al. 2018; Milan et al. 2019). However, in these studies, whether the stress triggers a change 

in the microbiota resulting in an immune shift or conversely, whether the stress triggers an 

immune shift resulting in a change of microbiota structure remains to be determined. The few 

studies that have addressed the direct influence of the host innate immunity on microbiota 

composition in molluscs and crustaceans are listed in the Table 2. A substantial number of 

studies have been conducted in the kuruma shrimp Marsupenaeus japonicus and the king prawn 

Litopenaeus vannamei where RNAi invalidation has pointed to a causal link between innate 

immune effectors (reactive oxygen/nitrogen species -ROS and RNS- and antimicrobial 

peptides) and the balance of the bacterial microbiome (Table 2). In L.vannamei, similar studies 

involving inactivation of genes encoding for AMPs of the crustin family have shown that the 

type I and type II crustins were involved in regulating the host bacterial community (Lv et al. 

2020b, a). 

In molluscs, to our knowledge, studies have investigated the direct influence of the host innate 

immunity for microbiota composition in scallops and oysters. In the scallop Argopecten 

purpuratus, the big defensin ApBD1 and the bactericidal/permeability increasing protein 

ApLBP/BPI1 have been shown to regulate the proliferation of specific bacterial groups in the 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/antimicrobial-peptides
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/antimicrobial-peptides
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haemolymph (Muñoz et al. 2019; González et al. 2020). In the same species, a g-type lysozyme 

is shown to participate in the microbial homeostasis (González et al. 2022). In C. gigas, big 

defensins have the potential to shape oyster microbiota. Cg-BigDef1 induced a significant shift 

in oyster microbiota β-diversity 6h and 24h after its injection into oyster tissues (de San Nicolas 

et al. 2022). 

In summary, a body of research in molluscs and crustaceans has revealed an interaction between 

host immunity and microbiota composition, particularly in response to abiotic stresses and 

dysbiosis triggered by diseases. Additionally, a direct causal link between innate immune 

effectors and the balance of the bacterial microbiome has been demonstrated in kuruma shrimp, 

king prawn, scallops, and oysters, where gene function invalidation serves as a method to 

establish causality between host innate immunity and microbiota composition. 

 

 

d. Toward the use of next generation probiotics for an optimised microbial education 

 

a- Probiotic usage: definition and limitation for shellfish aquaculture  

In this article, we reviewed recent studies that emphasize the critical role played by the 

microbiota on health and disease resistance for economically important marine invertebrates. 

There is an increasing body of evidence that points toward the beneficial advantage conferred 

by the microbiota for crustaceans and molluscs in an aquaculture context and how a fine-tuned 

setting is necessary to ensure an optimal host-microbiota balance. Disruption of this balance by 

external stressors or pathogens induces a decrease in the fitness of the holobiont, eventually 

leading to death. In this sense, it is evident that we should now consider each organism as an 

holobiont where associated microorganisms not only provide a beneficial advantage in adverse 

conditions but are also essential players in maintaining host health. Experimentation with the 

microbial component of the holobiont has been active for decades using probiotics. According 

to the definition of the Food and Agriculture Organization (FAO), a probiotic is  “live 

microorganisms, which when consumed in adequate amounts, confer a health benefit on the 

host” (Food and Agriculture Organisation of the United Nation 2006). Probiotics have been 

successfully applied for decades in human health, focusing on beneficial bacteria isolated from 

natural human microbiota. For instance, Lactic Acid Bacteria (LAB) have been extensively 

studied for their beneficial properties (as reviewed by Mousavi Khaneghah et al. 2020) and 

were recently used for potential application in depuration in C. gigas (Sorée et al. 2023).This 

has led to several commercial applications with proved beneficial effect in human health and in 
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agro-industries. The use of probiotic strains has further expanded to animal production, and is 

considered a promising eco-responsible and prophylactic alternative to antibiotics (Getachew 

2016). The extensive use of antibiotics has been identified as a major cause for emergence of 

antibiotic resistant pathogens in shrimp aquaculture (Thornber et al. 2020). In this field, the 

application of probiotics has been used for decades as an environmentally-friendly alternative 

strategy to fight pathogens (Akhter et al. 2015; Goh et al. 2022). The use of probiotics has also 

been successfully tested on oysters (Aguilar-Macías et al. 2010; Kesarcodi-Watson et al. 2012b; 

García-Bernal et al. 2019; Modak and Gomez-Chiarri 2020). The mode of action of probiotics 

and their beneficial effects on disease resistance and species performance in aquaculture have 

been extensively reviewed (Akhter et al. 2015; Yeh et al. 2020; Goh et al. 2022; Sumon et al. 

