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Abstract

The discovery of new functional and stable materials is a big challenge due to its

complexity. This work aims at the generation of new crystal structures with desired

properties, such as chemical stability and speci�ed chemical composition, by using

machine learning generative models. Compared to the generation of molecules, crystal

structures pose new di�culties arising from the periodic nature of the crystal and from

the speci�c symmetry constraints related to the space group. In this work, score-based
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probabilistic models based on annealed Langevin dynamics, which have shown excellent

performance in various applications, are adapted to the task of crystal generation. The

novelty of the presented approach resides in the fact that the lattice of the crystal

cell is not �xed. During the training of the model, the lattice is learned from the

available data, whereas during the sampling of a new chemical structure, two denoising

processes are used in parallel to generate the lattice along the generation of the atomic

positions. A multigraph crystal representation is introduced that respects symmetry

constraints, yielding computational advantages and a better quality of the sampled

structures. We show that our model is capable of generating new candidate structures

in any chosen chemical system and crystal group without any additional training. To

illustrate the functionality of the proposed method, a comparison of our model to other

recent generative models, based on descriptor-based metrics, is provided.
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1 Introduction

The discovery of new materials with desired properties is challenging. We are particularly

interested in the search for novel stable crystal structures. Discovering new stable crystal

structures is of paramount signi�cance, since there is an acute need to �nd new materi-

als with certain characteristics. From the practical point of view, it is di�cult to discover

a new material with given properties. Traditionally, new materials are found through la-

borious experimental research, where human experts apply their knowledge, intuition, and

understanding of mechanisms together with some simple heuristics to discover new chemical

compounds. In recent decades with the advent of powerful computers and the density func-

tional theory (DFT), it has become possible to estimate the stability of hypothetical crystal

structures using high-throughput numerical simulations. This, in turn, allows new materials

to be discovered through extensive brute-force screening. However, this approach is still far

from being e�cient, as the computation is extremely expensive in terms of CPU resources.

Machine learning o�ers a completely di�erent approach. In essence, machine learning can

be thought of as automated learning from data. Methods can be designed to make predictions

or decisions by learning structures and discovering patterns in existing data. More recent

models are trained to generate new instances, with similar properties to those in the training

data. Applied in the context of materials discovery, generative machine learning methods

can provide fast and viable solutions to problems that are otherwise expensive and di�cult

to solve.

1.1 Background

Given the huge search space in which new materials could be found, the application of

machine learning methods can be of great help. However, this type of approach requires

a large amount of data to explore the search space. In the case of the crystal structures,

the available data is very limited. Another major problem is the representation of chemical
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crystal structures. Careful engineering of feature sets and e�cient data representation are

crucial for building scalable and e�ective machine-learning models.

Genetic algorithms are among the oldest statistical methods used in materials science.

They have been considered for searching the complex chemical space, but their application is

computationally too expensive for systems with more than two di�erent elements.1,2 Recent

advances in machine learning methods propose surrogate algorithms for materials science

applications that are cost e�ective compared to genetic algorithms. This research direction

seems to be fruitful.3 Some promising results have been reported on the prediction of chem-

ical and physical properties.4 The relationships between structure and properties have also

been investigated.5,6 Note that there is no single optimal machine learning method for all

materials science applications, so Support Vector Machines (SVM) were used to predict re-

action outcomes of syntheses of templated vanadium selenites.7 Random Forests (RF) were

successfully applied to predict catalyst performance in C-N coupling reactions.8 Deep learn-

ing has been used to predict the reactivity of reaction combinations with high accuracy.9 A

number of papers report promising results on machine learning for chemical synthesis.10�12

The XGBoost model was tested on a trial-error synthesis process of single crystals to predict

their crystallisation propensity.3 Note, however, that it has also been reported that data

mining methods for chemical applications, e.g. for the synthesis of inorganic-organic hybrid

materials, are still rather limited.7,10

An important part of machine learning algorithms are generative models, which aim

to produce new data points that resemble the data shown during training. Best known

for their ability to generate realistic images, generative models are capable of mimicking

many other types of data, including text, video and, most notably, chemical structures.

Finding and extrapolating relevant patterns in data is at the heart of new data generation.

Generative models have shown their e�ciency and some promise for the generation of new

materials. Most generative models are based on the construction of a material latent space

to encode the information of the data set. This continuous material vector space is then used
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to generate new data points, such as crystal structures. It is also possible to introduce a

mapping between a generated material and the desired property, leading to data generation

with given properties.13

Recently, various generative deep learning models, have been adapted to the general

task of suggesting new stable material candidates, most of which are based on either vari-

ational autoencoders (VAE)14�17 or generative adversarial networks (GAN).18�20 Notably,

a recent method explores the latent space of a trained VAE generative model aiming at

targeted exploration of chosen chemical systems.21 Generative machine learning models are

even more developed in the domain of molecular generation,22,23 with many examples re-

lying on string representations of molecules.24,25 A number of deep learning architectures

for materials science applications have been developed.26�30 Some of the �rst attempts to

generate new candidate structures using machine learning methods used 3D voxelised image

representations,14�16,19 since the generative models were originally applied in the computer

vision and image processing communities. Other approaches have used atomic coordinates

and lattice parameters directly.18,20 However, an important problem is that these representa-

tions are not invariant to the isometries of the space. Graph neural networks are widely and

successfully exploited in molecular chemistry31,32 and also in crystal property prediction33�36

and do not su�er from this drawback. In addition, they can capture the local structure quite

accurately. On the downside, they often struggle to capture the long-range dependencies

that are crucial in periodic materials.

