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Abstract Distributed Acoustic Sensing (DAS) is a photonic technology allowing to convert fiber-optics
into long (tensof kilometers) andwithhigh linear density (every fewmeters) arrays of seismo-acoustic sensors
which are basically measuring the strain of the cable all along the cable. The potential of such a distributed
measurement is very important and has triggered strong attention in the seismology community for a wide
range of applications. In this work, we focus on the interaction of suchmeasurements with heterogeneities of
scale much smaller than the wavefield minimum wavelength. With a straightforward 2-D numerical model-
ing, we first show that the effect of such small-scale heterogeneities, when located in the vicinity of the instru-
ments, is very different depending on whether we measure particle velocity or strain rate. Specifically, when
measuring particle velocity, the effects of small nearby heterogeneities are small whereas, when measuring
strain rate, theeffects are large. We thenprovideaphysical explanationof theseobservationsbasedon theho-
mogenization method showing that indeed, the strain sensitivity to nearby heterogeneities is strong, which
is not the case for more traditional velocity measurements. This effect appears as a coupling of the strain
components to the DASmeasurement. Such effects can be seen as a curse or an advantage depending on the
applications.

Non-technical summary Fiber optics are commonly used in telecommunications, typically for
high-speed internet. Recently, it has been shown that together with a photonic device called Distributed
Acoustic Sensing (DAS), they can also be used to record ground deformation as a function of time, some-
thing close to what a seismometer does. Such an application of fiber optics has triggered a lot of attention
among seismologists because it is an affordable and simple way to have many seismic sensors distributed
along existing or new fibers. Nevertheless, DAS records the deformation of the groundwhereas seismometers
typically record ground velocity or acceleration. This subtle difference makes DAS very sensitive to details of
thegroundsnearby the fiberoptics. This canbeagreat advantage todetect or analyzeheterogeneities that are
close to the DAS fiber. Nevertheless, it can be also a serious issue as signals from the nearby heterogeneities
can hide signals coming from far distances, typically the one used to detect earthquakes for example. The ob-
jective of thiswork is tounderstand this special sensitivity to small groundheterogeneities near the fiber-optic
cables and potentially correct it or use it.

1 Introduction
Distributed Acoustic Sensing (DAS) is a photonic tech-
nology allowing the conversion of fiber-optics into long
(> 100 km) with high linear density (every few meters)
arrays of seismo-acoustic sensors. Applications were
first developed in the fields of exploration and reser-
voir monitoring (e.g., Mateeva et al., 2012; Daley et al.,
2013) and relied on both dedicated fiber-optic (FO) ca-
bles and medium coupling set up to improve the qual-
ity of the recordings. The attachment of the Fiber Op-
tic (FO) cable to both its cable jacket and the ground is
known to strongly affect DAS measurements (e.g., Papp
et al., 2016). In 2017, Lindsey et al. demonstrated that
DAS acquisitions could be performed on pre-existing
telecomFO cables and provide valuable earthquake sig-
nals, matching the sensitivity of standard seismome-
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ters down to frequencies of a few tenths of Hertz (Hz).
Typically, those telecom cables are simply pulled in un-
derground conduits, and the FO is decoupled from the
outer jacket (so-called loose fibers), two setup condi-
tions that should not favor good-quality recording. Yet,
experience shows that gravity and friction, while not
optimal, are usually sufficient to reach the data mini-
mum quality required for many applications. The po-
tential of DAS to leverage existing FO cables was later
expanded to seafloor telecomcables (e.g., Lindsey et al.,
2019; Sladen et al., 2019; Williams et al., 2019): in this
case, the cables have several additional protective and
rigid layers to prevent damage from fishing activities
or seafloor abrasion. The possibility of leveraging the
immense and global network of telecom cables, both
on land and at sea, is decisive in the current devel-
opment of the technology to monitor diverse signals
such as those from cars, boats, insects, marine mam-
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mals, seafloor currents or sea-ice formation (van den
Ende et al., 2021; Rivet et al., 2021; Wang et al., 2021;
Bouffaut et al., 2022; Mata Flores et al., 2022; Baker
and Abbott, 2022). But, piggybacking on existing ca-
bles implies little to no control over how the fiber is de-
ployed and couples to the medium. While DAS-related
studies often assume uniform coupling (e.g., Mateeva
et al., 2014; Kuvshinov, 2016), in practice DAS data can
show great variability in sensitivity and fidelity between
neighboring sensors, with a signal-to-noise ratio (SNR)
often lower than state-of-the-art seismic sensors (e.g.,
Mateeva et al., 2014; Wang et al., 2018). Even experi-
ments with dedicated and optimized cable setups can
showmany localized signatures, such as amplitude dis-
continuities or phase jumps, which are difficult to inter-
pret and hinder our ability to fully assess the sensors’
response. A common difficulty in understanding local-
ized signatures is the inability to reach the cable sec-
tions of interest and diagnose them, for instance when
the cable is in the casing of a borehole, in underground
conduits, or on the seafloor. Another major difficulty
can stem from the nature of the DAS measurement it-
self: because DAS measures the local strain or strain
rate, the measurements are more sensitive to local cou-
pling variations, local changes in topography, or elas-
tic constants in the medium than if it were particle dis-
placement or velocity point measurements, like with
seismometers (e.g., Harrison, 1976; Gomberg and Ag-
new, 1996; Berger and Beaumont, 1976). This difference
in sensitivity has been explored theoretically, experi-
mentally, and numerically by van Driel et al. (2012) and
Singh et al. (2020). Here, following these two works, we
focus on the impact of heterogeneities smaller than the
minimum wavelength, illustrating their impact on the
DAS data through numerical simulations and theoreti-
cal considerations.
The paper is organized as follows: we first recall

the principles of DAS measurements and present ex-
amples of potential interaction between seismic waves
and scales much smaller than the minimum wave-
length. We then present a numerical experiment in-
volving small heterogeneities showing similar spatial
variations. Finally, we interpret these effects in light
of the homogenization theory before discussing the re-
sults and concluding.