2022).  Several limitations regarding the application of probiotics, which is not always 

beneficial, have been reported . One major limitation is that probiotic strains do not persist in 

the endogenous microbiota (Table 3). The addition of non-autochthonous strains (bacteria 

isolated from other host species) is a possible explanation considering the tight association 

between the host and its microbiota, as explained in the first part of this review. Regular addition 

of probiotics supplemented with prebiotics (compounds in food that induce the growth or 

activity of the probiotics) has been a strategy applied so far to maintain the long-term beneficial 

properties of the added strains. However, such an approach increases the economic cost of the 

probiotic solution (Pérez-Sánchez et al. 2018). Another major limitation in the shellfish farms 

is the impossibility of using probiotics in open sea culture. In this sense, the use of probiotics 

in molluscs industry is limited to hatcheries during larval rearing or necessitate land-based 

facility to apply the treatment on spat or adult stages. Except for the study performed by Fallet 

et al. (2022), the literature on probiotics added during larval stages do not report long-term 

beneficial effect for molluscs and crustacean health (Table 3). Several reasons might explain 

this potential caveat: (i) The long-term beneficial properties have not been addressed in the 

published study mentioned in table 3 and the authors have overlooked the potential of their 

probiotics to confer long-term benefits to their host (ii) The author have added a single probiotic 

strain and considering the importance of the microbial diversity for host fitness,  the use of 

multi-strain probiotics (MSP) should lead to more beneficial effects.  MSP consist of a mix of 

two or more strains, that have proven to offer various beneficial effects for their host. The 

improved performance of MSP exposure compared to single strain has been intensively 

described in fish  (Puvanasundram et al. 2021) (Padeniya et al. 2022) and is starting to be 

described in crustaceans and molluscs (Kesarcodi-Watson et al. 2012a; Grandiosa et al. 2020). 

For example, the use of a mix of four different probiotics has more efficiently improved the 
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growth and immune status of L. vannamei in comparison with single-strain probiotics  (Wang 

et al. 2019). The addition of MSP during the larval stage conferred a protective effect in Spiny 

Lobster (P. ornatus) larvae against Vibrio owensii infections (Goulden et al. 2012).  

In summary, probiotics have proven to be promising tools for mitigating disease risks in 

mollusk and crustacean aquaculture. However, there are challenges that still need to be 

addressed, such as the limited persistence in the endogenous microbiota, the impossibility of 

applying them in open sea culture, and the associated economic costs. The use of multi-strain 

probiotics isolated from the endogenous microbiota is a promising way to enhance host 

performance. Additionally, exploring the long-term effects on immune status after probiotics 

addition during larval rearing is another avenue that deserves further exploration. 

 

b-Next generation probiotics: emerging tools for a better prediction of health 

promoting bacteria 

 

The recent advances on host-microbiota interactions have brought new insights, that should 

broaden the use of probiotics in the most updated strategies. A substantial number of large scale 

analyses applied to diverse crustacean (Holt et al. 2021) or mollusc species (Yeh et al. 2020) 

has led to multiple descriptions of bacteria associated with different tissues, at  several life 

stages, related to different health statuses, in different environments. These datasets constitute 

tremendously valuable resources for predicting of stage and species-specific beneficial bacteria. 

