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Abstract

In this work, we derive a posteriori error estimates for a class of doubly nonlinear and degenerate el-
liptic equations, including the Stefan problem and fast and slow diffusion in porous media. Our approach
employs equilibrated flux reconstructions, providing guaranteed and fully computable upper bounds on
an energy-type norm and local efficiency. These bounds remain independent of the strength of nonlin-
earity and degeneracy rates. These estimators drive an adaptive solver, dynamically switching between
nonlinear solvers to achieve optimal iterations. The adaptive algorithm accounts for discretization,
regularization, quadrature, and linearization error components. When Newton’s method encounters
challenges in achieving convergence, the adaptive algorithm transitions to the L-scheme solver. This
solver optimally precomputes the stabilization (or tuning) parameter L > 0 during an offline phase, mir-
roring the behavior of the Jacobian. The adaptive algorithm is exemplified through four prototypical
examples, showcasing its effective error control and notable computational savings.

Key words: degenerate elliptic equations, fast and slow diffusion, a posteriori error analysis, local efficiency,
adaptive linearization, switching criteria

1 Introduction
In this article, we present an adaptive solver designed to approximate doubly degenerate elliptic equations
of the Stefan and porous media forms, characterized by the expression β(u)−∆ϕ(u) = f +∇·ξ. Our paper
focuses specifically on addressing scenarios where both ϕ and β lack uniform Lipschitz continuity. This is
particularly relevant in cases such as the fast diffusion model [25], which is non-Lipschitz at infinity, or when
these functions are not Lipschitz-continuous at specific points, as observed in slow diffusion. We also allow for
the possibility of plateaus in these functions. These degenerate elliptic equations hold significant relevance
in various fields, particularly in porous media applications such as density-dependent groundwater flow
modeling [17] and immiscible two-phase flow problems [39, 40]. Additionally, they find crucial applications
in biology [29, 41] chemistry [55], and material sciences [7]. It is of utmost importance to highlight that
the solution operator of this model not only showcases nonlinearity and degeneracy but also may displays
a striking transition between two distinct degeneration rates, which is contingent on the specific choices
of ϕ and β. Consequently, the diffusion process becomes singularly perturbed, potentially resulting in
collapsing effects. To effectively address this challenge and ensure numerical stability, common remedies
include exploring a regularized version of the problem [23] or reformulating the system with a different
form of nonlinearity [9]. These approaches are employed, possibly in combination, to address degenerate
cases, especially those featuring double degeneracy with potentially distinct rates, and effectively manage
the resulting singular effects.

The purpose of numerical methods for Partial Differential Equations (PDEs) is to approximate the so-
lution, as precisely as possible, to the underlying continuous solution. Accurately approximating complex
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PDEs can be challenging, especially when errors are intertwined, arising from various sources such as dis-
cretization, regularization, and linearization errors. To effectively address these challenges, the use of a pos-
teriori error estimates becomes crucial. A key property of a reliable a posteriori estimate [30, 34, 35, 32, 33]
is its ability to quantify the error in the numerical approximation accurately, making it suitable for guiding
adaptive algorithms. Adaptive algorithms enable efficient approximation of localized features in the solution
even with intricate features. Considerable progress has been made in recent years regarding a posteriori
analysis for linear elliptic equations [31, 52, 16]. However, rigorous a posteriori error estimates for nonlinear
elliptic problems, particularly in degenerate cases, remain a less-explored area [48, 44]. Explorations into
degenerate parabolic equations have also been undertaken [11, 21], typically under the assumption that
nonlinearities are globally Lipschitz-continuous.

Ongoing efforts are dedicated to designing robust and efficient linearization schemes tailored for degen-
erate elliptic and parabolic problems [51, 6, 43, 50]. While Newton’s method [26] is commonly the default
choice due to its potential for quadratic convergence, it encounters challenges when the initial solution is not
sufficiently close. In order to control degeneracy, Newton’s method often involves the introduction of regu-
larized versions of nonlinear functions. Another strategy is to explore globally convergent solvers such as the
L-scheme, Picard, or damped Newton’s methods; however, this comes at the trade-off of slower convergence.
For instance, the L-scheme has demonstrated unconditional convergence for many model problems, but it’s
slow and only linearly convergent [47]. The quest for a balance between robustness and speed has spurred
the development of hybrid solvers, as explored in [6, 45]. In this context, multiple iterations of a slower
scheme are employed to generate an initial approximation for Newton’s method. This strategy was further
refined in [53], where a switching criteria between the L-scheme and Newton’s method for the Richards
equation was guided by an a posteriori error estimator.

Addressing doubly degenerate elliptic problems presents an additional challenge for nonlinear solvers,
demanding robustness in handling scenarios involving singular and double degeneracy [48]. Specifically,
ϕ and β do not necessarily have to be Lipschitz-continuous or single-valued. This entails developing or
combining solvers capable of adaptive switching and termination, all while selecting the appropriate regu-
larization parameters and/or formulation [4, 20, 9]. Figuring out when to stop or switch solvers depends
on a key connection to the error in how the problem is discretized. A posteriori error analysis stands as a
powerful tool for addressing these tasks [28, 1, 2]. It not only guides the entire nonlinear and regularization
process but also certifies errors [15]. A comprehensive review of controlling both linear and nonlinear solvers
through adaptive stopping criteria can be found in [42, 38, 5] and the references therein. When evaluating
the effectiveness of a posteriori error estimators, key attributes to consider include reliability (upper bound
for error) and efficiency (lower bound for error). Ideally, the constants in the upper bounds should be
explicit, independent of PDE data, and finite-dimensional approximation parameters. The requirement of
having a constant-free upper bound, coupled with a lower bound featuring constants ideally independent of
model parameters, is particularly appealing for adaptively balancing error sources.

Building upon prior contributions, we extend our focus to adaptive solvers tailored for addressing non-
linear doubly degenerate elliptic equations within conforming methods. The proposed solver dynamically
alternates between two linearization strategies: the linearly and globally L-scheme linearization and the
quadratic and locally convergent Newton’s method. Notably, in instances where Newton’s method strug-
gles with non-convergence, the L-scheme is enlisted to initiate the linearization process until an adequately
precise starting point for Newton’s method is attained. This decision is contingent on achieving a balance
between spatial and nonlinear error components. Specifically, the L-scheme persists until the linearization
error estimator drops below the spatial error estimator or becomes sufficiently small in comparison. Once
this criterion is met, the solver transitions to the Newton method. Furthermore, the choice of the regulariza-
tion parameter, final stopping criteria, and adaptive grid refinement/coarsening is informed by a posteriori
indicators derived from local flux reconstructions and saturation post-processing.

This paper is structured as follows: In Section 2, we introduce essential notation, outline the finite
element spaces employed, and describe the nonlinear degenerate elliptic model. Section 3 is focused on
presenting the discrete linearized scheme. Therein, we discuss various linearization methods and introduce
our adaptive solver, built through the formulation of a posteriori error estimators and the design of balancing
criteria. Section 4 is dedicated to the construction of the a posteriori error estimators, leveraging two error
measure based on the dual norm of the residual. We first introduce the residual and energy norms used to
evaluate the distance between the approximate solution and the exact solution and demonstrate equivalence
between the error and dual norm of the residual. Subsequently, we define the local a posteriori estimators,
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which rely on the calculated equilibrated flux and post-processed saturation. We also furnish proof of the
guaranteed upper bound, local efficiency, and robustness (with respect to the strength of the nonlinearities)
of our a posteriori estimate. Finally, in Section 5, we validate our adaptive solver through numerical
experiments involving four illustrative examples.

2 Model problem
2.1 Sobolev spaces and notations
Let Ω ⊂ Rd, with d ∈ {2, 3}, represent an open, bounded, and connected domain. We define H1(Ω) as
the standard Sobolev space of L2(Ω) functions with weak gradients in

[
L2(Ω)

]d, and V := H1
0 (Ω) as its

subspace consisting of functions with zero trace. The space H(div) denotes the set of
[
L2(Ω)

]d functions
with weak divergences in L2(Ω). The symbols ∇ and ∇· (or div) respectively represent the weak gradient
and divergence operators in Ω. For any subdomain ω of Ω, we use (·, ·)ω to denote the L2-inner product,
|| · ||ω to indicate the corresponding norm (with the index omitted when ω := Ω), and |ω| to represent the
Lebesgue measure on ω. Furthermore, we define H−1(ω) as the topological dual space of H1

0 (ω), and we
express the duality bracket between these spaces as

〈
v, w

〉
−1,1,ω

, which reduces to the L2-inner product if
v, w ∈ L2(ω). When ω = Ω, the duality bracket is denoted simply as

〈
. , .

〉
−1,1

.

2.2 Partition of Ω and finite element spaces
Let Th be a family of closed simplices, such that Ω =

⋃
K∈Th K. The partition is assumed to be conforming,

meaning that if K and L are in Th, with K 6= L, then K ∩L is either an empty set, a common face, edge, or
vertex of both K and L. We denote the set of all faces of Th by Fh, which is composed of F int

h ∪Fext
h , where

F int
h and Fext

h represent the set of internal and external (boundary) faces, respectively. The faces of an
element K are collected in the set FK . The diameter of an element K is denoted by hK , and the diameter
of a face σ ∈ Fh is denoted by hσ. We set h = maxK∈Th hK . The set of vertices of the mesh Th is denoted
by Vh, with V int

h representing the set of interior vertices and Vext
h for the set of boundary vertices. For each

a ∈ Vh, we use T a
h to denote the patch of the vertex a, i.e., all the elements K ∈ Th that share the vertex a.

We denote by ωa the corresponding open subset of Ω with diameter hωa . Additionally, we define Fa ⊂ Fh
as the set of all faces in T a

h , with F int
a and Fext

a representing its interior and boundary faces, respectively.
we define F∂Ω

a = Fa

⋂
Fext
h . For each element K ∈ Th, we collect in VK the set of vertices belonging to K

from Vh. Furthermore, for an element K ∈ Th, and for any edge σ ∈ ∂K, we define nσ as the unit normal
vector on σ pointing outside K.

Let Pp(K) represent the space of polynomials on K ⊂ Th of total degree less than or equal to p. The
set Pp(Th) denotes the corresponding space of piecewise p-degree polynomials on Th, meaning Pp(Th) =
{ph ∈ L2(Ω); ph|K ∈ Pp(K), ∀K ∈ Th}. Additionally, we consider the piecewise Raviart–Thomas–Nédélec
space RTNp(Th) ⊂ L2(Ω), defined by RTNp(Th) = {vh ∈ H(div); vh|K ∈ RTNp(K), ∀K ∈ Th}, where
RTNp(K) = [Pp(K)]

d
+ Pp(K)x. Let Πh : L2(Ω) → Pp(Th) denote the L2-orthogonal projection operator

onto Pp(Th) or (Pp(Th;Rd)). We will also need ΠRTN
h : L2(Ω) → RTNp(Th) denote the L2-orthogonal

projection operator onto RTNp(Th). For a vertex a ∈ Vh, we introduce the hat operator ψa ∈ P1(Th)∩H1(Ω)
such that ψa(a) = 1 and is zero otherwise (at other vertices), thus, supp(ψa) = T a

h . For each a ∈ Vh,
RTNp(T a

h ) and Pp(T a
h ) denote the restriction of RTNp(Th) and Pp(Th) to the patch T a

h , respectively. We
also introduce Vh := Pp(Th) ∩H1

0 (Ω) and let Qh := Pp(Th) and Wh := RTNp(Th).

2.3 Model problem and variational formulation
We consider in this paper the following nonlinear and doubly degenerate elliptic equation as the basis of
our discussion [13, 24]: find u such that

β(u)−∆ϕ(u) = f +∇·ξ, in Ω, (2.1a)
u(·, 0) = u0, in Ω, (2.1b)
ϕ(u) = 0, on ∂Ω. (2.1c)
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As a preliminary step towards establishing the weak formulation of (2.1), we address the necessary
assumptions that must hold:

(A1) ϕ : R → R is continuous and non-decreasing, further ϕ(0) = 0, and there exist M0, M1 > 0 such that
|ϕ(s)| ≥M0|s| −M1, for all s ∈ R .