Score-based models37�39 have been reported to achieve the state-of-the-art generative

performance. These models are motivated by non-equilibrium thermodynamics and the

main idea is to learn a process that gradually corrupts an input by adding Gaussian noise.

The transformations used to reconstruct the input are learned. After a number of iter-

ations, a score model is able to reconstruct the input from nothing but Gaussian noise.

The score-based generative models have recently been developed for the generation of 3D

molecules.31,32,40
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1.2 Problem de�nition

In this work the goal is to develop a model for the generation of new stable crystal structures

that incorporates known symmetry constraints of chemical structures, while being more

�exible and expressive than existing methods. Furthermore, we seek a method that generates

structures with user-speci�ed chemical composition (up to equivalent symmetric positions),

so that it can be applied to any chemical system of interest. There are several major hurdles

to the application of generative models in materials science. Firstly, the data available

is very limited: the open-access Materials Project41 database contains just over 33, 000

stable structures. This is much less than used for the training of generative models in

other �elds. In image processing, for example, there are databases containing several million

observations or more. Secondly, the nature of the data is quite speci�c, as the structure

should ideally be represented in a way that is invariant to the rigid transformations of

space such as rotations and translations. Furthermore, an important characteristic of a

crystal structure which makes it particularly di�cult to generate but has to be taken into

account, is its periodic nature. This challenge has recently been addressed by using graph

representations of chemical compounds.42�45 However, the proposed methods still lead to

suboptimal performance.

1.3 Our contributions

We challenge to overcome the drawbacks of the state-of-the-art methods, and our contribu-

tion is manifold:

� First, we propose a score-based model for chemical structures with periodic nature,

namely crystals. To the best of our knowledge, we are the �rst to propose a method

that applies the score-based model not only to the atomic site coordinates, but also to

the lattice itself. This double denoising process results in a better exploration of the

search space and leads to a much more meaningful generation of candidate structures.
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� Second, our model takes the number of symmetrically non-equivalent atoms per element

as an input. Therefore it can be directly used for the task of targeted exploration of

systems of any desired composition without additional training.

� Third, our model respects the given constraints of a chosen space group, by using a

novel symmetry-consistent multigraph description. This helps to capture long-range

patterns and improves the quality of the generated structure.

� Finally, the proposed approach is validated on the stable structures of the Materials

Project database. Our numerical experiments consist of three parts. Firstly, the per-

formance of our model is compared to that of alternative state-of-the art models using

statistical metrics. Secondly, it is shown that our score-based model is able to generate

existing crystal structures that were not seen by the algorithm during training. Lastly,

examining structures that are generated by our model by computing their electronic

and mechanical stability by DFT/phonon calculations, we identify original unknown

structures of great relevance.

1.4 Organization of the paper

Section 2 introduces the crystal structure notations used in our paper. Section 3 provides a

general formulation of the Score Matching with Langevin Dynamics (SMLD) model for new

data generation. In Section 4 we adapt this approach to the speci�c problem of generating

new crystal structures. Finally, Section 5 presents the results of numerical experiments

carried out using our model.

2 Notations

A crystal structure is described by a unit cell (arrangement of atoms) and its Bravais lattice,

which de�nes the periodic conditions. The unit cell is a region of space bounded by a
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parallelepiped de�ned by three lattice vectors and the number, nature and position of the

atoms contained in that region of space. A crystal structure is then generated by replicating

and translating the unit cell according to its lattice vectors. Formally, we de�ne a crystal

structure as M = (A,L,X,H) ∈ AN ×RN×3×R3×3×H, where the following notations are

used:

1. A ∈ AN denotes the composition of a structure with N atoms per unit cell. It indicates

the chemical element of every atom in the unit cell and A is the set of all chemical

elements.

2. L = (l1, l2, l3) ∈ R3×3 denotes the lattice matrix de�ning the form of the unit cell. The

whole structure is invariant to translations of the form k1l1+k2l2+k3l3, (k1, k2, k3) ∈ Z3.

Alternatively, the lattice can be de�ned by the lengths a, b, c of its vectors and the

angles α, β, γ between them, denoted by L6 = (a, b, c, α, β, γ). This representation is

invariant to the choice of the coordinate system. When angles are �xed, we also use

the representation given by L3 = (φ(a), φ(b), φ(c)), where φ(x) = k log(exp(x/k) + 1)

for some positive real number k. Note that L3 takes its values in R3, while the lengths

(a, b, c) are necessarily positive real numbers.

3. X ∈ RN×3 is the matrix of atomic Cartesian coordinates of the atomic positions that are

not equivalent with respect to the symmetry operations. Therefore, XL−1 corresponds

to the matrix of the atomic coordinates relative to the unit cell. Note that X is usually

much smaller than the full matrix of all atomic coordinates, since there are a lot of

equivalent atomic positions in most structures.

