
HAL Id: hal-04470002
https://hal.science/hal-04470002

Submitted on 21 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Query Optimization for Ontology-Mediated Query
Answering

Wafaa El Husseini, Cheikh Brahim El Vaigh, François Goasdoué, Hélène
Jaudoin

To cite this version:
Wafaa El Husseini, Cheikh Brahim El Vaigh, François Goasdoué, Hélène Jaudoin. Query Optimization
for Ontology-Mediated Query Answering. The ACM Web Conference (WWW), May 2024, Singapore,
Singapore. �10.1145/3589334.3645567�. �hal-04470002�

https://hal.science/hal-04470002
https://hal.archives-ouvertes.fr

Query Optimization for Ontology-MediatedQuery Answering
Wafaa El Husseini

Université de Rennes

Lannion, France

wafaa.el-husseini@irisa.fr

Cheikh Brahim

El Vaigh

Université de Bourgogne

Dijon, France

cheikh-brahim.el-

vaigh@u-bourgogne.fr

François Goasdoué

Université de Rennes

Lannion, France

fg@irisa.fr

Hélène Jaudoin

Université de Rennes

Lannion, France

helene.jaudoin@irisa.fr

ABSTRACT
Ontology-mediated query answering (OMQA) consists in asking

database queries on knowledge bases (KBs); a KB is a set of facts

called the KB’s database, which is described by domain knowledge

called the KB’s ontology. A widely-investigated OMQA technique

is FO-rewriting: every query asked on a KB is reformulated w.r.t.

the KB’s ontology, so that its answers are computed by the rela-

tional evaluation of the query reformulation on the KB’s database.

Crucially, because FO-rewriting compiles the domain knowledge

relevant to queries into their reformulations, query reformulations

may be complex and their optimization is the crux of efficiency.

We devise a novel optimization framework for a large set of

OMQA settings that enjoy FO-rewriting: conjunctive queries, i.e.,

the core select-project-join queries, asked on KBs expressed using

datalog±, description logics, existential rules, OWL, or RDFS. We

optimize the query reformulations produced by state-of-the-art

FO-rewriting algorithms by computing rapidly, with the help of

a KB’s database summary, simpler (contained) queries with the

same answers that can be evaluated faster by RDBMSs. We show

on a well-established OMQA benchmark that time performance is

significantly improved by our optimization framework in general,

up to three orders of magnitude.

CCS CONCEPTS
• Information systems→Query optimization; Semantic web de-
scription languages; • Computing methodologies→ Knowledge
representation and reasoning.

KEYWORDS
Existential rules, query optimization, data summarization

ACM Reference Format:
Wafaa El Husseini, Cheikh Brahim El Vaigh, François Goasdoué, and Hélène

Jaudoin. 2024. Query Optimization for Ontology-Mediated Query Answer-

ing. In Proceedings of the ACM Web Conference 2024 (WWW ’24), May
13–17, 2024, Singapore, Singapore. ACM, New York, NY, USA, 11 pages.

https://doi.org/10.1145/3589334.3645567

WWW ’24, May 13–17, 2024, Singapore, Singapore
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

This is the author’s version of the work. It is posted here for your personal use. Not

for redistribution. The definitive Version of Record was published in Proceedings of
the ACM Web Conference 2024 (WWW ’24), May 13–17, 2024, Singapore, Singapore,
https://doi.org/10.1145/3589334.3645567.

1 INTRODUCTION
Ontology-mediated query answering [8] (OMQA) is a widely stud-

ied data management problem in Artificial Intelligence, Databases

and Semantic Web. It consists in asking database-style queries

on knowledge bases (KBs). A KB is a first-order (FO) theory that

consists of a set of facts called a database, which models the ap-

plication’s data, and of a set of axioms called an ontology, which

models the application’s domain knowledge. The notable difference

between this query answering setting and the traditional database

one is that the answers to queries must be computed w.r.t. both the

facts that are stored in the KB’s database and the facts that can be

deduced from the KB’s database with the help of the KB’s ontology.

There exist two main OMQA techniques in the literature. Both

reduce OMQA to standard query evaluation on relational databases.

The first technique is called FO-rewriting, e.g., [16]. It consists in

rewriting a query asked on a KB into a so-called query reformu-

lation, so that the query answers are obtained by evaluating the

query reformulation on the KB’s database. The second technique

is called materialization, e.g., [1]. It consists in adding to the KB’s

database all the facts than can be deduced from it with the KB’s

ontology, so that the query answers are obtained by evaluating the

(original) query on the augmented KB’s database. The combination

of FO-rewriting and materialization, called the combined or hybrid

approach, has also been investigated, e.g., [40]. Crucially, both FO-

rewriting and materialization are useful because, although there

exist simple OMQA settings in which they compete, e.g., [3], there

also exist more expressive OMQA settings to which only a single

technique applies, e.g., [7].

In this paper, we focus on FO-rewriting. It has been mainly

studied in OMQA settings consisting of (e.g., Table 1): queries ex-

pressed as conjunctive queries (CQs); KBs expressed using datalog±,
description logics, existential rules, OWL, or RDFS; query reformu-

lations expressed as unions of CQs (UCQs), unions of semi-CQs

(USCQs), joins of UCQs (JUCQs), or non-recursive datalog pro-

grams (datalog
𝑛𝑟
). These reformulation languages are recalled in

Appendix A. We consider all these OMQA settings in this work.

Standard OMQA via FO-rewriting is illustrated in Figure 1. It

consists in producing a query reformulation 𝑞O from a query 𝑞

and the ontology O of the KB K , and then in evaluating 𝑞O on

the database D of K stored in an RDBMS. We point out that a

query reformulation 𝑞O may be large and complex to evaluate,

e.g., [11, 33, 51]. FO-rewriting is indeed both ontology-dependent

and data-independent, hence𝑞O must accomodate to all the possible

databases and cannot be specific to the particular database D of K .

So far, and similarly to semantic query optimization for deduc-

tive databases, e.g., [18], query optimization for FO-rewriting has

https://orcid.org/0000-0003-2344-5769
https://orcid.org/0000-0002-9843-3001
https://orcid.org/0000-0002-9843-3001
https://orcid.org/0000-0003-4532-7974
https://orcid.org/0000-0002-9898-5789
https://doi.org/10.1145/3589334.3645567
https://doi.org/10.1145/3589334.3645567

WWW ’24, May 13–17, 2024, Singapore, Singapore W. El Husseini, C.B. El Vaigh, F. Goasdoué, and H. Jaudoin

Table 1: Main related works on conjunctive query answering
via FO-rewriting

Query reformulation language
KB language UCQ USCQ JUCQ datalog

𝑛𝑟

datalog±/existential rules [31, 32, 39] [51] [33, 44]

description logics/OWL [16, 20, 45, 52] [11] [47]

RDF/S [9, 30] [10]

focused on studying equivalent representations of query reformula-

tions that can be evaluated faster: minimal (e.g., [20, 39]), compact

(e.g., [33, 51]) or cost-based (e.g., [10, 11]) reformulations. How-

ever, because these optimizations are ontology-dependent and data-

independent, optimized query reformulations remain complex to

evaluate. They correspond to syntactically different but semanti-

cally equivalent variants of non-optimized query reformulations,

thus they still need to accommodate to all the possible databases,

and not to just the fixed database at hand.

The main contribution of this paper is a novel optimization

framework for OMQA via FO-rewriting. It is illustrated in Figure 1.

This framework capitalizes on the ontology-dependent and data-

independent query optimization for FO-rewriting that have been

studied so far in the literature (Reformulation step in Figure 1).

Its originality is to include complementary data-dependent query

optimization for FO-rewriting (Summarization and Optimization

steps in Figure 1). Its purpose is to optimize the query reformulation

𝑞O produced by any off-the-shelf FO-rewriting algorithm into a

query reformulation𝑞K that is optimized for the particular database

D of K : 𝑞K is simpler than 𝑞O , as it just needs to accommodate

to D, so that it can be evaluated faster; at the same time it has the

same answers as 𝑞O on D in order to guarantee the correctness of

query answering on K . Crucially, 𝑞O is optimized for D using a

summary S of D, which is a typically small approximation of D.

This allows a trade-off between optimization time and the extent

to which 𝑞K is optimized for D.

More specifically, our optimization framework builds on the fol-

lowing contributions.

1/ We formalize the problem of data-dependent optimization of a

query reformulation using the well-known notion of query con-

tainment [1] (Section 3).

2/ We devise an optimization function Ω that rewrites a query refor-

mulation into a simpler contained one, i.e., a simpler more specific

one, with the same answers on a fixed database (Section 4.1). Con-

tainment and query answering correctness are ensured by appro-

priately removing useless subqueries from the query reformulation,

i.e., subqueries that do not participate in producing answers on the

given database while they may take time to be evaluated.

3/ We define a summary of a database, which is a (typically smaller)

homomorphic database (Section 4.1). A summary can be used by

our Ω optimization function in place of the original database to

perform faster a sound but incomplete identification and removal

of useless subqueries. Then, we adapt the quotient operation from

graph theory [34] in order to build concrete summaries tailored to

our needs (Section 4.2): both small summaries for fast optimization

time and precise summaries to limit the incompleteness of identify-

ing useless subqueries.

