Efficient Adaptive Solvers for Doubly Degenerate Elliptic Equations using A Posteriori Error Estimates - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2024

Efficient Adaptive Solvers for Doubly Degenerate Elliptic Equations using A Posteriori Error Estimates

Résumé

In this work, we derive a posteriori error estimates for a class of doubly nonlinear and degenerate elliptic equations, including the Stefan problem and fast and slow diffusion in porous media. Our approach employs equilibrated flux reconstructions, providing guaranteed and fully computable upper bounds on an energy-type norm and local efficiency. These bounds remain independent of the strength of nonlinearity and degeneracy rates. These estimators drive an adaptive solver, dynamically switching between nonlinear solvers to achieve optimal iterations. The adaptive algorithm accounts for discretization, regularization, quadrature, and linearization error components. When Newton's method encounters challenges in achieving convergence, the adaptive algorithm transitions to the L-scheme solver. This solver optimally precomputes the stabilization (or tuning) parameter L > 0 during an offline phase, mirroring the behavior of the Jacobian. The adaptive algorithm is exemplified through four prototypical examples, showcasing its effective error control and notable computational savings.
Fichier principal
Vignette du fichier
Article2024Elyesandsaber.pdf (2.08 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

hal-04469679 , version 1 (20-02-2024)

Licence

Identifiants

  • HAL Id : hal-04469679 , version 1

Citer

Elyes Ahmed, Saber Amdouni. Efficient Adaptive Solvers for Doubly Degenerate Elliptic Equations using A Posteriori Error Estimates. 2024. ⟨hal-04469679⟩

Collections

TDS-MACS
70 Consultations
108 Téléchargements

Partager

More