4. H ∈ H = {H1, ..., H230} denotes the crystallographic space group de�ning symmetry

constraints for the structure.46 A space group H contains the symmetry operations

H = {hi, i ∈ 1, ..., |H|}. For a given space group, it holds that X and hi(X) de�ne the

same atomic positions, up to permutation, for all i ∈ 1, ..., |H|. Moreover, by the sym-

metry constraints of H, the position of one atom may determine the position of some of
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the other atoms in the unit cell. Hence, storing all atomic positions is redundant, and

in our model for every set of equivalent positions, we only keep track of the position

of one of the atoms. Some of the symmetry groups also put constraints on the lattice.

Depending on the space group H, the lattice is bound to be either triclinic (H1, H2),

monoclinic (H3, ..., H15), orthorhombic (H16, ..., H74), tetragonal (H75, ..., H142), hexag-

onal (H143, ..., H195), or cubic (H196, ..., H230).

3 General score-matching with Langevin dynamics model

Data is assumed to be a sample from an unknown probability distribution with density p(x)

de�ned over the data space. The goal is to learn how to sample from this distribution. The

classical statistical approach is to construct a density estimate, say p̂, and sample directly

from p̂. Alternatively, one can use Langevin dynamics of the form

dX(t) = s (X(t)) dt+ σdB(t), (1)

where X is the process of interest, t is the time, B is a Wiener process and s is the Stein score

of the distribution p de�ned by s(x) = ∇x log p(x). At x, the score points in the direction of

higher density. Intuitively, the process X(t) tends to push towards the high density regions

of p. More formally, one can show that, with σ =
√
2, the invariant distribution of this

process is p, i.e., as time t becomes large, the distribution of X(t) tends to the distribution

p. Thus, the process X can be used as a sampling method, since simulating the process X(t)

yields a distribution close to p, which corresponds to our goal.

From a physical point of view, − log p(x) can be seen as an the energy function U(x)

of a system in state x and p(x) is the corresponding Gibbs distribution for a given choice

of the temperature. In this case, the score s in the �rst term of the stochastic di�erential

equation (1) corresponds to −∇xU(x), which pushes the system towards a minimum of its

energy function, while the second term represents the external forces.
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Our generative model has two main parts: training and sampling. First, during the

training, the score s has to be learned from the available data set. Typically, a deep neural

network parameterized by θ is trained to give an estimate sθ. Second, new data points are

sampled from p using score matching and annealed Langevin dynamics. An Euler scheme is

used to obtain a numerical approximation of the Langevin process.

3.1 Score matching

Let D = {x1, ..., xn} be a dataset of sample size n with unknown distribution p and p0(x̃) =

1
n

∑
x∈D δx(x̃) the associated empirical distribution, where δx is the Kronecker delta. As p0

is not di�erentiable, it cannot be used to construct an estimate of the score s. However, a

smooth density estimate is given by the Gaussian kernel density estimator p̂σ de�ned by

p̂σ(x̃) =
1

n

∑
x∈D

fNdim(x)(x,σ
2I)(x̃),

where fNdim(x)(x,σ
2I) denotes the multivariate Gaussian density of dimension dim(x) with

mean x and covariance matrix σ2I, where I is the identity matrix and dim(x) the dimension

of x. Denote pσ the limit of p̂σ when n→∞, which can be expressed as

pσ(x̃) =

∫
fNdim(x)(x,σ

2I)(x̃)p(x)dx. (2)

Now, for training the score, say sθ(·, σ), which may be parameterized by a neural network,

the straightforward objective function is the mean squared loss between the score estimate

and the score of p̂σ given by

Ex̃∼p̂σ

[
∥sθ(x̃, σ)−∇x̃ log p̂σ(x̃)∥22

]
. (3)
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However, the calculation of ∇x̃ log p̂σ(x̃) is expensive, but instead, one can use another

simpler objective given by

ℓσ(θ) = Ex∼p0,x̃|x∼Ndim(x)(x,σ
2I)

[∥∥∥sθ(x̃, σ)−∇x̃ log fNdim(x)(x,σ
2I)(x̃)

∥∥∥2

2

]
. (4)

It has been shown that these two objectives, equations 3 and 4, are equivalent,47 where two

objectives ℓ1 and ℓ2 are said to be equivalent if ℓ1 = αℓ2 + β for some α > 0, β ∈ R. In

particular that means that gradient descent optimization will yield the same result when

performed on either objective.

The gradient on the right-hand side of (4) has a simple analytical expression, which is

convenient for its numerical evaluation. However, the expectation is not explicit, but can

be approximated by Monte-Carlo simulations. In our case, we use minibatch sampling to

estimate ℓσ(θ). Let {x1, ..., xm} be a minibatch of size m, then for every xi, i ∈ 1, ...,m we

sample one data point x̃i ∼ Ndim(xi)(xi, σ
2I) that is used to compute an empirical counterpart

of ℓσ(θ). That is, the objective becomes

ℓ̂σ(θ) =
1

m

m∑
i=1

[∥∥∥sθ(x̃i, σ)−∇x̃i
log fNdim(xi)

(xi,σ2I)(x̃i)
∥∥∥2

2

]
. (5)

When the sample size n tends to in�nity, the minimizer sθ∗(x̃, σ) of (5) equals the score

of the distribution pσ almost surely.

Clearly, the choice of the value of σ has an impact on the result. If σ is small, p̂σ (and pσ)

is a multimodal density, where all mass is concentrated on small neighbourhoods of the data

points. As a consequence, an iterative sampling procedure is likely to get stuck in a mode

with no means to escape from it. On the contrary, a large value of σ implies a �at density

p̂σ, which favours the exploration of the whole data space during sampling, but which is a

rather biased estimate of the target distribution p.