2 Principles of DASmeasurements
To understand how small-scale heterogeneities might
influence the measurements, it is important to recall
what DAS interrogators are effectively measuring. The
basic principle is to track changes in the optical path
along the FO by analyzing Rayleigh back-scattered light
(Nakazawa, 1983). Rayleigh scattering is caused by the
interaction between the laser light and molecular de-
fects in the silica glass which are much smaller than
the injected wavelength. The distributed nature of DAS
measurements ismadepossible by the omnipresence of
these defects in the FO waveguide and the ability to lo-
cate isolated changes along the fiber path with the two-
way travel time of light. For FO aligned with the x-axis,
thanks to the elastic nature of the FO for small deforma-

tion, it is possible to relate optical phase variations ∆Φ
over a segment LG to its strain εDAS (e.g., Hartog, 2017):

εDAS(x, t) = λ

4πnξLG
∆Φ(LG; x, t) , (1)

where λ is the laser wavelength used to probe a FO
of optical index n. ξ is assumed to be constant, typi-
cally 0.79 in single-mode fiber, and acknowledges that
straining the fiber also implies a proportional change in
its refractive index. εDAS is often approximated as being
equal to the local longitudinal strain, but the recorded
signal can involve some additional terms. The ability
to track small phase changes ∆Φ is related to the wave-
length of the laser source, which is very small (typically
1550 nm, the telecom standardwhichminimizes optical
attenuation), allowing some interrogators to go beyond
10−12ε/

√
Hz sensitivity over 10 km (e.g. Ogden et al.,

2021). The sampling frequency is limited by the need
to recover the back-scattered light of a laser pulse be-
fore launching a new one and the need to stack mea-
surements to reach a reasonable SNR.
Depending on if the phase difference ismeasured rel-

ative to a reference one or the previous one, DAS sys-
tems will provide strain or strain-rate data respectively.
Thermal fluctuations can also cause phase changes but
are assumed negligible when looking at periods shorter
than a few minutes (e.g. Bakku, 2015), which is the
case for most DAS applications. The width of the laser
pulsewill control theminimumdistance overwhich the
phase can be independently averaged, generally a few
meters. Smaller pulses are possible and provide higher
resolution, but are usually not favored because of the
lower SNR. Thus, the receiver spacing called the gauge
length (LG), cannot be smaller than the pulse width
which is predefined in any acquisition. Standard DAS
acquisitions use a gauge length of around 10-20 meters
which offers a good trade-off between the spatial reso-
lution and the SNR in seismic applications (Dean et al.,
2017).
In its simplified form, DAS measurements can be de-

scribed as the difference in the horizontal velocity at the
endpoints of gauge length segments. To go from the ac-
tual strain rate ε̇ (the time derivative of ε) along the FO
cable to the corresponding DASmeasurement ε̇DAS, one
has to take into account the effect of the gauge length
LG. For a FO cable alignedwith thex-axis and assuming
a homogeneous medium it takes the form (Wang et al.,
2018):

ε̇DAS(x, t) = 1
LG

∫ x+LG

x

ε̇(l)dl

= 1
LG

∫ x+LG

x

∂

∂t

∂u

∂l
dl

= vx(x + LG, t) − vx(x, t)
LG

, (2)

where l is a position along the fiber and vx is the x-
component of the particle velocity. For most applica-
tions, the gauge lengthLG mainly behaves like amoving
average in the spatial domain. But for high-frequency
applications, the seismic wavelength will become com-
parable to the gauge length which may also cause alias-
ing and amplitude distortions (Lomnitz, 1997; Dean
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et al., 2017; Hubbard et al., 2022). Another smooth-
ing effect is because the Rayleigh back-scattering is
not monitored by the DAS interrogator at single points
along the FO cable, but over a length defined by the
pulse width (Dean et al., 2016). The pulse width is typ-
ically 5-10 times smaller than the gauge length mean-
ing that its smoothing effect ismore limited than for the
gauge length and has an effect only at higher wavenum-
bers. In the following, we assume the effect of the pulse
width can be neglected.

3 DASobservation small-scale anoma-
lies

To illustrate the variability commonly observed in DAS
acquisitions, we plot the record of a local magnitude
2.7 earthquake aftershock (Fig. 1) acquired on a tele-
com cable in the southwest of France (Lon: 4.650, Lat:
44.550 at 22:14 UTC French national seismic network
RéNaSS ). This data sample is part of a campaign or-
ganized to record the seismicity following the damag-
ingMW 4.9 earthquake of November 11th, 2019 (Cornou
et al., 2021). The DAS system is an AR-1 first-generation
system from the Febus Optics company, configured to
record strain rate at 400 Hz with a gauge length of
9.6 m and spatial sampling of 3.2 m. The FO cable
mainly follows countryside roads to form aV-shape net-
work of 4375 sensors over 14 km: the north arm of the
cable measures approximately 8 kilometers in length,
whereas the east-west arm is approximately 6 kilome-
ters in length. In Fig. 1b, we can distinctly identify
the P and S phase arrivals and propagation across the
array. The amplitude of the wavefield changes signif-
icantly at the scale of several to hundreds of channels
(tens to thousands of meters). Most of that variability
should be related to changes in the coupling conditions
of the fiber. There might be also an influence of local
changes in the fiber orientation relative to the wave-
field, to which the DAS response is strongly sensitive
(Bakku, 2015; Martin, 2018). Many of the sections with
large amplitudes have long-lasting signals (several sec-
onds) with significantly slower phase velocities: these
correspond to diffracted surface waves caused by the
presence of slower near-surface material, and possibly
low-velocity fracture zones further trapping seismic en-
ergy (Cheng et al., 2021; Lior et al., 2022). We also ob-
serve many signals that are difficult to associate with a
propagating seismic wave. An example of such signals
is highlighted by a white box in Fig. 1(b) and by a cyan
box in Fig. 1(c). They have the following characteristics:

1. they display rapid spatial changes present in most
frequency bands. Their spatial width (appar-
ent wavelength) is mostly independent of the fre-
quency band, (but their wave shape details can
change);

2. they appear for all/most times for a given position
along the fiber.

The first characteristic is not compatible with a wave
dispersion relation. Indeed, following the dispersion
relation, awavefieldwavelength is expected to be longer

and longer for lower and lower frequencies. The sec-
ond characteristic is, in general, not compatible with
wave propagation, (unless we have a plane wave prop-
agating perpendicular to the FO). A signal that displays
both characteristics is unlikely to be a classical propa-
gating wave signal and is referred to as an “anomaly” in
the rest of the paper.
To explore the small-scale anomalies, we band-pass