(A2) β : R → R is continuous non-decreasing, and β(0) = 0, and there exist K0, K1 > 0 such that
|β(s)| ≤ K0|s|+K1, for all s ∈ R.

(A3) ϕ+ β : R → R is strictly increasing.

(A4) The source terms are such that f ∈ L2(Ω) and ξ ∈ (L2(Ω))d.

The superlinearity of ϕ(u) in (A1) ensures that u belongs to L2(Ω) (at least). Thus, the sub-linearity of β
assumed by (A2) implies that β(u) ∈ L2(Ω) as well. That, assumption (A4) implies that the resulting source
term f +∇·ξ should be understood in the sense of distribution [19, 31]. Note that further generalizations
are possible, bringing more technicalities. Assume (A1)–(A4) hold true, we introduce the weak solution to
problem (2.1): find u ∈ L2(Ω) with ϕ(u) ∈ V such that

(β(u), v) + (∇ϕ(u),∇v) = (f, v)− (ξ,∇v) , ∀v ∈ V. (2.2)

The theoretical aspects of (2.2) can be found in the seminal paper [14]. The existence and uniqueness of the
weak solution to (2.2) are established in [24], where detailed regularity properties are also presented (see
also [27]). Still following [25], one can opt for a reformulation of 2.2 using a new variable, say w, to serve
as the primary unknown in the new system, in which Lipschitz-continuous counterparts of ϕ and β are
obtained. Under Assumption (A1)–(A4), we observe that β + ϕ : R → R is a bijective function. This
allows us to define µ(s) = ζ

(
(β + ζ)−1(s)

)
and ρ(t) = t − µ(t) = β

(
(β + ζ)−1(t)

)
. These functions are

non-decreasing and have 1-Lipschitz continuity (see [24]). Problem 2.2 can be equivalently expressed as
finding w ∈ L2(Ω) with ρ(w) ∈ V such that

(µ(w), v) + (∇ρ(w),∇v) = (f, v)− (ξ,∇v) , ∀v ∈ V. (2.3)

This reformulation brings advantages for a priori error analysis in the context of conforming methods.
This is mainly because it provides more flexibility in using the chain rule and choosing suitable test functions
compared to 2.2. Specifically, the Lipshitz continuity of µ and ρ makes formulation 2.2 more suitable for
conforming methods. However, it’s worth noting that computing the inverse transform w −→ u can be
computationally demanding, and w doesn’t have a direct physical interpretation. The equivalence between
the formulations comes from the uniqueness of solutions, making both applicable for our a posteriori error
analysis. For a detailed exploration of the strengths and weaknesses in these two formulations, along with
the numerical approaches applied to (2.1), we refer the reader to [24]. This work introduces the Gradi-
ent Discretisation Method (GDM), a generic numerical analysis framework enabling a unified convergence
analysis of different discretisations [25].

3 Discrete setting and adaptive algorithm
In this section, we provide the discretized, linearized, and regularized version of the variational formula-
tion (2.2). We also detail the methodology and algorithm utilized to solve this formulation.

3.1 Discretization
To illustrate our framework, we present a conforming Galerkin method applied to (2.2). We aim to find
uh ∈ Vh satisfying the following discrete formulation:

(β(uh), v) + (∇ϕ(uh),∇v) = (f, v)− (ξ,∇v) , ∀v ∈ Vh. (3.1)

Yet, due to the necessity of mass-lumping to ensure a monotone scheme [37, 49], there is limited interest in
employing high-order methods for 3.1. However, one can still rely on the Gradient Discretisation Method
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(GDM) framework corresponding to MLFE to ensure higher-order convergence, as detailed in [26]. Further-
more, to derive any form of a posteriori error estimate from these conforming schemes, we are constrained
to assume ϕ(uh) ∈ Vh, a condition that cannot be guaranteed by the above formulation due to the lack
of global Lipschitz continuity in ϕ. To address this, we may use the discrete counterpart of (2.3), which
provide the necessary V−conformity for ρ(wh) and, by equivalence, for ϕ(uh). We shall later comment
on the implications of each formulation on the a posteriori error analysis. Nevertheless, we maintain the
generality of our presentation and analysis. Our framework covers conforming schemes where the discrete
solution uh ∈ L2(Ω) is such that ϕ(uh) ∈ V . Examples of methods fitting into our analysis include conform-
ing Finite Element methods (FE), including the Mass-Lumped version (MLFE) and Vertex Approximate
Gradient (VAG) methods [25].

3.2 Linearization
The primary challenge in addressing the non-linear and doubly degenerate problem (3.1) lies in devising a
robust linearization scheme that converges, particularly in cases where ϕ′(·) and/or β′(·) approach(es) zero.
Equally significant is the scenario where ϕ′(·) and/or β′(·) become(es) unbounded. This is of important
interest due to its potential impact on the convergence properties of the solution method. Let us assume a
linearization process is adopted to deal with nonlinearities within (3.1): At the iteration k ≥ 1, find ukh ∈ Vh
such that

(
βk−1(ukh), v

)
+
(
∇ϕk−1(ukh),∇v

)
= (f, v)− (ξ,∇v) , ∀v ∈ Vh, (3.2)

where the functions ϕk−1 and βk−1 are respectively linear approximations of ϕ(uh) and β(uh). If Newton–
Raphson’s method is used, these approximations are of the form:

ζk−1(ukh) := ζ ′(uk−1
h )

(
ukh − uk−1

h

)
+ ζ(uk−1

h ), k ≥ 1. (3.3a)

Although, Newton–Raphson’s method is quadratically convergent, it is only locally convergent and involves
the computation of derivatives; when ζ(·) degenerates, the method might fail to converge (algebraic residuals
are either stagnating, diverging or oscillating) and a remedy based on relaxation techniques is needed. We
might also need smoothing functions of ϕ(·) and β(·).

An alternative to Newton-Raphson’s method is to consider a quasi-Newton version that replaces the
exact derivative ζ ′ with an approximation. For instance, we adopt the so-called L-scheme, a quasi-Newton
method which lies between fixed-point and Newton solvers [50, 51, 58], in which the approximations in (3.2)
are simply given by

ζk−1(ukh) := L
(
ukh − uk−1

h

)
+ ζ(uk−1

h ), k ≥ 1, (3.3b)

with L > 0 is a constant mimicking the derivative of ζ. The L-scheme is linearly convergent assuming
Lipschitz continuity of ζ(·). The only requirement for the convergence of the L-scheme is that the parameter
L should satisfy L ≥ Lζ := sups |ζ ′(s)|. It has been shown that the convergence can also be obtained for
smaller values of L, e.g. for L = Lζ/2 convergence is guaranteed (see [47]) while the contraction proof
can not be ensured in this case. Also, one can choose L = maxs |ζ ′(s)|) and that’s the classical Picard
iterations (see [45] for details). Therefore, the L-scheme is robust when ζ ′(·) ≈ 0, however, when ζ ′(·)
becomes unbounded (ζ is not Lipschitz), a regularization procedure is also needed. We refer to [57] for
general sub-classes of quasi-Newton methods and particularly to [46, 6, 43] for combinations of Newton and
L-scheme or Picard iterations.

3.3 Regularization
The regularization approach involves introducing a smoothing function, denoted as ζε, for a parameter ε > 0.
This smoothing function ζε(·) : R → R is monotone and Lipschitz continuous,

0 ≤ |ζ ′ε(s)| ≤ Lζε <∞, ∀s ∈ R. (3.4)

Let uεh be the regularized solution, defined by the recursive sequence uε,kh ∈ Vh, ∀k ≥ 1, such that
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(
βk−1
ε (uε,kh ), v

)
+
(
∇ϕk−1

ε (uε,kh ),∇v
)
= (f, v)− (ξ,∇v) , ∀v ∈ Vh. (3.5)

Although this regularization procedure could prove effective for an L-scheme, strict monotonicity might
be a necessary condition for the application of Newton’s method. Furthermore, if the L-scheme is employed
for the alternative formulation 2.3, regularization may not be necessary at all. It is evident that developing
an efficient solver that maintains a balance between robustness and efficiency while addressing all nonlinear
aspects of the problem necessitates combining nonlinear solvers and/or formulations. This can be achieved
through the so-called adaptive solver/variable switching [53] or parameterization [9], enabling us to leverage
the strengths of each method or formulation. In our context, we will focus exclusively on adaptive solver
switching to optimize the performance of the standard nonlinear solver tailored for our specific problem.

3.4 Adaptive algorithm
The purpose of this section is to reduce as much as possible the computational effort to solve (3.5). The
estimation and localization of distinct error components lead to the development of an adaptive nonlin-
ear solver, enabling optimal balancing of different error contributions. In doing so, one in particular can
supervise Newton iterations with an adaptive switch back-and-forth to a slower but safer algorithm, if a
convergence failure is detected.

3.4.1 Balancing criteria

Let ηk,εdisc, ηk,εreg, ηk,εqd , ηk,εosc and ηk,εlin , be respectively fully computable a posteriori estimators of discretization
error, regularization error, quadrature error, data-oscillation error, and linearization error at the k-th
iteration, such that

error(u, uε,kh ) ≤ ηk,εdisc + ηk,εreg + ηk,εqd + ηk,εosc + ηk,εlin , (3.6)

where error(u, uε,kh ) represents an energy norm, and its definition will be provided in a posteriori error
analysis in Section 4.1. To minimize efficiently the right-hand side of (3.6), we adopt suitable strategy for
each estimator so that each of will looks forward the smallest possible cost to himself, and such that the
ideal estimate is obtained. The strategy we adopt for ηk,εlin is to use an adaptive switching from the L-scheme
to Newton-Raphson’s method, i.e., we switch from the L-scheme to Newton iteration when the following
criteria is satisfied

ηk,εlin ≤ Γsw

(
ηk,εdisc + ηk,εreg + ηk,εqd + ηk,εosc

)
, (3.7)

where Γsw < 1 is a user-given weight to be chosen adaptively. The use of (3.7) implies that the L-scheme
is pursued until the L-scheme error approaches enough from the total error, which hopefully is sufficiently
good (but perhaps not!) to (re)-launch the Newton solver. This later is then continued until the following
stopping criteria

ηk,εlin ≤ Γlin

(
ηk,εdisc + ηk,εreg + ηk,εqd + ηk,εosc

)
, (3.8)

is thrown. The parameter Γlin is to be given in (0,Γsw). If the L-scheme fails to deliver a good initial
guess for Newton, the L-scheme will be pursued either with smaller parameters Γsw or until the stopping
criteria (3.8) is satisfied. The strategy we adopt for minimizing ηk,εreg is based on reducing adaptively the
regularization parameter ε so that

ηk,εreg ≤ Γreg

(
ηk,εdisc + ηk,εqd + ηk,εosc

)
, (3.9)

with a user-given parameter Γreg ∈ (0, 1). The strategy we adopt for ηk,εdisc is to adapt the space mesh; refine-
ment/coarsening so that the local discretization error estimators are distributed equally: for all K1, K2 ∈ Th,

ηk,εdisc,K1
≈ ηk,εdisc,K2

. (3.10)

To address restrictions in computing resources, we establish a fixed refinement threshold hmin > 0 for the
mesh size. This involves ensuring that

min
K∈Th

hK ≥ hmin.
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We also assume that the adaptive mesh is shape regular, i.e., that there exists a constant κT such that, for
all K ∈ Th,

max
K∈Th

hK
ρK

≤ κT ,

where hK is the diameter of K, and ρK is the radius of the largest inscribed ball of K.

3.4.2 Algorithm

Recall that uε,kh is an approximation of the solution u obtained after k linearization iterations using a
regularization parameter ε. Our algorithm, incorporating the aforementioned balancing criteria, is as follows:

Algorithm 3.1: The adaptive algorithm

(1) Choose an initial approximation uε,−1
h ∈ Vh of uh, switching parameters (Γsw,Γlin,Γreg), and a

regularization parameter ε > 0. Set k = −1.