Figure 1: Standard (solid and dashed, back edges) and opti-
mized (black and blue, solid edges) OMQA via FO-rewriting

4/ We experimentally evaluate our optimization framework on the

well-established LUBM
∃
benchmark for DL-LiteR KBs (Section 5).

DL-LiteR is the description logic that underpins the W3C’s OWL2

QL profile for OMQA on large KBs [16]. We show that our opti-

mization framework significantly improves query answering time

performance (up to 3 orders of magnitude).

The paper is organized as follows. We present OMQA and FO-

rewriting in Section 2. We introduce our optimization framework

and we formalize the underlying research problem in Section 3. We

devise a solution (Ω optimization function and database summaries)

to this problem in Section 4 and we experimentally evaluate this

solution in Section 5. Finally, we conclude with related work and

perspectives in Section 6. Proofs are available in the appendix.

This paper is an in-depth presentation of our optimization frame-

work that was briefly introduced in the demonstration paper [37].

2 PRELIMINARIES
KBs. We consider FO KBs expressed using datalog± or existential

rules [7, 12–15], which we call rules hereafter. A KB K is of the

form K = (O,D), where O is the KB’s ontology and D is the KB’s

database. An ontology O is a set of rules of the form ∀𝑥 (𝑞1 (𝑥) →
𝑞2 (𝑥)), where 𝑞1 and 𝑞2 are CQs (recall Appendix A) with the same

set 𝑥 of answer variables. Rules are used to derive entailed facts

in the KB. A database D is a set of incomplete facts, i.e., whose
terms are constants and existential variables modeling unknown

values [1, 38], which we call facts from now. The semantics of a

KB K = (O,D) is that of the FO formula

∧
rule∈O ∧∃𝑣 (∧

fact∈D),
where 𝑣 is the set of variables that appear in D.

Notation. We use small letters to denote constants, e.g., f, h, etc.,
and small italic letters to denote variables, e.g., 𝑥 , 𝑦, etc. Also, we

omit quantifiers in rules: existential variables solely appear on the

right-hand side of→ by virtue of FO semantics (see Appendix B).

Example 2.1 (Running example). Let us consider the following
DL-LiteR KB K = (O,D), here expressed using rules [13]:

O = {𝑟1 = 𝑤𝑤 (𝑥,𝑦) → 𝑤𝑤 (𝑦, 𝑥), 𝑟2 = 𝑠𝑢𝑝 (𝑥,𝑦) → 𝑤𝑤 (𝑥,𝑦),
𝑟3 = 𝑃ℎ𝐷 (𝑥) → 𝑠𝑢𝑝 (𝑦, 𝑥)},

D ={𝑅(f), 𝑅(h), 𝑠𝑢𝑝 (f, w), 𝑠𝑢𝑝 (h, w), 𝑃ℎ𝐷 (w),𝑤𝑤 (f, h), 𝑅(𝑢),
𝑤𝑤 (𝑢, c), 𝑃ℎ𝐷 (c)}.

The ontology O states that working with (𝑤𝑤) someone is a sym-

metric relation (𝑟1), supervising someone (𝑠𝑢𝑝) is a particular case

of working with someone (𝑟2), and PhD students (𝑃ℎ𝐷) are nec-

essarily supervised (𝑟3). The database D states that f and h are

researchers (𝑅) who supervise the PhD student w, f works with h,
and a researcher 𝑢 works with the PhD student c. ⋄

Query Optimization for Ontology-MediatedQuery Answering WWW ’24, May 13–17, 2024, Singapore, Singapore

Ontology-mediated query answering.We consider FO queries
of the form 𝑞(𝑥) = 𝜙 , where 𝜙 is an FO formula, the set of free

(non-quantified) variables of which is exactly the tuple 𝑥 of answer

variables. The arity of a query 𝑞(𝑥) is the cardinality of 𝑥 ; 𝑞(𝑥) is
said Boolean if 𝑥 = ∅. A (certain) answer to a query 𝑞(𝑥) of arity 𝑛
on a KB K is a tuple t̄ of 𝑛 constants from K such that K |= 𝑞(t̄),
where |= is the FO entailment relation and 𝑞(t̄) is the Boolean query

obtained by instantiating 𝑥 with t̄ in 𝑞; when 𝑞 is Boolean, t̄ is the
empty tuple ⟨⟩. From now, we denote by 𝑎𝑛𝑠 (𝑞,K) the answer set of
𝑞 on K and we remark that if 𝑞 is Boolean then the answer is true

when 𝑎𝑛𝑠 (𝑞,K) = {⟨⟩} and the answer is false when 𝑎𝑛𝑠 (𝑞,K) = ∅.

Example 2.2 (Cont.). Let us consider the CQ asking for the super-

visees who work with h that must be a researcher: 𝑞(𝑥) = ∃𝑦 𝑅(h)∧
𝑤𝑤 (h, 𝑥) ∧ 𝑠𝑢𝑝 (𝑦, 𝑥). Its answer set on K is 𝑎𝑛𝑠 (𝑞,K) = {w}: w is
obtained from 𝑅(h) ∈ D, 𝑠𝑢𝑝 (f, w) ∈ D or 𝑠𝑢𝑝 (h, w) ∈ D, and the

fact𝑤𝑤 (h, w) entailed from 𝑠𝑢𝑝 (h, w) ∈ D and 𝑟2. ⋄

Ontology-mediated query answering technique. We focus on

optimizing OMQA via FO-rewriting [16].
FO-rewriting reduces query answering on KBs to query evalu-

ation on relational databases in FO-rewritable OMQA settings. An
OMQA setting is a pair (L𝑄 ,L𝐾) of query andKB languages. Such a

setting is FO-rewritable if for anyL𝑄 query 𝑞 and anyL𝐾 ontology

O, there exists an FO query 𝑞O , called a reformulation of 𝑞 w.r.t. O,

such that for any KBK = (O,D): 𝑎𝑛𝑠 (𝑞,K) = 𝑒𝑣𝑎𝑙 (𝑞O ,D), where
𝑒𝑣𝑎𝑙 (𝑞O ,D) is the result of the relational evaluation of 𝑞O on D
from which tuples with variables are pruned away. Furthermore,

each FO-rewriting algorithm computes query reformulations in a

fixed FO query dialect. Recall for instance Table 1 where CQs are

reformulated into UCQs, USCQs, JUCQs or datalog
𝑛𝑟

programs. We

therefore term FO-rewriting setting a triple of query language L𝑄 ,
KB language L𝐾 and query reformulation language L𝑅 , denoted
by (L𝑄 ,L𝐾 ,L𝑅), such that (L𝑄 ,L𝐾) is an FO-rewritable OMQA

setting for which query reformulations are expressed in L𝑅 .
In this paper, we focus on FO-rewriting settings with queries ex-

pressed in the language of CQs and query reformulations expressed

in the languages of UCQs, USCQs and JUCQs. These setting are

widely considered in the literature on FO-rewriting (recall Table 1).

We remark that datalog
𝑛𝑟

reformulations may need to be unfolded

into UCQs reformulations, which we consider, to be (efficiently)

evaluated by RDBMSs.

A key property of the FO-rewriting settings that we consider, on

which ourwork relies, is that a query reformulation𝑞O is equivalent

to the CQ 𝑞 w.r.t. O. In particular, 𝑞O is equivalent, regardless of

the language used to express it, to the union of all the CQs that
are maximally-contained in 𝑞 w.r.t. O, i.e., the union of all the most

general CQ specializations of 𝑞 w.r.t. O. We recall that (𝑖) a query
𝑞′ is contained in a query 𝑞, denoted by 𝑞′ ⊆ 𝑞, if and only if for

each database D, 𝑒𝑣𝑎𝑙 (𝑞′,D) ⊆ 𝑒𝑣𝑎𝑙 (𝑞,D) and (𝑖𝑖) a query 𝑞′ is
contained in a query 𝑞 w.r.t. an ontology O, denoted by 𝑞′ ⊆O 𝑞,

if and only if for each KB K = (O,D), 𝑎𝑛𝑠 (𝑞′,K) ⊆ 𝑎𝑛𝑠 (𝑞,K). A
query 𝑞′ is maximally-contained in a query 𝑞 w.r.t. an ontology O
if and only if (𝑖) 𝑞′ ⊆O 𝑞 and (𝑖𝑖) for any other query 𝑞′′ ⊆O 𝑞, if

𝑞′ ⊆ 𝑞′′ then 𝑞′′ ⊆ 𝑞′ (i.e., 𝑞′ and 𝑞′′ are equivalent).

Notation. We omit existential quantifiers in queries, as non-

answer variables are existentially quantified in the query languages

we consider (recall Appendix A). For instance, the CQ of Exam-

ple 2.2 is now written 𝑞(𝑥) = 𝑅(h) ∧𝑤𝑤 (h, 𝑥) ∧ 𝑠𝑢𝑝 (𝑦, 𝑥).

