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Finding Incompatible Blocks
for Reliable JPEG Steganalysis

Etienne Levecque, Jan Butora, Patrick Bas

Abstract—This article presents a refined notion of incompatible
JPEG images for a quality factor of 100. It can be used to
detect the presence of steganographic schemes embedding in
DCT coefficients. We show that, within the JPEG pipeline, the
combination of the DCT transform with the quantization function
can map several distinct blocks in the pixel domain to the same
block in the DCT domain. However, not every DCT block can
be obtained: we call those blocks incompatible. In particular,
incompatibility can happen when DCT coefficients are manually
modified to embed a message. We show that the problem of
distinguishing compatible blocks from incompatible ones is an
inverse problem with or without solution and we propose two
different methods to solve it. The first one is heuristic-based,
fast to find a solution if it exists. The second is formulated
as an Integer Linear Programming problem and can detect
incompatible blocks only for a specific DCT transform in a
reasonable amount of time. We show that the probability for
a block to become incompatible only relies on the number of
modifications. Finally, using the heuristic algorithm we can derive
a Likelihood Ratio Test depending on the number of compatible
blocks per image to perform steganalysis. We simulate the result
of this test and show that it outperforms a deep learning detector
e-SRNet for every payload between 0.001 and 0.01 bpp by using
only 10% of the blocks from 256 × 256 images. A Selection-
Channel-Aware version of the test is even more powerful and
outperforms e-SRNet while using only 1% of the blocks.

Index Terms—Steganography, Steganalysis, JPEG, Compati-
bility, Compatibility attacks, Reliability

I. INTRODUCTION

In steganography, the main objective is to hide a message
inside an innocuous media such as an image or a video called a
Cover media. To be secure, the steganography message needs
to be undetectable from someone performing steganalysis, i.e.
trying to distinguish Cover from Stego media by analyzing
them. This cat-and-mouse game between the steganographer
and the steganalyst is very dependent on a lot of parameters,
such as the media format used to hide the message, the payload
size, or the embedding scheme used.

For this paper, we focus on the JPEG format, which is still
one of the most common compression schemes used for digital
images because of its relatively good compression properties
and its very widespread across different software and hardware
implementations. We target the class of embedding schemes
that modify the quantized DCT coefficients of the JPEG image.
This represents a wide variety of embedding schemes such as
JSTEG [15], [20] developed in 1995, or popular academic
schemes such as JUniward [12] or UERD [10].

The authors are with the University of Lille, CNRS, Centrale Lille, UMR
9189 CRIStAL Lille, France. Email: firstname.lastname@univ-lille.fr
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Fig. 1. Toy illustration of a 2D JPEG compression illustrating the incom-
patibility attack. Every block of 2 pixels (left figure) is mapped to a point
in the DCT space (right figure) and we can see that the compression is not
surjective. It means that some blocks in the DCT space (represented by the
holes) do not have any antecedent in the pixel domain. On the other hand,
some pixel blocks are mapped to the same DCT block during compression.
The attack exploits the fact that during embedding, some incompatible blocks
are created.

In this paper, we present a method that exploits a prop-
erty of JPEG images compressed using a known compres-
sion pipeline, which can be used to detect messages for
all steganography algorithms altering JPEG quantized DCT
coefficients. The main idea of this property is rather simple:
given a (compression) pipeline and an image coded in the
JPEG format, we want to know if the coded image is an output
of this pipeline. This problem, illustrated in Fig. 1, can be
seen as an inverse problem because if we can find an input
image of the pipeline that gives as output the observed image,
then we can conclude that the output image is compatible
with the pipeline. On the contrary, if no input generates the
output image, then it is incompatible with this pipeline. In
our case, it means that the image under scrutiny has been
tampered with by the embedding algorithm and that it is
therefore incompatible with the compression scheme.

The incompatibility we study in this paper is related to the
JPEG compression pipeline but not only since it can also be
used by any coding scheme which uses the DCT transform
and quantized DCT coefficients with quantization steps close
to or equal to 1. This means that this method can be potentially
used on coding schemes such as HEIC for still pictures, or the
H26x class of coding schemes for moving pictures.

Note that from a steganalysis perspective, detecting an
incompatible image is very interesting since in this case the
steganalyst, Eve, does not have to face potential false positives.
She is sure that the image is Stego if she has knowledge of the
compression pipeline and can find at least one incompatible
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Fig. 2. Framework of our method for finding incompatible blocks of a JPEG compressor. Red contours highlight the materials available to Eve to perform
the steganalysis study.

block in the image. Being able to detect incompatible images
is consequently related to performing reliable steganalysis.

This notion of incompatibility was one of the first strategies
in steganalysis and was introduced in 2001 in Fridrich et
al. seminal paper [9] when the message is hidden in the
decompressed JPEG image. In this case, the observed image
is a pixel image formerly compressed in JPEG with some
potential modifications on pixel values due to steganographic
embedding. The studied pipeline is consequently the JPEG
decompression scheme. The authors recompress the image and
to detect the embedding, they use on one side the difference
signal between the test image in the pixel format and on the
other side the recompressed-decompressed image.

Several years later, the Reverse JPEG Compatibility Attack
(RJCA) was introduced in Butora and Fridrich’s paper [6]
for the case where the message is embedded into the DCT
domain of high-quality JPEGs, i.e. for quality factors equal
or close to 100. For this attack, the output image is a JPEG-
compressed image and the pipeline is the JPEG compression.
The authors use the rounding errors of the decompressed
image as a reference signal to detect the embedding, either by
simply computing the variance of the signal (which increases
after embedding) or using deep neural networks such as
e-SRNet [6].

Note that incompatibility has also been used for digital
forensics to detect tempering operations. The incompatibility
between different types of interpolation used during the demo-
saicking process was proposed by Kirchner and Böhme [14]
in 2009. A more general approach to detect resampled signals
and incompatibilities related to interpolation pipelines was
proposed by Vázquez-Padı́n et al. [19] using set-membership
approaches to estimate the resampling factor when the sam-
pling pipeline - here the interpolation kernel - is known.