(2) Do {Spatial adaptivity}

(I) Do {Regularization}
(A) Set k = −1.
(B) Do {Newton-Raphson}

(i) Increase k = k + 1.
(ii) Compute uε,kh using (3.3a) and (3.5).
(iii) Compute the estimators (ηk,εdisc, η

k,ε
lin , η

k,ε
reg, η

k,ε
qd , η

k,ε
osc).

(iv) if ηk,εlin increases, stagnates, or oscillates. /*Switching solver*/
(a) Reset k = −1.
(b) Do {Quasi-Newton}

(1) Increase k = k + 1.
(2) Compute uε,kh using (3.3b) and (3.5).
(3) Compute the estimators (ηk,εdisc, η

k,ε
lin , η

k,ε
reg, η

k,ε
qd , η

k,ε
osc).

While (3.7) or (3.8) is not satisfied.
End

While (3.8) is not satisfied. /*Stopping solver*/
(C) if (3.9) is not satisfied.

(i) Replace ε by ε/2.
End

While (3.9) is not satisfied.
(II) Refine or coarsen the cells K ∈ Th until (3.10) is satisfied or hK < hmin.

While (3.10) is not satisfied.

Remark 3.1 (Offline L calculation). Given that the classical stabilization parameters, such as Lϕ or Lϕ
2 ,

may not always yield optimal results, an enhancement to the adaptive algorithm 3.1 can be achieved through
a ’brute optimization’ process (see [54]). This process aims to determine the optimal parameters (Lopt

βε
, Lopt

ϕε )
by solving the optimization problem:

(Lopt
βε
, Lopt

ϕε ) := arg min
a≤Lζ≤b,ζ∈{ϕ,β}

ηk,εlin (Lβ , Lϕ; TH , ε) (3.11)
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This optimization is performed over a coarse grid TH and for a sufficiently small regularization parameter
ε. The advantages lie in the discretization-error-independent nature of ηk,εlin and the almost regularization-
independent performance of the L-scheme.

Remark 3.2 (Localized balancing criteria). We can express localized versions of the criteria on an element-
by-element basis using local estimators, ensuring their validity for all K ∈ Th. The switching criteria (3.7)
can also be tailored to balance linearization and spatial errors:

γsw

(∑
•
ηk,ε•

)
≤ ηk,εlin ≤ Γsw

(∑
•
ηk,ε•

)
, (3.12)

where Γsw and γsw are set close to one. Balancing linearization and spatial errors, especially with a small
ηk,εreg through (3.9), prevents specific errors from dominating. This delivers a smoother starting point for
Newton, avoiding oscillations and promoting stability.

Remark 3.3 (Adaptive switching). The switching parameter Γsw is to be chosen smaller if quasi-Newton’s
method fails to provide a good initialization for Newton’s method.

Remark 3.4 (Descent methods). The adaptive algorithm is valid if we replace the L-scheme with damped
Newton’s methods or any other descent solver with explicit formula of the step size [43]. The damping
parameter can be computed in the offline phase. For optimal descent methods, we must constitute a line
search rule to infer the ideal step size at each iteration.

4 Energy-type a posteriori error estimates
In the present work, we adopt energy-type a posteriori error estimates [1, 52, 32]. Classically, the derivation
of energy a posteriori error estimates is based on the definition the residual (and its dual norm) and the
mathematical link between the energy norm of the error and the dual norm of the residual.

4.1 Residuals and energy norms
Following [32], we introduce the residual operator Ru(uh) ∈ H−1(Ω), defined by

〈Ru(uh), v〉 := (β(u)− β(uh), v) +
(
∇
(
ϕ(u)− ϕ(uh)

)
,∇v

)
, ∀v ∈ V. (4.1)

Next, we let the parameter δ? be equal to 0 or 1, depending on the norm in which the error is measured.
We then equip the V space with the energy norm

‖ψ‖? :=
(
‖∇ψ‖2 + δ?‖ψ‖2

) 1
2 , (4.2)

where clearly the natural choice being ‖ψ‖? := ‖∇ψ‖ with δ? = 0. The dual norm of the residual is then
given through

|||Ru(uh)|||? := sup
ψ∈H1

0 (Ω)
‖ψ‖?=1

〈Ru(uh), ψ〉, (4.3)

which expresses by how much the trial function uh fails to satisfy (2.2). We use simply |||R(uh)||| for δ? = 0.
Note that, in the case of ϕ(u) := u and β(u) := u + g, with given g ∈ L2(Ω), that is, when (2.2) is linear
and strongly elliptic, the norm ‖ · ‖? with δ? = 1 is a natural energy norm on H1

0 (Ω). Remark also that
the chosen H1

0 (Ω)-norm delivers different continuity estimates for the equation (2.2). The sharpness of the
continuity estimate is in fact of particular interest for designing goal-oriented error estimation. For energy-
error estimation, the choice of the H1

0 (Ω)-norm affects the dual norm of the residual and leads to different
error measures. Evidently, the dual norm of the residual |||Ru(uh)|||? vanishes for uh = u (see Corollary (4.4)
for details), and this is when δ? = 0 or 1, but its actual size is unknown and its value is incomputable. Thus,
the link between these dual norms and the underlying error energy norms is necessary. To show this link,
we introduce the energy norm

||u− uh||2# = ||β(u)− β(uh)||2H−1(Ω) + ||∇ (ϕ(u)− ϕ(uh)) ||2. (4.4)
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We also introduce the weaker distance

Ju(uh) := 2
(
β(u)− β(uh), ϕ(u)− ϕ(uh)

)
. (4.5)

We have this result.

Proposition 4.1 (Residual-Energy norm). Let u be the weak formulation of (2.2) with V equipped with the
energy-norm (4.2) and let uh ∈ L2(Ω) be an arbitrary function such that ϕ(uh) ∈ V . Then, if δ? = 0, there
holds

Ju(uh) + ||u− uh||2# = |||Ru(uh)|||2. (4.6)

For δ? = 1, define the metric

||u− uh||2Σ,? := ||u− uh||2# + ||ϕ(u)− ϕ(uh)||2H−1(Ω) − ||ϕ(u)− ϕ(uh)||2. (4.7)

Then, there holds,

||u− uh||2Σ,? = |||Ru(uh)|||2?. (4.8)

Proof. To obtain the above relations, we use duality techniques as in [32, 10]. Utilizing Assumption (A2),
which ensures β(u) and β(uh) are in L2(Ω), we proceed by letting ψ ∈ V be the solution to the auxiliary
problem:

(∇ψ,∇v) = (β(u)− β(uh), v) , ∀v ∈ V. (4.9)

Clearly, we have
||∇ψ|| = ||β(u)− β(uh)||H−1(Ω). (4.10)

We replace (4.9) in (4.1) to get

〈Ru(uh), v〉 = (∇ (ψ + ϕ(u)− ϕ(uh)) ,∇v) , ∀v ∈ V. (4.11)

so that from (4.3),
|||Ru(uh)||| = ||∇ (ψ + ϕ(u)− ϕ(uh)) ||. (4.12)

By expanding the square, we obtain

|||Ru(uh)|||2 = ||∇ψ||2 + ||∇ (ϕ(u)− ϕ(uh)) ||2 + 2(∇ψ,∇ (ϕ(u)− ϕ(uh))). (4.13)

We replace the first term using (4.10) as well as we make use of (4.9) to get (4.6).
For the second identity (4.8), we let ψ ∈ V be the solution of the auxiliary problem

(∇ψ,∇v) + (ψ, v) = (β(u)− β(uh)− ϕ(u) + ϕ(uh), v) , ∀v ∈ V. (4.14)

We have first
‖ψ‖? = ||β(u)− β(uh)− ϕ(u) + ϕ(uh)||H−1(Ω). (4.15)

Then it holds

〈Ru(uh), v〉 = (ψ + ϕ(u)− ϕ(uh), v) + (∇ (ψ + ϕ(u)− ϕ(uh)) ,∇v) , ∀v ∈ V.

Thus, also

|||Ru(uh)|||2? = ‖ψ + ϕ(u)− ϕ(uh)‖2?.

Expanding the terms, utilizing the definitions of ψ and dΣ, we finally obtain

|||Ru(uh)|||2? = ‖ψ‖2? + ‖ϕ(u)− ϕ(uh)‖2? + 2
(
ψ,ϕ(u)− ϕ(uh)

)
+ 2

(
∇ψ,∇ (ϕ(u)− ϕ(uh))

)
= ‖ψ‖2? + ‖ϕ(u)− ϕ(uh)‖2? + 2

(
β(u)− β(uh), ϕ(u)− ϕ(uh)

)
− 2 ‖ϕ(u)− ϕ(uh)‖2

= ||u− uh||2Σ,?.

This completes the proof.
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Remark 4.2 (About Ju(uh)). Note that Ju(uh) is positive due to the monotonicity of β and ϕ. As
Arbogast [3] points out, the nonlinear form Ju(uh) tells us something about the error of the scheme [56, 10].
Particularly, if β = I and ϕ is Lipschitz-continuous with Lipschitz constant Lϕ, then,

1

Lϕ
||ϕ(u)− ϕ(uh)||2 ≤ Ju(uh). (4.16)

Remark 4.3 (On norm(u, uh)). Note that in the linear case, as indicated by [52], we have:

||u− uh||2 + ||∇ (u− uh) ||2 = |||Ru(uh)|||2?, ∀u, uh ∈ V. (4.17)

For the general nonlinear case, there holds

||u− uh||2Σ,? ≤ ||u− uh||2# ≤ ||β(u)− β(uh)||2 + ||∇ (ϕ(u)− ϕ(uh)) ||2, ∀u, uh ∈ V. (4.18)

Corollary 4.4 (On the weak solution). There exists one solution to problem (2.2). Furthermore, there
holds

δ?||u||Σ,? + (1− δ?)

{{
J0(u) + ||u||2#

} 1
2

}
= sup
v∈H1

0 (Ω)
‖v‖?=1

{(f, v)− (ξ,∇v)}. (4.19)

Proof. The existence of a solution is a consequence of [24, Theorem 2.9]. To show the uniqueness of the
solution under Assumption (A1)–(A4), we will see that if R(uh) = 0, we then have uh = u. Suppose that
R(uh) = 0, then from (4.6) we have immediately that ϕ(u) − ϕ(uh) = 0 and β(u) − β(uh) = 0. The use
of Assumption (A3) implies that uh = u and the uniqueness of the solution. To infer the uniqueness of
the solution from the weaker identity (4.8), we consider u, uh as two solutions of problem (2.2). We then
subtract their respective equations and let v = ϕ(u) − ϕ(uh), to get Ju(uh)/2 + ||∇(ϕ(u) − ϕ(uh))||2 = 0.
Due to the positivity of Ju(uh), it follows that ϕ(u)−ϕ(uh) = 0. The weaker error measure (4.8) also results
in β(u) − β(uh) = 0. Again, the application of Assumption (A3) implies that uh = u. Finally, obtaining
the identity 4.19 is straightforward, given that ϕ(0) = β(u) = 0 (and zero is an admissible element of V ).
We achieve this by substituting (4.3) into (4.6) and (4.8), respectively.

4.2 Equilibrated flux σε,k
h and post-processed saturation Φε,k

h

The constructions introduced in this section follows closely [35], in generalization of [52]. Let us introduce
for each a ∈ T a

h , the local spatial mixed finite element spaces posed on the patch domain ωa:

Qa
h :=

{
Pp(T a

h ) if δ? > 0 or a ∈ Vext
h ,

{q ∈ Pp(T a
h ), (q, 1)ωa = 0} if δ? = 0 and a ∈ V int

h ,
(4.20a)

Wa
h :=

{
{vh ∈ RTNp(T a

h ) ∩H(div, ωa), vh · nK = 0 on ∂ωa \ ∂Ω} if a ∈ Vext
h ,

{vh ∈ RTNp(T a
h ) ∩H(div, ωa), vh · nK = 0 on ∂ωa} if a ∈ V int

h .
(4.20b)

Definition 4.5 (Notations). We denote by Iε,kh the linearized approximate flux ∇ϕ̃k−1
ε (uε,kh ) within (3.5).