Example 2.3 (Cont.). Consider the following equivalent UCQ

𝑞O
UCQ

, USCQ 𝑞O
USCQ

and JUCQ 𝑞O
JUCQ

reformulations of 𝑞 w.r.t. O,
which are respectively computed by the Rapid [20], Compact [51]

and GDL [11] FO-rewriting tools:

𝑞O
UCQ

(𝑥)= (𝑅 (h) ∧ 𝑤𝑤 (h, 𝑥) ∧ 𝑠𝑢𝑝 (𝑦, 𝑥)) (1)
∨(𝑅 (h) ∧ 𝑤𝑤 (h, 𝑥) ∧ 𝑃ℎ𝐷 (𝑥)) (2)
∨(𝑅 (h) ∧ 𝑠𝑢𝑝 (h, 𝑥)) (3)
∨(𝑅 (h) ∧ 𝑤𝑤 (𝑥, h) ∧ 𝑠𝑢𝑝 (𝑦, 𝑥)) (4)
∨(𝑅 (h) ∧ 𝑤𝑤 (𝑥, h) ∧ 𝑃ℎ𝐷 (𝑥)) (5)
∨(𝑅 (h) ∧ 𝑠𝑢𝑝 (𝑥, h) ∧ 𝑠𝑢𝑝 (𝑦, 𝑥)) (6)
∨(𝑅 (h) ∧ 𝑠𝑢𝑝 (𝑥, h) ∧ 𝑃ℎ𝐷 (𝑥)) (7)

𝑞O
USCQ

(𝑥) = (𝑅 (h))
∧ (𝑤𝑤 (h, 𝑥) ∨ 𝑠𝑢𝑝 (h, 𝑥) ∨ 𝑤𝑤 (𝑥, h) ∨ 𝑠𝑢𝑝 (𝑥, h))
∧ (𝑠𝑢𝑝 (𝑦, 𝑥) ∨ 𝑃ℎ𝐷 (𝑥))

𝑞O
JUCQ

(𝑥)=(𝑅 (h)) ∧
(
(𝑤𝑤 (h, 𝑥) ∧ 𝑠𝑢𝑝 (𝑦, 𝑥))

∨(𝑤𝑤 (h, 𝑥) ∧ 𝑃ℎ𝐷 (𝑥))
∨(𝑠𝑢𝑝 (h, 𝑥))
∨(𝑤𝑤 (𝑥, h) ∧ 𝑠𝑢𝑝 (𝑦, 𝑥))
∨(𝑤𝑤 (𝑥, h) ∧ 𝑃ℎ𝐷 (𝑥))
∨(𝑠𝑢𝑝 (𝑥, h) ∧ 𝑠𝑢𝑝 (𝑦, 𝑥))
∨(𝑠𝑢𝑝 (𝑥, h) ∧ 𝑃ℎ𝐷 (𝑥))

)
𝑞O

UCQ
is the union of all the maximally-contained CQs in 𝑞 w.r.t. O.

𝑞O
USCQ

and 𝑞O
JUCQ

model the same union up to the distributive prop-

erty of ∧ and ∨. The answer to 𝑞 on K (i.e., w) results from (3)
in 𝑞UCQ

, shown in blue, and from the logical combination of the

subqueries shown in blue in 𝑞O
USCQ

and 𝑞O
JUCQ

, from which (3) can
be recovered by distributing the ∧’s over the ∨’s. ⋄

3 OPTIMIZATION PROBLEM
Motivation. The definition of FO-rewriting is data-independent:

a single query reformulation 𝑞O is able to answer the CQ 𝑞 on

all the KBs with ontology O. This generality of 𝑞O follows from

the fact that it is equivalent to the union of all the CQs that are

maximally-contained in 𝑞 w.r.t. O, which can also be regarded as

all the ways databases may store answers to 𝑞 according to O. As
a consequence, a query reformulation may be large and complex

to evaluate in practice [10, 11, 51]. For instance, the worst-case

number of CQs that are maximally-contained in a CQ 𝑞 w.r.t. a

lightweight RDFS, DL-LiteR or datalog±0 ontology, is exponential

in the size of the CQ 𝑞 (number of atoms) [9, 16, 30, 32].

Rationale behind our optimization problem.We study the data-

dependent optimization of a query reformulation for a particular

KB, in order to trade its generality for more OMQA performance.

When the query 𝑞 is asked on a given KB K = (O,D), the data-
base D is indeed fixed and just one of all the possible databases a

reformulation 𝑞O accommodates to. In particular, within the union

of maximally-contained CQs to which 𝑞O is equivalent, many CQs

may be irrelevant to D, because they have no answer on D (i.e., D
do not store answers to 𝑞 w.r.t. O this way), and translate into

wasteful evaluation time.

Example 3.1 (Cont.). In 𝑞O
UCQ

, all the CQs except the CQ (3) are

irrelevant to D, and similarly in 𝑞O
USCQ

and 𝑞O
JUCQ

, where these

CQs are present up to the distribution of the ∧’s over the ∨’s. ⋄

WWW ’24, May 13–17, 2024, Singapore, Singapore W. El Husseini, C.B. El Vaigh, F. Goasdoué, and H. Jaudoin

Problem statement. Our goal is to devise an optimization frame-

work for OMQA via FO-rewriting that enjoys the following prop-

erties: generality to be used in as many FO-rewriting settings as

possible, correctness to compute the exact answer set of a query,

and effectiveness to improve query answering time performance.

Our framework relies on an optimization function Ω that turns a

given query reformulation𝑞O into an optimized query reformulation
for a given database D. This optimized query reformulation is

hereafter denoted by 𝑞K as it is specific to the KB K = (O,D).
For the generality of our framework, the Ω function optimizes

query reformulations from the language of (∧,∨)-combinations of
CQs (Definition 3.2 below), which includes UCQ, USCQ and JUCQ

reformulations.

Definition 3.2 ((∧,∨)-combination of CQs). A (∧,∨)-combination
of CQs, denoted by (∧,∨)-CQ, is either a CQ or a conjunction or

union of (∧,∨)-CQs.

The Ω function computes an optimized query reformulation 𝑞K

contained in 𝑞O (item 1 in Problem 1 below) since 𝑞O is equivalent

to a union of maximally-contained queries, in which we remove

those irrelevant to a database D, and removing disjuncts from a

union makes it more specific. However, this containment relation-

ship only ensures that the answers to 𝑞K form a subset of the

answers to 𝑞O on all possible databases. For the correctness of our

framework, Ω thus computes an optimized query reformulation

𝑞K with same answers as 𝑞O on D (item 2 in Problem 1 below).

Finally, for the effectiveness of our framework, the Ω function

optimizes 𝑞O for D using a summary S of D (item 3 in Problem 1

below). This allows for a trade-off between the number of removed

irrelevant maximally-contained queries and the cost to remove

them, which translates into optimization time. As we shall see in

our experiments, the optimization time may be too high to improve

OMQA time performance when Ω identifies irrelevant maximally-

contained queries in 𝑞O using the database D instead of a typically

much smaller summary S of it.

We summarize the above discussion with the formal statement

of the research problem studied in this paper.

Problem 1 (Summary-based optimization of FO-rewriting).

Let 𝑞O be a (∧,∨)-CQ query reformulation and let D be a database.
Define an optimization function Ω and a summary S of D so that
the optimization of 𝑞O for D using S, denoted by 𝑞K and computed
by Ω(𝑞O ,S), satisfies:

(1) 𝑞K ⊆ 𝑞O ,
(2) 𝑒𝑣𝑎𝑙 (𝑞K ,D) = 𝑒𝑣𝑎𝑙 (𝑞O ,D),
(3) 𝑐 (Ω(𝑞O ,S)) +𝑐 (𝑒𝑣𝑎𝑙 (𝑞K ,D)) ≤ 𝑐 (𝑒𝑣𝑎𝑙 (𝑞O ,D)) for a given

cost estimation function 𝑐 (·) that models the cost to compute ·.

4 OPTIMIZATION FRAMEWORK
4.1 The Ω optimization function
Rationale behind the Ω optimization function. When a query

reformulation is seen as a (∧,∨)-combination of CQs, these subCQs

are parts of the maximally-contained CQs that the query reformula-

tion models. Recall for instance Example 2.3 where the maximally-

contained CQ (3) in the UCQ reformulation corresponds to the

logical combinations of the subCQs shown in blue in the JUCQ and

USCQ reformulations. Removing subCQs from a query reformu-

lation seen as (∧,∨)-combinations of CQs obviously removes all

the maximally-contained queries these subCQs are part of, and cru-

cially for us, removing such subCQs with no answer on a particular

database removes maximally-contained queries that are irrelevant

to this database. E.g., in Example 2.3, removing the subCQ 𝑠𝑢𝑝 (𝑥, h)
with no answer onD from 𝑞O

USCQ
also removes from 𝑞O

USCQ
the two

irrelevant maximally-contained CQs 𝑅(h) ∧ 𝑠𝑢𝑝 (𝑥, h) ∧ 𝑠𝑢𝑝 (𝑥,𝑦)
and 𝑅(h) ∧ 𝑠𝑢𝑝 (𝑥, h) ∧ 𝑃ℎ𝐷 (𝑥): without 𝑠𝑢𝑝 (𝑥, h), they cannot be

recovered by distributing the ∧’s over the ∨’s. We therefore devise

the Ω function to optimize a (∧,∨)-CQ query reformulation for a

given database by rewriting it from the bottom up to (𝑖) identify
subCQs with no answer on this database and (𝑖𝑖) propagate the
effect of their removal within the query reformulation.