A common assumption in steganalysis is called Selection-
Channel-Aware (SCA) and was used for the first time in
Denemark et al. paper [8] to improve an existing detector. This
assumption supposes that the agent performing steganalysis
knows the probabilities with which the cover elements have
been modified during embedding. In our case, those elements

are DCT coefficients and this assumption can also be used
to select blocks that are more likely to be modified and thus
more likely to be incompatible.

The outline of this contribution is illustrated in Fig. 2 where
the connections with the different sections of the paper are also
highlighted.

• Because the incompatibility stems from the JPEG com-
pression pipeline, different types of compressors are
presented in section II with different implementations
of the DCT transform together with different rounding
functions. The compressor associated with the potential
use of an embedding scheme produces blocks that are
either Cover or Stego.

• The steganalyst analyses the produced image DCT blocks
and tries to solve an inverse problem, defined in sec-
tion III, to find antecedents of the test blocks in the pixel
domain. Two methods are presented to find an antecedent.
The first one uses a heuristic function which is minimized
to find compatible blocks. The second one consists in
solving an Integer Linear Programming (ILP) problem
which can be easily formulated for one specific JPEG
scheme and which can be used to detect incompatible
blocks. From the heuristic, it is possible to design a timing
attack which can be seen as an extension of the one
presented in [16] for a different optimization process and
different JPEG compressors.

• The timing attack can be finally cast as a hypothesis test
based on the number of compatible or timed-out blocks
found in an image. Different strategies to select a subset
of the blocks, and thus be more efficient, are proposed
and the detection performance is evaluated and compared
with SOTA deep-learning methods in section VI.

Note that to perform steganalysis, the only materials, that
Eve needs to have, represented in red in Fig. 2, are:

• The knowledge of the JPEG compressor which can be
determined by forensic analysis or assumed to be known
according to the Kerckhoffs’ principle,

• Sample blocks of the test image to analyze,
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• Optionally, the knowledge of the embedding scheme can
be used to select the best candidate blocks using an SCA
approach.

This paper has some connections with [16] presenting the
main feature of compatibility and its potential connections
with timing attacks. However, there are also numerous differ-
ences, among them are: the fast heuristic approach presented
in section III-C and used to provide results in section IV
and section VI, the design of a Likelihood Ratio Test in
section V-B, the option to have a Selection Channel Aware
test using an appropriate prior, and the comparison with the
SOTA in deep-learning steganalysis in section VI-B.

Unlike the original work dealing with the RJCA [6], the
proposed method is not statistical in nature but exploits the
hard constraints of the JPEG format and consequently does
not suffer from false positives. Additionally, we show that the
proposed Likelihood Ratio Test outperforms in section VI-B
the best deep learning detector used for the RJCA.

All our code is available one our git repository.1

II. JPEG COMPRESSION

The goal of this section is to formalize mathematically the
JPEG compression pipeline. This formalization will allow us
to search for possible antecedents of JPEG blocks. Notations
are first defined, then the different steps of the libjpeg imple-
mentation [13], which is the most popular implementation of
JPEG compression, are presented.

A. Notation and mathematical formulation

Notations: Every standard letter represents a scalar and
bold letters can represent a vector or a matrix. Most of the
values are two-dimensional but can be broadcasted to one
dimension by flattening the object. Therefore, for simplicity
reasons, multiplication and division of matrix and vector are
element-wise operations on the flattened objects. The rounding
function to the nearest integer toward infinity is written [·]. For
example [0.5] = [1.4] = 1 and [−0.5] = −1. The quantization
operator with respect to some quantization coefficients stored
in a matrix Q is defined by [·]Q = [ ·

Q ]. Finally, we define

[·][0;255]Q as the operation of rounding and then clipping the
values to the range [0; 255].

JPEG compression: We consider an image divided into
non-overlapping blocks of size 8 × 8 pixels. We suppose for
simplicity that the image size can be divided by 8. The JPEG
compression is applied independently on every block. Let x
be one of those pixel blocks. Its DCT coefficients c can be
defined using the following notation:

d = fDCT(x) Floating point coefficients,
c = [d]Q Integer coefficients,

where fDCT refers to the forward Discrete Cosine Transform
function and Q is the quantization table of the same size
as a block, which depends on the quality factor (QF) of the
compression. A high QF means small quantization steps (at
QF100, the quantization steps are all equal to 1).

1https://gitlab.cristal.univ-lille.fr/elevecqu/incompatible-jpeg-blocks
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Fig. 3. JPEG pipeline illustrating the notations. The separation un-
known/known refers to what the steganalyzer knows or does not.

JPEG decompression: The decompression process is al-
most symmetric and can be defined with the following nota-
tion:

d′ = Q× c Integer coefficients,
y = fIDCT(d

′) Floating point pixels,

x′ = [y][0;255] Integer pixels clipped.

This pipeline is illustrated in figure 3 with two separations.
The horizontal separation refers to the domain of the objects:
either DCT (or frequency) or pixel (or spatial). The vertical
separation divides the objects into unknown or known from
the steganalyst’s point of view.

Rounding errors: The main reason why the JPEG com-
pression is not perfectly reversible is because of the lossy
rounding operation in the DCT domain. Indeed, the integer
DCT coefficients are a close approximation of the exact
floating point value, and therefore a bit of information is lost
making the whole pipeline irreversible.

We define the DCT rounding error as well as the spatial
rounding error which occurs after decompression to obtain
integer pixel values, and the compression error:

u = c− d DCT rounding error,
e = x′ − y Spatial rounding error,
k = x′ − x Compression error.

(1)

B. Details on implementations (libjpeg)

Libjpeg [13] was implemented in 1991 by the Independent
JPEG Group as an open-source software written in C. It
rapidly became a building brick for high-level languages to use
JPEG compression. The JPEG standards are technical specifi-
cations so the JPEG implementation can differ depending on
the application. That is also the case in the libjpeg library,
which evolved through different versions [2]. This paragraph
aims to highlight the most important parameters used for our
work.

Channels: This paper will consider 3 different types of
image channels. Gray-scale is a single-channel image, the
compression is directly performed on every block. RGB-JPEG
is a 3-channel image but every channel is compressed like a
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gray-scale image. YCbCr is a transformation of the color into
luminance (Y) and chrominance (Cb and Cr) components.