The constructions given next are based on independent local mixed finite element approximations of
residual problems from (3.5) over patches of elements around mesh vertices (See Section (3.2) for notations).
As used in the above discrete spaces, the reconstructions will depend on the choice of the error measure.
To simplify the notation, we introduce the residual function rε,kh ∈ Pp(Th), rε,kh |∂Ω = 0, represented by

(rε,kh , v) := (f, v)− (β̃ε(u
ε,k
h ), v)− ((ξ +∇ϕ̃ε(uε,kh )),∇v), ∀v ∈ Vh. (4.21)

Then, for a given parameter δ? = 1 or 0, the equilibrated flux σε,kh and postprocessed saturation Φε,kh are
obtained using the following reconstructions (See Appendix A. for the local minimization problems):
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Reconstruction 1 ((σε,ka ,Φε,ka )). At each iteration k ≥ 1, and for each patch ωa, a ∈ Vh, we construct
(σε,ka , rε,ka ) := (σε,ka , rε,ka )disc + (σε,ka , rε,ka )lin ∈ Wa

h ×Qa
h such that:

(σε,ka,disc + σε,ka,lin,v)ωa − (∇·v, rε,ka )ωa = (λa,v)ωa , ∀v ∈ Wa
h, (4.22a)

(∇·(σε,ka,disc + σε,ka,lin), q)ωa + δ?(r
ε,k
a , q)ωa = (ga, q)ωa , ∀q ∈ Qa

h, (4.22b)

with

ga := Πh

(
ψa

(
f − β̃k−1

ε (uε,kh )
))

|ωa −∇ψa · (Πhξ + Iε,kh )|ωa , and λa := −(ψaξ + ψaI
ε,k
h )|ωa .

Then, we define the postprocessed saturation by Φε,ka = Φε,ka,disc +Φε,ka,lin := δ?r
ε,k
a +Πh(ψaβ̃

k−1
ε (uε,kh )) and

we extend each (σε,ka ,Φε,ka ) by zero in Ω \ ωa, (σε,kh ,Φε,kh ) ∈ RTNp(Th)× Pp(Th) is given by

(σε,kh ,Φε,kh ) :=
∑
a∈Vh

(σε,ka ,Φε,ka ). (4.23)

Reconstruction 2 ((σε,ka ,Φε,ka )disc). At each iteration k ≥ 1, and for each patch ωa, a ∈ Vh, construct
(σε,ka , rε,ka )disc ∈ Wa

h ×Qa
h such that:

(σε,ka,disc,v)ωa − (∇·v, rε,ka,disc)ωa = (λε,ka ,v)ωa , ∀v ∈ Wa
h, (4.24a)

(∇·σε,ka,disc, q)ωa + δ?(r
ε,k
a,disc, q)ωa = (gε,ka − ψar

ε,k
h , q)ωa , ∀q ∈ Qa

h, (4.24b)

with

gε,ka := Πh

(
ψa

(
f − β̃ε(u

ε,k
h )
))

|ωa −∇ψa ·
(
Πhξ +∇ϕ̃ε(uε,kh )

)
|ωa , λε,ka := −

(
ψaξ + ψa∇ϕ̃ε(uε,kh )

)
|ωa .

Then, we define the postprocessed saturation by Φε,ka,disc := δ?r
ε,k
a,disc + Πh(ψaβ̃ε(u

ε,k
h )) and we extend each

(σε,ka ,Φε,ka )disc by zero in Ω \ ωa, (σε,kh ,Φε,kh )disc ∈ RTNp(Th)× Pp(Th) is given by

(σε,kh ,Φε,kh )disc :=
∑
a∈Vh

(σε,ka ,Φε,ka )disc. (4.25)

The key properties of the above reconstructions with δ? ∈ {0, 1} are summarized in the following result.

Lemma 4.6 (Properties of (σε,kh ,Φε,kh )). Let (σε,kh ,Φε,kh ) be given by Reconstruction 1 or 2. Then it hold

1. (σε,kh ,Φε,kh ) ∈ H(div,Ω)× L2(Ω),

2. ∇·σε,kh +Φε,kh = Πhf , with

2.a. ∇·σε,kh,disc +Φε,kh,disc = Πhf − rε,kh ,

2.b. ∇·σε,kh,lin +Φε,kh,lin = rε,kh ,

3. (∇·σε,ka,disc, 1)ωa = (∇·σε,ka,lin, 1)ωa = 0, ∀a ∈ V int
h ,

4. (Φε,ka,disc, 1)ωa = (ψaβ̃ε(u
ε,k
h ), 1)ωa and (Φε,ka,lin, 1)ωa = (ψa(β̃

k−1
ε (uε,kh )− β̃ε(u

ε,k
h )), 1)ωa , ∀a ∈ V int

h .

Proof. Its straightforward to see that for any a ∈ Vh the zero extension of σε,ka is H(div,Ω)-conforming due to
the Neumann boundary condition specified in Wa

h. The properties 2.a.-2.b. use the fact that
∑

a∈VK ψa|K =

1 and
∑

a∈VK ∇ψa|K = 0. To get 2.a. (2.b. uses the same arguments), we have from (4.24b), ∇·σε,kh,disc +

Φε,kh,disc =
∑

a∈Vh ∇·σε,ka,disc + Φε,ka,disc =
∑

a∈Vh ∇·σε,ka,disc + δ?r
ε,k
a,disc + Πh(ψaβ̃ε(u

ε,k
h )) =

∑
a∈Vh{Πh(ψaf −

ψaβ̃ε(u
ε,k
h )+ψaβ̃ε(u

ε,k
h ))−ψar

ε,k
h −∇ψa ·

(
Πhξ +∇ϕ̃ε(uε,kh )

)
} = Πhf−rε,kh . To show 3, we have for a ∈ V int

h ,
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for (∇·σε,ka,?, 1)ωa = (σε,ka,? · nωa , 1)∂ωa = 0 because of the zero Neumann boundary condition in Wa
h. The

property 4 is trivial when δ? = 0, and for δ? = 1, we can remark that the source term gε,ka in (4.24b) satisfies

(gε,ka − ψar
ε,k
h , 1)ωa = 0, ∀a ∈ V int

h . (4.26)

As a result, we can use (4.24b) and property 3 to see that (rε,ka,disc, 1)ωa = 0 as well, and thus (Φε,ka,disc, 1)ωa =

(ψaβ̃ε(u
ε,k
h ), 1)ωa . We repeat the same steps to get that (Φε,ka,lin, 1)ωa =

(
ψa

(
β̃k−1
ε (uε,kh )−β̃ε(uε,kh )

)
, 1

)
ωa

.

Remark 4.7 (Cheaper flux and saturation reconstruction). In accordance with the approach outlined in
[12], it is possible to perform a reconstruction with one degree lower in the space RTNp−1(Th)× Pp−1(Th).
While this method can be satisfactory in practical applications, it is important to note that the theoretical
polynomial degree robustness (as expressed in Eq. (4.49)) may be compromised.

Remark 4.8 (On the (ρ−µ) formulation). The above reconstruction and the analysis linking the dual norm
of the residual with the underlying error energy norms in Proposition 4.1 can be adapted for the (ρ − µ)
formulation. This adjustment simply requires replacing the nonlinear functions with their counterparts
from (2.3).

4.3 Guaranteed reliability
We recall here two basic inequalities necessary in order to obtain our a posteriori error estimates. Let K be
an element of Th, we recall the Poincaré–Friedrichs inequality,

||v −Πhv||K ≤ CP,K ||∇v||K , for any v ∈ H1(K). (4.27)

Since simplices are convex, there holds CP,K = hK
π . The generalized Friedrichs inequality states that

||v||K ≤ hΩ
π

||∇v||K , for any v ∈ H1(K). (4.28)

Theorem 4.9 (A basic upper bound). Let u be the weak solution of (2.2) and let uε,kh ∈ H1
0 (Ω) be the

solution to (3.5) at the iteration k ≥ 1. Let σε,kh and Φε,kh be, respectively, equilibrated flux and saturation
reconstructions given in Section 4.2. Then, with κ? = (1− δ?)

hΩ

π + δ?, for δ? ∈ {0, 1}, we have

δ?||u− uε,kh ||2Σ,? + (1− δ?)
{
Ju(uε,kh ) + ||u− uε,kh ||2#

}
≤
∑
K∈Th

[
hK
π

||f −Πhf ||K + κ?||Φε,kh − β(uε,kh )||K + ||σε,kh + ξ +∇ϕ(uε,kh )||K
]2
. (4.29)

Proof. Recalling the flux equilibration identity 2, we get

〈Ru(u
ε,k
h ), v〉 = (f, v)− (ξ,∇v)−

(
β(uε,kh ), v

)
−
(
∇ϕ(uε,kh ),∇v

)
,

= (f −Πhf, v) +
(
Φε,kh − β(uε,kh ), v

)
−
(
σε,kh + ξ +∇ϕ(uε,kh ),∇v

)
, (4.30)

where we inserted (σε,kh ,∇v)+(∇·σε,kh , v) = 0. The next step is to estimate each term in (4.30) elementwise.
For each element K ∈ Th, we use the identity (g − Πhg, v)K = (g − Πhg, v − Πhv)K , for all g ∈ L2(Ω), to
obtain the following bound using Poincaré–Friedrichs inequality (4.27),∣∣(f −Πhf, v

)
K

∣∣ ≤ ||f −Πhf ||K
hK
π

‖∇v‖K . (4.31)

The upper bound of the second term will depend on the considered error measure. If δ? = 0, we can apply
the Cauchy-Schwarz, and the Poincaré–Friedrichs inequality (4.28) to infer(

Φε,kh − β(uε,kh ), v
)
K

≤ ||Φε,kh − β(uε,kh )||K
hΩ
π

||∇v||K . (4.32)
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For δ? = 1, we can simply use the Cauchy-Schwarz inequality,(
Φε,kh − β(uε,kh ), v

)
K

≤ ||Φε,kh − β(uε,kh )||K ||v||K . (4.33)

For the last term of (4.30), one can apply the Cauchy–Schwarz inequality to get(
σε,kh + ξ +∇ϕ(uε,kh ),∇v

)
K

≤ ||σε,kh + ξ +∇ϕ(uε,kh )||K ||∇v||K . (4.34)

Therefore, we deduce from (4.30) and the above inequalities that

〈Ru(u
ε,k
h ), v〉 ≤

∑
K∈Th

[
hK
π

||f −Πhf ||K + κ?||Φε,kh − β(uε,kh )||K + ||σε,kh + ξ +∇ϕ(uε,kh )||K
]
||v||?,K . (4.35)

By applying the Cauchy–Schwarz inequality, the definitions of the dual norm of the residual (4.3) and (4.6)
and (4.8) together with the fact that

∑
K∈T ||v||?,K :=

∑
K∈T ||∇v||2K + δ?||v||2K = ‖v‖2?, to get (4.29).