Identifying CQs with no answer on a database. Checking if a
single CQ has no answer on a database can be done easily (e.g., using

exists in SQL) and efficiently in general since RDBMSs are highly-

optimized for CQs, e.g., [48]. However, doing the same check for

all the subCQs in a query reformulation may take significant time,

especially when the database is large. To mitigate this issue, the Ω
optimization function uses database summaries that are (typically

small) homomorphic approximations of the databases they summa-

rize. Using such summaries instead of the databases allows trading

completeness of identifying subCQs with no answer for efficiency,

while retaining soundness.

Definition 4.1 (Summary of a database). A database S is a sum-
mary of a database D iff (𝑖) there exists a homomorphism 𝜎 from

D to S, i.e., D𝜎 = S where D𝜎 is the database obtained from D
by replacing the terms in D by their images in S through 𝜎 , such

that (𝑖𝑖) 𝜎 maps constants in D to constants in S, while it maps

variables in D to constants or variables in S.

In the above definition, (𝑖) ensures that S is a homomorphic

approximation ofD, while (𝑖𝑖) ensures the soundness of identifying
CQs with no answer on D using S (Theorem 4.2 below). Also, we

remark that a database is a particular summary of itself: D = S
holds when the database-to-summary homomorphism 𝜎 maps each

term to itself, i.e., when 𝜎 is the identity function.

Theorem 4.2. Let D be a database and S a summary of it with
the homomorphism 𝜎 . Let 𝑞 be a CQ 𝑞 asked on D and 𝑞𝜎 the CQ
obtained from 𝑞 by replacing its constants with their images through
𝜎 . If 𝑞𝜎 has no answer on S, then 𝑞 has no answer on D.

We stress that, as illustrated below, if 𝑞𝜎 has no answer on S
then for sure 𝑞 has no answer on D, while if 𝑞𝜎 has some answer

on S then 𝑞 may or may not have an answer on D.

Example 4.3 (Cont.). Consider the summary S of D with homo-

morphism 𝜎 such that 𝜎 (c) = 𝜎 (w) = p, 𝜎 (f) = 𝜎 (h) = 𝜎 (𝑢) = r:

S = {𝑅(r), 𝑠𝑢𝑝 (r, p), 𝑃ℎ𝐷 (p),𝑤𝑤 (r, r),𝑤𝑤 (r, p)}.
Consider the CQs (1) and (5) in 𝑞O

UCQ
, which we name 𝑞1

and 𝑞5

respectively. According to Theorem 4.2: 𝑞1

𝜎 (𝑥) = 𝑅(r) ∧𝑤𝑤 (r, 𝑥) ∧
𝑠𝑢𝑝 (𝑦, 𝑥) has an answer on the summary S (𝑒𝑣𝑎𝑙 (𝑞1

𝜎 ,S) = {p})
then 𝑞1

may or may not have an answer on D (here, 𝑞1
has no

answer on D), while 𝑞5

𝜎 (𝑥) = 𝑅(r) ∧𝑤𝑤 (𝑥, r) ∧ 𝑃ℎ𝐷 (𝑥) has no
answer on S then for sure 𝑞5

has no answer on D. ⋄

Query Optimization for Ontology-MediatedQuery Answering WWW ’24, May 13–17, 2024, Singapore, Singapore

(∧,∨)-CQ optimization for a database.Our Ω function builds on

Theorem 4.2 to optimize a (∧,∨)-CQ for a database D. It rewrites

a query while (𝑖) identifying its CQs with no answer on D using a

summary S of it ((1) in Definition 4.4 below) and (𝑖𝑖) performing

a bottom-up removal of the largest subqueries with no answer on

D that these CQs are the causes of ((2) and (3) in Definition 4.4

below).

Definition 4.4 (Optimization function Ω). Let 𝑞 be a (∧,∨)-CQ
asked on a database D and S be a summary of D with the ho-

momorphism 𝜎 . The optimization of 𝑞 for D using S, i.e., denoted
by Ω(𝑞,S), is recursively defined as follows. Below, ∅ denotes the

empty relation with appropriate arity.

The optimization of a CQ 𝑞 is:

Ω(𝑞,S) =
{

∅ if 𝑒𝑣𝑎𝑙 (𝑞𝜎 ,S) = ∅
𝑞 otherwise

(1)

where 𝑞𝜎 is obtained from 𝑞 by replacing its constants by their

images through 𝜎 .

The optimization of a conjunction of subqueries

∧𝑛
𝑖=1

𝑞𝑖 is:

Ω(
𝑛∧
𝑖=1

𝑞𝑖 ,S) =
{

∅ if ∃𝑖 ∈ [1, 𝑛] Ω(𝑞𝑖 ,S) = ∅∧𝑛
𝑖=1

Ω(𝑞𝑖 ,S) otherwise
(2)

The optimization of a disjunction of subqueries

∨𝑛
𝑖=1

𝑞𝑖 is:

Ω(
𝑛∨
𝑖=1

𝑞𝑖 ,S) =
{

∅ if ∀𝑖 ∈ [1, 𝑛] Ω(𝑞𝑖 ,S) = ∅∨
1≤𝑖≤𝑛, Ω (𝑞𝑖 ,S)≠∅ Ω(𝑞𝑖 ,S) otherwise

(3)

Above, the rewriting rule (1) follows from the soundness of

identifying CQs with no answer using a database summary (Theo-

rem 4.2), while the two other rewriting rules (2) and (3) follow from

the semantics of the ∧ and ∨ operators, respectively.

The next theorem establishes two semantic relationships be-

tween a (∧,∨)-CQ and its optimization, which correspond to items 1

and 2 in Problem 1. In particular, it states the correctness of summary-

based optimization of a (∧,∨)-CQ w.r.t. relational query evaluation.

Theorem 4.5. Let D be a database, S a summary of D, and 𝑞 a
(∧,∨)-CQ. Then Ω(𝑞,S) ⊆ 𝑞 and 𝑒𝑣𝑎𝑙 (𝑞,D) = 𝑒𝑣𝑎𝑙 (Ω(𝑞,S),D).

Example 4.6 (Cont.). The summary-based optimization of 𝑞O
UCQ

,

𝑞O
USCQ

and 𝑞O
JUCQ

forD using S corresponds to the following UCQ,

USCQ and JUCQ, respectively. We also show in gray the subqueries

that would have been additionally removed (with higher optimiza-

tion cost) if Ω had used D instead of S.
Ω (𝑞O

UCQ
, S)= (𝑅 (h) ∧ 𝑤𝑤 (h, 𝑥) ∧ 𝑠𝑢𝑝 (𝑦, 𝑥)) (1)

∨(𝑅 (h) ∧ 𝑤𝑤 (h, 𝑥) ∧ 𝑃ℎ𝐷 (𝑥)) (2)
∨(𝑅 (h) ∧ 𝑠𝑢𝑝 (h, 𝑥)) (3)

Ω (𝑞O
USCQ

, S) = (𝑅 (h))
∧ (𝑤𝑤 (h, 𝑥) ∨ 𝑠𝑢𝑝 (h, 𝑥) ∨ 𝑤𝑤 (𝑥, h))
∧ (𝑠𝑢𝑝 (𝑦, 𝑥) ∨ 𝑃ℎ𝐷 (𝑥))

Ω (𝑞O
JUCQ

, S)=(𝑅 (h))∧
(
(𝑤𝑤 (h, 𝑥) ∧ 𝑠𝑢𝑝 (𝑦, 𝑥))
∨ (𝑤𝑤 (h, 𝑥) ∧ 𝑃ℎ𝐷 (𝑥))
∨ (𝑠𝑢𝑝 (h, 𝑥))

)
For L𝑅 ∈ {UCQ,USCQ, JUCQ}, it can be easily checked that:

Ω(𝑞OL𝑅
,S) ⊆ 𝑞OL𝑅

since Ωmakes unions more specific by removing

disjuncts, and 𝑒𝑣𝑎𝑙 (Ω(𝑞OL𝑅
,S),D) = 𝑒𝑣𝑎𝑙 (𝑞OL𝑅

,D) since both 𝑞OL𝑅

and Ω(𝑞OL𝑅
,S) model the CQ (3) that produces the sole answer w. ⋄

Finally, we provide our cost estimation function 𝑐 (Definition 4.7

below) to formally characterize the efficiency of summary-based

optimization of a (∧,∨)-CQ, which corresponds to item 3 in Prob-

lem 1. It provides summable optimization and evaluation costs by

(𝑖) trivially setting the query evaluation cost to the cost of rela-

tional query evaluation [1, 46] (first item in Definition 4.7 below)

and (𝑖𝑖) reducing the query optimisation cost to the sole cost of rela-

tional query evaluation that it induces (second item in Definition 4.7

below): Ω’s simple in-memory data processing ((2) and (3) in Defi-

nition 4.4) is typically negligible w.r.t. Ω’s on-disk data processing

((1) in Definition 4.4).

Definition 4.7 (Cost estimation function 𝑐). Let 𝑞 be a (∧,∨)-CQ
andD be a database. Given a cost estimation function cost−rel−eval
for query evaluation on relational databases, the cost estimation

function 𝑐 for summary-based optimization is such that:

• 𝑐 (𝑒𝑣𝑎𝑙 (𝑞,D)) = cost−rel−eval(𝑒𝑣𝑎𝑙 (𝑞,D))
• 𝑐 (Ω(𝑞,D)) = ∑𝑛

𝑖=1
cost−rel−eval(𝑒𝑣𝑎𝑙 (𝑐𝑞𝑖 ,D)), where 𝑐𝑞1,

. . . , 𝑐𝑞𝑛 are all the CQs in the (∧,∨)-CQ 𝑞.