filter this dataset between a low-frequency cutoff of 0.06
Hz and several high-frequency cutoffs of 3, 6, 15, or 25
Hz. For each filtered version of the dataset, we then
extract the signal at four different times for the same
900 sensors (materialized by horizontal black lines in
Fig. 1(b)). At each time, it is possible to observe a signal
related to the main seismic phases: this signal is most
visible for the larger bandpass filter (0.06-25Hz) but
tends to attenuate as we decrease the high-frequency
cutoff (15, 6, 3Hz). For instance, this filtering effect
is visible in the first and third profiles which intersect
the P and S wavefronts, shown by red and blue boxes
in Fig. 1 respectively. One particular example is high-
lighted with a magenta box in Fig. 1(c) for the S-wave.
This is not obvious because the signal is noisy, its ampli-
tude decay for lower frequencies and the signal is domi-
nated by anomalies, but it can nevertheless be seen that
the apparentwavelength is larger for lower frequencies.
This is the behavior we expect from the dispersion rela-
tion: the wavelength should change with the frequency
band such that larger wavelengths should be observed
for lower frequencies. Yet, we see that some localized
perturbations, over one or a few channels, don’t seem
to be affected by the level of filtering, and they appear
for all times (see the white and cyan boxes in Fig. 1(b)
and Fig. 1(c) respectively).
These localized anomalies could be due to the DAS

acquisition or a change in the nearby environment
of the fiber such as variations in the coupling condi-
tions, or heterogeneities in the medium. Two well-
known sources of anomalies inherent to DAS technol-
ogy are phase unwrapping errors (e.g. something di-
rectly touching the OF and causing a sudden large
strain) and laser frequency drifts (e.g. if the laser of
the DAS is affected by external vibrations). But both
effects are expected to generate anomalies at specific
times over many or all channels when our observations
show the opposite. DAS acquisition can also be affected
by fading, which is the destructive interference of the
back-scattered electric fields over the gauge length.
However, fading should manifest as low SNR channels
rather than anomalies standing out of the noise. So,
are these anomalies related to the environment of the
fiber? Concluding on this question would require a de-
tailed inspection and testing of each of the correspond-
ing fiber sections, which is beyond the scope of this pa-
per. But in the following sections, we explain how me-
chanical property heterogeneities at scales comparable
to the gauge length, and in the close environment of
the fiber, are a possible explanation. Please note that
the following numerical experiments do not constitute
modeling of the actual data setting presented here; in-
stead, they represent a simplified toy model that illus-
trates the effects we intend to emphasize.
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Figure 1 (a) Map of the telecom FO cable monitored with DAS. (b) DAS waterfall plot of an M2.7 aftershock recorded on
November 23, 2019, showing the P and S wave arrivals (c) DAS data extracted from the four black profiles of the top figure
after the DAS data had been filtered in time over different frequency bands and represented by different colors. The red and
blue boxes highlight the P and S wave arrivals. In (b), the pink box focuses on one side of the S-wave front arrival. The white
box highlights one example of the many “anomalies” mentioned in the text. In (c), the red and blue boxes correspond to the
red and blue boxes in (b). The magenta box highlights the S-wave arrival for that time, and the cyan box highlights the same
“anomaly” example as the one highlighted in white in (b). Please note that, in the cyan box, the anomaly is not visible for
t = 0.75s. This is because the seismic wave hasn’t reached the FO cable yet.
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4 Numerical Observations
In this section, we set up a simple numerical experi-
ment showing interactions of DAS measurements with
heterogeneities of sizemuch smaller than the wavefield
minimum wavelength λmin. In the following, “small-
scale” always means small relative to λmin. We consider
waves in a 2-D elastic domain Ω with absorbing bound-
ary conditions on its boundary ∂Ω, such that Ω can be
considered as an infinite plate (no waves are bouncing
on ∂Ω). In Ω, we use a (x, z) Cartesian coordinate sys-
tem of unit vectors x̂ for the x-axis and ẑ for the z-axis.
Please note that the z-axis doesn’t refer to a depth in the
present work. In Ω, the particle displacement vector
u(x, t) is driven by the elastic wave equation,

ρ∂ttu − ∇ · σ = f , (3)
σ = c : ε(u) , (4)

where εij(u) = 1
2 (∂iuj + ∂jui) is the strain operator,

(i, j) ∈ {x, z}2, ρ(x) is the density, c(x) the elastic ten-
sor, σ(x, t) the stress tensor and f the source term and
x = (x, z) the position vector in Ω. We use a point
source such that

f(x, t) = −M · ∇δ(x − x0)g(t) , (5)

where M the moment tensor, x0 the source location
and g(t) the source time wavelet. We solve (3-4) us-
ing the Spectral Element Method (SEM) (Komatitsch
and Vilotte, 1998; Chaljub et al., 2007) with Perfectly
Matched Layer (PML) absorbing boundaries on ∂Ω
(Festa and Vilotte, 2005).
In the following, for the sake of simplicity, we con-

sider FO cables deployed along the x-axis with a z-axis
constant position z = zc. To mimic the DAS mea-
surements, we record the x components of the velocity
vx(x, t) at discrete locationsLG meters apart along each
cable. This discrete set of the recording locations along
the DAS cable xi leads to a set of time series vx(xi, zc, t).
The DAS measurement can be then computed as:

ε̇DAS(xi, t) = ∆xvx(xi, zc, t)

= vx(xi+1, zc, t) − vx(xi, zc, t)
LG

, (6)

The DAS measurement corresponds to a finite differ-
ence in the cable direction, here noted ∆x, applied to
the particle velocity along the cable. In general, it is
different from the x-partial derivative ∂x. ∆x can be a
good approximation of ∂x only in some circumstances
that will be discussed later on.
In the next two sections, we present a simple 2-D nu-

merical experiment. The chosen configuration is not
intended to be fully realistic. In particular, it is not in-
tended to model the particular data setting presented
in Section 3. Rather, it is designed to highlight the fun-
damental difference between DAS measurements and
classical velocity measurements when it comes to their
interactions with nearby small-scale heterogeneities.
The experience of most seismologists is based on clas-
sical ground displacement measurements (from seis-
mometers to accelerometers) for which small-scale het-
erogeneities near the receivers have little effect. The

strong effect of such heterogeneities on DAS measure-
ments, thatwe are about to show,might benon-intuitive
for many.
The geometrical setting of the numerical experiment