We based our developments of Algorithm 3.1 on an energy-type a posteriori error estimate distinguishing
the different error components at each nonlinear iteration k ≥ 1. To prove this estimate, let us introduce, for
an element K ∈ Th, the local discretization, quadrature, regularization, linearization, and data oscillation
estimators as follows:

ηε,kdisc,K := ||σε,kh,disc +ΠRTN
h ξ +∇ϕ̃ε(uε,kh )||K + δ?||Φε,kh,disc − β̃ε(u

ε,k
h )||K (4.36a)

ηε,kqd,K := ||∇ϕ̃(uε,kh )−∇ϕ(uε,kh )||K +
hK
π

||β̃(uε,kh )− β(uε,kh )||K , (4.36b)

ηε,kreg,K := ||∇ϕ̃(uε,kh )−∇ϕ̃ε(uε,kh )||K + κ?||β̃(uε,kh )− β̃ε(u
ε,k
h )||K , (4.36c)

ηε,klin,K := ||σε,kh,lin||K + κ?||Φε,kh,lin||K , (4.36d)

ηε,kosc,K :=
hK
π

||f −Πhf ||K + ||ξ −ΠRTN
h ξ||K . (4.36e)

The global versions of the above estimators are given by

ηε,k• :=

{ ∑
K∈Th

[
ηε,k•,K

]2} 1
2

. (4.37)

Then we have:

Theorem 4.10 (A posteriori estimate distinguishing the different error components). Let u be the weak
solution of (2.2) and let uε,kh ∈ H1

0 (Ω) be the solution to (3.5) at the iteration k ≥ 1. Let σε,kh and
Φε,kh be, respectively, equilibrated flux and saturation reconstructions given in Section 4.2. Then, with
κ? = (1− δ?)

hΩ

π + δ?, for δ? ∈ {0, 1}, we have

δ?||u− uε,kh ||Σ,? + (1− δ?)

[{
Ju(uε,kh ) + ||u− uε,kh ||2#

} 1
2

]
≤ ηε,kdisc + ηε,klin + ηε,kreg + ηε,kosc. (4.38)

Proof. Similar to Theorem 4.9, we use the equilibration property (4.30) to get

〈Ru(u
ε,k
h ), v〉 = (f −Πhf, v) +

(
ξ −ΠRTN

h ξ,∇v
)
+
(
β̃(uε,kh )− β(uε,kh ), v

)
+
(
Φε,kh − β̃(uε,kh ), v

)
+
(
∇ϕ̃(uε,kh )−∇ϕ(uε,kh ),∇v

)
−
(
σε,kh +ΠRTN

h ξ +∇ϕ̃(uε,kh ),∇v
)
. (4.39)

where we added and subtracting ϕ̃(uε,kh ) and β̃(uε,kh ). To estimate each term, we proceed as in Theorem 4.9
to first get

〈Ru(u
ε,k
h ), v〉 ≤

∑
K∈Th

[
hK
π

||f −Πhf ||K + ||ξ −ΠRTN
h ξ||K +

hK
π

||β̃(uε,kh )− β(uε,kh )||K + ||∇ϕ̃(uε,kh )−∇ϕ(uε,kh )||K

+κ?||Φε,kh − β̃(uε,kh )||K + ||σε,kh +ΠRTN
h ξ +∇ϕ̃(uε,kh )||K

]
||v||?,K . (4.40)
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By adding and subtracting ϕ̃ε(uε,kh ) and β̃ε(uε,kh ) to the last two terms respectively, applying the triangular
inequality, and using the fact that Φε,kh = Φε,kh,disc +Φε,kh,lin and σε,kh = σε,kh,disc + σε,kh,lin, we obtain

〈Ru(u
ε,k
h ), v〉 ≤

∑
K∈Th

[
ηε,kdisc,K + ηε,klin,K + ηε,kreg,K + ηε,kosc,K

]
||v||?,K ,

after assembling the terms using (4.36)-(4.37). We conclude the estimate using Cauchy–Schwarz inequality
after recalling the identity (4.6) for δ? = 0 and (4.8) for δ? = 0, while we use the H1-energy norm (4.7) so
that

∑
K∈T ||∇v||2K + δ?||v||2K = ‖v‖2?.

4.4 Local efficiency and robustness
This section proves the local and therefrom the global efficiency of our a posteriori error estimate. To
accomplish this, we must introduce the Sobolev spaces defined on a patchwise basis

H1
+(ωa) :=

{
{H1(ωa); v = 0 on ∂ωa ∩ ∂Ω} if a ∈ Vext

h ,
{H1(ωa); (v, 1)ωa = 0} if a ∈ V int

h ,
(4.41)

that have mean-value zero on the patch subdomain ωa if a ∈ V int
h , or that vanish on ∂ωa ∩ ∂Ω if a ∈ Vext

h

is a boundary vertex. Next, we recall that there is a constant depending only on the mesh shape-regularity
such that for v ∈ H1

+(ωa)
||∇(ψav)||ωa . ||∇v||ωa , for all a ∈ V. (4.42)

Therefore, utilizing the || · ||? norm defined by (4.2), one can readily verify that

||ψav||?,ωa . ||v||?,ωa , for all a ∈ V. (4.43)

We also recall the Poincaré–Friedrichs inequality for functions in H1
+(ωa):

||v||ωa . hωa ||∇v||ωa , for all a ∈ V. (4.44)

Additionally, we need to introduce the patchwise counterpart of the oscillation estimator (4.36e):

η̃ε,kosc,ωa
:=

∑
K∈T a

h

hK
π

||Πh(ψaf)− ψaf ||K + ||ξ −Πhξ||K + ||ψaξ −ΠRTN
h (ψaξ)||K , (4.45)

and let [
η̃ε,kosc

]2
:=

∑
a∈Vh

{
η̃ε,kosc,ωa

}2
. (4.46)

Referring to (4.36e), it is evident that for K ∈ Th, we have ηε,kosc,K ≤ η̃ε,kosc,ωa
due to the partition of unity.

Consequently, we have ηε,kosc ≤ η̃ε,kosc. We obtain the following stability result by following the procedure
in [31, 47].

Proposition 4.11 (Stability of discretization-flux equilibration). Let f ∈ L2(Ω) and ξ ∈ L2(Ω). Consider
u as the weak solution of (2.2). Let uε,kh ∈ L2(Ω) be the solution to (3.5) at iteration k ≥ 1 such that
ϕ(uε,kh ) ∈ H1

0 (Ω), and (σε,ka,disc,Φ
ε,k
a,disc) be the equilibrated flux and saturation reconstructions given by

Reconstruction 2 in accordance with Definition A.2. Let a ∈ Vh be fixed, and define τ ε,ka,disc := ΠRTN
h (ψaξ)+

ψa∇ϕ̃ε(uε,kh ) ∈ RTNp(T a
h ). Then, for δ? ∈ {0, 1}, there holds{

||σε,ka,disc + τ ε,ka,disc||
2
ωa

+ δ?

∥∥∥rε,ka,disc

∥∥∥2
ωa

} 1
2

. min
vh∈Wa

h,

∇·vh=gε,ka −Πh(ψar
ε,k
h )

||vh + τ ε,ka,disc||ωa

. max
|∇v|=1

v∈H1
+(ωa)\{0}

(
gε,ka − ψar

ε,k
h , v

)
ωa

−
(
τ ε,ka,disc,∇v

)
ωa

, (4.47)

where the constant in . depends only on the space dimension d, the shape-regularity constant of Th, and
the polynomial degree p.
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Theorem 4.12 (Local efficiency). Let the assumptions of Proposition 4.11 be satisfied. For a fixed a ∈ Vh,
the following patchwise efficiency bound holds{

||σε,ka,disc + τ ε,ka,disc||
2
ωa

+ δ?

∥∥∥rε,ka,disc

∥∥∥2
ωa

} 1
2

. max
v∈H1

0 (ωa)\{0}

〈Ru(u
ε,k
h ), ψav〉

||ψav||?
+ ηε,klin,ωa

+ ηε,kreg,ωa
+ ηε,kqd,ωa

+ η̃ε,kosc,ωa
. (4.48)

Assuming that the adaptive criteria given by (3.8)–(3.10) are satisfied. For all K ∈ Th, let TK = ∪a∈VKT a
h ,

and ωK be the corresponding open subdomain. Then, we obtain the following local efficiency:

ηε,kdisc,K + ηε,klin,K + ηε,kreg,K . max
w∈H1

0 (ωK)\{0}

〈Ru(u
ε,k
h ), ψaw〉

||ψaw||?
+ ηε,kqd,ωK + η̃ε,kosc,ωK , (4.49)

where the constant in . depends only on the balancing parameters Γlin and Γreg, the space dimension d, the
shape-regularity constant of Th, and the polynomial degree p.

Lemma 4.13 (Global efficiency). Let the assumptions of Proposition 4.11 be satisfied. Then, for δ? ∈ {0, 1},
the global efficiency can be summarized as

ηε,kdisc + ηε,klin + ηε,kreg . δ?||u− uε,kh ||Σ,? + (1− δ?)
{
Ju(uε,kh ) + ||u− uε,kh ||2#

} 1
2

+ ηε,kqd + η̃ε,kosc. (4.50)

Proof. For each K ∈ Th, we recall that ηε,kdisc,K = ||σε,kh,disc + ΠRTN
h ξ +∇ϕ̃ε(uε,kh )||K + δ?||rε,kh,disc||K . Noting

that K has (d + 1) vertices collected in the set VK for the simplicial mesh we consider, so that using the
partition of unity we have∑

K∈Th

[
ηε,kdisc,K

]2
.
∑
K∈Th

||σε,kh,disc +ΠRTN
h ξ +∇ϕ̃ε(uε,kh )||2K + δ?||rε,kh,disc||

2
K ,

≤ (d+ 1)
∑
K∈Th

∑
a∈VK

||σε,ka,disc + τ ε,ka,disc||
2
K + δ?

∥∥∥rε,ka,disc

∥∥∥2
K
,

= (d+ 1)
∑
a∈Vh

||σε,ka,disc + τ ε,ka,disc||
2
ωa

+ δ?

∥∥∥rε,ka,disc

∥∥∥2
ωa

.

We now rely on (4.48) to infer{ ∑
K∈Th

[
ηε,kdisc,K

]2} 1
2

.
∑
a∈Vh

max
v∈H1

0 (ωa)\{0}

〈Ru(u
ε,k
h ), ψav〉

||ψav||?
+ ηε,klin,ωa

+ ηε,kreg,ωa
+ ηε,kqd,ωa

+ η̃ε,kosc,ωa
.

Therefrom, we use the stopping criteria (3.8) and (3.9) with sufficiently small Γlin and Γreg to bound the
error estimators with the discretization estimator:

ηε,kdisc + ηε,klin + ηε,kreg .
∑
a∈Vh

sup
v∈H1

0 (ωa)\{0}

〈Ru(u
ε,k
h ), ψav〉

||ψav||?
+ ηε,kqd + ηε,kosc

. δ?||u− uε,kh ||Σ,? + (1− δ?)
{
Ju(uε,kh ) + ||u− uε,kh ||2#

} 1
2

+ ηε,kqd + η̃ε,kosc, (4.51)

Therein, we use the the localization of dual norms with ψa-Galerkin orthogonality as in [18], to verify∑
a∈Vh

sup
v∈H1

0 (ωa)\{0}

〈Ru(u
ε,k
h ), ψav〉

||ψav||?
.
∣∣∣∣∣∣∣∣∣Ru(u

ε,k
h )
∣∣∣∣∣∣∣∣∣
?
. The proof is complete by employing (4.6) and (4.8).
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5 Numerical results
In this section, we illustrate our theoretical results through a series of numerical experiments using the finite
element method. The discretization is conducted using Lagrange finite elements. Our focus in this paper is
on the linearization and regularization processes, with no detailed reporting on quadrature rules, associated
errors, or oscillation errors. It’s important to note that, in the literature, standard finite elements for (3.2)
may require specific quadrature rules or mass-lumped versions of high-order methods to ensure convergence
properties.

Given that we exclusively deal with analytical solutions, we compute the exact error components for
discretization and linearization as follows: errorklin = ||uh − ukh||# and errorkdisc = ||u − uh||#. Specifically,
we assume ||ϕ(u) − ϕ(uh)||H−1(Ω) = ||ϕ(u) − ϕ(uh)||, which, in fact, results in a slightly overestimation of
the exact error (see Remark 4.3). All presented results are derived using Reconstruction 1. Furthermore,
for approximations with orders p ≥ 2, cost-effective error estimations can still be achieved by utilizing a
reconstruction of one degree lower.