4.2 Database summarization
The concrete database summaries that we use with our Ω optimiza-

tion function are defined by adapting the quotient operation from

graph theory [34] to the incomplete relational databases we con-

sider. The quotient operation has been widely used in the literature

for graph database summarization [17, 41]. It offers an elegant sum-

marization technique by decoupling the summarization method,

which fuses equivalent nodes, from the high-level specification of

equivalent nodes, defined by an equivalence relation, e.g., bisim-

ilarity [2]. We recall that an equivalence relation is a reflexive,

symmetric, and transitive binary relation. Assuming we have an

equivalence relation between database terms (the one we use will

be discussed shortly), we define a quotient database as follows.

Definition 4.8 (Quotient database). Let D be a database, ≡ be

some equivalence relation between terms, and let 𝑐1

≡, . . . , 𝑐
𝑘
≡ denote,

by abuse of notation, both the equivalence classes of all terms in D
w.r.t. ≡ and the terms used to represent these equivalence classes.

The quotient database of D w.r.t. ≡ is the database D≡ such that:

• 𝑅(𝑐𝛼1

≡ , · · · , 𝑐𝛼𝑛≡) ∈ D≡ iff there exists 𝑅(𝑡𝑒𝑟𝑚1, · · · , 𝑡𝑒𝑟𝑚𝑛) ∈ D
with 𝑡𝑒𝑟𝑚𝑖 ∈ 𝑐

𝛼𝑖
≡ and 1 ≤ 𝛼𝑖 ≤ 𝑘 , for 1 ≤ 𝑖 ≤ 𝑛,

• the term 𝑐
𝑗
≡ inD≡, for 1 ≤ 𝑗 ≤ 𝑘 , is a variable if all the equivalent

terms in D it represents according to ≡ are variables, otherwise it

is a constant.

The next proposition establishes that quotient databases can

be used by the optimization function Ω to identify CQs with no

answer on databases. It follows from the fact that in the above

definition, ≡ defines an implicit function that maps the terms in D
to the terms in D≡, which turns out to be the homomorphism 𝜎

in Definition 4.1: the first and second items in the above definition

enforce respectively the conditions (𝑖) and (𝑖𝑖) in Definition 4.1.

Proposition 4.9. Quotient databases are database summaries.

We introduce the equivalence relation ≡Ω used to build our sum-

maries, i.e., how database terms are fused into summary terms. Since

ontology languages [5, 7, 14, 19] are centered on concepts modeled

by unary predicates, which are then interrelated using relationships

WWW ’24, May 13–17, 2024, Singapore, Singapore W. El Husseini, C.B. El Vaigh, F. Goasdoué, and H. Jaudoin

modeled by 𝑛-ary predicates (with 𝑛 ≥ 2), we adopt a summariza-

tion centered on the instances of concepts stored in a KB’s database:

all the terms that are instances of the same concept in the KB’s

database are represented by a single term in the summary ((𝑖) in
Definition 4.10 below), and all the concepts with common instances

in the KB’s database have the same single term that represents all

their instances in the summary ((𝑖𝑖) in Definition 4.10 below). As

we shall see in our experiments, database summaries built with

≡Ω achieve a good tradeoff between size reduction (≥90%) and
completeness of identifying CQs with no answer (92% on average).

Definition 4.10 (≡Ω equivalence relation). ≡Ω is the equivalence

relation such that two terms 𝑡1 and 𝑡2 are equivalent within a data-

base D, denoted 𝑡1 ≡Ω 𝑡2, iff (𝑖) both 𝑡1 and 𝑡2 are instances of the

same unary predicate, i.e., concept, or (𝑖𝑖) there exists a term 𝑡3 in

D such that 𝑡1 ≡Ω 𝑡3 and 𝑡2 ≡Ω 𝑡3.

Example 4.11 (Cont.). The summary S in Example 4.3 is actually

the quotient database of D w.r.t. ≡Ω : it defines two equivalence

classes, one for the researchers in D, i.e., {f, h, 𝑢}, and one for the

PhD students in D, i.e., {w, c}; these two classes are represented in

S by the constants r and p, respectively. ⋄

5 EXPERIMENTAL EVALUATION
We implemented our optimization framework in the OptiRef JAVA
tool [37] in order to evaluate the OMQA time performance it brings.

Setup. For our KBs, we used the well-established extended LUBM
benchmark a.k.a. LUBM

∃
[42]. It is an adaptation of the Leight

University benchmark a.k.a. LUBM [35] to the DL-LiteR descrip-

tion logic [16]. We chose this benchmark for two reasons. First,

DL-LiteR is the most expressive KB language for which the refor-

mulation of CQs into UCQ, USCQ and JUCQ reformulations has

been studied. Second, LUBM
∃
is widely-considered in the OMQA lit-

erature and provides opportunities to adapt many available queries

to our needs. For the ontology O of all our KBs, we used the de-

fault benchmark ontology LUBM
∃
20
. It is made of 449 rules over

163 predicates: 128 unary predicates, a.k.a. concepts, and 35 binary

predicates, a.k.a. roles. We used the EUGen (v0.1b) data generator

provided with LUBM
∃
to generate the databases of our KBs.

OptiRef relies on the open-source PostgreSQL RDBMS (v14.2)

to store the generated databases and their summaries, which is

commonly used in the OMQA literature.We adopted the data layout

of [11] for the databases and summaries, which was found to be

the most efficient for evaluating query reformulations on DL-LiteR
KB’s database. Concepts instances are stored in unary relations, and

role instances are stored in binary relations. Also, all the values are

dictionary-encoded into integers; the dictionary is stored as a binary

relation. Finally, for a database summary, the database-to-summary

homomorphism 𝜎 , which maps the database terms to the summary

terms, is stored as a binary relation. For all the above-mentioned

database, summary, dictionary and homomorphism relations, each

unary relation has an index on its unique attribute and each binary

relation has the two two-attributes indexes.

OptiRef relies on the Rapid (v0.93) [20], Compact (v1.0b6) [51]

and GDL (v1.0) [11] FO-rewriting tools that respectively compute

UCQ, USCQ and JUCQ reformulations of CQs w.r.t. DL-LiteR on-

tologies. They load and keep in memory the ontology w.r.t. which

CQs are reformulated. We chose Compact and GDL because they

are the only tools to respectively compute USCQ and JUCQ query

reformulations, to the best of our knowledge. By contrast, there are

other tools besides Rapid to compute UCQ query reformulations,

e.g., Clipper [24], Graal [6], Iqaros [52], Nyaya [53], Presto [47],

Requiem [45], etc. These tools differ w.r.t. query reformulation time

and query reformulation minimality. We chose Rapid since it is fast,

although we do not consider query reformulation cost (hence time)

in our optimization problem (Problem 1), to compute minimal UCQ

reformulations, i.e., within which no CQ is redundant with another.

We ran our experiments on a Ubuntu 20.04 Linux server with

Intel Xeon 4215R 3.20GHz CPU, 128GB of RAM, and 7TB of HDD.

Database summarization. We generated five LUBM databases:

LUBM1M, LUBM10M, LUBM50M, LUBM100M, LUBM150M. The

name of a database indicates the number of stored facts in mil-

lions. Also, databases are created such that LUBM1M ⊆ LUBM10M

⊆ LUBM50M ⊆ LUBM100M ⊆ LUBM150M, where ⊆ means set

inclusion, so that query answering becomes harder as data grows.

OptiRef relies on a union-find data structure for disjoint sets [21]
for database summarization, since equivalence classes of database

terms w.r.t. ≡Ω are disjoint sets of equivalent terms w.r.t. ≡Ω . This

data structure supports two main operations, union and find, in
optimal constant amortized time complexity [49, 50], i.e., time com-

plexity is almost constant over a sequence of union or find oper-

ations. Union is used to state which values must be in a same set,

and results in merging the sets these values belong to. Find returns
the representative value of the set a given value belongs to.

OptiRef first computes the homomorphism 𝜎 from the database

D to the summary S (Definition 4.1) w.r.t. the ≡Ω equivalence rela-

tion (Definition 4.10). Given a union-find data structure for disjoint

sets of integers, we use union to state that the (integer-encoded)

terms stored in each unary relation in D are in a same set, as these

terms are equivalent w.r.t. ≡Ω (condition (𝑖) in Definition 4.10). By

definition of union, this ensures that if unary relations share some

terms, in which case all the terms of these relations are equivalent

w.r.t. ≡Ω (condition (𝑖𝑖) in Definition 4.10), then these terms end up

in the same set. Finally, since find returns a representative term for

the set of equivalent terms a given term belongs to, it models the

homomorphism 𝜎 from the database D to its summary S w.r.t. ≡Ω .

The computation of 𝜎 is therefore linear in the size of the data: it

needs a worst-case number of calls to union in the size of D, each

of which is performed in constant amortized time. Then, OptiRef
computes the summary S of the databaseD w.r.t. ≡Ω as per Defini-

tion 4.8: every fact in D leads to a fact in S obtained by replacing

each term by its image through 𝜎 , i.e., find. The computation of

S is therefore linear in the size of the data: it needs a worst-case

number of calls to find in the size of D (one or two calls per fact),

each of which is performed in constant amortized time.