is shown in Fig. 2. Ω is a 20 × 40 km2 rectangle of
slow material (VP = 0.8km/s VS = 0.5km/s, ρ =
900kg/m3), in which are embedded stiff small hetero-
geneities that we name “stones” (VP = 4.4km/s VS =
2.7km/s, ρ = 2400kg/m3). Ω can be seen an horizon-
tal plane, a kind of a top view of a real DAS experiment.
Nevertheless, it is only a partly relevant analogy of the
reality as in such a case, the free surface is not present
(see the discussion section formore about the relevance
of the modeling). Nonetheless, this simplified model
is adequate to illustrate our main point: the impact
of small-scale heterogeneities on DAS measurements.
Specifically, it effectively demonstrates the distinction
between displacement and strain measurements asso-
ciatedwith DASwhen heterogeneities of significantme-
chanical property contrast are in a close proximity to
the FO cable. 50 square shape stones of edge size in the
[20m, 30m] range, with arbitrary orientation are gener-
ated randomly. The stones’ locations are also generated
randomly but are limited to a small region around the
cables tominimize thewavefield complexity. In this nu-
merical experiment, we simulate the presence of two
FO. To mimic them, two parallel 12 km long measure-
ment lines are defined in zc = 30.18 km (FO1) and zc =
30.08 km (FO2), both parallel to the x-axis and starting
at x = 4 km. In both cases, we use a sampling rate
LG = 15m between each displacement measurement
along the lines. The line locations are chosen such that
FO1 is directly in contact with 7 stones and FO2 with
none (see Fig. 2. Please note that only 6 of the 7 stones
in contact with FO1 are visible in the zoom of Fig. 2(b) ).
The source is located 20 km away from the cables, in

the lower right part of Ω. It is an explosion (M is the
identity matrix) and g is Ricker (second derivative of a
Gaussian) with a central frequency f0 = 0.85Hz, lead-
ing to maximum frequency fmax ' 2.5Hz (see Fig. 3),
such that the background minimumwavelength λmin '
220m. λmin is thereforemuch larger than the size of the
edge of the stones (30m). The central time of the Ricker
is t0 = 2 s.
To obtain accurate modeling, it is necessary to honor

all the strong contrasts of mechanical property discon-
tinuities between the background and the stonemateri-
als with elementmesh boundaries. In 2-D, SEMmeshes
are based on quadrangular elements which can easily
be generated thanks to standardmeshing tools and usu-
ally leads to an unstructured mesh. We used the open-
source software GMSH (Geuzaine and Remacle, 2009) to
generate the mesh and a sample of its geometry is dis-
played in Fig. 2(c). In each element, we use a degree 6
polynomial approximation per direction. The mesh is
generated such that the edge length of each element is
not larger than the local minimumwavelength, making
sure that the wavefield is well sampled.
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Figure 2 Numerical experiment configuration. (a) global view of the computation domain Ω. The blue star is the source
position, the black points are the stone positions and the dotted line square is the zoom area used for the panel (b). The FO
cable positions are plotted with the solid (FO1) and the dash (FO2) horizontal lines. A snapshot of the propagating wavefield
(its energy density) for t = 18 s is also presented. (b) zoom in on the domain around the FOs and stones area. The dotted line
square is the zoom area used for panel (c). (c) zoom in on the domain closer to the cables. The black squares are the stones
in the area and the grey lines are the SEM element boundaries.
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Figure 3 The Ricker source time function g(t) (left panel)
and its amplitude spectra (right panel) used for the numer-
ical tests.

In the rest of the paper, we will use the displace-
ment and strain fields instead of the particle velocity
and strain rate. This helps to simplify the notations and
it is fully equivalent. Indeed, for our modeling, we are
using a Ricker source time function g, whereas, for an
earthquake-like source time function, we should rather
use a Ricker for the source time function rate ġ. Hence,
if the source used in our simulation is an earthquake,
our results in displacement should be interpreted as ve-
locity and, those in strain as strain rate.

4.1 Numerical experiment observations

In Fig. 4 are shown the displacement ux and the dis-
crete strain ∆xux as a function of x and time t along a
part of FO1. For both ux and ∆xux, the first and most
energetic arrival is the ballistic P wave followed by the
scattered field generated by the stones. On the displace-
ment field, the presence of stones can be seen through
the scattered field after the ballistic wave, but the fact
that some of them are directly on the cable has no or lit-
tle impact. On the discrete strain field ∆xux, it is differ-
ent: seven stones are in contact with the FO cable, and
at each contact location, a strong glitch is visible at all
times. This observation is similar to what is often seen
in real DAS measurements and previously illustrated in
section 3.
In Fig. 5, we use a trace collection representation of

the same fields, using a normalization trace by trace
maximum and zoomed on a smaller portion of the ca-
ble. Similarly, the impact of the stones directly in con-
tact with the cable (3 on this cable portion) is barely
visible on ux and obvious on ∆xux. It can be seen
that a time arrival seriesmeasured from∆xux would be
strongly perturbed by the presence of the stones, which
wouldn’t be the case on ux.
In Fig. 6 is shown ux and ∆xux as a function of x for

a given time t = 27.54 s. The presence of the stones is
visible on both fields, but their impact ismuch larger on
∆xux than on ux.
Finally, in Figs. 7 and 8, we display some of the same

observations as above but for the FO2. FO2 is parallel
to FO1 and offset by −100m along ẑ such that it is not
in contact with any stone. It is nevertheless close to
the same seven stones lying on the FO1 cable and some
others (within a distance lower than 1/10th of λmin). It

can be seen that the effect on the stones on ∆xux is not
as strong as for the FO1, but still noticeable, suggesting
that their effect decays quickly with distance but is not
purely local.
To conclude this section, we observe two types of spa-

tial variations of themeasurements along the FOcables:
variations at the scale of the minimum of wavelength
λmin and variations at the scale of the size of the stones,
or, more precisely, at the scale of the gauge length LG.
In the following, we refer to the first type of variation as
“smooth” and to the latter as “rough”. From the point of
view of a seismologist, who usuallyworkswith displace-
ment fields (or velocities or accelerations), rough varia-
tions of the wavefield in the far field are not expected.
Indeed, waves are subject to a dispersion relation, typi-
cally λmin = VS,min/fmax in homogeneousmedia, andwe
do not expect spatial variations of the wavefield smaller
than λmin. This observation, together with the fact that
the rough variations are only seen on the strain and not
on the displacement, needs to be understood. In the fol-
lowing sections, we rely on the homogenization theory
to do so.