Correlation studies that identify association between health status and microbiota composition 

should lead to deciphering consortia of beneficial microorganisms. This approach has been 

applied to microbial communities associated with health and disease in shrimp in order to 

identify stage specific disease or bioindicators of health (Zheng et al. 2017). Based on a Linear 

Discriminant Analysis (LDA) Effect Size (LEfSe) (Segata et al. 2011), Zheng et al. identified 

that the genus Meridianimaribacter was enriched in healthy shrimp and with good water 

quality. In agreement with other culture-dependent study (Zheng et al. 2016), this genus was 

identified as a beneficial bacterium for shrimp larvae and was suggested as a probiotic candidate 

for shrimp larval rearing. Similarly, based on the the LEfSe method applied to the bacterial 

community associated with POMS-sensitive and resistant oysters, we identified stage specific 

bacterial taxa that are overrepresented in more resistant oysters during experimental infection 

(Fallet et al. 2022). In another study, we performed a differential analysis of taxa abundance 

between conditions in microbiome and identified three bacterial families (Colwelliaceae, 

Cyanobacteria (Subsection III, family I), and Rhodobacteraceae) significantly associated with 
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oysters resistant to POMS disease (Clerissi et al. 2020). Overall, we suggest that predictive 

analysis based on correlation studies in combination with literature information, should be an 

upstream step to identify putative beneficial bacteria that can be then isolated by culture-based 

approaches (Figure 1). We anticipate an improved benefit of the probiotics designed in such a 

way considering the concept of the holobiont and the long co-evolutionary history between the 

host and the bacteria (Box 1). However, this is only a predictive strategy, and the beneficial 

effect of these probiotics requires validation in an experimental framework, as we describe in 

Figure 1. 

 

c- Microbial education during early stages: An opportunity to sustain long-term 

beneficial effects. 

 

Here, we also explore another possibility, which involves educating the host immune system 

by applying beneficial microorganisms throughout the course of immune system development.  

This “microbial education” plan is not just another probiotic strategy but is a real concept rooted 

in robust recent scientific studies that span several fields, as summarised in the box 1: (1) the 

microbial community management in aquaculture (2) the holobiont theory (3) The biological 

embedding concept (4) the possibility to prime the innate immune system of invertebrate 

species to induce long-term immune protection. The “microbial education” outline is to add 

host specific microorganisms during the larval development. This strategy aims to influence the 

immune system toward better defence capacities. The possibility to influence the developmental 

trajectory of individuals through environmental manipulation during early development has 

been previously discussed by others (Gavery and Roberts 2017; Eirin-Lopez and Putnam 2021). 

This strategy can be used to produce a desired phenotype and applied to critical issues in 

aquaculture with some benefits but also, some barriers as summarised in Table 4. The 

possibility to educate the host immune system through a microbial education has been recently 

demonstrated in oysters (Fallet et al. (2022). In this study, we showed that it was possible to 

increase C. gigas immune competence until the juvenile stage, four months after a 10 days 

natural microbial exposure during the larval stages. This study clearly highlighted that an 

interaction with a diversified and autochthonous microbiota during the early developmental 

stages has lifelong consequences, even transgenerational impact, and could be instrumental in 

fighting against POMS disease. Such an approach remains to be investigated for other 

pathogens commonly described from the larval to adult stages in C. gigas (Dégremont et al. 

2021), and other oyster species (Dégremont et al. 2015). This early life microbial education is 
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somewhat in contradiction with some hatchery current practices, which seek to limit the 

introduction of both non-pathogenic and pathogenic bacteria, viruses, and eukaryotes as well 

as to eliminate unwanted plankton and zooplankton in seawater, from the conditioning of the 

broodstock to the larval and spat stages (Bourne et al. 1989; Helm et al. 2004; Eljaddi et al. 

2021; Cordier et al. 2021). Additionally, the depletion of bacteria in the rearing environment 

and in farmed animals is often accentuated by the addition of antibiotics. This process was 

tested in response to the risk of mortality in livestock  (Le Pennec et al. 1973; Bourne et al. 

1989; Nicolas et al. 1992) and was quickly associated with the risk of selecting antibiotic-

resistant bacteria (Martin and Mengus 1977; Bourne et al. 1989). Today, however, this use 

remains a common practice, mainly at the larval stage of various species of marine 

invertebrates, as well as their broodstock.  