Table 2 shows for each database D we generated: its size |D|
and the size |S| of its summary S, i.e., numbers of facts, the D-

to-S size reduction (1 − |S|/|D|), and the summarization time

with PostgreSQL (computation and storage of 𝜎 and then of S). We

observe that≡Ω achieves significant size reduction (≥ 90%) and that

summarization time scales linearly in the size of the data. However,

we remark that it would be prohibitive to redo summarization upon

database updates. OptiRef thus relies on incremental summary

maintenance [37]. By definition of a summary built with ≡Ω , in the

worst case, an insertion fuses two equivalence classes and a deletion

Query Optimization for Ontology-MediatedQuery Answering WWW ’24, May 13–17, 2024, Singapore, Singapore

Table 2: Characteristics of the databases and summaries, data-
base size reduction and summarization time for PostgreSQL

Database D |D| |S| size red. (%) sum. time (s)
LUBM1M 1,187k 93k 92.12 15

LUBM10M 10,794k 843k 92.18 86

LUBM50M 53,328k 4,160k 92.20 308

LUBM100M 106,596k 8,316k 92.19 699

LUBM150M 159,899k 12,474k 92.19 1,100

splits an equivalence class into two ones. Maintenance rewrites the

affected summary facts, i.e., in which some term moves from an

equivalence class to another, based on the updated homomorphism

𝜎 modeled with a union-find data structure that also supports the

delete operation in optimal constant amortized time complexity [4].

OMQA performance.We used ten CQs adapted from [11, 42] to

obtain a variety of numbers of maximally-contained CQs w.r.t. O
that query reformulations model (recall Section 2) and of answers.

The main characteristics of these CQs are shown in Table 3 (top).

For each database, OptiRef processed every query with 3 strate-

gies per L𝑅 query reformulation languages used by FO-rewriting

tools: L𝑅 = UCQ for Rapid, L𝑅 = USCQ for Compact and L𝑅 =

JUCQ for GDL. The first strategy, denoted by L𝑅/REF, consists

in computing the L𝑅 query reformulation with the FO-rewriting

tool and then evaluating it with PostgreSQL; this is how OMQA

is performed via FO-rewriting, hence the state-of-the-art baseline.

The second strategy, denoted by L𝑅/DB, departs from L𝑅/REF

by optimizing the query reformulation for the database D before

evaluating it. For this strategy, our Ω function optimizes the query

reformulation using the database D. The third strategy, denoted

by L𝑅/S, is similar to L𝑅/DB except that our Ω function opti-

mizes the query reformulation for D using the summary S of D.

Table 3 (bottom) shows the optimization ratio per query obtained
with L𝑅/S on LUBM100M, i.e., the percentage of CQs with no an-

swers on LUBM100M that are identified and removed by Ω using

LUBM100M’s summary; the ratio is 0% withL𝑅/REF and 100% with

L𝑅/DB. We observe that optimization ratios are high in general,

92% on average with 52.53% the lowest value (𝑄𝐴6), thus our sum-

maries are effective to identify CQs with no answers. Similar results

are obtained on LUBM1M, LUBM10M, LUBM50M and LUBM150M.

We analyze below the times we measured when our queries are

processed with the above-mentioned strategies. The measured time

is: optimization time + evaluation time. Each reported time is an

average over 5 “hot” query runs, i.e., the first “cold” query run is dis-

carded. For space consideration, we focus on the times measured for

LUBM10M and the ten times larger LUBM100M, which are shown

in Figure 2. Measured times for all our databases are in Appendix D;

they gradually increase as data size grows from 1M to 150M facts.

L𝑅/S versus the state-of-the-art baseline L𝑅/REF. We ob-

serve that when query reformulations are optimized by Ω using S:
• Performance almost always improves for UCQs (UCQ/S for all the

databases except for 𝑄𝐴6), often significantly and up to 3 orders of

magnitude (e.g., UCQ/S for 𝑄𝐴1 on LUBM10M and LUBM100M).

• Performance frequently improves for JUCQs (in half of the cases

overall), up to one order of magnitude (e.g., JUCQ/S for 𝑄𝐴8 on

LUBM100M), otherwise performance is marginally affected. We

remark that when the performance visibly degrades (e.g., 𝑄𝐴9 on

LUBM100M) it is just in the order of a few tens of ms.

• Performance is marginally affected for USCQs.

These observations are explained with the two following facts,

and the optimization ratios obtained with our summaries (Table 3).

(1) Optimizing reformulations with Ω removes CQs with no answer

from the top union in UCQs and from the unions on which the

top join is performed in JUCQs; in USCQs, single-atom CQs are

removed from unions on top of which joins are performed, on top

of which the top union is performed.

(2) Removing CQs with no answer from a union improves its eval-

uation time (as it may take time for an RDBMS to find out that a

CQ has no answer), while it does not change the size of its output

hence the number of tuples to process after this union.

Therefore:

• Optimizing a UCQ reformulation with Ω speeds up its entire

evaluation since Ω optimizes its top union. Also, because our sum-

maries allow high optimization ratios for UCQ/S, performance is

significantly improved in general. We remark that performance

degrades for 𝑄𝐴6 because the optimization time does not amortize

with a low optimization ratio (52.53% on LUBM100M).

•Optimizing a JUCQ reformulationwithΩ speeds up the evaluation

of its sub-UCQs but does not affect the evaluation time of the top

join (as the same tuples must be joined). JUCQ reformulations

are thus more difficult to optimize than UCQ ones. This is why

performance is “only” frequently improved (in half of the cases)

and marginally affected otherwise, even with high optimization

ratios for JUCQ/S (> 78% on LUBM100M).

• Optimizing a USCQ reformulation with Ω only removes atomic

CQs from its inner unions while it does not take time for an RDBMS

to figure out that these atomic CQs are empty. The optimization

thus marginally affects the evaluation time of these inner unions,

and the evaluation time of the subsequent joins and top union

is not affected. USCQ reformulations are thus more difficult to

optimize than UCQ and JUCQ ones. This is why performance is

marginally affected in general, even with maximal optimization

ratios for USCQ/S (100% on LUBM100M).

L𝑅/DB versus L𝑅/REF and L𝑅/S. We observe that when Ω op-

timizes query reformulations using D instead of S, performance

may improve or degrade:

• Performance is overall marginally to significantly better with

UCQ/DB than with the baseline UCQ/REF, although the perfor-

mance with UCQ/DB is generally worse than with UCQ/S.

• Performance with JUCQ/DB is always worse than with the base-

line JUCQ/REF and almost always worse than with JUCQ/S.

• Performance with USCQ/DB is always worse than with the base-

line USCQ/REF and with USCQ/S.

These observations are explained by the extra-time spent by

L𝑅/DB w.r.t.L𝑅/S in completely optimizing a query reformulation

using the database (recall that optimization ratios are of 100% for

L𝑅/DB): optimization time with L𝑅/DB is in general significantly

higher than with L𝑅/S, because a database is much larger than

its summary, while at the same time L𝑅/DB provides a moderate

gain in optimization ratios because they are already very high with

L𝑅/S in general. This is why L𝑅/DB performs worse than L𝑅/S

overall, and worse than L𝑅/REF when optimization time is higher

than the time saved when the optimized reformulation is evaluated.

WWW ’24, May 13–17, 2024, Singapore, Singapore W. El Husseini, C.B. El Vaigh, F. Goasdoué, and H. Jaudoin

Table 3: Characteristics of the queries, K = (O,D) with O = LUBM
∃
20

and D = LUBM100M

Query answering
Query QA0 QA1 QA2 QA3 QA4 QA5 QA6 QA7 QA8 QA9

#atoms 8 5 5 6 6 8 8 8 6 8

#contained CQs w.r.t. O 2,759 1,949 1,701 1,151 719 495 299 183 143 31

#answers in 𝑎𝑛𝑠 (𝑞,K) = 𝑒𝑣𝑎𝑙 (𝑞O ,D) 23,946 0 347,527 720 69 0 2 858,259 12 0

optimization ratio for UCQ/S 81.92 100 99.88 83.80 80.2 80 52.53 78.89 66.91 77.42

optimization ratio for USCQ/S 100 100 100 100 100 100 100 100 100 100

optimization ratio for JUCQ/S 100 100 100 100 100 100 100 78.89 100 100

Figure 2: Query answering times (ms, logscale) with PostgreSQL on LUBM10M (left) and LUBM100M (right)

Experiment conclusion. Our summaries can be fast to compute

(linear in data size), small (<10% of data size), and effective to iden-

tify CQs with no answer on a database (92% on average). Also, when

they are used with our Ω optimization function, OMQA time per-

formance can be significantly improved for UCQ reformulations in

general and frequently for JUCQ reformulations, while performance

is marginally affected for USCQ ones.

6 RELATEDWORK AND CONCLUSION
We devised a novel optimization framework for OMQA via FO-

rewriting. It is complementary to, and capitalizes on, the optimiza-

tions that have been proposed so far in the literature, e.g., [10,

11, 20, 33, 39, 51], which are both ontology-dependent and data-

independent. Its novelty is to add a complementary data-dependent

optimization step to query reformulations produced by state-of-

the-art FO-rewriting tools, e.g., [6, 10, 11, 20, 45, 47, 51–53]. This

framework is general enough to apply to a variety of FO-rewriting

settings, in particular those in Table 1, and it guarantees the correct-

ness of OMQA on the queried KBs. For the FO-rewriting settings

in which it was evaluated, it significantly improves OMQA time

performance for the widely-adopted UCQ query reformulations,

e.g., [9, 16, 20, 30–33, 39, 44, 45, 47, 52], and for the JUCQ ones

of [10, 11]. The originality of our framework is to build on the Ω
optimization function that rewrites a query reformulation into a

contained one, by pruning away subqueries that are useless to its

evaluation on a given database. Notably, useless subqueries are iden-

tified rapidly by using database summaries, which we devised for

this purpose by adapting the quotient operation [34] to databases.