To address this issue, one may use Langevin dynamics,38 that consists in combining the

solutions for a prede�ned set of decreasing noise levels σ1 > ... > σF > 0 with F being the

11



number of noise levels. This approach provides stable score estimates, and during sampling

all modes of the distribution may be reached. The score sθ is trained by minimizing the

following objective, which is a weighted average of the loss functions de�ned above, given by

L(θ) =
F∑

k=1

wkℓ̂σk
(θ). (6)

By choosing the weights as wk = σ2
k, the terms in the sum in (6) are of nearly the same order of

magnitude.38 As such, no particular noise level is prioritized over others. For computational

reasons, we use a unique neural network sθ to estimate the score for all noise levels. To

distinguish the scores corresponding to di�erent noise levels, we pass the noise level σk as

one of the inputs to the neural network that provides the estimate of the score of pσk
.

3.2 Sampling

The trained estimator sθ is used for sampling. The Langevin dynamics process in (1) can be

approximated by the Euler scheme

xt = xt−1 +
ϵ

2
s(xt−1) +

√
ϵzt, (7)

where zt has standard normal distribution Ndim(xt)(0, I) and ϵ is the step size. Under con-

venient assumptions, the scheme converges to the stationary distribution of the Langevin

dynamics Stochastic Di�erential Equation (SDE). Using this scheme and starting from some

randomly initialized data point x1,0, T iterations according to equation (7) are performed.

The �nal value x1,T can be considered as a realization of pσ1 and is used as the initial value

for the sampling at the next noise level, that is, we set x2,0 = x1,T . The noise parameter σ1

should be large enough, so that the process is unlikely to get stuck in a local maximum of

the pσ1 , and the data space can be explored rapidly. The next Langevin simulation samples

from pσ2 and the result is used as the initialization for the sampling from pσ3 and so on, until
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we obtain a sample from pσF
. Since we need the �nal distribution pσF

to be close to p, one

should choose σF to be small enough.

4 New crystal score-based model

Here we develop a score-based model speci�cally tailored for the generation of crystal forma-

tions. Our approach is such that the user can choose the elements and their composition in a

new structure that is generated by the model. This o�ers the possibility of a targeted search

taking into account prior expert knowledge or the practitioner's intuition. More precisely,

to sample a new structure M = (A,L,X,H) the user �rst chooses the composition A and

also the symmetry space group H, which helps the algorithm to sample realistic structures.

We restrict our attention to space groups whose lattices are neither triclinic or monoclinic.

For all these crystal systems, i.e., for H ∈ {H16, ..., H230}, the angles between the lattice

vectors are �xed in the conventional lattice representation. Thus, it is su�cient to consider

the generation of the lengths of the lattice vectors. As mentioned above, the transformed

vector lengths L3 are real-valued, which is convenient for adding Gaussian noise to the

denoising process.

Now, in our model, the Langevin dynamics process is applied to both the atomic coor-

dinates X and the lattice parameters L3, as shown in Figure 1. Note that X and L3 are

objects of di�erent nature which is new compared to existing score-based models, where the

denoising process typically acts only on a single type of object. To handle this issue, we

consider the processes on X and L3 separately. That is, the score s is separated into two

parts, one related to the atomic positions, and another corresponding to the lattice. We note

them s|X and s|L3 respectively. Likewise, the global loss function L introduced in (5) can be

split into two terms, say L|L and L|X , such that the two scores s|X and s|L3 can be learned

separately. More precisely, when training the score estimate sθ|X , noise is added only to the

Cartesian atomic coordinates, while the lattice remains unchanged. Fixing the lattice here
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Figure 1: Model training. While learning the positions score sθ|X , the lattice remains un-
changed. While learning the lattice score sθ|L, both the lattice and the atomic positions are
perturbed. Orange arrows correspond to the score estimates given by the model as shown
on Figure 3.

makes sense from a physical standpoint, because otherwise the objective would depend on

the choice of the lattice. However, for the training of sθ|L3 , noise can be added to both the

atomic coordinates and the lattice parameters, since the deformation would depend on the

lattice anyway.

To obtain a �exible model, we choose di�erent step sizes and noise levels for each of the

Langevin dynamics processes in our model. Let (ϵX,k)k and (ϵL,k)k be the step size sequences

for the atomic coordinates and the lattice parameters, respectively. They are de�ned as

ϵX,k = γX σ2
X,k/σ

2
X,F , ϵL,k = γL σ2

L,k/σ
2
L,F ,

where {σX,i}Fi=1, γX and {σL,i}Fi=1, γL are two di�erent sets of parameters. For the sake of

faster convergence we choose low temperatures for the lattice Langevin process by addi-

tionally multiplying the noise term by a factor of 0.15. The resulting lattices are likely to

be rather close to a local maximum of the associated probability density function. For the

atomic positions, we keep the normal temperature for a better exploration of the sample

space.
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Figure 2: Sampling with annealed Langevin dynamics. Orange arrows correspond to the
steps of the Langevin dynamics simulations, as shown in Figure 3. The sample from the
most perturbed distribution, corresponding to σ1 is used as initialization for the subsequent
dynamics, denoted as σ2.
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As illustrated in Figure 2, the sampling process starts o� with a randomly initialized

structure, with lattice parameters drawn from a Gaussian distribution and atomic coordi-

nates sampled uniformly in the unit cell. Then, one iteration of the equation (7) is done

in two steps. First, the atomic positions are updated, and then a step over the lattice

parameters L3 is done. Our learning procedure is drafted as Algorithm 1.