Globally, research efforts remain to be performed for microbial education to be applied during 

larval rearing. The microbial management plan  aligns with our proposal, aiming to increase 

the performance and viability of larvae by applying ecological theories and optimising larvae-

microbiota interactions (De Schryver and Vadstein 2014; De Schryver et al. 2014). Diverse 

methods (MMS: Microbially Matured Water System, BFT: Bio Floc Technology, RAS: 

Recirculating Aquaculture System) allow for the stable presence of naturally K-selected 

microbial community into the rearing tanks. It clearly has a long-term beneficial impact and 

favours the production of high quality juveniles (Bossier et al. 2016; Vadstein et al. 2018). The 

immunomodulatory properties and health benefits of such practices have been demonstrated 

(Kumar et al. 2021). However, using these methods, the added microflora is not controlled and 

not specific to the raised species and it is hazardous since it may contain pathogenic 

microorganisms. In perspective of this review, we propose a simple conceptual model to 

summarize the possible strategy that could be applied to perform the most appropriate early-

stage microbial education (Figure 1). Full-scale trials will be necessary and should consider 

several parameters that could impact hatching and larval growth/survival. The parameters 

should include: the definition of the multi-strain bacterial mix to be applied, the way the 

bacterial mix should be administered, the most appropriate window to be targeted, the duration 

of the exposure, and the aquaculture rearing conditions. In Fallet et al. (2022), the 

microorganisms to which recipient oyster larvae were exposed came from healthy C. gigas spat 

sampled in their natural environment and used as microbiota donors. Those donor oysters were 

held upstream of the larval tanks but downstream the filter systems. This strategy allowed 

transferring the whole oyster associated microorganisms’ community to recipient larvae and 

accordingly, the immunomodulatory potential of the overall microbial diversity (including 
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viral, prokaryotic, eukaryotic and uncultivable microorganisms) was exploited. Such a strategy 

could be applied to hatcheries. However, a major limitation of such a practice should be 

considered: the microorganism community is not controlled and remains hazardous. A real 

health risk remains since donor oysters of microbiota may also carry opportunistic or latent 

pathogens while appearing to be healthy. In this sense, a controlled environment rich in 

microorganisms used during the larval rearing is recommended. This can be achieved using 

donor oysters of microbiota which were always kept in biosecured facilities (Figure 1). In this 

way, the oysters were shown to be devoid of the three main pathogens of C. gigas from larvae 

to juveniles (Azéma et al. 2017; Dégremont et al. 2021). Alternatively, a controlled culture-

based bacterial formulation, a multi-strain bacterial mix can be added during the larval rearing 

(Figure 1). For this purpose, it will be necessary to first build a collection of host-associated 

bacteria and screen several bacterial cocktails for their ability to induce long term 

immunomodulatory effects. Early development is the preferential stage to be targeted to induce 

long lasting effects, as previously reported (Galindo-Villegas et al. 2012; Arrieta et al. 2014; 

Gensollen et al. 2016; Fallet et al. 2022). Targeting this stage also offers the possibility to treat 

sereval millions of larvae at the same time.  

In summary, we discuss here an alternative approach to mitigate infectious disease in 

aquaculture. We propose to educate the host immune system by introducing host beneficial 

microorganisms during the maturation of the innate immune system. This concept of “microbial 

education” goes beyong conventional probiotics strategies and is grounded in recent scientific 

studies that intersect various fields, such as the management of microbial communities in 

aquaculture, the holobiont theory, the biological embedding concept, and the ability to prime 

the invertebrate innate immune system. We further suggest a potential strategy for early-stage 

microbial education, with an emphasis on controlled environments and health considerations 

when transferring microorganisms. 

 

 

Conclusions: 

 

Diseases of farmed shellfish induce significant economic losses. To address these recurring 

threats, the exploration of alternative and environmentally friendly solutions has been ongoing 

for a long time. In this review, we delve into how host-associated microorganisms are only 

greatly contribute to improving the fitness of their host but also part of a much more complex 

evolutionary unit called the holobiont. We discuss the possibility of implementing advanced 
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techniques and the concept of the holobiont field as potential new strategies to mitigate  diseases 

in farmed animals. We suggest (i) using the increasingly expansive data describing microbiota 

in diverse species as a tool to predict the most natural beneficial bacteria for their associated 

host and (ii) applying an exposure of these predicted beneficial microorganisms during the 

larval rearing step in the hatchery to benefit from biological embedding. If properly applied, 

this microbial education is anticipated to induce lifelong protection and could be a natural and 

sustainable strategy for safeguarding aquaculture efforts from infectious disease.  
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Tables and figures:  1 

Table 1: Studies which support that host-associated microbiota influences the health of molluscs and crustaceans of aquaculture interest 2 

Part 1: Studies which highlight how the microbiota diversity influences health and disease outcomes. 3 

Species Disease Microbiota change Effect on the Host Reference 

L. vannamei WSSV 

Increased microbial diversity induced by 

dietary supplementation with brown 

seaweeds composition 

Reduction of the mortality rates after a WSSV 

challenge in the diet-fed group compared to 

the control shrimp 

(Schleder et al. 