Database summaries, in particular those based on the quotient op-

eration, have been mainly investigated for graph databases, e.g., [17,

41], and description logic databases [22, 23, 25, 27], for the purpose

of data exploration and of data management optimization. To the

best of our knowledge, summaries have not been used for the op-

timization of OMQA via FO-rewriting. We adapted the quotient

operation to relational databases and we defined the new equiva-

lence relation≡Ω for the special task of sound and fast identification

of CQs with no answer on a database. ≡Ω departs from prior equiv-

alence relations by being based on the instances of concepts that

KB’s databases describe with n-ary relationships between them, and

not on bisimulation [36], e.g., [26, 43], or cooccurrence of relation-

ships [28, 29]. A perspective is to study other database summaries

for our framework, to improve further OMQA time performance,

either via the quotient operation and other equivalence relations

than ≡Ω , or with other procedures than the quotient operation.

ACKNOWLEDGMENTS
This work was supported by the ANR CQFD project (ANR-18-CE23-

0003) and the Gedeon project (LTC & ARED Région Bretagne).

Query Optimization for Ontology-MediatedQuery Answering WWW ’24, May 13–17, 2024, Singapore, Singapore

REFERENCES
[1] Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of Databases.

Addison-Wesley. http://webdam.inria.fr/Alice/

[2] Sergio Abriola, Pablo Barceló, Diego Figueira, and Santiago Figueira. 2018. Bisim-

ulations on Data Graphs. J. Artif. Intell. Res. 61 (2018), 171–213.
[3] Afnan G. Alhazmi, Tom Blount, and George Konstantinidis. 2022. ForBackBench:

A Benchmark for Chasing vs. Query-Rewriting. Proc. VLDB Endow. 15, 8 (2022),
1519–1532.

[4] Stephen Alstrup, Mikkel Thorup, Inge Li Gørtz, Theis Rauhe, and Uri Zwick.

2014. Union-Find with Constant Time Deletions. ACM Trans. Algorithms 11, 1
(2014), 6:1–6:28.

[5] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and

Peter F. Patel-Schneider (Eds.). 2003. The Description Logic Handbook. Cambridge

University Press.

[6] Jean-François Baget, Michel Leclère, Marie-Laure Mugnier, Swan Rocher, and

Clément Sipieter. 2015. Graal: A Toolkit for Query Answering with Existential

Rules. In RuleML, Vol. 9202. 328–344.
[7] Jean-François Baget, Michel Leclère, Marie-Laure Mugnier, and Eric Salvat. 2011.

On rules with existential variables: Walking the decidability line. Artificial
Intelligence 175, 9-10 (2011), 1620–1654.

[8] Meghyn Bienvenu. 2016. Ontology-Mediated Query Answering: Harnessing

Knowledge to Get More from Data. In IJCAI. 4058–4061.
[9] Maxime Buron, François Goasdoué, Ioana Manolescu, and Marie-Laure Mug-

nier. 2019. Reformulation-Based Query Answering for RDF Graphs with RDFS

Ontologies. In ESWC, Vol. 11503. Springer, 19–35.
[10] Damian Bursztyn, François Goasdoué, and Ioana Manolescu. 2015. Optimizing

Reformulation-based Query Answering in RDF. In EDBT. 265–276.
[11] Damian Bursztyn, François Goasdoué, and Ioana Manolescu. 2016. Teaching an

RDBMS about ontological constraints. PVLDB (2016), 1161–1172.

[12] Andrea Calì, Georg Gottlob, and Thomas Lukasiewicz. 2009. Datalog
±
: a unified

approach to ontologies and integrity constraints. In ICDT. 14–30.
[13] Andrea Calì, Georg Gottlob, and Thomas Lukasiewicz. 2009. A general datalog-

based framework for tractable query answering over ontologies. In PODS. 77–86.
[14] Andrea Calì, Georg Gottlob, Thomas Lukasiewicz, Bruno Marnette, and Andreas

Pieris. 2010. Datalog+/-: A Family of Logical Knowledge Representation and

Query Languages for New Applications. In LICS. 228–242.
[15] Andrea Calì, Georg Gottlob, Thomas Lukasiewicz, and Andreas Pieris. 2011. A

logical toolbox for ontological reasoning. SIGMOD Rec. 40, 3 (2011), 5–14.
[16] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini,

and Riccardo Rosati. 2007. Tractable Reasoning and Efficient Query Answering

in Description Logics: The DL-Lite Family. J. Autom. Reasoning (2007), 385–429.

[17] Sejla Cebiric, François Goasdoué, Haridimos Kondylakis, Dimitris Kotzinos, Ioana

Manolescu, Georgia Troullinou, andMussab Zneika. 2019. Summarizing semantic

graphs: a survey. VLDB J. 28, 3 (2019), 295–327.
[18] Upen S. Chakravarthy, John Grant, and Jack Minker. 1990. Logic-Based Approach

to Semantic Query Optimization. ACMTrans. Database Syst. 15, 2 (1990), 162–207.
[19] Michel Chein and Marie-Laure Mugnier. 2009. Graph-based Knowledge Represen-

tation - Computational Foundations of Conceptual Graphs. Springer.
[20] Alexandros Chortaras, Despoina Trivela, and Giorgos Stamou. 2011. Optimized

Query Rewriting for OWL2QL. In CADE. 192–206.
[21] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

2009. Introduction to Algorithms, 3rd Edition. MIT Press.

[22] Julian Dolby, Achille Fokoue, Aditya Kalyanpur, Aaron Kershenbaum, Edith

Schonberg, Kavitha Srinivas, and LiMa. 2007. Scalable Semantic Retrieval through

Summarization and Refinement. In AAAI. 299–304.
[23] Julian Dolby, Achille Fokoue, Aditya Kalyanpur, Edith Schonberg, and Kavitha

Srinivas. 2009. Scalable Highly Expressive Reasoner. J. Web Semant. 7, 4 (2009),
357–361.

[24] Thomas Eiter, Magdalena Ortiz, Mantas Simkus, Trung-Kien Tran, and Guohui

Xiao. 2012. Query Rewriting for Horn-SHIQ Plus Rules. In AAAI. 726–733.
[25] Cheikh-Brahim El Vaigh and François Goasdoué. 2021. A Well-founded Graph-

based Summarization Framework for Description Logics. In Description Logics.
[26] Wenfei Fan, Jianzhong Li, Xin Wang, and Yinghui Wu. 2012. Query preserving

graph compression. In SIGMOD. 157–168.
[27] Achille Fokoue, Aaron Kershenbaum, Li Ma, Edith Schonberg, and Kavitha Srini-

vas. 2006. The Summary Abox: Cutting Ontologies Down to Size. In ISWC.
343–356.

[28] François Goasdoué, Pawel Guzewicz, and Ioana Manolescu. 2019. Incremental

structural summarization of RDF graphs. In EDBT. 566–569.
[29] François Goasdoué, Pawel Guzewicz, and Ioana Manolescu. 2020. RDF graph

summarization for first-sight structure discovery. VLDB J. 29, 5 (2020), 1191–1218.
[30] François Goasdoué, Ioana Manolescu, and Alexandra Roatis. 2013. Efficient query

answering against dynamic RDF databases. In EDBT. 299–310.
[31] Georg Gottlob, Giorgio Orsi, and Andreas Pieris. 2011. Ontological queries:

Rewriting and optimization. In ICDE. 2–13.
[32] Georg Gottlob, Giorgio Orsi, and Andreas Pieris. 2014. Query Rewriting and

Optimization for Ontological Databases. ACM Trans. Database Syst. 39, 3 (2014),
25:1–25:46.

[33] Georg Gottlob and Thomas Schwentick. 2012. Rewriting Ontological Queries

into Small Nonrecursive Datalog Programs. In KR.
[34] Jonathan L. Gross, Jay Yellen, and Ping Zhang (Eds.). 2013. Handbook of Graph

Theory. Chapman & Hall / CRC Press, Taylor & Francis.

[35] Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. 2005. LUBM: A benchmark for

OWL knowledge base systems. J. Web Semant. 3, 2-3 (2005), 158–182.
[36] Monika Rauch Henzinger, Thomas A. Henzinger, and Peter W. Kopke. 1995.

Computing Simulations on Finite and Infinite Graphs. In FOCS. 453–462.
[37] Wafaa El Husseini, Cheikh Brahim El Vaigh, François Goasdoué, and Hélène

Jaudoin. 2023. OptiRef: Query Optimization for Knowledge Bases. In WWW.

180–183.

[38] Tomasz Imielinski and Witold Lipski Jr. 1984. Incomplete Information in Rela-

tional Databases. J. ACM 31, 4 (1984), 761–791.

[39] Mélanie König, Michel Leclère, Marie-Laure Mugnier, and Michaël Thomazo.