Although the transformation is linear, it is followed by a
non-linear quantization toward integers. The luminance and
chrominance quantization tables also differ in this setting
because the human eye is more sensible to the luminance com-
ponent. Therefore the chrominance components are optionally
subsampled and are quantized more than the luminance com-
ponent, which is subject to the same compression as a gray-
scale image.

DCT transforms: The change of domain is the most
time-consuming operation during the compression. That is
why there exist multiple implementations depending on the
quality or speed requirements of the user. There are 3 main
implementations in libjpeg: float, islow, and ifast. The
float and islow use the same algorithm with floating point
and integer values respectively. The islow is therefore faster
than float but less precise. The ifast uses a different
algorithm on integer values and therefore is even faster than
islow. However, the quality of the result can be damaged
by the lack of precision especially for high QF values. Both
algorithms are presented in [17]. Since this work targets high
QF, ifast will be ignored. Finally, only islow and naive
DCT will be considered. The naive DCT is the mathematical
definition using a matrix product that is very close to float
but can sometimes differ due to operation ordering [18].

Rounding functions: The quantization step after the DCT
makes the use of a rounding function mandatory to transform
floating point values to integers. There exist numerous ways
to round a floating point to an integer, including truncation
(rounding towards zero) [1].

In libjpeg, the rounding function used is the half-up toward
infinity implemented with bit shifts. The paper uses the same
one. Images compressed with the truncate function are ignored
during compression for the float and islow implemen-
tations. Note that a rounding function can produce different
results depending on the processor of the computer and its
instructions [18].

Now that the different mathematical entities have been
presented we can give more insights on the definition and the
detection of compatible and incompatible blocks.

III. INCOMPATIBILITY IN JPEG BLOCKS

The incompatibility problem is defined in this section. A
paragraph is dedicated to a 2-dimensional toy example which
gives a geometrical interpretation of the problem. We use two
formulations to derive two algorithms to prove that a block
is compatible or not. The first one is based on a heuristic
algorithm. The second one relies on stronger assumptions to
derive an Integer Linear Programming problem that can be
solved by numerical solvers.

A. Definition

A block c is compatible with a forward DCT function fDCT
and a quantization function [·]Q if there exists an integer block
x such that:

c = [fDCT(x)]Q . (2)
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Fig. 4. Toy illustration in 2D. Starting from a random block of 2 pixels,
we extract e the rounding error in the spatial domain and e′ the rounding
error after embedding a message in the DCT coefficients. The dotted contours
represent areas where an integer coordinate can be a solution to problem (2).
If no integer coordinate falls into this rectangle - for example the orange
rectangle on the left plot - it means that there is no solution to the inverse
problem and therefore the block is incompatible. On the left, the quantization
values are [1, 1] (2D equivalent of QF100), and on the right [1, 2] (2D
equivalent of a QF lower than 100). The red dot is the compression error
k.

In other words, c is compatible if it has an antecedent given
a compression pipeline. On the contrary, if a block of DCT
coefficients does not have any antecedent, then it is defined as
incompatible.

The notion of compatibility is very simple but the existence
of incompatible blocks is not trivial. It comes from the non-
surjectivity of the pipeline as depicted in Fig. 1: all pixel
blocks x have an image by definition but in the space of
DCT coefficients, not all blocks c have an antecedent. This is
mainly due to the quantization function which is not surjective
but also due to several implementations of the DCT which are
not always perfectly reversible because of precision errors.

In order to hide a message inside the DCT coefficients,
the steganographer needs to change the coefficients of a
compatible DCT block c (it was obtained by compressing
a pixel block x), but the result c′ after modification is not
guaranteed to be compatible and can be exploited by the
steganalyst.

B. Why do we have incompatible blocks?

In this paragraph, we present a simple toy example with
blocks of 2 pixels depicted in Fig. 4. The purpose of this il-
lustration is to give the reader intuitions regarding the creation
of incompatible blocks.

Let x ∈ J0, 255K2 be a random block of pixels. The naive
mathematical definition of the DCT can be generalized to
every number of dimensions, therefore we can JPEG compress
this 2-dimensional block and define every notation present
in Fig. 3. We also define c′ = c + m which is the same
DCT block with a modification m that contains some message
embedded in it. If we extract the different errors defined in
equation (1) we now have two spatial rounding errors e and
e′. Those errors are shown in Fig. 4 with a blue and orange
cross.

To understand the rationale behind the notion of incompati-
ble blocks, which is linked to the dotted rectangles around the
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error vectors in the figure, we need to derive a simple equation
from the three errors:

k = x′ − x,

= x′ − fIDCT(d),

= x′ − fIDCT((c− u) ·Q),

= x′ − fIDCT(c ·Q) + fIDCT(u ·Q),

= x′ − y + fIDCT(u ·Q),

= e+ fIDCT(u ·Q).

(3)

The variable k is the compression error which is the difference
between the original pixel block and the decompressed one. If
we know the decompressed block and the compression error
we can reconstruct an antecedent x̃ of c. Therefore, if this
compression error exists, it directly means that we have an
antecedent and by definition the block is compatible. However,
this compression error needs to respect a constraint, it has to
be an integer by definition.

The other important variable, u, is the rounding error in
the DCT domain which is unknown and has to be a floating
point value in [−0.5, 0.5]. This constraint defines the dotted
rectangles around each spatial rounding error. Finally, we end
up with two constraints:

1) the compression error k needs to be composed of integer
values,

2) k has to be inside the dotted rectangle to respect the
constraint on u.

We can plot the spatial rounding e error as shown in Fig. 4
with a blue cross. The orange cross corresponds to the spatial
rounding error of the same block with modifications to its
DCT coefficients.

Note that the size of this rectangle is influenced by the
quantization matrix Q. The bigger the quantization steps,
the larger the rectangle. Consequently, we can speculate that
the larger the quantization step, the larger the probability of
staying compatible after embedding, which means there exists
a quality factor below which every block is compatible.