5 Theoretical understanding of the
small-scales effect on DAS measure-
ments based on the homogenization
theory

The objective of this section is to show that

εDAS(x, t) = ε∗
xx(x, t) + [J(x) : ε∗(x, t)]xx , (7)

where x is the position along the FO, ε∗ is the strain ten-
sor computed in the “best possible effective model” and
J is a coupling tensor that is independent of time and
type of seismic source. Here, the “best possible effec-
tive model” refers to a tomographic model that is good
enough to explain the particle displacement or velocity
at the DASmeasurement positions. In the following, we
show that the coupling tensor J depends only on the
fine-scale heterogeneities near the FO. Eq. (7) carries
two important information that might not be intuitive
for seismologists used to working with local displace-
ment measurements:

1. the DASmeasurement is not just the component of
the strain tensor along the fiber axis εDAS(x, t) =
ε∗

xx(x, t) but involves a term which depends on the
other components of the strain tensor,

2. that this contamination by other components of
the strain tensor varies at the scale of the hetero-
geneities and not at the scale of the wavelength.
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Figure 4 Displacement and strain for FO1. Top left: ux(x, zc, t) amplitude. Top right: ∆xux(x, zc, t) amplitude. Bothmaps’
amplitude are normalized by their respective maximum. The gray color scale shows negative values in white and positive
ones in black. The horizontal axis is the x coordinate and the vertical axis is time. x = 4 km is the left origin of the cable.
Bottom left and right: (x, z) map of the stone positions (black squares) nearby FO1 (black line).
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Figure 5 Displacement and strain for FO1 plotted as traces collections. Top left: ux(xi, zc, t) plotted as time traces for the
xi measurement points along the fiber. Top right: ∆xux(xi, zc, t) as time traces. Each trace is normalized by its maximum
amplitude. The horizontal axis is the x coordinate and the vertical axis is time. Bottom left and right: (x, z) map of the stone
positions (black squares) near FO1 (black line).
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traces for the xi measurement points along the fiber. Top right: ∆xux(xi, zc, t) as time traces. For both plots, each trace is
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Figure 8 ∆xux along a portion of FO1 for t = 27.54 s and
along FO2 for t = 27.42 s. The two traces are normalized by
the same factor, which is the FO1maximumamplitude. The
vertical gray lines indicate thepositionsof the stones in con-
tact with FO1. The vertical cyan line indicates the position
of the nearest stone to FO2 but not in contact with it. This
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5.1 The homogenizationmethod principle

The two-scale homogenization method deals with ob-
taining macroscopic (also called homogenized or effec-
tive) equations for systems with microscopic structures
(Bensoussan et al., 1978; Sanchez-Palencia, 1980). In
seismology, a microscopic medium is characterized by
spatial variations of its mechanical properties at scales
much smaller than the minimumwavelength. By using
homogenization, all these microscopic structures are
smoothed out, that is the medium with rapidly varying
structures can be substituted with another one where
the structures are only slowly varying without chang-
ing the solution to the wave equation (but with an er-
ror that can be controlled). To this end, homogeniza-
tion has been beneficial in the forward problem to study
wave propagation in a fine-layeredmedia (Backus, 1962;
Capdeville and Marigo, 2007), to allow sparser mesh-
ing to gain computational speed (Capdeville et al., 2010;
Cupillard and Capdeville, 2018; Capdeville et al., 2020),
as well as in the inverse problem to help interpret the
results of full waveform inversion (Capdeville et al.,
2013; Capdeville and Métivier, 2018). Due to its abil-
ity to explain the interaction between the wavefield and
different scales, homogenization is a suitable method
to investigate the impact of small-scale structures on
DAS measurements, akin to its application in analyzing
the interaction of rotational measurements with small-
scales (Singh et al., 2020).
Homogenization depends on a small parameter ε de-

fined as
ε = λ

λmin
, (8)

where λ is a wavelength related to the size of the con-
sidered heterogeneities (and λmin the backgroundmin-
imum wavelength as previously defined). Even if it
doesn’t need to be the case in general, we can assume
here that λ is tied to the stone size: the smallest are the

stones the smallest is ε. Please note that no scale sepa-
ration is required to use the homogenization theory and
λ could be a user-defined resolution and is unrelated
to the actual media heterogeneity size distribution (see
Capdeville et al., 2020).
The homogenization theory also relies on a second

space variable, the microscopic scale variable defined
as

y = x
ε

. (9)

y is designed to explicitly manage small-scales while
macroscopic scales are handled by the classical space
variable x, also referred to as the macroscopic space
variable. y is a new space variable which, in the two-
scale homogenization theory, is treated as independent
from x such that any field depending on both x and y
depends on 4 space dimensions in 2-D and 6 in 3-D. It
shall not be confused with a y-axis, which we don’t use
in this work.
Homogenization is an asymptotic theory where the

displacement depends on both x and y and is thought
of as a power series in ε:

uε(x, y, t) = u∗(x, y, t)+εu1(x, y, t)+ε2u2(x, y, t)+ ... ,
(10)

where the homogenized coefficients ui need to be
found. The strain can also be expended as a power se-
ries in ε:

εε(u)(x, y, t) = ε0(x, y, t)+εε1(x, y, t)+ε2ε2(x, y, t)+...,
(11)

where the εi are the strain homogenized expansion co-
efficients. Pleasenote that, in the last two equations, the
exponent i is a power for ε and an index for ui and εi.
Themain results of the homogenization development

are the following:

1. to the leading order (in ε), the displacement is in-
dependent of the small-scale variable y:

u∗(x, y, t) = u∗(x, t) . (12)

2. the order 1 homogenized coefficient can be written
as

u1(x, y, t) = χ(x, y) : ε∗(x, t) +
〈
u1〉

(x, t), (13)

where ε∗ = ε(u∗), χ is the first order corrector (a
third order tensor) and where

〈
u1〉

can be, in gen-
eral, neglected. χ is the solution of a set of equa-
tions known as the “cell problem”. It is a static
elasticity-style of equations with a set of source
terms (Capdeville et al., 2010, 2015). It depends
only on the elastic model and neither on time nor
on the seismic source.

3. to the leading order, the strain depends on the
small-scale variable y:

ε0(x, y, t) = (I + εy(χ)(x, y)) : ε∗(x, t) , (14)

where I is the fourth order identity tensor and, for
any v, [εy]ij(v) = 1

2 (∂yi
vj + ∂yj

vi).

10 SEISMICA | volume 3.1 | 2024



SEISMICA | RESEARCH ARTICLE | DAS and small-scale heterogeneities

4. It can be shown that the equation driving u∗ is also
a wave equation but based on the effective elastic
tensor c∗ and density ρ∗ and not on the true (fine-
scale) mechanical properties (ρ, c). Moreover, c∗

can be obtained from χ. The relation of the solu-
tion χ to the elastic properties is non-linear mak-
ing the homogenization results often non-intuitive.
For example, the effective properties are almost al-
ways anisotropic even if the truemodel is isotropic.
Solving the cell problem and then finding the effec-
tive mechanical properties, in general, involves a
numerical solver. Only the layered medium case
leads to an analytical solution. In the latter case,
the homogenization theory falls back to the results
of Backus (1962). We do not expand more on this
aspect as it is not required for our discussion and
refer to Capdeville et al. (2020) for complete devel-
opment.