Note that the actual number of atoms in the structure is not �xed due to the symmetry

constraints of the chosen space group H. For example, if an atomic position x coincides

with all of its symmetric positions, i.e., h(x) = x for h ∈ H, then there is a single atomic

site corresponding to x in A. However, if all symmetric positions are di�erent, that is,

h(x) ̸= h̃(x) for all h, h̃ ∈ H and h ̸= h̃, then there are |H| atomic sites in the structure

corresponding to x. Therefore, as the atomic positions are modi�ed during sampling, it may

happen that the number of atoms changes.

Algorithm 1 Sampling with Langevin dynamics

Require: {σX,k}Fk=1, γX ▷ Position denoising process coe�cients
{σL,k}Fk=1, γL ▷ Lattice denoising process coe�cients
T ▷ Step count per noise level

Output: X,L ▷ Atomic positions, lattice parameters

Initialize X1,0, L1,0 ▷ Initial atomic coordinates and lattice parameters
for k ← 1 to F do

ϵX,k ← γX σ2
X,k/σ

2
X,F ▷ Atomic positions step

ϵL,k ← γL σ2
L,k/σ

2
L,F ▷ Lattice parameters step

for t← 1 to T do

Draw zX,t ∼ Ndim(X)(0, I)
Draw zL3,t ∼ N3(0, I)
Xk,t ← Xk,t−1 +

1
2
ϵX,ksθ|X(Xk,t−1, Lt−1, σX,k) +

√
ϵX,kzt

Lk,t ← Lk,t−1 +
1
2
ϵL,ksθ|L(xk,t−1, Lt−1, σL,k) + 0.15

√
ϵL,kzl,t

end for

Xk+1,0 ← Xk,T

Lk+1,0 ← Lk,T

end for
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4.1 Multi-graph representation

The data points (A,L,X,H) are complex objects that are not conventional for machine

learning. In addition, using the atomic coordinates X is prohibitive because this representa-

tion is not invariant to rotations and translations. Thus, the choice of an appropriate data

representation is an important issue.

First, we denote by X ′ the coordinates of all positions obtained by applying symmetry

operations h ∈ H to the atomic positions in X, which contain only one position for each set

of equivalent positions in the real structure. Note that the number of coordinates in X ′ can

be larger than the number of actual atoms in a structure, since some of the positions in X ′

may correspond to coinciding symmetric positions.

As in some other material generation models,17,31 we adopt a multi-graph crystal repre-

sentation (V,E,W ), which has the desired invariance properties, while preserving all struc-

tural information. In our graph representation, however, the graph vertices V correspond to

atomic positions in X, i.e., non-equivalent atomic positions within the unit cell. The edges

E correspond to the interatomic bonds, such that one end of the bond is in X and the other

is in X ′. However, since there is a single node for each set of equivalent positions in X ′,

these bonds create multiple edges and self-loops in the graph representation. Another source

of multiple edges and self-loops is the periodicity of the structure since each atom can be

connected to multiple copies of each atom obtained by the periodicity. W are the angles

between these edges, i.e., angles W (i, j, k) = αijk formed by triplets of nodes (i, j, k) such

that (i, j) ∈ E and (j, k) ∈ E.

Introducing symmetry relations into the multigraph helps to account for the long-range

atomic relationships within the structure.

Additional details can be found in the Supplementary Information.
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4.2 Graph neural network

With the multigraph representation at hand, it is natural to use Graph Neural Networks

(GNNs), a class of deep neural networks that operate on graph data. The forward pass of

a GNN generally consists of iteratively updating the multigraph representation by passing

messages from each node to its neighbours. In the context of crystal generative models, a

GNN learns an appropriate edge output to estimate the score function, as elaborated further

below. All the steps of the score evaluation are illustrated on Figure 3 and are represented

by the orange arrow in Figures 1 and 2.

Figure 3: Score estimation, representing the orange arrow in Figures 1 and 2. The crystal
structure is de�ned by its lattice parameters L3 and the atomic positions X. All symmetric
positions X ′ are added. A multigraph is then constructed and passed to a graph neural
network estimator that outputs the score.

Here, we describe the estimation of the score s|X , while the case of s|L is presented in

Section 4.3. Recall that for a given pair of vertices, say i and j, there may be multiple edges

eijk due to the periodicity of the structure. For each edge eijk, denote by dx(eijk) ∈ R3 the

vector of the di�erences between the coordinates of the associated atomic sites. Let wijk be

the real output provided by the GNN for edge eijk. Then, the score of the atomic coordinates

of a given node i with coordinates xi is obtained as a weighted sum of normalized vectors

dx(eijk) over all edges originating at this node, that is,

sθ|X(xi) =
∑

j∈N(i)

∑
k:eijk∈E(i,j)

wijk
dx(eijk)

∥dx(eijk)∥
,
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where N(i) is the set of neighbours of node i and E(i, j) is the set of multiple edges between

i and j. Since we want a unique score vector for each set of symmetry equivalent atomic

positions, the scores for nodes xi that were added by symmetries are not evaluated. In other

words, the score is calculated only for the positions in X ′ that are also present in X.