C. Finding compatible blocks: the heuristic approach

In order to prove that a block is compatible we need to solve
the inverse problem (2) where x is the unknown variable. The
variable c is observed and we assume that both the forward
DCT function fDCT and the quantization table Q are known. A
natural potential solution to this problem is the decompressed
image x′ = fIDCT(Q× c), however most of the time this
candidate is not a solution of the problem. For example, in the
Alaska dataset [7] composed of 80k images of 1024 blocks,
this trivial candidate is a solution in less than 0.5 % of the
blocks with the islow compressor of libjpeg and a naive
decompressor.

What is proposed instead, is an algorithm that starts from
this candidate and searches for a solution around it by applying
small modifications at every pixel position in the block. It
behaves like a tree search where each candidate can be
extended into new candidates until a solution is found.

For JPEG images compressed at QF100, we can observe
that the original pixel block differs from the starting point

Algorithm 1 Heuristic to find pixel antecedents
Require: c ∈ Z64,Q ∈ Z64 {DCT coefficients and quantiza-

tion table}
Require: s ∈ Z64 {Starting point in pixel domain}
Require: f {Forward DCT function}
Require: M ∈ N {Max iteration}
queue ← [(inf, s)] {Priority queue with cost and pixel
value}
while queue not empty and iter ≤M do

iter ← iter + 1
vp,p ← remove first element of queue {p is a pixel
vector of integer}
for n in neighbours do

if n has not been visited then
if round(f(n)/Q) == c then

return n {n is an antecedent of c}
end if
vn ← ∥c− f(n)/Q∥∞ {DCT error of n}
add (vn,n) in queue {n is an other pixel vector of
integer}

end if
end for

end while

x′ by only a few modifications of ±1. This is not the case
for only 1.7 ‰ of blocks in the Alaska dataset but it is the
case for every block if we ignore the blocks that have been
clipped (the decompressed value is below 0 or bigger than
255). This means that if the image is compatible, we should
find a solution by potentially applying only±1 on very specific
pixel positions. Moreover, it also gives us an upper bound on
the number of candidates: 364, which is too large for a brute-
force approach.

Instead of brute forcing every solution, we use a metric
to orientate the search toward ”good” candidates. For every
candidate x̃, the metric g is the following:

gc(x̃) =

∥∥∥∥c− fDCT(x̃)

Q

∥∥∥∥
∞

, (4)

It corresponds to the infinity norm between the observed DCT
block and the DCT block of a candidate. The infinity norm
can be motivated by its geometrical form: the set of vectors
whose infinity norm is a constant value forms a hypercube.
This is exactly what can be observed in the example in Fig. 4.
The metric of a candidate is defined as the biggest absolute
distance between itself and the DCT block c in the Euclidean
DCT space. In particular, if this metric is lower than half of the
size of the hypercube, the candidate is inside the hypercube.
In our case, after quantization, the size of the hypercube is 1
so we can briefly show that gc(x̃) < 1

2 is enough to prove that
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a block is compatible:

gc(x̃) < 0.5,

⇔ ∀ i, −0.5 ≤ ci −
fDCT(x̃)i

Qi
≤ 0.5,

⇔ ∀ i, ci − 0.5 ≤ fDCT(x̃)i
Qi

≤ ci + 0.5,

⇔ ∀ i,
[
fDCT(x̃)i

Qi

]
= ci.

(5)

Therefore x̃ is solution of the inverse problem (2) and thus
the block c is compatible.

The pseudo-code is written in Algorithm 1 and has some
similarity with path-finding algorithms such as A-star [11]
where each candidate is stored in a priority queue depending
on the metric gc.

The main advantage of this algorithm is its flexibility to the
JPEG pipeline since it is only a called function that can be
changed very easily. Moreover, whenever the JPEG pipeline
matches the one used to compress the image, it means that
by construction if a solution exists it will be found, and
therefore it is impossible to have a compatibility error, i.e.
a false negative. On the other hand, the main drawback of
this heuristic is that blocks can be proven to be incompatible
only if each candidate has been explored which is the worst-
case scenario and has a complexity similar to a brute force
search. In other words, it is impossible to prove that a block
is incompatible in a reasonable time using this algorithm.

D. Finding incompatible blocks: the ILP approach

The other approach is similar to the one presented in [16].
We use the properties of the DCT rounding error to derive a
simple Integer Linear Programming (ILP) problem that can be
solved by any solver. To formulate the problem we recall the
equation between errors obtained in equation (3):

k = e+ fIDCT(u ·Q)

This equation is only valid under a few assumptions, the
forward DCT has to be:

• linear,
• applicable to floating point values since u is not integer,
• the inverse of the IDCT, i.e. fIDCT(fDCT(x)) = x.

Those assumptions can sound odd if we think about the
mathematical definition of the DCT that checks all three of
them, but in reality, lots of different DCT implementations
exist and only a few of them can satisfy those assumptions.

Using equation (3) again, we rewrite it to have a formula
for the DCT rounding error:

u =
fDCT(k− e)

Q
. (6)

This relation is interesting because it links the compression
error k with the DCT rounding error u. Both are unknown
variables in our inverse problem but they have two properties:

1) The compression error has to be integer-valued
2) The DCT rounding error has to be bounded inside a unit

cube.
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Therefore we have the following problem:

find k ∈ Z64,

such that |u| = |fDCT(k− e)| ≤ 1

2
element-wise.

This problem can be solved by any ILP solver, in our case,
we used Gurobi through the python Gurobipy module.
The worst-case scenario is also reached when the problem is
infeasible which means that the block is incompatible. How-
ever, the main advantage compared to the heuristic approach
is that such a solver can prove in a realistic time that a block
is incompatible. The main drawback of this approach is that
it will only work with a JPEG pipeline using a mathematical
definition of the DCT, i.e. the naive DCT.

To sum up this section, we have seen that the compatibility
problem can be formulated as the inverse problem (2). To solve
this problem there are two approaches proposed in this paper,
the heuristic one is fast for compatible blocks and can deal
with every DCT pipeline but it cannot prove that a block is
incompatible. The ILP approach is slower and only works with
the naive DCT but it can prove that a block is incompatible
after a certain amount of time (at least 10h for a single block
with Gurobi on an Intel Xeon at 2,2 GHz and 8 threads).