The order 1 effective homogenized displacement is

uε(x, y, t) = u∗(x, t) + εχ(x, y) : ε∗(x, t) , (15)

and the order 0 effective strain tensor is

εε(x, y, t) = (I + εy(χ)(x, y)) : ε∗(x, t) . (16)

The relation between the true fields and the effective
fields as defined above are

u(x, t) = uε(x, y = x
ε

, t) + O(ε2) , (17)

ε(x, t) = εε(x, y = x
ε

, t) + O(ε) . (18)

Please note that it is possible to also define the strain at
the order 1, but it is not necessary for the present study.

5.2 Homogenization applied to DAS cable
measurement

In this section, we assume the DAS interrogator is mea-
suring the strain in the cable direction, that is ∆xux =
∂xux = εxx which is true for LG → 0. This is in general
not true as the DAS gauge length LG is typically of sev-
eral meters. Nevertheless, we show in appendix A that
the fact that the gauge length is finite doesn’t affect our
conclusions.
Based on the previous section, to the order 1 in dis-

placement and to the leading order in strain, we have

ux(x, t) = u∗
x(x, t) + ε χxij(x, y)ε∗

ij(x, t) + O(ε2) , (19)
εxx(x, t) = ε∗

xx(x, t) + Ξxxij(x, y)ε∗
ij(x, t) + O(ε) , (20)

where, in the two last equations, y = x/ε and Ξ =
εy(χ). Please note that ε∗ is different from ε0 as defined
in eq. (11) and solved in eq. (14): ε∗ is the strain asso-
ciated to the order 0 effective displacement u∗ which
means it is a smooth quantity, and only depends on x.
On the contrary, ε0, the order 0 effective strain, is a
rough quantity and depends on both x and y.
Eq. (20) demonstrates eq. (7) with Jij(x) =

Ξxxij(x, x/ε). Moreover, eqs. (19) and (20) are suf-
ficient to interpret the numerical observations made
in Sec. 4.1. On the one hand, u∗

x and ε∗ only depend

spatially on the macroscopic variable x. Within the
homogenization theory, this fact implies that those
quantities are spatially smooth: their spatial variations
are tied to λmin and cannot be smaller than λmin. This
means that, if we lower the signal maximum frequency
fmax, because it implies a larger λmin, then u∗

x and
ε∗ will show spatially smoother variations. On the
other hand, the corrector χ and its gradient Ξ also
depend on the microscopic variable y. Within the
homogenization theory, this fact implies that those
quantities are spatially rough: their spatial variations
are mainly tied to the geometry of the heterogeneities
and, remarkably, changing fmax does not affect those
rough spatial variations.
Wecannow look at the interactionbetween the small-

scale heterogeneities with the displacement and strain
measurements along a FO. Knowing that the correction
terms (the product of the correctorwith the strainχ : ε∗

for the displacement field and the product of the correc-
tor gradient with the strainΞ : ε∗ for the strain field) are
rough quantities, we have:

• On thedisplacementfield, the correction is of order
1, that is with a leading ε (the small parameter de-
fined in eq. (9)). This implies that this correction is
small in amplitude, and even more so that the het-
erogeneity is small with respect to λmin. This result
is compatiblewith the observationsmade in the left
panels of Fig. 4-5, and in Fig. 6: the ux displace-
ment display spatial variations at the scale of λmin
and only a small impact of the stones can be no-
ticed,

• On the strain field, the correction is of leading or-
der: it has no leading ε. In contrast to the dis-
placement, this implies that the correction is of
large amplitude and is not related to the size of het-
erogeneities: for a given mechanical property con-
trast, a spatially small or large heterogeneity has a
similar amplitude effect on the strain. A numeri-
cal illustration of this non-intuitive effect is given in
Capdeville et al. (2020), Figs. 6 and 9. This is com-
patible with the observationmade in the right pan-
els of Fig. 4-Fig. 5, and in Fig. 6: the strain εxx dis-
plays large amplitude spatial variations at the scale
of stone size (much smaller than λmin) on top of
smooth variations.

5.3 A numerical application of the homoge-
nization theory applied to DAS

In this section, we apply the homogenization theory de-
veloped in the two previous sections to the results of the
numerical experiment presented in Sec. 4.1.
Knowing the true media mechanical properties (ρ, c)

and assuming λmin = 200m, we compute the effective
mechanical properties (ρ∗, c∗) following the homoge-
nization procedure described in Capdeville et al. (2010)
and using ε = 1. In practice, ε is a user-defined value
and ε = 1 implies that the heterogeneity scales of size
smaller than λmin are removed. To obtain a good match
between the order 0 effective displacementu∗, obtained
by solving the wave equation using (ρ∗, c∗), and the true
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Figure 9 Sample of a cross-section in the 2-D the effec-
tive media used in Sec. 5.3, along the FO1 in the [8, 9.7] km
range. Upper left panel: VS in the original media. Upper
right panel: isotropic S-velocity projection from the effec-
tive media V ∗iso

S . Lower left panel: original density (ρ) and
effectivedensity (ρ∗). Lower right panel: total anisotropy (in
%) in the effective media

displacement u, it has been shown that ε = 0.5 is good
enough for most media (Capdeville et al., 2010). Never-
theless, a smaller value for ε (from 0.25 to 0.1) may be
necessary for strongly scattering media or long signals
(Mizuno et al., 2020). Therefore, using ε = 1 in our ex-
ample, we know that the effective media is not detailed
enough to accuratelymodel the codawave, but it is suffi-
cient for theballistic P-wave. Moreover, using an ε > 0.5
corresponds to the most realistic situation where the
background velocity model is, at best, known with a
poor resolution. For more discussions about the rela-
tionship between effective media and tomographic me-
dia, one can refer to Capdeville and Métivier (2018). We
illustrate some components of the effective properties,
and how they relate to those of the original medium, in
Fig. 9.
As aforementioned, the effective media turns out to

be almost always fully anisotropic, even if the true
medium is isotropic. To represent this anisotropy of the
medium, we first compute the isotropic projection elas-
tic tensor c∗iso of the effective elastic tensor c∗ following
Browaeys and Chevrot (2004). Then, we plot in Fig. 9,
the effective isotropic S-velocity V ∗iso

S computed from
c∗iso, the total anisotropy (the matrix distance between
c and c∗iso relative to the norm of c∗iso), ρ and ρ∗. We
can now visualize that themaximum amplitude of V ∗iso

S

is much smaller than the one of VS, implying that some
induced anisotropy has been created. This is one of the
non-linear and non-intuitive effects of the homogeniza-
tion process.
An example comparing horizontal displacement

traces for a receiver located near themiddle of FO1, ob-
tained in the true medium and in the effective media is
given inFig. 10. As expected, theballisticP -wave arrival
is wellmodeled by the effectivemedia whereas the coda
wave is poorlymodeled. An accuratemodeling could be
reached by lowering ε as it is done in Capdeville et al.