A �nal post-sampling step is added to the procedure, which removes some of the atoms

in X ′ that we consider to come from symmetry operations applied to special positions in

the unit cell. More precisely, any two atoms obtained by applying symmetry operations to

an atomic site are considered to be the same atom if the distance between them is less than

a given threshold, which we �x to 0.3Å. Thus, it is the number of non-equivalent atomic

positions that is �xed, not the exact composition.

Our implementation uses a Dimenet++ graph neural network34 as the estimator for our

model, which uses Bessel basis representation for the interatomic distances and Fourrier-

Bessel basis representation for the angles between bonds in its message passing function.

The original Dimenet++ aggregates the messages in the atoms and performs pooling over

the node features at the end, producing an output in the form of a vector for the whole

structure. However, our method requires an output for each edge in the graph, so we modi�ed

the output blocks by replacing the dense layers on the atomic features with dense layers on

the edge features and removing the pooling.

4.3 Crystal cell generation

The lattice, which de�nes the periodicity of the crystal structure, is not unique. Usually,

either the conventional unit cell or the primitive unit cell is used. The former can have up

to 4 times more atoms in face-centered cubic unit cell, but the constraints it has to respect

are much simpler than those of the primitive cell. There is an invertible mapping between

the two types of the unit cell, so we assume that for each primitive unit cell there is a

corresponding conventional unit cell and vice versa.

As the symmetry constraints are easier to handle in the conventional unit cell, we consider
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a Langevin process acting on the lattice parameters of the conventional unit cell and aim

to learn to denoise them. However, a large number of atoms in the unit cell implies more

stringent requirements in terms of memory and the execution time for the GNN. Therefore,

to estimate the score of the perturbed conventional unit cell parameters, we still use the

multigraph representation associated with the corresponding primitive cell which we feed to

the network.

During training, the noise ∆L3, which is added to the lattice representation L3, has to

be computed. The aim of lattice score training is such that the GNN computes an estimate

of s|L3 =
∆L3

σk

. Note that changing the lattice also changes the Cartesian coordinates of the

atomic sites, and the estimate of ∆L3 is based on the changes in relative distances between

atoms induced by the deformation of the lattice.

More speci�cally, given a multigraph representation (V,E,A) of the structure, for each

edge e ∈ E the network provides the amount of contraction/dilatation ∆de of the distance

de between the atoms associated with edge e due to the lattice deformation. Independently,

the gradient Ge = ∇L3de of de with respect to the conventional lattice parameters L3 is

approximated numerically. Indeed, for a su�ciently small lattice noise ∆L3, it holds that

⟨Ge,∆L3⟩ ≈ ∆de, where ⟨a, b⟩ denotes the scalar product between a and b. So, ∆L3 is

naturally approximated by
∆de,θ Ge

∥Ge∥22
, a colinear vector with the gradient that changes the

edge length by the predicted amount. We then take the mean of these estimates for all edges

e, yielding the �nal estimate of the noise of the lattice parameter given by

∆L3,θ =
1

|E|
∑
e∈E

de,θ Ge

∥Ge∥22
.

The lattice score estimate sθ|L is then given by sθ|L =
∆L3,θ

σk

.
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5 Numerical results

In this section the performance of our model is assessed. First, it is compared to other re-

cently developed generative models via structure descriptor-based metrics on a set of struc-

tures sampled by the di�erent models. Then, the model's capacity of generating known and

unknown structures is investigated for a variety of chemical systems.

5.1 Materials project data

Our study uses most of the nearly stable structures (energy above hull is below 0.1eV/atom)

available in the Materials Project41 (we accessed the data in February 2022). There are

86, 508 structures in total in our experiments.

Each structure is stored in a CIF �le containing a matrix L de�ning the lattice, and a

matrix X de�ning the atomic positions and the composition A. The space groups H were

identi�ed using the Phonopy package.48 It is important to emphasise that we did not use

any additional information about the chemical properties of the structures other than the

atomic number to identify the element species.

Figure 4: Distribution of crystal families in the dataset used in training. Monoclinic and
triclinic systems are excluded from the dataset when training sθ|L3 .

As shown in Figure 4, 30, 358 structures belong to the monoclinic and triclinic crystal
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families. While the atomic position score sθ|X is learned on the entire dataset, the lattice

score sθ|L3 does not use monoclinic and triclinic crystals in training, as we do not consider

crystal families with variable angles in conventional lattice representation. Furthermore, the

distribution of the space groups of the structures, displayed in Figure 5, is far from uniform,

with a considerable number of space groups not being represented in the data at all. We

also see that the dataset is heavily biased towards the oxygen element, which occupies 35%

of the atomic sites and with 40, 282 structures containing this atom (Figure 6).

Figure 5: Distribution of the space groups of the structures in the dataset.

As our model allows the user to specify the desired number of non-equivalent atomic

sites, we examine the distribution of the number of non-equivalent atomic sites per element

in the database. As shown in Figure 7, in most cases there are very few non-equivalent sites

per element in any structure, mostly only one or two per element. Based on this observation,

it is reasonable to expect that new stable compounds will also be of rather simple nature.

5.2 Comparison with other models

For a comparative study, we consider two recent state-of-the-art crystal generative models

as a baseline. First, the Crystal Di�usion Variational Autoencoder (CDVAE)17 is a varia-

tional autoencoder that uses a di�usion process to denoise atomic coordinates from a latent
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Figure 6: Number of non-equivalent atomic sites by element in the data set.