IV. STATISTICS ON INCOMPATIBLE BLOCKS

This section presents two important statistics for the rest of
the paper: the probability for a block to become incompatible,
and the connections between incompatibility and other fea-
tures, such as the variance of the spatial rounding error and
the position of the modified DCT coefficient inside the block.

A. Probability of becoming incompatible

Using the Alaska dataset, we designed an experiment to
track how many blocks can become incompatible depending
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on the number of modifications. It will give an approximation
of the probability for a block to become incompatible after
a given number of modifications. This statistic is not the
main result of the paper but it will be important to build our
steganalysis detector. The experiment is built as follows: we
extract a random block x from a random image from Alaska
that will be compressed using the naive and islow methods
to obtain the DCT block c. Depending on the number of
modifications m we select m coefficients without replacement
and randomly add ±1. This block is then sent to the two
algorithms (ILP and heuristic approach) to try to find an
antecedent and try to prove that it is still compatible. The
heuristic algorithm runs for 50k iterations (a few minutes in
the worst case scenario) and the ILP algorithm runs for 3B
iterations of Gurobi (approximately 20h in the worst case
scenario). There are 3 possible results:

• if an antecedent is found, the block is compatible,
• if no antecedent is found and the algorithm reaches the

time-out value, the block is unsolved,
• for the ILP approach, the solver can prove that a block

is incompatible because no antecedent exists.
In order to understand the future results, we need to introduce
some notations. Let H and ILP be used as indexes to identify
variables associated with the heuristic algorithm and the ILP
approach. Let CH and CILP be the empirical ratios of proved
compatible blocks, IH and IILP the empirical ratios of proved
incompatible blocks, and UH and UILP the empirical ratios
of unsolved blocks. In those last ratios, some of them are
compatible C̃H , C̃ILP and some of them are incompatible ĨH ,
ĨILP but with unknown values such that: UH = C̃H + ĨH and
UILP = C̃ILP + ĨILP. All those values depend on the number of
iterations, but for the sake of clarity, this value is omitted here.
Finally, the true probability to be compatible is approximated
by pC = CH+C̃H = CILP+C̃ILP and the true probability to be
incompatible is approximated by pI = IH + ĨH = IILP + ĨILP.

For the heuristic algorithm, we use 1k blocks for each num-
ber of modification but 100k blocks if there is no modification
since all blocks are compatible and the algorithm is very fast
in that case. However, there is no incompatible block detected
with this approach: IH = 0, so we approximate the probability
of incompatible blocks by the ratio of unsolved blocks UH .
Because of the time-out value, we can show that this approxi-
mation is an upper bound (UB): UH = C̃H + ĨH ≥ ĨH = pI .
But this approximation is only good if the ratio of unsolved
compatible blocks C̃H is small.

For the ILP approach, we use 100 blocks per point (the
method is very slow) and we can extract a lower bound and
an upper bound of the probability of being incompatible. First,
IILP is an lower bound (LB): IILP ≤ pI . Second, the ratio of
incompatible plus the ratio of unsolved blocks is an upper
bound of the probability to be incompatible: IILP + UILP =
IILP + C̃ILP + ĨILP ≥ IILP + ĨILP = pI .

Finally, we have two upper bounds and one lower bound:
pI ≤ UH for the heuristic algorithm and IILP ≤ pI ≤ IILP +
UILP for the ILP algorithm.

Results of this experiment are shown in Fig. 5 and we can
conclude that the true probability pI of becoming incompatible
after a number of modifications is between the lower bound
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Fig. 6. Variation of unsolved blocks using the heuristic algorithm depending
on the number of iterations and modifications. Convergence slows down after
50k iterations, which suggests that the heuristic upper bound is not very far
from the real value.

of the ILP approach and the minimum of the two upper
bounds. The other interesting result is that for 0 modifications,
the ratio of unsolved blocks B̃ of the heuristic algorithm is
approximately 0.5%. That gives an idea of the gap between the
upper bound of the heuristic and the true probability (which
is exactly 0 when there is no modification): the true value is
probably closer (give or take a few percent) to the upper bound
than to the lower bound.

The yellow line shows the upper bound of the heuristic
algorithm but using another DCT method which is islow.
We can see that this upper bound is always above the one from
the naive DCT method even for 0 modification by a significant
gap. We propose two interpretations: either the probability of
being incompatible is very dependent on the DCT method
used, or the heuristic algorithm is not as good at solving
the problem with this DCT method. The second interpretation
seems more meaningful when we dive deeper into the heuristic
algorithm implementation. See Appendix A for more details.

Fig. 6 shows the evolution of the ratios of unsolved blocks
UH using the heuristic algorithm depending on the number
of iterations. At 50k iterations, those values - and therefore
the upper bound on the probability of incompatible - start to
stagnate and we can see that with a few iterations more, all
100k blocks with 0 modifications could have been solved.

B. Links with other statistics

The previous paragraph shows a clear correlation between
the number of modifications and the probability of becoming
incompatible. A natural question that emerges from this result
is whether the incompatibility depends on the position of the
modification. Is there more chance of becoming incompatible
if we modify the DC or an AC coefficient? We ran a similar
experiment as before but this time the modifications were
not randomly selected. For every block, we try to find an
antecedent after applying a single modification in each of the
64 coefficients for +1 and −1 separately. Using the heuristic
algorithm we cannot prove that a block is incompatible, but
we can use the same approximation as before with the ratio of
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Fig. 7. Heat-map showing the probability for a block to become incompatible
after modifying a single coefficient for every one of the 64 positions. The
randomness of the pattern tells us that there is no dependence between the
position of the modification and the incompatibility of the block.

unsolved blocks UH . The heat map in Fig. 7 shows that this
probability is uniform for every position (also the case if we
separate the +1 for the −1). We conclude from these results
that the incompatibility does not depend on the position of the
change or the sign of the change. This can be explained by
the fact that the DCT transform can be seen as an arbitrary
rotation of the block in the pixel domain to the block in the
DCT domain and that there is no reason that one direction
is more subject to incompatibility than another. This property
will be used in the next section to build a statistical test.