2020) 

M. japonicus, L. 

vannamei, 

Macrobrachium 

rosenbergii, 

Procambarus clarkii 

WSSV 

Production of metabolites with antiviral 

potential by half of the core microbiota in 

response to viral challenge 

Likely contributes to a better immune 

homeostasis and potential host resistance 

(Zhang and Sun 

2022) 

Homarus gammarus 

Infection 

with 

Homarus 

gammarus 

nudivirus 

(HgNV) 

Increased species richness and diversity 

observed in sea-based container culture 

compared to land-based culture 

Lower viral prevalence in sea-based container 

culture compared to land-based culture 

(Holt et al. 

2020) 
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Penaeid shrimp WFS 
Decreased in microbial richness and 

diversity during the WFS disease 

Intestinal microbiota transplants from WFS 

diseased to healthy shrimp lead to symptoms 

similar to those of the diseased ones 

(Huang et al. 

2020) 

Haliotis fulgens 

Haliotis corrugata 

WS 

Higher microbial diversity in the yellow 

abalone (Haliotis corrugata) compared to 

blue abalone (Haliotis fulgens) 

Increased susceptibility to the WS in the blue 

abalone correlates with structural and 

functional alterations in their microbiota, in 

contrast to yellow abalone which maintains a 

stable microbiota under WS stress 

(Cicala et al. 

2018, 2022) 

C. gigas POMS  

Higher microbial diversity in larvae after a 

microbiota transfer compared to control 

group 

Lower mortality in the microbiota transferred 

group compared to control 

(Fallet et al. 

2022) 

 4 

Part 2: Studies which highlight the beneficial contribution of a specific bacterial species for the health of its autochthonous host by 5 

antagonistic effects. 6 

Species Disease Microbiota change Effect on the Host Reference 

C. gigas Vibriosis 

Addition of Pseudoalteromonas (hCg-42 

and hCg-6) (producer of antimicrobial 

molecules (Alterins)) to C. gigas 

In vitro antimicrobial effect against vibrio and 

decrease of the mortality rates after a vibrio 

challenge in C. gigas incubated with hCg-42 

(Defer et al. 

2013; Desriac et 

al. 2020; Not 



34 
 

published 

results)  

P. ornatus Vibriosis 
Addition of BALOs (Bdellovibrio and like 

Organisms) to P. ornatus 

Abundance decreases of vibrio in 

haemolymph of host injected with 

Halobacteriovorax sp. (BALOs) 

(Ooi et al. 

2021) 

 

Litopenaeus 

vannamei 
Vibriosis 

Addition of Bacillus sp. YC5-2 initially 

isolated from the guts of healthy wild adult 

shrimp 

In vitro antibacterial effect against vibrio and 

decreased mortality after a vibrio challenge 

(Luis-

Villaseñor et al. 

2011) 

C. gigas 

V. 

coralliilyticus 

infection 

Addition of Pseudoalteromonas (D16 and 

DM14), and Epibacterium (B11) initially 

isolated from C. gigas oysters 

Improving survival of oysters during V. 

coralliilyticus infection 

(Madison et al. 