26 28 30 32 34
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u
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time (s)

Figure 10 Displacement traces for a receiver located in
(10 km,30.18 km) (on the FO1) computed in the true media
(ux) and in the ε = 1 effective medium (u∗

x). The trace am-
plitudes have been normalized by the ux maximum ampli-
tude. The first arrival is the ballisticP -wave followed by the
scattered waves from the stones.

(2010) or Mizuno et al. (2020) for examples. Neverthe-
less, as explained earlier, this is not the point here.
In Figs. 11b and 11d, we compare the true horizon-

tal displacement ux recorded along FO1, to the order 0
effective displacement u∗

x and the order 1 effective dis-
placement u∗

x + εχxijε∗
ij , respectively. It shows an over-

all good match between the true solution and the ef-
fective ones. Moreover, the order 1 correction to the
order 0 effective displacement makes little difference.
This is coherent with the fact that the correction is of
order 1, which is small if the heterogeneity structures
are small compared to the minimum wavelength. In
other words, the recorded displacement is dominated
by propagating waves and not some local effect near
the sensor. Figs. 11a and 11c show a similar compari-
son but for ∆xux. Before going further, we need to ac-
count for the fact that LG is finite, which was not done
in Sec. 5.2. To the order 1 in LG, if LG � λmin, ∂x = ∆x

only for smooth quantities. For example, this is true for
u∗

x but not for ux. To the order 1 in LG, we therefore
have ε∗

xx = ∂xu∗
x = ∆xu∗

x but ∆xux 6= ∂xux. In the end,
as shown in Appendix A, we obtain for ∆xux a solution
very similar to eq. (20) but replacing Ξ by its finite dif-
ference formula Ξ̃ given in eq. (28) to obtain

∆xux(x, t) = ε∗
xx(x, t) + Ξ̃xxij ε∗

ij(x, t) + O(ε, LG) . (21)

Please note that, in the general case where the medium
is not smooth at the LG scale, Ξ̃ and Ξ are differ-
ent. Nevertheless, they both only depend on the ge-
ometry and mechanical properties of the true fine-
scale medium. In Fig. 11a, we see that ε∗

xx is indeed
smooth at the minimum wavelength scale. It matches
the DAS measurement ∆xux away from the stones and
they strongly differ near them. In Fig. 11c, we see that,
when the corrector Ξ̃ : ε∗ is added, the effective solu-
tion matches the DAS measurement including nearby
the stones. Let’s finally mention that, in Figs. 11c and
11d, a better agreement between the effective solution
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Figure 11 True and effective measurements comparison
for FO1. Panel a: reference cable measurement (∆xux)
and strain of the order 0 finite difference effective displace-
ment (ε∗

xx). Panel b: displacement (ux) and order 0 effec-
tive displacement (u∗
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ment (∆xux) and theorder 0effective strain (ε∗
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ij).

Panel d: displacement (ux) and order 1 effective displace-
ment (u∗

x + εχxijε∗
ij). For each panel, the amplitudes have

been normalized by the absolute maximum amplitude of
the signal.

and the true solutions could be obtainedby simply using
a smaller ε.

6 Discussion

In section 3, after some simple filtering and techni-
cal considerations, we have shown that field DAS mea-
surements candisplay anomalies: short distance spatial
changes in the recorded wavefield that are not compat-
ible with wave propagation and its dispersion relation.
Such anomalies can be attributed to abrupt changes in
the soil-cable coupling conditions or changes in the ca-
ble direction. In this work, we have shown that small-
scale heterogeneities near the fiber optics can have a
strong effect and are another possibility also able to
explain such anomalies. Whenever possible, trench-
ing of cables onland and offshore is done in homoge-
neous soft soils to simplify the operations and optimize
coupling. Under these conditions, the impact of small-
scale anomalies can be limited. However, cables in-
stalled for telecom, whether it is on land or offshore,
are likely encountering numerous small-scale hetero-
geneities and abrupt changes in the coupling conditions
(cable passing a bridge, an underwater canyon, migra-
tion of seafloor sediments covering or uncovering cable
sections...).
We have numerically tested the effects of these small-

scale heterogeneities on DAS measurements. In those
tests, we have used only simple square shape stiff het-
erogeneities in a simple 2-D setting, but were able to re-
produce key characteristics of the DAS measurements
(e.g. high wavenumber signatures mostly insensitive to
temporal filtering). We expect other shapes, other ve-
locity contrasts (e.g. soft heterogeneities), and other lo-

cations (e.g. near the free surface), 3-D and free sur-
face effects to produce a wide range of different effects
on DAS measurements. Nevertheless, thanks to the
homogenization arguments employed here, we know
that what matters is the fact that a DAS is measuring
a component of the spatial gradient of the wavefield.
Hence, we anticipate a significant impact from the var-
ious types of heterogeneities, including free surface
fine-scale topography (Capdeville and Marigo, 2013),
surpassing that on the displacement field. However, a
comprehensive investigation is still needed to precisely
determine the extent to which small-scales affect DAS
measurements.
Some practical aspects of the DAS measurements

about the laser pulse width and the fact that measure-
ments are often overlapping (the number of measure-
ments is larger than the FO length divided by the gauge
length) have not been accounted for. Nevertheless, if
these details have an impact on the exact shape of Ξ̃ and
its formula, it doesn’t change the overall conclusion of
this work. Taking into account these different details
of the DAS measurements would not change the overall
strain components coupling.
If our study has been carried out in 2-D, a very sim-

ilar result would be found in 3-D. Indeed, similar cor-
rectors and coupling effects are obtained in 3-D (Cupil-
lard and Capdeville, 2018). Small-scale topography also
leads to similar effects (Capdeville and Marigo, 2013).
Therefore, we expect that going to 3-D or including to-
pography would not change the overall message of this
work.
The overall message of the present work is that DAS

measurements sensitivity to nearby heterogeneities of
scale much smaller than the minimum wavelength is
much higher than for displacement, velocity, or accel-
eration measurements. Our numerical experiments as
well as our theoretical development based on homoge-
nization show that this sensitivity is characterized by a
coupling of the different components of the strain (rate)
localized in the vicinity of each heterogeneity. This re-
sult is compatible with the correlation of DAS and ar-
ray strain measurement differences with surface geol-
ogy observed in data (Muir and Zhan, 2022). This is also
compatiblewith the observed rotational-strain coupling
due to small-scale topography and heterogeneity (van
Driel et al., 2012; Singh et al., 2020).
When using DAS data, these small-scale interactions