Figure 7: Distribution of the number of non-equivalent atomic sites per element in the data
set.
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representation. In that respect, this model is the most similar to ours. The second one is the

Physics Guided Crystal Generative Model (PGCGM),49 which uses a Generative Adversarial

Network to sample crystal structures within a given set of 20 space groups.

For a fair comparison, all models should be trained on the same dataset. We trained

CDVAE and our model on the so-called MP-20 dataset proposed in the CDVAE paper,17

which consists of the Materials Project structures that have at most 20 atomic sites in its unit

cell. We also removed the structures belonging to monoclinic and triclinic space groups, thus

reducing the number of materials in the database from 45, 229 to 36, 334. We used the same

60:20:20 split of the data into training, test and validations sets to train the CDVAE and our

model. The PGCGM material generator is publicly available albeit lacking the code to train

on new data. It is known that PGCGM is trained on data collected from Material Project,

Inorganic Crystal Structure Database (ICSD)50 and Open Quantum Materials Database

(OQMD).51

Concerning sampling, a major di�erence between our model and the other two is that

our model takes the chemical composition (up to the number of symmetrically equivalent

atomic sites) and the space group operations as input. Therefore, when sampling with our

model, we feed the model with the composition and space group of one of the materials in

the test set.

For each model, 1000 structures are generated and we compute the corresponding coverage-

recall (COV-R) and coverage-precision (COV-P) metrics proposed in the CDVAE paper,17

that are based on the comparison of the CrystalNN and Magpie �ngerprints of the generated

structures and the structures in the test set. The larger the metrics, the better generated

structures imitate the test data. More precisely, COV-P is de�ned as the proportion of gen-

erated structures that have close neighbours in the feature space among the test structures.

Inversely, COV-R is the proportion of test data structures that are close to the generated

structures. Notably, COV-P heavily depends on the size of the test dataset, while COV-R

heavily depends on the number of sampled structures.
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Inspired by the standard for the image generation task, Fréchet inception distance met-

ric,52 we propose to consider two similar metrics for crystal structures. The metric assumes

that the structure descriptors are normally distributed for both the generated and the test

data and computes the Fréchet distance between those distributions. The lower the distance,

the more similar the test and generated data are. We consider CrystalNN as the �rst de-

scriptor, and the activations of the second to last layer of the Crystal Graph Convolutional

Neural Network (CGCNN)33 as the second. The distributions were calculated based on 1000

random samples for each model.

The results are displayed in the Table 1, where we note these metrics FD for Fréchet

Distance. In case of the PGCGM model, since the model generates structures from only 20

space groups, we also compute the comparison metrics with the test data containing only

structures from the same 20 space groups, the result shown in numbers between parentheses.

The sharp drop in COV-P can be explained by the dependence of the metric on the size of

the test data set. We see that our model performs well across the board outperforming or

nearly matching the performance of the other models.

Table 1: Comparative study of our model to PGCGM and CDVAE using various metrics.
Values of the metrics for 1000 randomly picked stable structures.

Model COV-P COV-R FD CrystalNN FD CGCNN

This work 0.972 0.965 0.102 0.682
PGCGM 0.944 (0.864) 0.76 (0.765) 0.225 (0.303) 4.359 (4.209)
CDVAE 0.982 0.862 0.199 0.703

1000 stable
structures

0.998 0.968 0.012 0.044

Finally, to examine the validity of the proposed metrics, we also evaluate these metrics for

1000 stable structures randomly chosen from the training dataset. Since we can assume that

these structures come from the same distribution as the test structures, the corresponding

structure descriptors should also have close distributions, resulting in close to perfect metric

values. We observe from Table 1 that the results are matching these expectations, supporting

the validity of the chosen metrics.
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5.3 Sampling known stable structures

The goal here is to assess the ability of our model to generate stable structures, which are

not used during training. Here and further below we used our model trained on the complete

Materials Project dataset as described in the Section 5.1. First we did a 9:1 train-test split,

using the test data to track the loss and choose the stopping point.

Some of the experimentally observed structures are not included in the training data set,

in particular those structures that are unstable at 0K and no pressure. Taking advantage of

this fact, we attempt to sample these structures with our model by providing the correct space

group and elemental composition, that is, the number of non-equivalent positions for each

element. This way, we hand-picked 36 structures that have been observed experimentally in

the Materials Project, but are not included in the training set. These 36 structures have been

chosen to provide a set of samples as representative as possible of the whole chemical space

(di�erent crystal families and di�erent types of chemical bonds). For each structure, we then

generate 50 samples with the same number of non-equivalent positions, with the space group

symmetries �xed in advance, and perform DFT relaxation on the output structures. This

results in several original structures being found in the generated samples, some of them are

shown in the Table 2. The complete list of tested structures with their material project IDs

can be found in the Supplementary Material.

In total, we were able to reconstruct 11 of the 36 structures, while others are close but

have di�erent atomic arrangements. Concerning the lattice parameters in the reconstructed

structures they may be slightly di�erent from those in the original structures, but these

deviations can simply be corrected by applying the DFT relaxation scheme.