2015. Sound, complete and minimal UCQ-rewriting for existential rules. Semantic
Web (2015), 451–475.

[40] Roman Kontchakov, Carsten Lutz, David Toman, Frank Wolter, and Michael

Zakharyaschev. 2011. The Combined Approach to Ontology-Based Data Access.

In IJCAI. 2656–2661.
[41] Yike Liu, Tara Safavi, Abhilash Dighe, and Danai Koutra. 2018. Graph Summa-

rization Methods and Applications: A Survey. ACM Comput. Surv. 51, 3 (2018),
62:1–62:34.

[42] Carsten Lutz, Inanç Seylan, David Toman, and FrankWolter. 2013. The Combined

Approach to OBDA: Taming Role Hierarchies Using Filters. In ISWC. 314–330.
[43] Tova Milo and Dan Suciu. 1999. Index Structures for Path Expressions. In ICDT.

277–295.

[44] Giorgio Orsi and Andreas Pieris. 2011. Optimizing Query Answering under

Ontological Constraints. PVLDB 4, 11 (2011), 1004–1015.

[45] Héctor Pérez-Urbina, Ian Horrocks, and Boris Motik. 2009. Efficient Query

Answering for OWL 2. In ISWC. 489–504.
[46] Raghu Ramakrishnan and Johannes Gehrke. 2003. Database management systems

(3. ed.). McGraw-Hill.

[47] Riccardo Rosati and Alessandro Almatelli. 2010. Improving Query Answering

over DL-Lite Ontologies. In KR.
[48] Avi Silberschatz, Henry F. Korth, and S. Sudarshan. 2020. Database System

Concepts, Seventh Edition. McGraw-Hill Book Company.

[49] Robert Endre Tarjan. 1985. Amortized Computational Complexity. SIAM Journal
on Algebraic Discrete Methods 6, 2 (1985), 306–318.

[50] Robert Endre Tarjan and Jan van Leeuwen. 1984. Worst-case Analysis of Set

Union Algorithms. J. ACM 31, 2 (1984), 245–281.

[51] Michaël Thomazo. 2013. Compact Rewritings for Existential Rules. In IJCAI.
1125–1131.

[52] Tassos Venetis, Giorgos Stoilos, and Giorgos B. Stamou. 2012. Incremental Query

Rewriting for OWL 2 QL. In DL.
[53] Roberto De Virgilio, Giorgio Orsi, Letizia Tanca, and Riccardo Torlone. 2012.

NYAYA: A System Supporting the UniformManagement of Large Sets of Semantic

Data. In ICDE. 1309–1312.

A MAIN FO QUERY LANGUAGES USED FOR
FO-REWRITING

Language First-Order Logic syntax Relational algebra syntax
CQ 𝑞(𝑥) = ∃𝑦 ∧𝑛

𝑖=1
𝑎𝑡𝑜𝑚𝑖 𝑞(𝑥) = Π𝑥 (Z𝑛𝑖=1

𝑎𝑡𝑜𝑚𝑖)
UCQ 𝑞(𝑥) = ∨𝑛

𝑖=1
𝐶𝑄𝑖 𝑞(𝑥) = ⋃𝑛

𝑖=1
𝐶𝑄𝑖

JUCQ 𝑞(𝑥) = ∧𝑛
𝑖=1

𝑈𝐶𝑄𝑖 𝑞(𝑥) = Π𝑥 (Z𝑛𝑖=1
𝑈𝐶𝑄𝑖)

SCQ 𝑞(𝑥) = ∃𝑦∧𝑛
𝑖=1

∨𝑚𝑖

𝑗=1
𝑎𝑡𝑜𝑚

𝑗
𝑖

𝑞(𝑥) = Π𝑥 (Z𝑛𝑖=1

⋃𝑚𝑖

𝑗=1
𝑎𝑡𝑜𝑚

𝑗
𝑖
)

USCQ 𝑞(𝑥) = ∨𝑛
𝑖=1

𝑆𝐶𝑄𝑖 𝑞(𝑥) = ⋃𝑛
𝑖=1

𝑆𝐶𝑄𝑖

B EXISTENTIAL VARIABLES IN RULES
An existential rule ∀𝑥 (𝑞1 (𝑥) → 𝑞2 (𝑥)) corresponds to an FO for-

mula ∀𝑥 (∃𝑦 ∧𝑚
𝑖=1

𝑎𝑖 → ∃𝑧 ∧𝑛
𝑗=1

𝑏 𝑗) and:
∀𝑥 (∃𝑦∧𝑚

𝑖=1
𝑎𝑖 → ∃𝑧∧𝑛

𝑗=1
𝑏 𝑗) ⇔ ∀𝑥 (¬(∃𝑦∧𝑚

𝑖=1
𝑎𝑖) ∨∃𝑧∧𝑛

𝑗=1
𝑏 𝑗) ⇔

∀𝑥 (∀𝑦¬(∧𝑚
𝑖=1

𝑎𝑖) ∨ ∃𝑧 ∧𝑛
𝑗=1

𝑏 𝑗) ⇔ ∀𝑥∀𝑦 (∧𝑚
𝑖=1

𝑎𝑖 → ∃𝑧 ∧𝑛
𝑗=1

𝑏 𝑗)

C PROOFS
Proof of Theorem 4.2. We prove the theorem by showing that

its contrapositive holds, i.e., if 𝑞 has some answer on D, then 𝑞𝜎
has some answer on S. If 𝑞 has an answer on D, then there exists

a homomorphism ℎ from 𝑞 to D such that ℎ(𝑞) ⊆ D where every

free variable is mapped to a constant, every existential variable is

http://webdam.inria.fr/Alice/

WWW ’24, May 13–17, 2024, Singapore, Singapore W. El Husseini, C.B. El Vaigh, F. Goasdoué, and H. Jaudoin

mapped to a constant or variable, and every constant is mapped

to itself. Moreover, the composition 𝜎 ◦ ℎ is a homomorphism

from 𝑞 to S such that 𝜎 ◦ ℎ(𝑞) ⊆ S where, by definition of a

database summary, every free variable is mapped to a constant,

every existential variable is mapped to a constant or variable, and

every constant is mapped to its image through 𝜎 . Let us now build

a homomorphism 𝑔 from 𝑞𝜎 to S such that 𝑔(𝑞𝜎) = 𝜎 ◦ ℎ(𝑞) ⊆ S:
it suffices that 𝑔 maps every variable exactly as 𝜎 ◦ ℎ does, while it

maps every constant to itself (constants have already been replaced

by their image through 𝜎 in 𝑞𝜎). Since defined this way 𝑔 maps free

variables to constants, 𝑞𝜎 has an answer on S. □

Proof of Theorem 4.5. Let us first proveΩ(𝑞,S) ⊆ 𝑞.We prove

this by induction on the depth 𝑑 of 𝑞 defined as the maximal nest-

ing of the ∧ and ∨ operators on top of CQs, with the induction
hypothesis that Ω performs rewritings (rules (1), (2) and (3) in Def-

inition 4.4) that are contained in the rewritten query. Base case,
𝑑 = 0: rule (1) rewrites 𝑞 either by (second case) itself or by (first

case) ∅, and clearly, 𝑞 is contained in itself and ∅ is contained in 𝑞.

Induction step, 𝑑 > 0: rule (2) rewrites a conjunction either by (sec-

ond case) a contained one (induction) or by (first case) ∅ that is by

definition contained in the rewritten conjunction; rule (3) rewrites

a disjunction either by (second case) a contained one (induction),

or by ∅ (first case) that is by definition contained in the rewritten

disjunction.

Let us now prove that 𝑒𝑣𝑎𝑙 (𝑞,D) = 𝑒𝑣𝑎𝑙 (Ω(𝑞,S),D). Again,
we prove this by induction on the depth 𝑑 of 𝑞 defined as the

maximal nesting of ∧ and ∨ operators on top of CQs, with the

induction hypothesis that Ω performs rewritings (rules (1), (2) and

(3) in Definition 4.4) that are equivalent w.r.t. the database D. Base
case, 𝑑 = 0: rule (1) rewrites 𝑞 either by (second case) itself or by

(first case) ∅ if 𝑞 has no answer on S, hence on D according to

Theorem 4.2, i.e., 𝑞 is equivalent to ∅ on D. Induction step, 𝑑 > 0:

rule (2) rewrites a conjunction either by (second case) an equivalent

one (induction) or by (first case) ∅ if a 𝑞𝑖 subquery has no answer

on D (induction), hence the conjunction is equivalent to ∅ on D;

rule (3) rewrites a disjunction either by (second case) an equivalent

one (induction), or by ∅ (first case) if all its subqueries have no

answer on D, hence the disjunction is equivalent to ∅ on D. □

D EXPERIMENTAL RESULTS
Query answering times (ms, logscale) with PostgeSQL on all our

LUBM databases.

Query Optimization for Ontology-MediatedQuery Answering WWW ’24, May 13–17, 2024, Singapore, Singapore

	Abstract
	1 Introduction
	2 Preliminaries
	3 Optimization problem
	4 Optimization framework
	4.1 The optimization function
	4.2 Database summarization

	5 Experimental evaluation
	6 Related work and conclusion
	Acknowledgments
	References
	A Main FO query languages used for FO-rewriting
	B Existential variables in rules
	C Proofs
	D Experimental results