can be both bad or good news depending on the ob-
jective. On the bad side, the fact that DAS measure-
ments are very sensitive to small local heterogeneities is
a problem for most seismic wave applications based on
wave propagation such as tomographic methods of any
kind. Indeed, imaging the earth’s interior at all scales
is out of reach and every tomographic method needs
a non-zero minimum resolution to make the inverse
problem tractable. In the case of displacement mea-
surements, it is possible to find this minimum resolu-
tion because displacement is a smooth quantity which,
in the homogenization framework, means that only de-
pends on x (at least at the leading order) and on the
effective mechanical properties. Therefore, if we have
no hope of finding the true mechanical properties at
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all scales, we can find the effective mechanical proper-
ties. Indeed, we know by construction that the effective
mechanical properties have a non-zero minimum res-
olution, and we can show that a tomographic method
can find, at best, the effective properties of the earth
(Capdeville and Métivier, 2018). In other words, a to-
mographic method needs the effective displacement u∗

as data because it only depends on (ρ∗, c∗), which is
tractable for an inverse problem. In practice, we can
still use the true displacement u as data because it hap-
pens that it is a good approximation of u∗ (u = u∗ to the
leading order in ε). Unfortunately, we cannot say the
same thing about ∆sux, as measured by DAS interroga-
tors, which is a bad approximation of ε∗

xx. This implies
that, to explain ∆xux data, we should invert for (ρ, c) at
all scales, which is impossible. Moreover, in practical
terms, it implies that the summation of x neighboring
DAS channels may not be equivalent to data acquired
with a gauge length x times larger. Nevertheless, as we
have seen it here, the sensitivity to the small-scale y is
only for the small heterogeneities near the sensor. In
the case of rotational sensors, it has been suggested to
invert for the corrector Ξ̃ at the sensor location together
with the tomographic image (Singh et al., 2020). It is
probably possible to do the same for DAS campaigns,
but it will be more difficult as a single DAS campaign
implies inverting for many coupling correctors (one for
every LG), compared to one per sensor in the case of a
rotational instrument. Therefore, the path to useDAS in
tomography with the same level of accuracy as for dis-
placement sensors remains to be shown. Another type
of method for which the DAS sensitivity to small local
heterogeneities is a problem is source localization. In-
deed, ignoring these effects might lead to biased esti-
mates.
On the good side, the fact that DAS is a very sensitive

instrument to small-scalesmakes it a great tool to detect
heterogeneities near the cable at the LG scale and not
at the λmin scale. Many applications can be imagined
basedon this sensitivity such as fault detectionwithDAS
in boreholes to localization of seafloor lost electric or
Internet cables. Moreover, it is possible to determine
some of the small-scale mechanical properties at the
LG scale from the determined corrector Ξ̃ components
which would be of great interest. In both cases, how to
mitigate these effects or how to use them in practice re-
mains to be studied in future works.

7 Conclusion
We have shown that heterogeneities of scales much
smaller than the minimum wavelength can have a
strong effect on DAS measurements leading to a cou-
pling of the different strain components. In the data,
these small-scale heterogeneities should appear as rel-
atively independent of the type of temporal filtering ap-
plied and not follow the classical dispersion relation-
ship. We explain this effect by the fact that DAS is mea-
suring a quantity that is close to a component of the
strain and that it can be shown that, using the homoge-
nization theory, small heterogeneity scales have amuch
stronger effect on the wavefield gradients than on the

wavefield itself. This effect can be perceived as both
advantageous (e.g. for detecting small structures) and
disadvantageous (e.g. for conducting tomography inver-
sion or locating seismic sources) depending on the type
of application.
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A Discretedifferentiationalong cables
and homogenization

The following development is similar to that in Singh
et al. (2020), appendix B. In Sec. 5.2, we have assumed
that a DAS ismeasuring the strain along the FOwhereas
they are measuring

∆xux(x, t) = ux(x + LG x̂, t) − ux(x, t)
LG

, (22)

where, for the sake of simplicity, we have assumed once
again that the cable is parallel to the x-axis. For smooth
spatial variations of ux, ∆xux is a good approximation
of ∂xux. Nevertheless, as we have seen earlier, in the
presence of localized heterogeneities near the cable, ux

is only smooth at the leading order of the homogeniza-
tion series, and not at the first order.
In the following, we use a Cartesian coordinate sys-

tem for the microscopic-scale domain (for the y vector)
in which ŷx and ŷz are the horizontal and vertical unit
vectors, respectively. We start from the order 1 expres-
sion of the x-component of the effective velocity:

ux(x, t) = u∗
x(x, t) + εχxij(x, y)ε∗

ij(x, t) + O(ε2) . (23)

Because variations along x are smooth and variations
along y are not, we can use a first-order Taylor expan-
sion only along x:

u∗
x(x + LG x̂, t) = u∗

x(x, t) + LG∂xu∗
x(x, t)

+ O(LG) , (24)
ε∗(x + LG x̂, t) = ε∗(x, t) + LG∂xε∗(x, t)

+ O(LG) , (25)

χ(x + LG x̂, y + LG

ε
ŷx) = χ(x, y + LG

ε
ŷx)

+ LG ∂xχ(x, y + LG

ε
ŷx)

+ O(LG) . (26)

Combining the five equations above and truncating to
the leading order both in ε and LG, we find

∆xux(x, t) = ∂xu∗
x(x, t)+Ξ̃xxij ε∗

ij(x, t)+O(ε, LG) , (27)

where

Ξ̃ijkl = Symij

(
χjkl(x, y + δy ŷi) − χjkl(x, y)

LGy

)
, (28)

LGy = LG

ε and Symij is the symmetric tensor with re-
spect to the i, j indexes.
If χ variations along y are oscillating at a smoother

pace than 2LG/ε, thenΞ ' Ξ̃ and eq. (27) equal eq. (20).
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Nevertheless, in general, there is no reason for the χ
variations to be smooth implying that the LG/ε sam-
pling along yx can lead to aliasing. In general, Ξ and
Ξ̃ are therefore different. Nonetheless, using Ξ̃ instead
of Ξ in eq. (20) doesn’t change the point of the paper.
It only changes the interpretation one can make of the
measurement obtained from a DAS system. Indeed,
without anyhypothesis on the regularity ofΞ, using Ξ̃ to
infer something about the underlyingmechanical prop-
erties promises to be difficult.

The article DAS sensitivity to heterogeneity scales much
smaller than the minimum wavelength © 2024 by Yann
Capdeville is licensed under CC BY 4.0.
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