Thus, we conclude that our model is able to reproduce known structures with a large

number of di�erent space groups across all targeted crystal families. In particular, the lattice

denoising is indeed able to capture the desired lattice shape, while adapting to the constraints

imposed by the chosen space group.
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Table 2: Some of the experimentally known structures that were successfully generated by
the model when the correct composition and the space group were given as input.

Elements Crystal family
and space

group number

Generated
structure

before DFT
relaxation

Lattice
parameters of
the sampled
structure, Å

Lattice
parameters
according to
Materials
project, Å

Li-Mg-P Cubic, 216 4.43 4.08

Ta-Mn-O Hexagonal, 191 5.207, 3.12 5.1, 3.07

Cr-Co-P Orthorhombic,
62

3.386, 5.889,
6.949

3.52, 5.73, 6.68

Tl-Cd-S Hexagonal, 187 4.81, 6.33 3.89, 7.08

Ce-In-Cu Hexagonal, 194 5.398, 7.592 4.74, 6.73

Mn-Ca-Sn Tetragonal, 129 4.471, 7.387 4.53, 7.35

Ba-Ti-O Tetragonal, 123 4.326, 5.587 4.11, 5.04

Pu-I-O Tetragonal, 129 4.0, 6.7 4.01, 9.47
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5.4 Generating new stable structures

To test the ability to generate new stable crystal structures, we attempt to sample new

stable ternary compounds. We chose several chemical systems with no known stable ternary

compounds in most of them. As for the space group, we prioritize 32 of the most common

(Figure 5) space groups, sampling 60 structured per space group per composition. Taking

into account the distribution of the number of non-equivalent atomic sites per element (Fig-

ure 7), which has to be �xed before sampling, we chose one or two non-equivalent positions

for each of the three elements in the composition, with a total of at most four non-equivalent

sites per structure.

We have tested our model for several compositions in several systems. Table 3 displays

those that are considered to be the most stable by DFT and we also validated their me-

chanical stability by additional phonon calculations. It turns out that with the estimated

formation energy, these structures lie close to the convex hull formed by other known bi-

nary con�gurations composed of the same elements and calculated under the same DFT

conditions.

Table 3: Samples for compositions with no known stable ternary compounds.

Chemical
system

Crystal family
and space
group

Generated
composition

Heat of
Formation,
kJ/mol

Energy from
the Hull,
kJ/mol

Cu-Si-K Orthorhombic,
Pnma

Cu2KSi -5.29 +0.61

Fe-Ta-Sn Orthorhombic,
Fmmm

Fe2TaSn -8.96 +4.14

Sb-Ta-V Hexagonal,
P63̄/mmc

SbTa2V3 -12.55 +1.57

Al-K-Pd Hexagonal,
P6/mmm

Al3KPd6 -55.77 +15.38

Although no structure seems to support the known ground state, it appears that the

generated phases are close to stable and remind us of the di�culty of discovering higher-order

compounds (more than binaries, such as ternary compound). The method demonstrates its
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Figure 8: Example of new generated stable compounds veri�ed by �rst-principles calcula-
tions. The phonon dispersion curves indicate no imaginary frequency. The electron local-
ization function (ELF) is mapped onto the range 0 (blue) to 1 (red) and represents the
probability of �nding an electron in the neighbourhood space of a reference electron located
at a given point.

great adaptability to a variety of problems by showing that it is able to generate phases with

di�erent symmetries. A closer look at Figure 8 also reveals the rich diversity of the proposed

lattices, with lamellar structure (Cu2KSi) or more compact phases (SbTa2V3), sometimes

magnetic compounds (Fe3Ta2Sn, M = 0.5µB) and a variety of chemical bonds: iono-covalent

(Al3KPd6, Cu2KSi), or metallic (Fe3Ta2Sn).

One of the challenges to be addressed in the near future is to speed up the generative

process to explore the chemical composition space more extensively. However, one has to

keep in mind that the veri�cation procedure by DFT calculation remains costly but necessary,

as an accurate regression is still not precise enough.
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6 Conclusion and outlook

Our model successfully applies a score-based generative method to the task of generating

new materials. It compares favourably with existing generative models, showing matching

or superior results in terms of the studied metrics.

The model is able to reconstruct some of the existing stable structures, in particular it

succeeds in denoising the lattice parameters together with the atomic positions. The method

performs well across a wide range of space groups and lattice systems, and is not restricted

to compositions of a certain number of chemical elements.

We have also shown that the model is capable of generating entirely new stable structures.

The model generates structures with a chosen space group and composition, which can

be potentially useful in determining the structure of experimentally known materials with

unknown unit cells. More generally, the model may be combined with any random sampler

of compositions and space groups.

It is noteworthy that only the atomic numbers have been entered to indicate the nature

of the selected elements, without any additional information such as chemical descriptors

that would provide explicit correlations between the properties of di�erent elements. An

interesting line of research involves the integration of such prior chemical knowledge to

further enhance the model's performance.

At present, sampling a single structure takes several minutes, which in turn makes vali-

dation of the model cumbersome. The main bottleneck of the current implementation is the

construction of the multigraph, which is performed on CPU and is not yet parallelized.

Another possible valuable extension of the model consists in conditioning the model on

the exact composition of the desired structure. At present, the number of non-equivalent

sites is �xed in advance, but the �nal ratio of total sites per element still varies widely, which

is not always desired.
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7 Data and Software Availability

The implemented code along with the used data is available online at https://github.com/

findooshka/diffusion-atoms.
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