The second feature is the variance of the spatial rounding
error. This feature is the cornerstone of the RJCA [6] because
we can show that at high QF, the distribution under the
cover hypothesis converges toward a wrapped Gaussian with a
known variance close to 0.064. But under the stego hypothesis,
the same variance increases toward 1

12 ≃ 0.083, the variance
of a uniform distribution. In Fig. 8 we observe a very strong
correlation between the variance of a single block and the
compatibility property. In particular, the variance of the spatial
rounding error (a very easy feature to compute) could be
used as a proxy for compatibility and also for the number
of modifications. Indeed, we can see that for unsolved blocks,
the more coefficients are modified, the higher the variance.

V. STEGANALYSIS

In the framework of steganography and steganalysis, by
definition, an incompatible block is a block that has been
modified. Previous sections have presented algorithms to track
the compatibility or not of a block and some statistics about
the probability of existence. In this section, we propose two
scenarios of steganalysis: the first one uses the ILP approach
assuming a lot of resources (time especially) and the second
one is a Likelihood Ratio Test using the heuristic approach.

A. Zero False Alarm steganalysis

The main advantage of the ILP approach for finding in-
compatible blocks is precision: if the solver proves that the
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Fig. 8. Correlation between the number of modifications and the variance of
the spatial rounding error. Outliers are hidden for the sake of clarity. There
is a clear correlation between a high variance and a high probability of being
incompatible but also a correlation between the variance and the number of
modifications.

ILP problem is infeasible, then the block does not have any
antecedent and has been modified by the embedding: this
deduction is always true. Therefore, the ILP method gives a
perfectly precise classification and does not produce any False
Alarm (misclassifying a cover image). However, this precision
has an expensive price which is the amount of resources
needed in time and processing power.

We will assume that we have infinite resources to carry out
our experiments in the form of a simulation since as seen in
Section III-D, the detection of a single incompatible block
is already very time-consuming. On the Alaska dataset, we
embed images of N = 1024 blocks using J-UNIWARD and
UERD for different embedding rates. We count the number
of modifications mi for every block i = 1, . . . , N , and we
use the probabilities pm to become incompatible with the ILP
solver obtained in Fig. 5.

The probability Pincomp that at least one block of the image
is detected as incompatible can be derived as follows:

Pincomp = 1−
N∏
i=1

(1− pmi
) . (7)

For example, using two blocks and using the empirical re-
sults of section IV-A, the first with three modifications and
the second with one modification, the probability of being
detected for at least one block (and thus for the image) is
1− (1− p3)(1− p1) = 1− 0.85× 0.97 ≈ 0.18.

Results of this simulation are shown in Fig. 9, where we
can see that the detection increases with the payload and
tends toward perfect detection around 0.03 bpp. Notice how
UERD is more detectable than LSBM because it modifies
more coefficients and thus it is more susceptible to creating
incompatible blocks. It should also be remembered that the
probabilities used for this simulation are a lower bound of the
true probabilities and hence the true detection power should
be greater than the one in the graph if more iterations of the
algorithm were used.
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Fig. 9. Detection power depending on the embedding rate with the ILP
approach for two popular embedding schemes (UERD and LSBM) assuming
infinite resources for an image of 1024 blocks. An image is detected as stego
if at least one block is incompatible. Note that this detection method does not
generate false positives.

B. Likelihood Ratio Test

Proving that a block is compatible is easier than the opposite
but it is not sufficient to decide if the image is cover or not.

Instead, we now derive a Likelihood Ratio Test (LRT) on
the amount of unsolved blocks in an image. Unsolved blocks
are the ones for which there is still no antecedent found after
running a given number of iterations of an algorithm. We
propose in this subsection to build a statistical test based on
the number of unsolvable blocks found in a test image. Since
the heuristic algorithm is faster and more versatile, we decided
to use it to detect unsolvable blocks.

In order to build our test we introduce a few variables.
Let i ∈ {1, . . . , n} be the indices of blocks with n ≤ N
an hyper-parameter. We use the heuristic algorithm on every
block, but since this algorithm cannot prove that a block is
incompatible (because of the complexity of the problem) we
observe a vector of variables T = (t1, . . . , tn). If ti = 1
the algorithm reached the timeout value for the block i and
did not find any antecedent, it is consequently unsolvable
for a given amount of iterations. Otherwise, if ti = 0 the
block is compatible. We have seen in the last section that
the probability for a block to become incompatible depends
only on the number of modifications mi in this block. So, let
M = (m1, . . . ,mn) be the vector of number of modifications.
We define the likelihood for an image to observe a vector T
as pM(T) = pm1

(t1)× · · · × pmn
(tn).

We consider two hypotheses:

H0 : The image is cover: T ∼ p0,

H1 : The image is stego: T ∼ pM, ∀ i, mi ≥ 0.
(8)

Because of the independence between blocks, the likelihood
ratio for the image is the product of the likelihood ratio of

every block:

Λ(T ) =
pM(T)

p0(T)

=

n∏
i=1

pmi(ti)

p0(ti)

=

n∏
i=1

∑64
m=0 P (ti|mi = m)P (mi = m)

P (ti|mi = 0)

(9)

Finally, the log-likelihood ratio for an image using n blocks
is:

log(Λ(T)) =

n∑
i=1

[
log

(
64∑

m=0

P (ti|mi = m)P (mi = m)

)

− log(P (ti|mi = 0))

]
(10)

We now give the analytic form of the prior P (m) and the
values of likelihood P (t|m).

Prior. The prior on the number of modifications P (m) can
be crucial to yield a powerful test. Therefore, we make a
separation of cases:

The easiest case and probably the least powerful is when
nothing is known. In this case, the prior on m is a uniform
law on [1; 64].

Another alternative happens when the detector is Selection-
Channel-Aware [8]: if the map of embedding probabilities
(aka the p-map) of the embedding algorithm is known we can
use it to derive the approximate number of modifications. The
p-map of a block is composed of 64 probabilities (qi)i∈[1;64],
one for each coefficient, and represents the probability to be
modified. The distribution of the number of modifications
is given by the Poisson-Binomial law which is the sum of
64 Bernoulli experiments all with different parameters. We
denote this law PB((qi)i∈[1;64]).

To sum up the different priors we use are:
• nothing is known: we then use the classical uniform prior,

i.e. P (m) ∼ U([1; 64]),
• the embedding algorithm and the p-map are known:

P (m) ∼ PB((qi)i∈[1;64]).