2022) 

 7 

Legend of Table 1: Studies that underscore the microbiota's impact on health and disease outcomes in invertebrates relevant to aquaculture. The 8 

part 1 comprises studies demonstrating how a shift in the microbiota diversity (reported in column 3) impacts the host health status (reported in 9 

column 4). The part 2 comprises studies demonstrating how the introduction of antimicrobial-producing strains into the host microbiota (indicated 10 

in column 3) counteracts pathogens and contributes to the health benefits of the host (indicated in column 4). 11 

 12 

Table 2: Studies which support direct consequences of the innate immune system for the host associated microbiota structure. 13 
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Organisms Innate immune effectors Influence on the microbiota structure Reference 

M. japonicus 

MjHeCL (protein that combines a 

C-type lectin domain, and an 

antimicrobial peptide) 

The down-regulation of MjHeCL expression by 

RNAi leads to the proliferation of the haemolymph 

microbiota, ultimately resulting in shrimp death 

(Wang et al. 2014) 

M. japonicus 

The catalase enzyme by regulating 

the Reactive Oxygen Species (ROS) 

level 

High level of ROS in shrimp intestine (obtained after 

inactivation of MjCAT which encodes for the 

catalase) correlates with a reduction in bacterial load 

of the shrimp intestinal lumen 

(Yang et al. 2015) 

M. japonicus 

Nitric Oxide (possibly through its 

positive regulation of AMPs 

production) 

After RNA interference of the Nitric Oxide Synthase 

(NOS) or treatment with an inhibitor of NOS, NO 

production decreased, and the gut bacterial load 

increased significantly in shrimp 

(Hong et al. 2021) 

L. vannamei 
Antimicrobial peptides of the 

Crustin family 

Inactivation of the gene encoding for the 

antimicrobial peptide LvCrustin II-1 leads to change 

in the microbiota composition of the shrimp gills 

(Lv et al. 2020a) 

L. vannamei 
Antimicrobial peptides of the 

Crustin family 

Inactivation of the gene encoding for the 

antimicrobial peptide LvCrustin I-1 leads to change 

in the microbiota composition of shrimp intestines 

(Lv et al. 2020b) 
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A. purpuratus 
Antimicrobial peptide from the big 

defensin family (ApBD1) 

Inactivation of the gene encoding for ApBD1 leads 

to changes in bacterial composition of the 

hemolymph microbiota 

(González et al. 2020) 

A. purpuratus 
The bactericidal/permeability 

increasing protein ApLBP/BPI1 

Inactivation of the gene encoding for ApLBP/BP1 

leads to changes in bacterial composition of the 

hemolymph microbiota 

(González et al. 2020) 

A. purpuratus g-type lysozyme ApGlys 

Inactivation of the gene encoding for ApGlys leads 

to higher diversity in hemolymph bacterial 

community and imbalance in certain bacterial groups 

(González et al. 2022) 

C. gigas 
Antimicrobial peptide from the big 

defensin family (Cg-BigDEf1) 

Injection of synthetic Cg-BigDEf1 into the oyster 

tissues induced a significant shift in oyster 

microbiota β-diversity 

(de San Nicolas et al. 

2022) 

 14 

 15 

Legend of the Table 2:  Studies indicating that certain host innate immune effectors (specified in column 2) directly influence microbiota 16 

composition. The repercussions of the inactivation (or addition) of these effectors on host microbiota structure are detailed in column 3. 17 
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Table 3: Current limitations of probiotic application in mollusc and crustacean aquaculture 18 

The probiotics do not persist in the endogenous microbiota 

Exposure of the European abalone Haliotis tuberculata to the Pseudalteromonas hCg-6 exogenous strain 

leads to a transient establishment of this probiotic strain in the haemolymph rather than the establishment 

of a long-term interaction 

(Offret et al. 2018) 

Exposure of C. gigas larvae to bacteriocin-like inhibitory substance (BLIS) - producing Aeromonas, 

showed that the probiotic strain concentration decreased right after it was added to the oyster and was not 

detectable 72h after its addition 

(Gibson et al. 1998) 

 

The probiotics display short-term beneficial effects 

In L. vannamei, larval exposure to Bacillus subtilis E20 or to Bacillus sp. YC5-2 is beneficial to the 

shrimp during larval stages but subsequent beneficial effects on further stages have not been tested. 

(Liu et al. 2010; Luis-Villaseñor 

et al. 2011) 

Immunomodulation is observed in L. stilirostris after a larval exposure to Pseudoalteromonas probiotic 

candidates but it has not been tested on later stages. 
(Pham et al. 2014) 

Addition of Bacillus pumilus RI06–95 and Phaeobacter inhibens S4 during larval development of the 

eastern oyster C. virginica for either 6h or 24h prior to pathogen challenge leads to an effective immune 

response and protection against V. coralliilyticus and Vibrio tubiashii. The beneficial effect was observed 

(Karim et al. 2013; Modak and 

Gomez-Chiarri 2020) 
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immediately after exposure, but no significant protection was observed when the larvae were challenged 

48 and 96h after removal of the probiotic. 