5.1 Test case 1: An illustrative example
5.1.1 Offline optimization of the L-scheme

We set Ω = [0, 1]2 and let β(u) = u and ϕ(u) = log(u+ 1), ξ = 0, and f complying to the solution u(x) =
x(1−x)y(1− y) on Ω. In particular, due to the Lipschitz continuity of ϕ, there is no need for regularization
or variable transformation. The discretization is achieved using first-order Lagrange conforming finite
elements, for which we conducted tests with both first-order and one-degree-lower reconstruction (cheaper),
both yielding comparable results. In this initial test case, we utilize developed error estimates to compare
the L-scheme and Newton’s method. Prior to conducting the comparison, we capitalize on the advantage
of splitting error sources to optimize the L-scheme parameter.

To achieve this optimization, we implement a ”brute force” iterative method that utilizes the linearization
estimator to find the optimal parameter L during an offline phase, as detailed in Remark 3.1. This process
involves exploring various values of L to determine the one that leads to the minimum iteration number,
effectively reducing the overall computational cost. The offline computation of L is carried out on coarse
grids, which further contributes to its negligible impact on total computational costs, thanks to the error
decomposition technique employed. Overall, this approach allows us to fine-tune the L-scheme, leading to
improved efficiency and convergence in the subsequent calculations.

Figure 1 (left) illustrates the L-scheme iteration as a function of the parameter L, comparing both
standard and adaptive (with Γlin ∈ {0.02, 0.2}) stopping criteria. The corresponding error estimators over
the L-scheme iterations are depicted in Figure 1 (right) for Γlin = 0.02 and various values of L (with
final iterations utilizing the standard stopping criteria). The optimal value for L is determined to be
approximately 0.975, which is then used in Algorithm 3.1 to perform computations on the desired fine grids.
Note that this value is close but not equal to the Lipschitz constant, which is 1 for this case. Employing
the adaptive stopping criteria leads to significant savings in the number of iterations, and it also helps
mitigate the impact of non-optimal values of L. The effectiveness of our balancing strategy is evident from
the results shown in Table 1, where the exact and estimated errors exhibit an effectivity index close to 1.
To further compare Newton’s method with the L-scheme, we utilize Algorithm 3.1 and plot the various

1/h error estimate exact error effectivity ind.
8 0.03184 0.0296325 1.074
16 0.01578 0.0149003 1.058
32 0.00785 0.0074607 1.053
64 0.00394 0.0037316 1.051

Table 1: Comparison of exact and estimated errors and resulting effectivity index relative to mesh size h. Results
are obtained with the L-scheme with Γlin = 0.02.

error components for both methods in Figure 2. It is important to note that the discretization estimators
are equal in both methods, while the linearization estimator ηklin differs. Therefore, the results presented in
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Table 1 are equally applicable when using Newton’s method. This observation further supports the error
splitting techniques employed. In comparing the exact and estimated linearization errors with the two
methods, we iterate each of the nonlinear solvers until ηklin ≤ 10−10, yielding an almost converged solution.
Figure 3 showcases the exact and estimated error components after applying our adaptive stopping criteria,
demonstrating a strong agreement between the two. For both methods, the linearization estimator becomes
negligible, contributing minimally to the total error.

In conclusion, the above results reaffirm that the optimization of the L-parameter in combination with
our adaptive stopping criteria makes the L-scheme an effective alternative to Newton’s method.
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Figure 1: Offline computation of optimal L (left) alongside estimated error components (right). The error estimates
are derived for h = 1/16 using the L-scheme, where the discretization estimator aligns with either the Newton or
L-scheme.
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Figure 2: Comparing Newton and optimized L-scheme for various parameters Γlin. Both exact and estimated
discretization errors coincides with either the Newton or L-scheme.

5.1.2 Mesh adaptivity for an L-shaped domain

In this scenario, we examine an L-shaped domain Ω = (−1, 1) × (−1, 1) \ [0, 1] × [−1, 0] and reverse the
choices for β and ϕ from the previous case. Specifically, we set ϕ(u) = u and β(u) = log(u+1), with ξ = 0.
The exact solution is expressed in polar coordinates:

u(r, θ) = r
2
3 sin

(
2θ

3

)
, ∀θ ∈ (0,

3π

2
).
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Figure 3: Comparison of discretization errors (top left) and estimators (top right), along with linearization errors
(bottom left) and estimators (bottom right) using the L-scheme. The discretization errors remain identical when
employing the Newton method.

We observe that the exact solution features a singularity at the origin, with u ∈ H
5
3−ε(Ω) for arbitrarily

small ε > 0. The corresponding source term is f(u) = log(1 + u). The singularity at the origin penalizes
the convergence rate for uniformly refined grids [22].

For our comparisons, we set the parameter Γlin = 0.1 and assess the effectiveness of adaptive stopping
criteria against standard ones. Subsequently, we examine the performance of adaptive mesh refinement
in contrast to standard uniform mesh refinement. Here, regularization is find unnecessary due to the
Lipschitz continuity of β and the non-singularity of the derivative. Our adaptive strategy aims to achieve
equi-distribution of discretization errors, as outlined in (3.10).
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Figure 4: Comparison of errors and estimators for uni-
form and adaptive mesh refinement.

Method Standard Adaptive
Newton 4 2

optimized L-scheme 6 3

Table 2: Comparison of standard and adaptive lineariza-
tions

In Table 2, we present the total iteration numbers for the L-scheme and Newton methods with and
without adaptive stopping criteria. Although this case is not particularly demanding in terms of nonlin-
ear iterations, our stopping criteria lead to a 50% reduction in iterations. Figure 4 illustrates the errors
and estimators for uniform and adaptive mesh refinements. A strong agreement is observed between the
estimated and exact errors, with adaptive grids showcasing improved performance. With fewer elements,
we achieve a superior convergence rate and smaller discretization errors compared to all runs with uniform
refinement. This emphasizes the effectiveness of our localized estimators in controlling and reducing sin-
gular effects, consequently enhancing convergence rates for such scenarios. In Figure 5, we illustrate the
distribution of the exact and estimated errors following the application of our adaptive stopping criteria.
An excellent agreement is observed between the estimated and exact error components. In the non-adaptive
case, localized and significant discretization errors around the corner are evident. However, these errors are
effectively redistributed evenly over the domain by refining and coarsening the grids, in accordance with
our discretization criteria.

As a result, the discretization error becomes equidistributed, and the maximum error improves by a
factor of 2.5 after grid adaptivity. The linearization errors and estimators for both methods exhibit a
sufficiently small contribution from the linearization into the overall error, as required by our adaptive
stopping criteria. Clearly, the distribution of the error differs between the two methods, with the Newton
method displaying a smoother distribution compared to the L-scheme. The differences in error distribution
between the two methods can be attributed to their inherent characteristics. The Newton method, with
its second-order convergence and full Jacobian, facilitates a more gradual and smoother adjustment to
the correct solution. In contrast, the L-scheme’s stabilization amendment may introduce oscillations and
localized features, resulting in a less smooth error distribution.

5.2 Test case 2: A stefan-type model
In this case, the nonlinearity is represented by the Stefan-like function [49], posing a greater challenge for
the standard Newton’s method:

ϕ(u) =


u if u < 0,

0 if 0 ≤ u ≤ 1,

u− 1 if u ≥ 1,

(5.1)

This increased complexity arises from the potential for the solution u to exhibit discontinuities, as ϕ contains
plateaux. This test case, taken from [26], introduces the interface given by s(x, y) = γ where s(x, y) = x+y√

2

with γ = 1
3 , so that the exact solution

u(x, y) = cosh(s(x, y)− γ), if s(x, y) ≥ γ, (5.2)
u(x, y) = 0, if s(x, y) < γ, (5.3)

is discontinuous along γ. Note that ϕ(u) is, in fact, continuous since the discontinuity of u coincides with
values where ϕ remains constant. Note that Assumptions (A1) to (A4) are satisfied for this case. We use a
regularized function ϕε(u) so that its strictly increasing, where the regularization parameter will be set up
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the discretization error component, showcasing the use of a uniform mesh (top) and an adaptive mesh (bottom).
The remaining figures depict the linearization error, illustrating its evaluation through Newton’s method (top) and
the L-scheme (bottom).



21

adaptively with the solver. We also set β(u) = u, leading to a zero source term in (2.2). In Figure 6 (left),
we depict the functions ϕ and its regularized counterpart:

ϕε(u) =


u if u < −ε,
ε (2u− 1)

1 + 2 ε
if − ε ≤ u ≤ 1 + ε,

u− 1 if u ≥ 1 + ε,

(5.4)

5.2.1 Overall algorithm assessment

We used Algorithm 3.1 for p = 1 while setting Γsw = 0.9, Γlin = 0.01 and Γreg = 0.1. The offline
computation of the optimal L-scheme parameter resulted in Lopt

ϕ = 0.6225, as illustrated in Figure 6
(right). We also set a fixed regularization parameter ε = 0.05. Figure 7 (left) depicts the evolution of
the spatial, nonlinear, and regularization error estimators as a function of the number of iterations for a
fixed mesh and fixed regularization parameter ε. As anticipated, the linearization estimator consistently
diminishes, whereas the other components remain stagnant, underscoring the distinct error component
separation feature. By employing a switching criterion with Γsw = 0.9, we leverage improved initialization
for Newton after completing 9 iterations with the L-scheme. The L-scheme iterations in our adaptive
solver are stopped when the linearization estimator falls below the discretization estimator. Although the
L-scheme may appear slow initially, it serves as a beneficial initialization for Newton, which exhibits rapid
convergence towards the end. Coupled with the adaptive criterion, our solver necessitated a total of 13
iterations with Γlin = 0.01 and 11 iterations with Γlin = 0.1. It is crucial to emphasize that a standard
Newton solver may experience oscillations or fail to converge when not provided with a sufficiently close
starting point, especially for refined grids. Even with a close initialization, our adaptive Newton method
significantly reduces the number of unnecessary iterations compared to a conventional criterion based on a
fixed threshold of 10−6. Given the slower convergence of the L-scheme compared to the faster convergence
of Newton, especially towards the end, the selection of Γsw plays a crucial role. Opting for a larger or smaller
Γsw can introduce numerous additional iterations, including oscillating ones for Newton. In Figure 7 (right),
analogous findings are depicted regarding the criterion for the selection of the regularization parameter ε. As
ε decreases, the regularization error estimator decreases as expected, while the spatial estimator plateaus.
The regularization criterion with Γreg = 0.1 results in stopping the iterations after the fourth step, and with
Γreg = 0.01, it stops after six steps.

5.2.2 Mesh adaptivity

The subsequent set of experiments is designed to evaluate the spatial balancing criterion (mesh adaptivity)
by demonstrating its influence on the estimated error and effectivity index in relation to the total number of
unknowns, and comparing it to fixed and uniform meshes. We commenced the experiment with a fixed mesh,
utilizing consistent parameters for the adaptive, switching, and regularization criteria, as done previously. In
Figure 8, we present the distribution of discretization (top left), regularization (top right), and linearization
(bottom left) estimators using the adaptive algorithm. The spatial balancing criterion has resulted in a more
evenly distributed error, with the maximum error concentrated at the end-points of the interface γ. This
distribution is attributed to the still-discontinuous behavior of the boundary conditions initially computed
from the exact and non-regularized solution.

Moreover, it is clear that both regularization and linearization errors are sufficiently small to have a
negligible influence on the total error. The regularization error predominantly traces the interface γ, where
the discontinuity is prominent. To evaluate the overall convergence of the adaptive solver, we present in
Figure 8 (bottom right) the error and estimates as a function of the total number of unknowns in both
the fully adaptive case and with uniform meshes (with p = 2). Even in the uniform case, Algorithm 3.1 is
employed to adaptively control the linearization and regularization processes. Clearly, the adaptive approach
outperforms the uniform one, delivering enhanced convergence rates with reduced computational costs. Note
that the convergence rates in the uniform case was observed to consistently maintain at or slightly exceed
O(h0.8) for p = 1, only slightly declining to around O(h1.5) for p = 2. The convergence rates were clearly
enhanced through mesh adaptivity, although the specific rate improvement has not been calculated.
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Figure 6: Illustration of a function ϕ and its regularization ϕε (left), along with the offline computation of the
optimal L-scheme parameter. The optimal L is determined for a small regularization parameter ε = 10−3 and a
uniform coarse mesh with h = 1/8.
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Figure 7: Evolution of the error estimators as a function of nonlinear iterations with adaptive switching and
stopping criteria (left). Evolution of the regularization and discretization estimators with respect to the regularization
parameter ε (right).