The likelihoods pm(t) = P (t|m) can be derived from
Fig. 5. Note that the likelihood and t depend on a hidden
parameter which is the maximum number of iterations. For the
sake of simplicity, we do not write the number of iterations
explicitly but it is important to take it into account as a
parameter that will impact the LRT, hence the classification
performances.

C. Selection strategies

The LRT designed in the previous paragraph can scale with
the number of blocks available in the image. However, the
algorithms solving the inverse problem are costly in time. We
are thus facing a trade-off between resources and performance:
the image is composed of N blocks but we only have the
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Fig. 10. Simulation of ROC for different block selection strategies and prior.
Stego images are embedded with UERD at 0.005 bpp. The first term of the
title is the selection strategy and the second is the prior.

resources to solve the problem on n < N blocks, how do we
choose them to maximize the detection performance?

We present three different strategies to sort blocks of an
image so that we increase our chance of selecting blocks sus-
ceptible to being modified and thus potentially incompatible.

• Random: The random strategy is the trivial one: the
blocks are randomly sorted. It will be used to compare
with other strategies.

• Variance of the rounding error: The RJCA [6] was
built on the study of the variance of the spatial rounding
error. In the cover image, this variance should be fixed
but under the stego hypothesis, this variance increases. It
seems reasonable to think that the same behavior happens
for blocks: modified blocks should be more likely to
have a bigger variance of the spatial rounding error than
cover blocks. This behavior was already observed [4] for
different embedding algorithms and rounding functions.

• SCA: Assuming selection-channel-awareness means that
we know the probability of modifications for every DCT
coefficient. In this case, it is possible to sort blocks
depending on the expected modification number. This
value is simply the mean of the 64 probabilities of the
probability map in a block.

VI. RESULTS

A. Experimental setup

In order to show the main performances of the LRT for
small datasets of images we will use a simulation instead of
a real run which would take a lot of time and resources. This
simulation is possible because we assume that incompatibility
only depends on the number of modifications in a DCT block

(cf. Fig. 5). In particular, the property does not depend on
modification positions (cf. Fig. 7) or the content which means
that the embedding scheme does not matter, only the number
of modifications matters. We show in one experiment (see
Fig. 11) that the simulation is meaningful and very close to
classification with image databases.

We used 5000 images of size 256 × 256 from Alaska and
embedded them using UERD and LSBM at different payloads
between 0.001 and 0.01 bits per pixel (bpp). Instead of running
the heuristic on every block, we simulate the output as follows.
Let M = (m0, . . . ,mN ) be the vector of the number of
modifications per block for an image composed of N blocks.
We want to simulate the output of the heuristic algorithm
T = (t0, . . . , tN ) to compute the LRT test. To do so, we
draw a random vector r ∈ [0; 1]N and by comparing it with
the probabilities to be incompatible knowing the number of
modifications, we can simulate the output of the algorithm:

∀ i, ti =

{
1 if ri ≤ P (t = 1|mi),

0 otherwise.
(11)

Where the probabilities P (t = 1|m) are given in Fig.5.
With this simulation of T we can compute the LR with

formula (10). The vector T can be sub-sampled with a
selection strategy of blocks that are more susceptible to being
incompatible (cf. section V-C) and the prior of the LR can be
adjusted depending the SCA assumption or not.

To show that our simulation is close to reality, we also
run the test on a dataset composed of only 600 cover images
and 600 stego images embedded at 0.01 bpp with LSBM and
UERD.

For comparison w.r.t. deep learning detectors, we selected
e-SRNet, the SRNet [3] trained on the decompression errors
e. We split the 25k 256 × 256 Alaska images into training,
validation, and testing sets of sizes 19k, 1k, and 5k respec-
tively. We trained the detector on 0.01 bpp for 30 epochs with
the rest of the hyperparameters as described in [5]. The best
checkpoint was used to refine the classifier on smaller payloads
for additional 15 epochs.

Name Block selection Prior

SCA SCA SCA

Blind Variance Uniform

Partial SCA SCA Uniform

Control Random Uniform
TABLE I

COMBINATION OF BLOCK SELECTION STRATEGIES WITH PRIORS.

We presented two different priors and three selection strate-
gies in sections V-B and V-C, but not every combination
is interesting. Assuming selection channel awareness means
that the embedding algorithm used and the message length
are known, we can therefore compute the probabilities of
modifications for every DCT coefficient. The exact prior
should be computed with the probabilities of modifications
of the cover image. But if this one is not known, we can use
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Fig. 11. Comparison of ROCs with e-SRNet for LSBM and UERD at 0.01
bpp. Red lines are simulated and blue ones are a complete realization of our
test without simulation. In our results, blocks are selected with the variance
of spatial rounding error and the prior used is uniform. We can see the real
experiment fits very well the simulation or even outperforms it with 1 and
10% of the blocks.

the potential stego image to yield a very close approximation
of it. On the contrary, if no knowledge is available to perform
the steganalysis we can only access the variance of the spatial
rounding error. We present the results for four strategies, one
with SCA, one without SCA, and two ”control” strategies in
table I.

Finally, we introduce the total probability of error under
equal priors that will be used to compare different models
and strategies:

PE = min
PFA

PFA + PMD(PFA)

2
,

with PFA the probability of False Alarm (type I error) and PMD
the probability of Missed Detection (type II error).

B. Results

Fig. 10 shows the impact of each strategy using images
embedded at 0.005 bpp with UERD. Without surprise, with
the SCA assumption, the best strategy is to use it to select
blocks and to compute the prior in the LRT. But without
SCA assumption, in the blind case, the variance of the spatial
rounding error seems to be a good metric to select blocks:
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Fig. 12. PE for the blind strategy and comparison with e-SRNet.

the bottom left graph shows that using 10% of the blocks
out of 1024 is already close to the best performance using
all blocks. Selecting blocks randomly is a bad choice if you
do not use every block in the image, you are most likely to
select compatible blocks that do not show any evidence of
stego message.