The exposure of C. cortezinsis larvae to a mix of two bacteria Pseudomonas aeruginosa, strain YC58 and 

Burkholderia cepacia, strain Y021, leads to a better survival during the larval rearing stages. 
(Campa-Córdova et al. 2011) 

A 20-hours larval exposure to Pseudoalteromonas sp. D41 or Phaeobacter gallaeciensis, has conferred a 

significant protection to C. gigas larvae against V. coralliilyticus 
(Kesarcodi-Watson et al. 2012b). 

An immunomodulation was also observed on the Yesso scallop Patinopecten yessoensis fed with a diet of 

microalgae supplemented with the strain Pseudoalteromonas sp. F15 during larval stages 
(Ma et al. 2019). 

In the sea cucumber Apostichopus japonicus, an exposure to bacterial strains Pseudoalteromonas elyakovii 

HS1, Shewanella japonica HS7, or Vibrio tasmaniensis HS10 leads to an enhanced cellular and humoral 

immune response and to an improved survival and growth rate 

(Chi et al. 2014) 

 19 
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Box 1: Scientific rationale behind the microbial education 20 

 Description of the concept 

(1) 

Microbial community 

management in 

aquaculture 

The microbial management in aquaculture consist in controlling the water microbiota in rearing system according 

to ecological selection principles. Methods which favour K-selection in the rearing environment have been shown 

to select against r-strategic microbes and promote healthy microbe-larvae interactions (De Schryver and Vadstein 

2014; De Schryver et al. 2014; Bossier et al. 2016; Vadstein et al. 2018). 

(2) 

Holobiont concept 

Host associated microbial communities can influence multiple facets of animal physiology including development,  

behaviour, ecological functions such as stress tolerance  as well as pathogen resistance and immunity. (Sharon et 

al. 2010; Heijtz et al. 2011; Webster et al. 2011; McFall-Ngai et al. 2013; Kostic et al. 2013; Gilbert et al. 2015; 

Schmidt et al. 2015; Kohl and Yahn 2016; Webster and Reusch 2017; Gould et al. 2018). The beneficial effect of 

the microbiota for host immune homeostasis is clearly one of the best illustration of the holobiont theory (Chung et 

al. 2012; Hooper et al. 2012; Abt and Artis 2013; Sommer and Bäckhed 2013). 

(3) 

Biological embedding 

The biological embedding is the process by which the life history of an individual during ontogeny impacts its 

development and modifies its phenotype (Aristizabal et al. 2020). The environment has a long-lasting influence on 

the functions of biological systems and this environmental imprint has major consequences for the behaviour and 

health of individuals. The early stages of development are sensitive windows for recording this environmental 

information (Dolinoy et al. 2011; Fellous et al. 2022). Microbial colonization during early life is an example of 

biological embedding and many studies have emphasized its critical role in educating and durably imprinting the 

immune system (Arrieta et al. 2014; Gensollen et al. 2016). 
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(4) 

Immune priming 

The immunological memory as described in the adaptive immune system of vertebrates does not exist per se in 

invertebrates and the fight against pathogens relies on innate immune mechanisms. It has been recently shown that 

this innate immunity can be trained to retain the memory of a primary exposure to better respond to infections 

encountered later (Netea et al. 2020). In molluscs and crustaceans, recent studies have shown that it is possible to 

train the innate immune system (Zhang et al. 2014; Norouzitallab et al. 2016; Lafont et al. 2017, 2020). The 

possibility of using the trained immunity as a potential strategy to fight disease in shrimp aquaculture has been 

recently reviewed by Roy et al. (2020). 

 21 

 22 
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Table 4: Benefits and barriers for practicability in aquaculture 23 

Benefits 

The microbial education is a probiotic strategy that must be applied during the larval stages in hatcheries/nurseries. This plan is feasible for 

shellfish as it represents small volume of animals to be treated using bath, even those which will be transferred in open sea at later stages.  