5.3 Test case 3: A porous media model
We consider now porous media models by setting β(u) = u and ϕ(u) = |u|m−1u, where m > 0. This
particular selection of β and ϕ leads to a degenerate elliptic equation with intriguing properties depending
on the value of m. We set f to comply with the solution u(x) = sin(πx) sin(πy) on Ω = [0, 1]2. To investigate
the behavior of Algorithm 3.1 in handling the different choices of m, we conduct extensive testing on the
model problem. This testing involves numerical simulations with various values of m, spanning both the slow
and fast diffusion regimes. By employing a posteriori error estimation, adaptive schemes, and regularization
techniques provided by Algorithm 3.1, we aim to obtain accurate and efficient approximations for the diverse
cases of interest.

5.3.1 Models for slow regime

When m > 1, the model represents the slow diffusion case, which finds application in gas diffusion within
porous media, often referred to as the slow diffusion model. In this scenario, the equation exhibits degener-
acy at unknown points where u = 0. This means that the diffusion process becomes slow or even stagnant
in regions where the solution approaches zero, leading to spatially localized behavior with potential concen-
tration gradients near these points.
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Figure 8: Spatial distribution of error estimators at the end of simulation: discretization (top left), regularization
(top right), and linearization (bottom left). Convergence results comparing uniform and adaptive mesh refinements
for p = 1 (bottom right).

Table 3 offers a comprehensive comparison of the L-scheme, Newton, and L-scheme-Newton solvers across
various parameter values of m and different switching criteria. The obtained effectivity indices underscore
the high quality and robustness of our estimators. Particularly, the estimators demonstrate their efficacy
even in cases of reaction dominance (larger m). The consistent trend observed in both our numerically
estimated errors and their resulting effectivity indices is an increase as m also increases. The near-singular
regions near the boundary do not influence the estimators, highlighting their reliability. We observe that,
in almost all cases, the L-scheme-Newton approach outperforms both the individual L-scheme and Newton
methods in terms of the total number of iterations. Particularly for fine meshes and m ≥ 3, Newton fails
to converge, and the L-scheme alone requires a significant number of iterations. It is noteworthy that the
optimal L parameter is found to be close to Lopt

ϕ = Lϕ/2 = m/2. As an example, we plot in Figure 9 the total
iterations number in function of Γsw for the case of m = 4 and h = 1/16. The results reveal that choosing
Γsw larger or smaller than 0.25 leads to an increase in the number of nonlinear iterations. However, when
opting for a small Γsw, the solver tends to exhibit enhanced stability, effectively mitigating oscillations in the
Newton method (left figure). In conclusion, the search for the optimal switching parameter Γsw alongside
the appropriate choice of L significantly enhances the efficiency and stability of the L-scheme-Newton solver.

5.3.2 Models with fast regime

When 0 < m < 1, the model aligns with the fast diffusion case, a prevalent scenario in diverse fields such
as plasma physics, the kinetic theory of gases, or fluid transportation in porous media [27]. In this regime,
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m 1/h Γsw Γlin Γreg Adaptive Solver Iterations Estimator Error Eff. Idx
2 16 – 0.01 0.01 L-scheme 31

– 0.01 0.01 Newton 10 2.59e-01 2.16e-01 1.19
0.95 0.01 0.01 L-scheme-Newton 6

(2+4)

32 – 0.01 0.01 L-scheme 60
– 0.01 0.01 Newton 10 1.24e-01 1.04e-01 1.18

0.75 0.01 0.01 L-scheme-Newton 9
(6+3)

3 16 – 0.01 0.01 L-scheme 84
– 0.01 0.01 Newton 12 3.29e-01 2.43e-01 1.35

0.5 0.01 0.01 L-scheme-Newton 14
(4+10)

32 – 0.01 0.01 L-scheme 121
– 0.01 0.01 Newton NO 1.54e-01 1.22e-01 1.26

0.35 0.01 0.01 L-scheme-Newton 25
(16+9)

4 16 – 0.01 0.01 L-scheme 112
– 0.01 0.01 Newton NO 4.03e-01 2.79e-01 1.44

0.25 0.01 0.01 L-scheme-Newton 22
(7+15)

32 – 0.01 0.01 L-scheme 144
– 0.01 0.01 Newton NO 2.34e-01 1.72e-01 1.36

0.15 0.01 0.01 L-scheme-Newton 32
(20+12)

Table 3: Comprehensive comparison of nonlinear iterations, error estimates, exact errors, and effectivity indices
across different values of m and mesh size h. The results for the L-scheme are obtained with an optimized L-
parameter computed offline.
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Figure 9: The ratio ηk
lin/η

k
disc as a function of nonlinear iterations (left) for Γsw = 0.1, 0.25, and 0.5. The results

highlight the impact of Γsw on cumulative iterations (right).

the equation becomes singular as |u|m−1 becomes unbounded whenever u approaches zero. This behavior
indicates that the diffusion process undergoes rapid spreading, causing solutions to diffuse swiftly across the
domain and potentially leading to sharp transitions and boundary layer effects. Here, as ϕ is not Lipschitz
for arguments approaching 0, we contemplate regularization through ε > 0 and the introduction of the
functions ϕε : R → R. Specifically, ϕε(u) = εm−1u if u lies in the interval (0, ε) and ϕε(u) = ϕ(u) elsewhere.
The Lipschitz constant is Lϕε = εm−1, and even ϕ′

ε is Lipschitz and Lb′ε = m(m−1)|ε|m−2. We can employ
a transformation by defining w = |u|m−1u and addressing the problem for w using linear diffusion and
a nonlinear reaction term represented by |w|1/m−1w. This poses no challenges since 1/m > 1. For this
formulation, we apply the L-scheme without regularization.
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Figure 10: Effectivity index as a function of model parameter m and mesh size h for the original formulation (left)
and the transformed formulation (right). These results were obtained utilizing the L-scheme with an optimized
L-parameter computed offline.
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Figure 11: Offline computation of the optimal L-scheme parameter for the original formulation for m = 0.5. The
results reaffirm the correlation between the performance of the L-scheme and the stabilization parameter L. Similar
observations were made for 0 < m < 1, confirming that Lopt falls within the range [

Lϕε
2

, Lϕε ].

Figure 10 presents a comparative analysis of effectivity indices for both formulations, considering varying
values of m and mesh sizes. In the standard formulation (left figure), the estimator tends to overestimate
the exact error, especially for small m values, causing the effectivity index to surpass the optimal value
of 1. However, as m approaches 1 (linear case), the overestimation diminishes, and the effectivity index
progressively converges towards 1. Overall, the effectivity index for the standard formulation remains within
a reasonable range close to the optimal value of 1. In contrast, the transformed problem exhibits excellent
results (right figure), maintaining an effectivity index consistently close to 1, irrespective of the m value. This
highlights the enhanced properties of the transformed problem. Importantly, the transformed formulation
demonstrates efficiency across various m values, requiring only a modest number of iterations—typically
averaging 2 to 3 iterations. On the other hand, the original formulation demands a higher iteration count,
ranging from 5 to 6 iterations when optimizing the stability parameter Lβ . Without optimizing the L-
scheme, the iteration count could significantly increase, as depicted in Figure 11. Figure 12 showcases
the spatial distribution of discretization and linearization errors, along with estimators, for the original
formulations with m = 0.5 after convergence. The results reveal a remarkable agreement between estimated
and exact errors. This robust agreement underscores the effectiveness of employing these estimators to
control nonlinearity and certify the accuracy of numerical simulations, especially in scenarios involving
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Figure 12: Comparison of discretization errors (top left) and estimators (top right), along with linearization errors
(bottom left) and estimators (bottom right) using the L-scheme for m = 0.5. The discretization errors remain
identical when employing the Newton method (results not shown).

degeneracy.

6 Conclusions
Our work presents an adaptive solver for a class of doubly nonlinear and degenerate elliptic equations,
leveraging the strengths of the L-scheme and Newton methods. To this end, we developed a posteriori error
estimators providing a guaranteed global upper bound on the error. We also proved the efficiency of the
estimates and showed their robustness with respect to mesh size and nonlinearity strengths, and how to
evaluate separately the various error components, including regularization and linearization errors.

In our numerical experiments focused on the Stefan problem and scenarios involving fast and slow dif-
fusion in porous media, the adaptive L-scheme–Newton solver consistently outperforms the L-scheme and
demonstrates greater stability compared to standard Newton methods, particularly in challenging conver-
gence scenarios. The L-scheme’s role as a robust initialization for Newton is crucial in mitigating oscillations
and unnecessary iterations. The adaptive solver stands out by providing users with accurate error estima-
tions for different error components at each nonlinear iteration.
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Appendix A. Patchwise Euler-Lagrange Equations for Flux Equi-
libration

The a posteriori error estimates presented in this paper rely on a locally computable equilibrated flux,
denoted as σε,kh , and the post-processed saturation, denoted as Φε,kh . For any a ∈ Vh, the local equilibrated
flux σε,ka and the local post-processed saturation Φε,ka are defined over vertex patches. These reconstructions
correspond to the Euler-Lagrange equations resulting from the constrained minimization within vertex
patches.

Definition A.1 (Reconstruction of (σε,ka ,Φε,ka )). For each a ∈ Vh, let (σε,ka ,Φε,ka ) ∈ Wa
h × Qa

h be the
minimizers of the following minimization problem:

(σε,ka ,Φε,ka ) := arg min
(σh,Φh)∈Wa

h×Q
a
h

∇·σh+Φh=b

H(σh,Φh)︷ ︸︸ ︷
‖σh + λa‖2ωa

+ δ?

∥∥∥Φh −Πh(ψaβ̃
k−1
ε (uε,kh ))

∥∥∥2
ωa

, (A.1)

where b := ga +Πh(ψaβ̃
k−1
ε (uε,kh )) = Πh(ψaf)−∇ψa · (Πhξ + Iε,kh ).

To solve the minimization problem A.1, we employ the method of Lagrange multipliers associated with
the Lagrangian function:

L(σh,Φh, r) = H(σh,Φh)− (∇ · σh, r)ωa − (Φh, r)ωa + (b, r)ωa ∀(σ,Φ, r) ∈ Wa
h ×Qa

h ×Qa
h, (A.2)

where r is the Lagrange multiplier used to impose the needed constraint on (σh,Φh). Denote by (σε,ka ,Φε,ka , rε,ka )
the saddle point of the Lagrangian function L. Then, for all (v, r, q) ∈ Wa

h ×Qa
h ×Qa

h, we have

(σε,ka ,v)ωa − (∇ · v, rε,ka )ωa = (−ψa(ξ + Iε,kh ),v)ωa ,

(Φε,ka , r)ωa =

(
Πh(ψaβ̃

k−1
ε (uε,kh )), r

)
ωa

+ δ?(r
ε,k
a , r)ωa ,

(∇ · σε,ka , q)ωa + (Φε,ka , q)ωa = (Πh(ψaf), q)ωa −
(
∇ψa · (Πhξ + Iε,kh ), q

)
ωa

.

The Euler-Lagrange equations can then be simplified to two coupled equations as given by (4.22), followed
by a post-processing step:

Φε,ka = Πh(ψaβ̃
k−1
ε (uε,kh )) + δ?r

ε,k
a , for δ? ∈ {0, 1}.

The global reconstructions are constructed afterward using the partition of unity property of the hat func-
tions through (4.23).

Definition A.2 (Reconstruction of (σε,ka,disc,Φ
ε,k
a,disc)). For each a ∈ Vh, let (σε,ka,disc,Φ

ε,k
a,disc) ∈ W a

h ×Qa
h be

the minimizers of the following minimization problem:

(σε,ka,disc,Φ
ε,k
a,disc) := arg min

(σh,Φh)∈Wa
h×Q

a
h

∇·σh+Φh=b

Hdisc(σh,Φh)︷ ︸︸ ︷∥∥∥σh + λk,εa

∥∥∥2
ωa

+ δ?