The partial SCA is interesting because it shows that the
LRT performs better when using only 10% of the blocks if
they are well chosen instead of taking the full image. The
intuition behind these results is that the LRT becomes more
confident that the image is stego when there is a majority of
unsolved blocks with high prior due to the SCA assumption
among the solved blocks. If 100% of the blocks are used,
there is a majority of solved blocks because the payload is so
small that only a few blocks are modified and therefore, the
LRT tends to give more weight to the cover hypothesis even
if there is still a non-negligible fraction of unsolved blocks.

The shape of the ROC can also be explained due to the small
number of blocks used in the LRT. If only 10 blocks are used,
there are only 11 possible outcomes of the heuristic: either 0,
1, ..., 9, or 10 blocks are unsolved. Therefore the LRT using
10 blocks only has 11 possible values and thus 11 maximum
points in the ROC curves. Most of them are close to the point
(1,1). In the case of the SCA assumption, the ROC is smooth
because different priors are used for each image which yields
different values for the LRT and thus an infinite possibilities
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of points on the ROC.
Note that using the LSBM embedding, SCA, partial SCA,

and Control returns the same results because the probabilities
of modifications are equal for all elements and for all images
(the message always has the same length) and thus do not give
any information about the locations of modifications. With
LSBM only the blind strategy is useful and will be used for
the next results.

Fig. 11 represents the ROC for 0.01 bpp embedded with
LSBM and UERD respectively. The performance of e-SRNet
corresponds to the green line and red lines are the simulated
result on the same dataset. The blue lines are the results of an
experiment without simulation but less images. Dotted lines
and dashed lines are the results using only 1% and 10% of
the blocks of the image respectively. The main feature of
this figure is that both simulation and real experiments are
very close to each other when using the full image. There are
few differences when using 1% or 10% of the blocks but we
recall that this experiment used only 600 stego images and
600 cover images and thus is sensible to the noise. However,
one explanation is that for the simulation, the probability of
being incompatible for 6 or more modifications per block is
supposed equal to the probability with 5 modifications per
block, which means that the probabilities of the simulation
are underestimated. And, even at 0.01 bpp, we can observe
more than 5 modifications in some blocks (especially with the
UERD scheme). The figure also shows that our test has better
results than e-SRNet even without the SCA assumption (the
blind strategy was used).

Moreover, the agreement between the simulated and non-
simulated results is a good argument in favor of our simulation
hypotheses. In particular, the fact that the incompatibility
property only depends on the number of modifications per
block. We recall that for this set of experiments, we decided
to use mainly simulations to reduce greatly the computational
time, by decreasing it by one order of magnitude, without
altering the scientific conclusions.

Fig. 12 shows the evolution of the total probability of error
under equal prior PE for the blind strategy and different
payloads between 0.001 and 0.01 bpp. We can see that even
with 1% of the blocks the heuristic algorithm outperforms e-
SRNet both on UERD and LSBM embedding schemes. By
using more blocks the algorithm tends to perfect detection for
bigger payloads. Of course, if the SCA assumption is used,
the performance could be even better.

VII. CONCLUSIONS AND PERSPECTIVES

Incompatible JPEG blocks can be created at QF100 with
any embedding scheme. This property does not depend on
the position of the modifications but only on the number of
modifications per block and is very correlated to the variance
of the spatial rounding error. The question of differentiating
incompatible blocks from compatible ones has been formu-
lated as an inverse problem with or without a solution. Two
algorithms were presented to solve this problem: a heuristic
algorithm that can use every JPEG pipeline in a black-box
setting and can find the solution rather quickly if it exists, and

an ILP formulation that can prove that blocks are incompatible
with the naive DCT method.

We used the heuristic algorithm combined with a likelihood
ratio test to derive a powerful classifier. Using different selec-
tion strategies, it can use only a subset of the blocks in the
image and yield state-of-the-art results at QF100. It is also
possible to improve it with a selection-channel-aware version
that is even better than the blind version.

This detector requires knowledge about the JPEG pipeline
used to compress stego and cover images and a certain amount
of time to solve the inverse problems but the only limit to
its performance is the computational power available. With
enough power, the detector becomes perfectly reliable with
no false alarms.

In the future, with more computational power but also
potentially more efficient solvers, attacks based on detecting
incompatibilities can become more and more popular. In
particular, it could be applied to other data formats such as
H26x, HEIC, or any compression standard that uses a DCT
method with quantization. Another approach would be to
create a steganographic scheme in order to remain compatible
with the DCT compression. This was already tried in [4] by
reducing the variance of the spatial rounding error to fool the
detector and we now know that the variance can be seen as a
proxy to the compatibility property.
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APPENDIX

A. Discussion on heuristic metric

The main idea of the heuristic search is to rank neighbors
depending on the metric (4) and then explore the ”best”
candidate. This metric is completely fine for selecting good
candidates, however, the algorithm will struggle to converge
if most of the candidates have the same metric. The equality
case is difficult to solve in most cases but we can reduce it by
combining it with a second metric which is less likely to yield
the same metric for two candidates. The sorting operation is
then done using the first and second metrics in this order. This
second metric is the following:

g′c(x̃) =

63∑
i=0

(∣∣∣∣ci − fDCT(x̃)i
Qi

∣∣∣∣− 0.49

)[0,∞]

,

Instead of taking the maximum of the absolute value, we sum
every value outside of the cube of size 0.49. This favors the
candidate with most of its coordinates inside the cube and not
on the border of the cube. If a coordinate is inside the cube,
the distance is negative and thus it is clipped to 0.

This metric is particularly needed for islow and other
integer DCT transforms. Indeed, candidates obtained with
islow have quantized coordinate that makes them more likely
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to have the same metric. However, this second metric is not
perfect since some candidates still have the same first and
second metrics. We could opt for the ℓ2 norm but from our
experiments, it performs very poorly to solve our problem
because the sphere of the ℓ2 norm is bigger than the unit cube
and thus generates lots of bad candidates.

This issue with quantized DCT transform explains the
difference of probabilities between the naive DCT and the
islow DCT visible in Fig. 5. The true probabilities are
probably very close to each other since both DCTs should
yield almost the same result, but the heuristic algorithm is
not as good when there are too many ties between different
candidates and therefore is less likely to solve compatible
blocks.
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