The use of donors of microorganisms is the most promising strategy, it is easy to implement, and it is not costly. 

The probiotic exposure can be performed on numerous animals (several hundreds of millions of larvae) at the same time by bath or on their diet. 

The microbial education aims at providing individuals with an increased robustness against infectious diseases. It is a strategy to better face the 

epizooties without using antibiotics. 

The exposure benefice during larval stages is expected to be lifelong but also multigenerational. 

 

Barriers 

The larval stage is identified as the most sensitive rearing phase, and inappropriate probiotic exposure during this stage may be more detrimental 

than beneficial. 

The microbial education approach is empirical and require time for optimisation. The optimal setup for one species might not be applicable to 

another species. Similarly, the response of the host to the exposure of probiotics could depend on their broodstock, used to produce the shellfish. 

The exposure to multi-strain probiotic could lead to increase resistance toward particular pathogens and may not protect against other diseases. 
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The use of donors of microorganisms is the most promising strategy, but the transferred microbiota is not controlled and there is a risk for 

pathogen transmission. 

 24 

 25 

 26 
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Figure 1: Full scale experimental design to identify beneficial bacteria for microbial education. 27 

 28 

 29 
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Figure legend 30 

 31 

Figure 1: Full scale experimental design to identify beneficial bacteria for microbial 32 

education. 33 

For a long-term beneficial effect, it is recommended to perform the microbial education during 34 

larval stages (Part A, green coloured). The microorganisms to be added to the seawater during 35 

larval rearing can be introduced either (1) by pathogen-free donor oysters that were always kept 36 

in controlled facilities using UV-treated seawater, strict biosecurity zoning and management 37 

procedures or (2) by adding cultured based multi-strain bacterial mix that has been carefully 38 

selected. The method of administration of the mix and its composition has to be optimised to 39 

maximize its absorption by the larvae (Dipping or in freeze-dried form, delayed or simultaneous 40 

to the feeding, biofloc form). The exposure window (from embryogenesis to larval stages) and 41 

the duration of the exposure to the bacterial cocktails must be adjusted. Rearing conditions are 42 

other parameters that should be tested (Temperature, continuous flow or batch rearing system). 43 

The definition of the multi-strain bacterial mix (Part B, orange coloured) is a necessary 44 

upstream step to better anticipate beneficial properties. First, a library of cultivable bacteria 45 

must be created. These bacteria will be preferentially isolated from the host to be targeted. 46 

Pathogen-resistant animals (if probiotics aims at improving resistance toward a particular 47 

infectious disease) must be collected from several geographical sites and at different seasons in 48 

order to maximize the bacterial diversity. The bacteria thus obtained will then be cultivated, 49 

purified, and cryopreserved. Several physicochemical parameters (culture media, temperature) 50 

for bacterial culture may be tested to increase the potential biodiversity in the bacterial library. 51 

Identification of each cultivated strain from the collection will be performed by SANGER 52 

sequencing of the 16S rRNA coding gene. In parallel, in silico predictive analysis must be 53 

performed to predict which bacteria are generally associated to resistant phenotype in the host 54 

(if probiotics aims at improving resistance toward a particular infectious disease). This 55 

correlative study will necessitate that several (meta)barcoding analyses have been previously 56 

generated on microbiota sampled from resistant and sensitive animals toward a specified 57 

disease. These correlative analyses, coupled with an exhaustive study of the scientific literature, 58 

should make it possible to predict bacteria from the collection that could be beneficial probiotic 59 

candidates. Then, beneficial effects of microorganism exposure will have to be tested (Part C, 60 

grey coloured). Short term effect will be tested during the larval stages. Particular attention 61 

should be paid to the effect of the multi-strain bacterial mix on the survival and physiology of 62 

the larvae, to test whether the exposure is deleterious, beneficial, or neutral for larval 63 
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development and growth properties. Sampling for molecular analysis (ie transcriptomic, 64 

barcoding, metabolic, epigenomic analysis,) may be worth it to decipher molecular basis of the 65 

microbial effect. Finally, long-term beneficial effects will be tested on subsequent life cycle 66 

stages: juveniles and adults will be challenged by pathogens.  67 

 68 