∥∥∥Φh −Πh(ψaβ̃ε(u
ε,k
h ))

∥∥∥2
ωa

, (A.3)

where b := gε,ka +Πh(ψaβ̃ε(u
ε,k
h ))− ψar

ε,k
h = Πh(ψaf)−∇ψa · (Πhξ +∇ϕ̃ε(uε,kh ))−Πh(ψar

ε,k
h ).

Repeating the same steps as for (A.1), one can obtain the Euler-Lagrange equations (4.24). Therefore,
the global constructions are obtained through (4.25).

Appendix B. Proof of Proposition 4.11
We establish the stability result (4.47) using the approach presented in [52] and, more specifically, in [31].
These references utilize stability bounds and quasi-minimizers for the patchwise discretization-flux equili-
bration problem (4.24).
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Case with δ? = 0: For this case, we recall that ηε,kdisc,K = ||σε,kh,disc + ΠRTN
h ξ +∇ϕ̃ε(uε,kh )||K , which corre-

sponds to an equilibration problem based on a pure diffusion problem. We also note that Φε,kh,disc is undefined
by (4.22) and is not needed in the estimates.

By orthogonality of the L2-projection operator ΠRTN
h onto RTNp(T a

h ) together with (4.24a), we can
see that (σε,ka,disc,v)ωa − (∇·v, rε,ka,disc)ωa = (λε,ka ,v)ωa = −(τ ε,ka,disc,v)ωa , for all v ∈ Wa

h and from (A.3) it’s
inferred that, for each a ∈ Vh,

σε,ka,disc = arg min
vh∈Wa

h

∇·vh=gε,ka −Πh(ψar
ε,k
h )

||τ ε,ka,disc + vh||ωa . (B.1)

Recall that (τ ε,ka,disc, g
ε,k
a − Πh(ψar

ε,k
h )) ∈ RTNp(T a

h ) × Pp(T a
h ), and the Neumann compatibility condi-

tion (4.26) holds true for all interior vertices. Then, using [8, Thm 7] in the case of two space dimensions
and [36, Thm 2.3] in the case of three space dimensions, we obtain, using (B.1) that

||σε,ka,disc + τ ε,ka,disc||ωa = min
vh∈Wa

h,

∇·vh=gε,ka −Πh(ψar
ε,k
h )

||τ ε,ka,disc + vh||ωa

. max
|∇v|=1

v∈H1
+(ωa)\{0}

(
gε,ka − ψar

ε,k
h , v

)
ωa

−
(
τ ε,ka,disc,∇v

)
ωa

. (B.2)

Case with δ? = 1: We leverage the results obtained for δ? = 0 along with techniques from [52] to verify
the estimate (4.47) for this case. The idea relies on the fact that (σε,ka,disc,Φ

ε,k
a,disc) are minimizers of the

problem A.3:

(σε,ka,disc,Φ
ε,k
a,disc) = arg min

(vh,Φh)∈Wa
h×Q

a
h

∇·vh+Φh
=gε,ka +Πh(ψaβ̃ε(u

ε,k
h ))−Πh(ψar

ε,k
h )

∥∥∥τ ε,ka,disc + vh

∥∥∥2
ωa

+
∥∥∥Φh −Πh

(
ψaβ̃ε(u

ε,k
h )
)∥∥∥2
ωa︸ ︷︷ ︸

Hdisc(vh,Φh)

. (B.3)

The functional Hdisc(vh,Φh) : W
a
h×Qa

h → R is convex with respect to both variables. Therefore, by fixing
Φ∗∗
h := Πh

(
ψaβ̃ε(u

ε,k
h )), which is an admissible element of Qa

h, we obtain:

min
vh,Φh

Hdisc(vh,Φh) ≤ min
vh

Hdisc(vh,Φ
∗∗
h ),

(B.3)
= min

vh∈Wa
h

∇·vh=gε,ka −Πh(ψar
ε,k
h )

∥∥∥τ ε,ka,disc + vh

∥∥∥2
ωa

. (B.4)

Here, the constraint is derived from ∇·vh = gε,ka +Πh(ψaβ̃ε(u
ε,k
h ))− Πh(ψar

ε,k
h )− Φ∗∗

h = gε,ka − Πh(ψar
ε,k
h )

(see Definition A.3). Let us define

v∗∗
h = arg min

vh∈Wa
h

∇·vh=gε,ka −Πh(ψar
ε,k
h )

||τ ε,ka,disc + vh||ωa , ( 6= σε,ka,disc) (B.5)

Here again, we observe that (τ ε,ka,disc, g
ε,k
a −Πh(ψar

ε,k
h )) ∈ RTNp(T a

h )× Pp(T a
h ), and the Neumann compat-

ibility condition (gε,ka −Πh(ψar
ε,k
h ), 1)ωa for all interior vertices. Notably, we can verify that the constraint

∇·v∗∗
h +Φ∗∗

h = gε,ka +Πh(ψaβ̃ε(u
ε,k
h ))−Πh(ψar

ε,k
h ) of problem (B.3) is met. The arguments used for (B.2)

togethet with (B.5) implies

∥∥∥v∗∗
h + τ ε,ka,disc

∥∥∥2
ωa

+

=0︷ ︸︸ ︷∥∥∥Φ∗∗ −Πh
(
ψaβ̃ε(u

ε,k
h )
)∥∥∥2
ωa

(B.5)︷︸︸︷
.

 max
|∇v|=1

v∈H1
+(ωa)\{0}

(
gε,ka − ψar

ε,k
h , v

)
ωa

−
(
τ ε,ka,disc,∇v

)
ωa


2

. (B.6)
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Since (σε,ka,disc,Φ
ε,k
a,disc) are minimizers of problem A.3, we conclude first that above estimate holds true

as well for (σε,ka,disc,Φ
ε,k
a,disc). The proof is complete.

Appendix C. Proof of Theorem 4.12

We choose a ∈ VK and consider v ∈ H1
+(ωa) then we express the right-hand side of (4.47) as

(
gε,ka − ψar

ε,k
h , v

)
ωa

−(
τ ε,ka,disc,∇v

)
ωa

=
∑5
i=1 Ti where

T1 := (f, ψav)ωa − (β̃ε(u
ε,k
h ), ψav)ωa − (ξ +∇ϕ̃ε(uε,kh ),∇(ψav))ωa ,

T2 := (Πh(ψaf)− ψaf, v)ωa ,

T3 := (ξ −Πhξ, v∇ψa)ωa ,

T4 := (ψaξ −ΠRTN
h (ψaξ),∇v)ωa ,

T5 := −
(
rε,kh , ψav

)
ωa

.

Next, we can easily verify that |T2| =
∑
K∈T a

h
(Πh(ψaf) − ψaf, v − Πhv)K using the orthogonality of the

L2-projection so that |T2| ≤
∑
K∈T a

h

hK
π

||Πh(ψaf) − ψaf ||K ||∇v||K by using the Cauchy-Schwarz and
Poincaré–Friedrichs inequalities, as demonstrated in the proof of Theorem 4.10. Similarly, we can prove
that |T3| ≤ ||ξ −Πhξ||ωa ||∇v||ωa and |T4| ≤ ||ψaξ −Πh(ψaξ)||ωa ||∇v||ωa , so that using (4.45)

|T2|+ |T3|+ |T4| .

η̃ε,kosc,ωa︷ ︸︸ ︷ ∑
K∈T a

h

hK
π

||Πh(ψaf)− ψaf ||K + ||ξ −Πhξ||K + ||ψaξ −Πh(ψaξ)||K

 ||∇v||ωa (C.1)

To bound T5, we use the Cauchy-Schwarz inequality and Poincaré–Friedrichs inequality to first get |T5| .
hωa ||r

ε,k
h ||ωa ||∇v||ωa . Now, we use property (2.b.), the triangle inequality, followed by an inverse inequality

to get

||rε,kh ||K = ||∇·σε,kh,lin +Φε,kh,lin||K ,

≤
∑
K∈T a

h

||∇·σε,kh,lin||K + ||Φε,kh,lin||K ,

.
∑
K∈T a

h

h−1
K ||σε,kh,lin||K + ||Φε,kh,lin||K . (C.2)

That is we can conclude that

T5 .

 ∑
K∈T a

h

||σε,kh,lin||K +
hK
π

||Φε,kh,lin||K

||∇v||ωa

.

 ∑
K∈T a

h

||σε,kh,lin||K + κ?||Φε,kh,lin||K

︸ ︷︷ ︸
ηε,klin,ωa

||∇v||ωa , (C.3)

where the constant depends only on the mesh regularity. Now we are left with the bound of T1. As
ψav ∈ H1

0 (Ω), we obtain first from (2.2) that

T1 =
(
β(u)− β̃ε(u

ε,k
h ), ψav

)
ωa

+
(
∇
(
ϕ(u)− ϕ̃ε(u

ε,k
h )
)
,∇(ψav)

)
ωa

.
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Now, we proceed as in the proof of Theorem 4.10 by (1) using the triangle inequality and (4.1) to incorporate
the regularization and quadrature estimators (2) applying the Cauchy-Schwarz and Poincaré–Friedrichs
inequalities to bound each term (3) employing the mesh shape-regularity, yielding hωa ≈ hK and the fact
that ||∇(ψav)||ωa . ||∇v||ωa :

T1 . 〈Ru(uh), ψav〉+
[
ηε,kreg,ωa

+ ηε,kqd,ωa

]
||∇v||ωa .

By combining the above inequalities in (B.2), we find out that{
||σε,ka,disc + τ ε,ka,disc||

2
ωa

+ δ?

∥∥∥rε,ka,disc

∥∥∥2
ωa

} 1
2

. max
v∈H1

0 (ωa)\{0}

〈Ru(uh), ψav〉
|∇v|

+
[
ηε,klin,ωa

+ ηε,kreg,ωa
+ ηε,kqd,ωa

+ ηε,kosc,ωa

]
,

. max
v∈H1

+(ωa)\{0}

[
〈Ru(uh), ψav〉
||ψav||?,ωa

× ||ψav||?,ωa

||∇v||ωa

]
+
∑
•
ηε,k•,ωa

,

. max
v∈H1

0 (ωa)\{0}

〈Ru(uh), ψav〉
||ψav||?,ωa

+
∑
•
ηε,k•,ωa

, (C.4)

where we used simply (4.42) for the last inequality for the case of δ? = 0 and the fact that the ||ψav||?,ωa .
(1+hωa)||∇v||ωa by combining (4.43)-(4.44) for δ? = 1. The last inequality corresponds to (4.48) in which the
constant in . depends only the space dimension d, the shape-regularity constant of Th, and the polynomial
degree p. Now, to prove the local efficiency (4.49), we use the partition of unity to get[

ηε,kdisc,K

]2
.
∑
a∈VK

||σε,kh,disc +ΠRTN
h (ψaξ) + ψa∇ϕ̃ε(uε,kh )||2K + δ?||rε,ka,disc||

2
K ,

≤
∑
a∈VK

||σε,ka,disc + τ ε,ka,disc||
2
K + δ?

∥∥∥rε,ka,disc

∥∥∥2
K
,

≤
∑
a∈VK

||σε,ka,disc + τ ε,ka,disc||
2
ωa

+ δ?

∥∥∥rε,ka,disc

∥∥∥2
ωa

.

W replace the above inequality in the patchwise efficiency estimate (4.48), and proceeding by using the
stopping criteria (3.8) and (3.9) with small enough user-parameters (Γlin,Γreg) to bound ηε,klin,K̃ + ηε,kreg,K̃

with ηε,kdisc,K̃ for all K̃ ∈ T a
h . We conclude the estimate by employing the balancing criteria (3.10) so that

ηε,kdisc,K̃ ≈ ηε,kdisc,K for all K̃ ∈ T a
h . The proof is complete.
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